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Abstract—This paper presents a new release of A Robust Exact
Differentiator Toolbox for Matlab/Simulink proposed in [1]. This
release features a new discrete-time realization of the continuous-
time robust exact differentiator. The implemented discretization
scheme is less sensitive to gain overestimation and does not suffer
from the discretization chattering effect. Hence, the single tuning
parameter of the new version of the implemented differentiator is
more intuitive to tune. Furthermore, it shows superior estimation
performance in the case of large sampling times in comparison
to the previous release. This is confirmed by the presented results
obtained by numerical simulations and a real world application.

I. INTRODUCTION

Real time differentiation and estimation of noisy signals is
a core task in control engineering and signal processing. As
documented by a large number of publications, the arbitrary
order robust exact differentiator proposed in [2], [3] offers a
simple and efficient solution to this problem. The algorithm
is based on ideas of sliding mode control. In the absence of
noise, the differentiator is capable of providing the exact nth

derivative of a time signal f(t), assuming that its (n + 1)th

derivative with respect to time t is Lipschitz continuous
with known Lipschitz constant L. Hence, after a finite time,
the differentiator provides estimates which coincide with the
signal f and its first n time derivatives.
Arbitrary order robust exact differentiators have been studied
extensively. Their asymptotic estimation accuracy, if the signal
f is corrupted by noise, is known to be optimal [2]–[4].
Furthermore, the estimation accuracy of the ith derivative is
proportional to τn−i+1, with i = 0, 1, . . . , n, in the case
of differentiating a time sequence generated by sampling the
noise-free continuous time signal f with a constant sampling
time τ , see also [2]–[4]. In applications where typically both
effects are present, the estimation accuracy diminishes with
the dominating part, i.e. either with the impact due to noise
or due to sampling.
In the majority of applications, the algorithms need to be
implemented in a real time environment, requiring a discrete-
time realization of the continuous-time differentiator. However,
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discretization as well as the setting of the n constant tuning
parameters of differentiators of orders higher than one is not
straightforward. The authors in [5] proposed an extension
of the forward Euler scheme such that the discrete-time
algorithm preserves the above mentioned best possible asymp-
totic estimation accuracies. Although this scheme provides a
theoretically sound strategy for a proper discretization of dif-
ferentiators of arbitrary order, it does not address the parameter
tuning problem. Typically one of the rare parameter settings of
the differentiator is used in the presented simulation studies.
In real world applications the setting of the differentiator,
however, needs to be adjusted according to the characteristics
of the signal to be differentiated. One option to generate a
convergent parameter setting is to evaluate recently proposed
Lyapunov functions either for certain orders of the differen-
tiator, see [6]–[9], or for the arbitrary order case, see [10]. In
order to avoid this cumbersome procedure the toolbox [1] may
be used which is an implementation of the tuning paradigm
presented in [11]. This allows the tuning effort to be reduced
to the intuitive adjustment of a single parameter. The toolbox,
which can be used for both numerical simulation studies as
well as for real time experiments, is freely available for the
MATLAB / SIMULINK environment1. The implementation uses
the homogeneous discrete-time differentiator (HDD) presented
in [5].
Recently developed discretization techniques motivate updat-
ing the above mentioned toolbox. Compared to the scheme
proposed by [5], the new discrete time realization of the
differentiator ensures vanishing estimation errors when the
(n + 1)th derivative vanishes and hence, the so-called dis-
cretization chattering is avoided, see e.g. [12]. Note that this
is not the case when using discretization schemes based on
the Euler forward scheme. In this case, a limit cycle like
behavior of the estimation errors even in the case when the
(n + 1)th derivative vanishes is known to be generated. This
feature is essential in for example fault detection tasks, where
the (n + 1)th derivative is not equal to zero in faulty cases.
The development of the new discretization approach is based
on a pseudo linear system representation (see, e.g. [13]) of
the estimation error dynamics of the applied differentiators
proposed in [11]. This facilitates an eigenvalue based tuning
procedure which is also suggested in [11] and forms the

1A version of the toolbox which also supports automatic code generation
is available upon request.



basis for recently developed discretization approaches2 [14].
In particular, a discrete time realization of the continuous
time differentiator is generated by exploiting known eigenvalue
mappings from linear systems theory. This strategy is outlined
in Section II. Simulation studies and results of a real world
experiment obtained by the application of the revised version
of the differentiator toolbox are presented in Section III. A
summary and concluding remarks are given in Section IV.

II. BRIEF OVERVIEW OF THE IMPLEMENTED ALGORITHM

The algorithm implemented in the toolbox is a discrete-time
version of the sliding mode based arbitrary order robust exact
differentiator presented in [3]. In the so-called non-recursive
representation, the differentiator is given by

˙̂xi = kibf − x̂0e
n−i
n+1 + x̂i+1, i = 0, . . . , n− 1

˙̂xn = knsign(f − x̂0),
(1)

where it is assumed that the signal to be differentiated, i.e.
f , satisfies f (n+1) ∈ [−L, L]. The constant parameters of the
differentiator are denoted by k1, k2, . . ., kn so that there are
n+ 1 tuning parameters.

A. System Representation

In order to provide an overview of the applied discretization
scheme, the differentiator is rewritten as

dx̂
dt

= Ax̂+ψ(σ0)σ0, (2)

where the vector x̂ =
[
x̂0 x̂1 . . . x̂n

]T
contains the

estimates x̂i of f and its time derivatives respectively. The
matrix

A =

(
0n×1 In×n

0 01×n

)
(3)

and In×n denotes the (n× n) identity matrix. The vector

ψT(σ0) =
[
ψ0(σ0) ψ1(σ0) . . . ψn(σ0)

]
(4)

contains the injection terms

ψj(σ0) = kj |σ0|−
j+1
n+1 , j = 0 . . . n, (5)

where the estimation error σ0 = f − x̂0. For the purpose of
analysis, the noise free signal f is assumed to be generated
by a chain of n + 1 integrators described by the state space
model

dx
dt

= Ax+ en+1f
(n+1),

y = eT1 x,
(6)

with state vector x =
[
x0 . . . xn

]T
. The vector ei denotes

the ith standard basis vector. Introducing the estimation error
vector σ = x−x̂ with its first component σ0 = f−x̂0 = eT1 σ
allows the estimation error dynamics to be presented

dσ
dt

= [A−ψ(σ0)eT1 ]σ + en+1f
(n+1), (7)

2The paper [14], which is also submitted to this conference, contains the
theory of the discretization approach.

This is a so-called pseudo linear system representation orig-
inally presented within this context in [11]. Furthermore, (7)
is a homogeneous system with homogeneity degree −1. Its
solutions are understood in the sense of Filippov [15]. The
state-dependent dynamic matrix of system (7) can be written
as

A−ψ(σ0)eT1 =


−k0|σ0|−

1
n+1 1 0 . . . 0

−k1|σ0|−
2

n+1 0 1
. . . 0

...
...

. . . . . . 0

−kn−1|σ0|−
n

n+1 0 . . . . . . 1
−kn|σ0|−1 0 . . . . . . 0

 (8)

The corresponding characteristic equation is given by

w(s, σ0) = sn+1+k0|σ0|−
1

n+1 sn + . . .+

+ kn−1|σ0|−
n

n+1 s+ kn|σ0|−1 = 0. (9)

In order to compute the eigenvalues sj of the dynamic matrix
given in equation (8), it is beneficial to multiply w(s, σ0) from
equation (9) by |σ0|, i.e.

(|σ0|
1

n+1 s)n+1 + k0(|σ0|
1

n+1 s)n + . . .+

+kn−1(|σ0|
1

n+1 s) + kn = 0. (10)

From this representation, it is straightforward to see the
structure of the eigenvalues

sj = |σ0|−
1

n+1 pj . (11)

Substituting the eigenvalues sj into the polynomial w yields

w(sj , σ0) = |σ0|−1w̄(p) (12)

with the polynomial

w̄(p) = pn+1 + k0p
n + . . .+ kn−1p+ kn, (13)

This shows that the complex numbers pj are the roots of the
polynomial w̄(p). A stable dynamic matrix3 A−ψ(σ0)eT1 can
be designed by selecting the tuning parameters kj such that
the polynomial w̄(p) is Hurwitz.

B. Discretization technique

The discretization paradigm followed in the implemented
version of the toolbox is to establish a new discrete-time
realization of the continuous time differentiator by adopting
a discretization technique known from linear systems theory.
In particular, it is known that an eigenvalue λ corresponding to
the system matrix of a linear continuous time, time-invariant
system is mapped according to

λ→ eλτ

using a zero-order hold discretization technique. The discrete
time differentiator implemented in this toolbox aims to gener-
ate a discrete time estimation error dynamics characterized by
eigenvalues which also satisfy this mapping. This is achieved

3The dynamic matrix in (8) is said to be stable if the real parts of all its
eigenvalues sj are negative for all σ0.



by the design of a differentiator based on the discrete time
system

xk+1 = Φ(τ)xk + h(τ)f
(n+1)
k , (14)

with the state vector xk =
[
x0,k . . . xn,k

]T
, obtained via

zero-order hold discretization of system (6). Here, f (n+1)
k

denotes the sampled signal f (n+1)(t) at time instant t = kτ
with k = 0, 1, 2, . . .. The discrete time dynamic matrix Φ and
the input vector h of the discrete time system may be obtained
using

e

A en+1

0 0


=

[
Φ h
0 1

]
. (15)

The structure of the discrete time system given in (14) mo-
tivates the development of a discrete-time realization of the
differentiator with structure

x̂k+1 = Φx̂k + λ(σ0,k)Tσ0,k, (16)

where

λ(σ0,k) =
[
λ0(σ0,k) λ1(σ0,k) . . . λn(σ0,k)

]T
(17)

and

x̂k =
[
x̂0,k . . . x̂n,k

]T
. (18)

The discrete-time estimation error with respect to the signal
f(kτ) is

σ0,k = x0,k − x̂0,k = f(kτ)− x̂0,k. (19)

Using the discrete-time observer (16) and the discrete-time
representation (14), the discrete-time estimation error dynam-
ics can be represented as

σk+1 = [Φ− λ(σ0,k)eT1 ]σk + hf
(n+1)
k , (20)

where σk = xk − x̂k. The idea of the novel discretization
technique which is presented in detail in [14] is to design
the function λ(σ0,k) such that the eigenvalues of the matrix
[Φ − λ(σ0,k)eT1 ] are located at zj = esjτ , where sj are the
continuous-time eigenvalues given in equation (11). The eigen-
value placement problem is solved by exploiting Ackerman’s
formula, where the function λ is computed by

λ(σ0,k) = χ(Φ, σ0,k)S−1o en+1, (21)

with

χ(Φ, σ0,k) =

n∏
j=0

[Φ− zj(σ0,k)I] , (22)

where

zj(σ0,k) = esj(σ0,k)τ = epjτ |σ0,k|
− 1

n+1 (23)

are the desired closed loop eigenvalues. Hence, the desired
characteristic polynomial is given by

n∏
j=0

[z̃ − zj(σ0,k)] . (24)

f(t) σ0,k

[
x̂1,k, x̂2,k . . . , x̂n,k

]x̂0,k

Fig. 1: Block Diagram of the Differentiator Toolbox.

The matrix So is the observability matrix, i.e. for the consid-
ered system

So =


eT1
eT1 Φ

...
eT1 Φn

 . (25)

The differentiator design is therefore reduced to the selection
of appropriate desired closed-loop eigenvalues zj in equa-
tion (22).

C. Tuning of the differentiator parameters

Following the design of the discrete-time differentiator as
outlined in Section II-B, it is clear that the tuning of the
differentiator can be carried out by specifying n+ 1 roots pj
of the polynomial w̄(p) from equation (13). It is of interest to
provide a toolbox implementing the proposed differentiation
strategy in order to offer an intuitive and straightforward way
to integrate the algorithm into existing simulation and real
world implementations. In order to reduce the number of
tuning parameters, all roots are selected as pj = −c, where
the positive real constant c can be adjusted by the user of the
toolbox. This choice of the roots yields the desired closed-loop
eigenvalues

zj(σ0,k) = e−cτ |σ0,k|
− 1

n+1
. (26)

Following the selection pj = −c also in the parametrization
of the continuous time differentiator yields the parameter
kn = cn+1. This is evident from the polynomials (10) and (13)
and considering that kn is equal to the product of the specified
eigenvalues. In the case of a known Lipschitz constant L and
considering that kn > L is necessary in order to have an
equilibrium of the estimation errors at the origin, it is natural to
select c > L

1
n+1 . This is consistent with the strategy adopted

in a previous version of the toolbox, where the tuning was
also reduced to a single positive real parameter labeled as the
convergence rate/robustness factor, see [1]. This selection of
the roots therefore ensures that the interface is consistent with
the original version of the toolbox. In Fig. 1, the block diagram
as it appears in a Matlab/Simulink implementation is given. It
is seen that the differentiator requires the signal f(t) as the
input signal and that it provides the estimation error σ0,k and
the estimates x̂k as output signals. The parameters τ and c can
be adjusted as parameters of the differentiator block and the
required order n of the differentiator can also be chosen. As in
the previous version, differentiator order up to 10 is available.



−6

−4

−2

0

2
·10−2

f
(t
)

0 0.5 1 1.5 2 2.5 3

−1

0

1

t (s)

f
(3

)
(t
)

Fig. 2: Signal f(t) to be differentiated and its third derivative.

III. SIMULATION EXAMPLES & APPLICATION

The advantages of the discretization scheme exploited in the
new release of the toolbox when compared to the implemen-
tation in the previous version will now be demonstrated using
numerical simulation studies as well as laboratory implemen-
tation. In the following simulation examples, the order of the
differentiator is set to n = 2. Both toolbox versions are used
to differentiate the signal f(t). To ensure Lipschitz continuity
of the second derivative of the test signal, f(t) is generated
by a triple integration of the bounded signal

f (3)(t) =



sin(6πt) 0 ≤ t < 1,

0.7 1 ≤ t < 1.5,

−0.7 1.5 ≤ t < 2,

0 2 ≤ t < 2.5,

sin(12πt)e−
t−2.5
0.3 2.5 ≤ t,

(27)

which satisfies

sup
t
|f (3)(t)| ≤ 1. (28)

Choosing the initial values f (2)(0) = −0.058,
f (1)(0) = −0.04 and f(0) = 0 yields the signal f(t)
shown in Fig. 2. The convergence rate/robustness factor is
set to c = 2 in both toolbox versions and the sampling time
is chosen as τ = 5 ms. The simulation results are shown
in Fig. 3. The results obtained with the HDD, which is
implemented in the first toolbox version, induces chattering
due to discretisation. This is particularly noticeable in the
time period t ∈ [2, 2.5) where f3(t) = 0. In contrast, the
proposed discretization scheme, which is labeled mHDD,
exhibits no chattering due to discretization. Plotting the
homogeneous norm of the estimation errors, i.e.

‖σk‖h = (|σ0,k|+ |σ1,k|
3
2 + |σ2,k|3)

1
3 , (29)

over time t reveals that in this case the error state variables
converge to zero hyper-exponentially, see Fig. 4 at t = 2 s.
After some transient behavior the estimation errors of the
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Fig. 3: Comparison of the estimated 1st and 2nd derivatives us-
ing both robust exact differentiator schemes with the analytical
derivatives.
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Fig. 4: Comparison of the estimation precision plotted as
homogeneous norm of the error variables over time.

HDD enter the so-called real sliding set independent of the
disturbance f (3)(t). Due to the presence of discretization
chattering, higher accuracy is not achievable even in the case
where the (n + 1)th derivative vanishes. With the proposed
discretization scheme, the estimation quality is directly related
to the perturbation f (3) which is clearly visible during the
time span t ∈ [2.5, 3] where the amplitude of f (3) expo-
nentially decreases with time. As mentioned in Section II-C,
the tuning of the differentiator is reduced to the selection
of a single parameter, the so-called robustness factor c. The
choice c > L

1
n+1 yields vanishing estimation errors. This is

illustrated in Fig. 5. However, as also can be seen in Fig. 5, an
overestimation of the parameter c results in a loss of precision
in the case of the HDD. This is essentially a disadvantage
when differentiating signals without knowledge of L. In such a
situation, finding a meaningful value of c may be a challenging
task. On the other hand, the proposed scheme ensures that the
precision does not suffer from overestimation of the parameter
c in the absence of noise. Fig. 5 also illustrates that the
differentiator obtained with the proposed discretization scheme
requires slightly larger gains in order to outperform the HDD.
In a second simulation study, the precision with respect
to noise is demonstrated by differentiating the polynomial
f(kτ) = f0(kτ) + ηk, where f0(kτ) = (kτ)4 − 5(kτ)2 +
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2(kτ) where ηk represents uniformly distributed random num-
bers such that ηk ∈ 1

2 [−ε, ε]. The order of the differentiator
is n = 3 and c = 2.6. Fig. 6 shows the precision obtained
versus the noise level ε. The black dashed lines represent
interpolations of the obtained data. Neglecting the effect of
sampling, one expects from theoretical considerations that the
steady state estimation error |σj,k| < µjε

1− j
n+1 for positive

constants µj . From interpolation using data corresponding
to ε > 10−7 and the interpolant µjεαj , it is obtained that:
α0 = 0.92, α1 = 0.70, α2 = 0.47, α3 = 0.23 which is close
to the theoretically expected accuracy orders. The computed
constants are µ0 = 0.25, µ1 = 2.9, µ2 = 14.1, µ3 = 30.1.

A. Laboratory Application

Results obtained by applying both versions of the toolbox
in a real world application are presented in this paragraph. The
task is to estimate the velocity as well as the acceleration of a
vertically moving mechanical platform by differentiating the
measured position signal. The position of the platform is mea-
sured by a potentiometer. Real-time code is generated directly
from the corresponding Simulink diagram which includes
both differentiator toolboxes. The experiment is conducted for
sampling times τ = 1 ms and τ = 5 ms. The acceleration
signal is also measured by an accelerometer and is used for
validation. The results are shown in the plots provided in
Fig. 7. The plots on the left show the results obtained with
τ = 1 ms and the plots on the right show the results in the case
τ = 5 ms. The robustness factor is set to the same value in
both versions. The value c = 17, which is tuned heuristically,
yields suitable tracking performance, i.e. |σ0,k| is sufficiently
small after some transient time. For the case τ = 1 ms both

versions produce satisfactory estimates, whereas increasing
the sampling step size to τ = 5 ms significantly diminishes
the estimation precision offered by the HDD. In contrast,
the discrete-time version of the differentiator obtained by the
proposed discretization scheme produces considerably better
results.

IV. CONCLUSION

A novel discretization approach applied to the robust ex-
act differentiator facilitates the updating of the differentiator
toolbox presented in [1]. An overview of this discretization
technique is presented. As in the first version of the toolbox,
the implementation facilitates tuning of the differentiator. It
is straightforward to integrate the resulting block in existing
Matlab/Simulink implementations. The automatic code gener-
ation option can also be used in conjunction with the toolbox to
build source code for real-time execution on control hardware.
It is shown that the new release of the toolbox provides
particular advantages when sampling rates are low.
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