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Abstract

Connectedness in a financial network refers to the structure of interlinkages among the

financial institutions which encompasses three aspects: which institutions are linked,

how many of the institutions are linked, and the magnitude of the linkages.

This research measures time-varying connectedness in the global financial net-

work using the following two frameworks: (1) vector autoregression-forecast error

variance decomposition (VAR-FEVD) and (2) information filtering network-based al-

gorithm LoGo-TMFG. In the first framework we construct a full connectedness net-

work where each of the financial institutions is linked to the others using VAR. On

the contrary, in the second framework we construct a sparse connectedness network

where only significant links are kept and insignificant links are put to zeros using LoGo-

TMFG, which is a novel sparse modeling algorithm.

We show that both frameworks reveal strong variations of connectedness during

past crises, but the connectedness measure computed on the sparse network can distin-

guish major crises better than that computed on the full network. This suggests that

sparse modeling using the LoGo-TMFG algorithm increases the signal-to-noise ratio

in the data and improves interpretability of the connectedness measure, which leads to

better statistical inference of the result.

In the first framework we analyze bank returns in North America, the European

Union, and Southeast Asia from 2005 to 2016. We find that the North American system

has the highest connectedness, suggesting that it is the most interconnected system. We

perform Granger causality and transfer entropy tests which indicate that the connected-

ness of the North American system led that of the EU and Southeast Asia. Through our

analysis we make technical improvements to the VAR-FEVD methodology and deal

with the issues of outliers and overfitting of the VAR model.

In the second framework we study rolling windows of high dimensional datasets
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comprising companies in the financial sector (GICS 40) globally from 1990 to 2016.

Analyzing the global financial network as a system of ten economic regions, we find

that the regions become more interconnected over time as evidenced by the increase in

the number and size of inter-regional links. In addition, the regions are more intercon-

nected during crises than during normal periods. North America and Europe, the two

dominant regions, were connected to all other regions over the sample period from 1990

to 2016 and the links between the two regions were much stronger than those between

the other regions. We find that North America, especially the U.S., was dominated by

banks (GICS 4010) as they were the most impactful and vulnerable industry through-

out the entire sample period. For the other regions, the dominant industry alternates

between diversified financials (GICS 4020) and banks (GICS 4010). In this framework

we contribute to the literature by addressing high dimensionality in financial data us-

ing the novel LoGo-TMFG algorithm which is the first application of the algorithm in

connectedness measurement. In addition, our datasets are unique and much larger than

those in other studies, where each rolling window contains up to 4,310 financial com-

panies. By analyzing rolling windows of data, each of which contains companies that

were active during the three-year period, we address the survival bias issue that many

other studies do not.

Our research findings are beneficial especially for policy makers, e.g., the central

banks, who can use our connectedness metrics to enhance systemic risk monitoring.

Practitioners in the macro research or macro trading desks at a bank or asset manager

can also make use of both the methodologies we used as well as the research findings.
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Chapter 1

Introduction

1.1 Motivation
The Global Financial Crisis of 2007-2008 highlighted the need for academics, practi-

tioners, and policy makers to take a closer look at systemic risk and how to measure it

accurately. During the crisis, contagion proved to be a dangerous factor which acceler-

ated the transmission of financial troubles from one financial institution to the others,

causing a number of financial institutions to fail.

In the wake of such extreme event, various tools from a variety of scientific dis-

ciplines including network theory, statistics, econometrics, and machine learning have

been employed to measure financial connectedness. The challenge in accurately mea-

suring connectedness and systemic risk remains, despite the wealth of existing literature

pioneered by Adrian and Brunnermeier [2016] and Brownlees and Engle [2016]. Each

of the existing connectedness metrics helps explain only a portion of the complex fi-

nancial interconnectedness, provided that there are many ways financial institutions can

be connected to one another. For instance, banks may have direct connections through

cross equity holding, joint business projects, and interbank lending. Indirect connec-

tions between banks include similarity in business models, trading, investment and risk

management strategies, and common exposures to economic fluctuations such as the

credit downgrade of the US government. Indirect connections are often reflected in

the co-movement of the banks’ share prices due to fluctuations in the economy [Allen

and Babus, 2008]. Due to the multidimensional nature of the relationships between

financial institutions, it is impossible for a single metric to capture the extent and com-

plexity of financial connectedness. It is thus important to measure connectedness from
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different angles, each of which is based on different type of financial connections. In

addition, one must analyze jointly different metrics of connectedness to have a more

complete understanding of the relationships between financial institutions.

Despite the role of financial institutions in the past crises, there is little empirical

research that covers the entire global financial network. The main reason for the lack of

empirical work on global financial connectedness is the network’s high dimensionality

[Demirer et al., 2017]. Diebold and Yilmaz [2014] had to limit their analysis to a small

number of US firms, which is incomplete, given the global nature of the financial sector.

The largest network existing research has investigated is the world’s top 150 banks by

[Demirer et al., 2017], which again is only a fraction of the global financial sector.

1.2 Research objectives
This research attempts to fill the gap in existing literature by quantifying time-varying

connectedness at different levels of granularity in the global financial network. We

use publicly available data, such as stock returns, instead of relying on proprietary in-

formation, such as interbank lending, which are unavailable to the public. We believe

that market data, to a certain degree, carry information about connectedness between

financial institutions. By quantifying the connectedness, we attempt to understand how

exogenous shocks can be amplified by the endogenous dynamics of the financial net-

work. We analyze companies in the global financial sector (GICS 40) 1 which includes

banks (GICS 4010), diversified financials (GICS 4020), insurance (GICS 4030), and

real estate (GICS 4040) from ten economic regions of the world: North America, South

America, Africa, Europe, the Middle East, West Asia, South Asia, East Asia, Southeast

Asia, and Australia.

In the context of network construction, we view the global financial network as an

endogenous system that is susceptible to exogenous shocks, whose transmission from

one institution to another is dictated by the structure and size of connectedness between

the financial institutions. With this view, we conduct our analysis at different levels of

granularity with the aim to investigate the following:

1. pairwise connectedness for each pair of financial companies. We quantify con-

1The Global Industry Classification Standard (GICS) is a standardized classification system for eq-
uities developed jointly by Morgan Stanley Capital International (MSCI) and Standard and Poor’s.
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nectedness between pairs of financial institutions and investigate if financial in-

stitutions headquartered in the same geographical regions have stronger connec-

tivity than those from different geographical regions.

2. system-wide or total connectedness. We aim to quantify total connectedness

within each of the economic regions and analyze how it evolves over time, from

normal to crisis periods. In addition, we investigate how total connectedness of

one region is compared to that of another. We hope to uncover lead-lag relation-

ship between the regional connectivities by using causality tests such as Granger

causality and transfer entropy.

3. inter-regional connectedness between two economic regions and between each

of the economic regions and the rest. We hope to understand the strength of

connectivity between two regions and to what extent each region affects and is

affected by the rest of the world. In addition, we aim to identify which regions

are the most impactful and vulnerable.

4. inter-industrial connectedness between two industries and between each in-

dustry and the rest of the financial sector. We aim to identify which of the four

industries is the most impactful and/or vulnerable as well as to understand the

connectivity strength between two industries.

1.3 Methodological frameworks
The existing literature on financial contagion can be broadly classified into two cate-

gories: network models and econometric models. First, network models, which can

be calibrated with balance-sheet data, aim to describe various propagation mechan-

ics of financial contagion. Pioneering literature in this category are Allen and Gale

[2000] and Eisenberg and Noe [2001]. Second, econometric models which aims to

measure connectedness or spillover exclusively from market data, without making as-

sumptions about the distress propagation dynamics between the financial institutions.

Prominent examples of literature in this category include Adrian and Brunnermeier

[2016], Brownlees and Engle [2016], and Billio et al. [2012]. In addition, recent em-

pirical work which relies on econometric models especially VAR and FEVD includes

Diebold and Yilmaz [2009, 2012, 2014], Demirer et al. [2017], and Geraci and Gnabo
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[2018]. This research falls into the second category—we quantify from market data

connectedness at different granularities using the two following frameworks:

1. vector autoregression-forecast error variance decomposition (VAR-FEVD),

where we construct a full connectedness network in which each and every finan-

cial firm is linked to the others and estimate connectedness via decomposing the

forecast error variance for each firm,

2. information filtering network-based algorithm LoGo-TMFG, where a sparse

network is constructed by keeping only significant links and putting insignificant

links to zero. We then estimate connectedness based on information theoric quan-

tities such as conditional mutual information and conditional transfer entropy.

1.3.1 VAR-FEVD framework

In this framework we build on the framework proposed by Diebold and Yilmaz [2009,

2012, 2014] who use the well-known multivariate time series analysis tools—VAR and

FEVD—to quantify connectedness from market data.

The VAR-FEVD framework views the financial institutions as an endogenous sys-

tem in which the stock return of each firm yt is a linear function of its own lags and the

lagged returns of the other firms in the system,

yt =Ayt−1+ut ,

where yt = (y1t , ...,yKt)
′ is a K × 1 vector of centered K variables, A is a fixed K ×

K matrix of VAR coefficients, and ut = (u1t , ...,uKt)
′ is a K-dimensional white noise

process. The endogenous system is subject to external shocks, e.g., a severe economic

downturn, which are accounted for in the error term ut .

Through the error term ut and the endogenous relationship between the stock re-

turns A, we analyze how the effects from an external shock are transmitted through

the system. We decompose the shock occurred to a firm which then gets transmitted

to other firms to obtain pairwise impact from the former to each of the latter. The

process is called forecast error variance decomposition (FEVD), i.e., we decompose

the variance of the forecast error produced by the VAR process. Finally, we take the

average of the pairwise impacts in order to quantify how much the banking system as
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a whole is affected when an external shock occurred to a single bank. This gives us

the total connectedness or system-wide connectedness metric. Note that the network in

this framework is not sparse.

There are several issues to consider when one measures connectedness empiri-

cally. Of particular interest to us are the issues of outliers and high dimensionality of

data, whose impacts are more pronounced in rolling-window analyses. Extreme out-

liers will largely affect our analysis as long as they are included in the current rolling

window. High dimensional data typically result in underdetermined inverse problems,

large standard errors of parameter estimators, and overfitting in which the model de-

scribes noise instead of the underlying relationship between the variables. In this re-

search we will address the sensitivity to outliers issue in the data preprocessing step

where we apply exponential weights onto the data, giving higher weights to more re-

cent data points. Overfitting and high variance due to the curse of dimensionality is

addressed in the estimation step by using ridge regression instead of the standard OLS.

1.3.2 Information filtering network-based LoGo-TMFG

One of the drawbacks of the VAR-FEVD framework is that it is unable to handle large

datasets in which the number of observations is small compared to the number of vari-

ables. As the global financial sector comprises as many as 4,310 active companies

between 2014 and 2016, the VAR to model for this dataset will be overparameterized

which results in unreliable parameter estimates and forecasts.

Common issues when dealing with large datasets are non-invertible covariance

matrices and overparameterization which leads to other issues such as overfitting and

unreliable estimates and forecasts. It is often the case that a model with fewer param-

eters has stronger predictive power and can better describe the statistical variability of

data than overparameterized models. One way to obtain such a parsimonious model is

to use sparsity modeling.

The starting point for sparsity modeling is to formulate the global financial net-

work as a Gaussian Markov Random Field (GMRF), a construct in which the financial

institutions’ stock returns are assumed to be jointly Gaussian and the relationships be-

tween the financial institutions are described by a precision matrix. The LoGo-TMFG

algorithm, proposed by Barfuss et al. [2016], yields a sparse precision matrix in which
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where the zero elements indicate conditional independence between the financial in-

stitutions. In the LoGo-TMFG framework, a network is represented by a triangulated

maximally planar graph (TMFG), which is made up of a number of four-node cliques

(4-cliques) and separators which are three-node cliques (3-cliques). LoGo-TMFG con-

structs the global sparse precision matrix from a simple sum of local inverse covari-

ances, reducing the large-scale problem of finding the global inverse of a full covariance

matrix to summing the inverses of significantly smaller local covariance matrices.

From the estimated inverse covariances, we compute five connectedness metrics

including number of links, conditional mutual information, conditional transfer en-

tropy, impact, and vulnerability. These metrics address different granularities of con-

nectedness, e.g., between financial companies, between economic regions, between

industries within the financial sector, and the system-wide connectedness, similar to

the connectedness metrics from the VAR-FEVD framework.

1.4 Main contributions
The main contributions of this thesis are in both the methodological approach and actual

empirical analyses. On the methodology part, we propose technical improvements to

the VAR-FEVD which lead to superior results compared to the standard VAR. We also

add to the graphical lasso literature by providing an empirical proof that the algorithm

yields unreliable results for our large datasets and illustrate that the novel LoGo-TMFG

algorithm leads to better outcome in this case. In addition, we propose “impact” and

“vulnerability” which are computed from conditional transfer entropies as additional

connectedness metrics. On the empirical analysis part, we apply VAR-FEVD on unique

datasets and conduct causality tests on the resulting total connectedness metrics, which

provides valuable insight on the lead-lag relationship between connectedness in differ-

ent economic regions. Moreover, we analyze the entire global financial network using

LoGo-TMFG, which is the first both in terms of the dataset and application of the al-

gorithm, resulting in new, useful findings.

Our research findings are beneficial for policy makers, e.g., the central banks,

with respect to systemic monitoring. We believe practitioners in the macro research

or macro trading desks at a bank or asset manager can also make use of our research

results and methodologies.
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1. Connectedness measurement using the VAR-FEVD framework

Our contributions are three folds. First, we contribute to the technical aspect of VAR

estimation, yielding better identification of crisis events, which leads to more accurate

and insightful interpretation of the results. More specifically, we mitigate the problem

of sensitivity to outliers by applying exponential weights on the data, putting higher

weights on more recent data points. We also perform ridge regression in order to mini-

mize the standard error of the VAR coefficients, as the problem of large standard errors

is generally associated with large-scale systems.

Second, we apply the VAR-FEVD methodology on new datasets for the first time.

We study the structures of connectedness in the three banking systems, namely North

America, the European Union, and Southeast Asia. While related studies such as

Diebold and Yilmaz [2009] and Demirer et al. [2017] analyze a global network com-

posed of banks from many regions, we investigate individually the NA, EU and ASEAN

banking systems and show that, despite the regions’ geographical distances, they are

affected in various degrees by major financial crises originated in dominant regions

such as the North America and the EU. In addition, conducting our analysis this way

allows us to observe that the NA connectedness is generally the highest, followed by

the EU and ASEAN.

Third, we perform a Granger causality and transfer entropy tests on the connect-

edness time series generated from the VAR-FEVD method. This is to investigate the

causal relationships among the connectedness structures of the aforementioned three

banking systems. To the best of our knowledge, this causality study is the first of its

kind. Our findings indicate that the connectivity within North America is generally

the highest and leads those of the EU and Southeast Asia, and the connectivity within

the EU is the second highest and leads that of Southeast Asia. That is, high level of

connectivity within North America is believed to induce high level of connectivities

within Europe and Southeast Asia.

2. Connectedness measurement using the information filtering network-based

LoGo-TMFG algorithm

Our contributions from this research are as follows. First, we address high dimen-
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sionality in financial data using the novel LoGo-TMFG which is a sparsity modeling

algorithm. This is the first application of the LoGo-TMFG algorithm in the context of

connectedness and systemic risk measurement. We show that the LoGo-TMFG yields

more superior results to those from the well-known graphical lasso algorithm. Graph-

ical lasso infers a disconnected network from our large datasets which is unrealistic.

This is quite common among the `1-based methods which tend to over-sparsify the

network (Zhao and Yu [2006] and Heinavaara et al. [2016]). Barfuss et al. [2016], the

LoGo-TMFG is faster, taking approximately 0.56 times as long as graphical lasso with

LARS solver for a small dataset and 0.16 times as long for a larger dataset.

Second, our global financial datasets are larger than those in any other studies to

date. In addition to the full samples covering the periods from 1990 to 1999 and from

2000 to 2016, we analyze twenty five rolling windows, each of which features three

years (approx. 750 trading days) of daily stock returns for a large number of finan-

cial companies, i.e., between 1,680 companies in 1990-1992 to 4,310 in 2014-2016.

To the best of our knowledge, published research to date that empirically measures

financial connectedness has not used datasets of this size. A key reason for the lack

of empirical work on global financial connectedness is the high dimensionality of the

network [Demirer et al., 2017]. Because there are very many important financial insti-

tutions globally, using unrestricted VAR and related analyses on a large global dataset

is intractable. Diebold and Yilmaz [2014] were forced to limit their analysis to a small

number of purely US institutions. The subsequent work of [Demirer et al., 2017] which

addressed high dimensionality using LASSO-VAR covered only the world’s 150 top

banks, which is much smaller than our datasets.

Third, we deal with the survival bias by analyzing 25 three-year rolling windows,

each of which contains financial companies which were active during the period. While

time series data over long periods exclude companies that are new, short-lived, and

bankrupt, our rolling windows include such companies, which most likely have had

significant contributions to network connectedness and systemic risk.

We find that the magnitude of the temporal and contemporaneous connected-

ness, measured respectively by conditional transfer entropy and mutual information,

increased over the entire sample period (1990-2016), suggesting that the financial sys-

tem became more interconnected over time. Banks outnumbered other types of insti-
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tutions between 1990 and 2010 and diversified financial companies outnumbered the

others from 2010 onward. In the US and North America for all years (1990-2016)

and in South America for the majority of years, banks had the highest impact and vul-

nerability. This is consistent with the findings in [Billio et al., 2012] in which banks

appear to transmit shocks significantly more than other types of financial institutions.

Diversified financials generally had the highest impact and vulnerability in Europe, the

Middle East, South Asia, East Asia, Southeast Asia, and Australia while in Africa and

West Asia, banks and diversified financials took turns being the highest impactful and

vulnerable industry.

1.5 Publications
The following publications were completed over the course of this thesis.

1. “Relation between regional uncertainty spillovers in the global banking system”

(co-authored with Caccioli, F. and Aste, T.), arXiv: 1702.05944, published in the

March 2018 issue of the Journal of Network Theory in Finance

2. “Variance decomposition of forecast errors as a linkage measure: A banking net-

work application” in the European Winter Meeting of the Econometric Soci-

ety 2015 and in Computing in Economics and Finance 2016 (co-authored with

Caccioli, F. and Aste, T.)

3. “Inferring financial network structures using VAR with stochastic volatility” in

IMA Conference on Mathematics in Finance 2015

4. “Estimating spillover in the global banking network: VAR with exponential

smoothing and ridge regression” (co-authored with Caccioli, F. and Aste, T.) in

Computing in Economics and Finance 2015 Conference

1.6 Thesis outline
This thesis is organized as follows. In Chapter 2 we provide a literature review on fi-

nancial contagion and quantification of connectedness and discuss challenges in quan-

tifying connectedness and how we tackle them in this research.

In Chapter 3 we provide a summary of vector autoregression (VAR) and fore-

cast error variance decomposition (FEVD) which are two of the main tools we use in
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quantifying connectedness. In Chapter 4 we discuss Granger causality and transfer

entropy and the findings in Barnett et al. [2009] who showed that the two measures

are equivalent for Gaussian variables. Chapter 5 contains empirical results from using

our improved VAR-FEVD framework to measure network connectedness in the North

American, the EU, and the ASEAN banking systems. More specifically, we discuss

pairwise and system-wide connectedness metrics and test for lead-lag relationships be-

tween network connectedness of the three banking systems.

Chapter 6 discusses Gaussian Markov Random Fields (GMRF) and provides an

overview of sparsity algorithms for connectedness estimation based on a GMRF in-

cluding graphical lasso and LoGo-TMFG. Chapters 7 and 8 contain empirical results

obtained from analyzing high dimensional datasets of global financial institutions using

the sparsity modeling algorithm LoGo-TMFG. While in Chapter 7 we view the global

network as a system of ten economic regions, in Chapter 8 we view the global net-

work as a system of four financial industries; however, for both Chapters we compute

five network connectedness metrics: number of links, conditional mutual information,

conditional transfer entropy, impact, and vulnerability which are computed from con-

ditional transfer entropy and mutual information. Finally, we conclude our research in

Chapter 9.



Chapter 2

Background: Systemic risk,

quantification of connectedness, and

challenges

Summary: In this chapter we define and discuss the concepts of systemic risk, con-

tagion, and connectedness. We then provide a literature review on financial contagion

and quantification of connectedness. Lastly, we discuss challenges surrounding quan-

tification of connectedness and how we tackle those challenges in this research.

2.1 Systemic risk, contagion, and connectedness
Systemic risk is a risk that an event will lead to a breakdown of the entire financial

system rather than simply the failure of individual parts 1. In the financial context,

systemic risk captures the risk of a cascading failure, caused by complex interlinkages

within the financial system, resulting in a severe economic downturn.

As systemic risk materializes, contagion takes place [Martinez-Jaramillo et al.,

2010]. Contagion is the main mechanism through which financial troubles become

so widespread that a crisis reaches a systemic level. Smaga [2014] defines contagion

effect as the probability that the instability of a given institution will spread to other

parts of the financial system with negative effects, leading to a system-wide crisis.

In this research we will be focusing on how to quantify contagion in order to an-

swer the question of how severe the repercussion is, or what level of systemic risk

1 This definition is given by the Systemic Risk Centre of the London School of Economics and
Political Sciences (LSE).
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is induced, when an extreme event occurs. Two factors contributing to the severity

of contagion are the magnitude of the initial shock and the structure of interlinkages

among the institutions in the network. If we take the size of the initial shock as given,

the task of quantifying contagion reduces to determining the structure of interlinkages

which involves determining which institutions are connected, how many institutions

are connected, and the extent or magnitude of interconnectedness. Because interlink-

ages provide channels through which contagion is transmitted from one institution to

another, their structure determines how many institutions will be affected by the shock

and which institutions are hit the hardest. As such, a good interlinkage structure is one

that enables the sytem to withstand shocks while a bad interlinkage structure acts as a

catalyst to the initial shock. Throughout this research, we will sometimes refer to inter-

linkages within the financial system as interconnectedness or simply connectedness.

2.2 Literature on financial contagion and quantifica-

tion of connectedness
Literature on financial contagion can be broadly classified into two categories: (1) Net-

work models which aim to describe various causal mechanics of financial contagion,

which can be calibrated with balance-sheet data and (2) Econometric models which

aim at identifying spillover effects exclusively from market data, without making as-

sumptions about the dynamics of distress propagation between banks.

2.2.1 Network models

Network models aim to describe various propagation mechanics of financial contagion

and can be calibrated with balance-sheet data. The work of Allen and Gale [2000]

pioneered literature in the this category. The authors showed how the stability of bank-

ing system is affected at equilibrium by the pattern of interconnections between banks.

Another well-known work is by Eisenberg and Noe [2001], who analyzed how finan-

cial losses propagate through the interbank network using clearing vectors of payments

in a network of interbank claims. In addition, Furfine [2003], Nier et al. [2007], Gai

and Kapadia [2010], Cont et al. [2010], Upper [2011], Battiston et al. [2012], and Bar-

doscia et al. [2015] explored extensively the relation between an interbank network

structure and its stability in the context of non-equilibrium network models. Beale
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et al. [2011] demonstrated that a tension between individual risk and systemic risk ex-

ists—what makes a bank individually less risky might increase the risk of a systemic

failure. More recently, the literature has been extended beyond interbank lending net-

works to the study of networks of overlapping portfolios as discussed in Huang et al.

[2013], Caccioli et al. [2014], and Corsi et al. [2016].

Although models in this category have been insightful to understand the dynamics

of financial contagion, and in some cases they have been applied to real data (see Upper

[2011] for a review of existing literature), there are clear challenges to their applicabil-

ity. First, there is a lack of reliable data on banks’ balance sheets, which makes it hard

to calibrate the models2. Second, to obtain a reliable assessment of systemic risk one

has to capture all relevant types of interconnections between banks because the interac-

tion between different contagion channels can significantly change the stability of the

system [Caccioli et al., 2015].

2.2.2 Econometric models

Literature in this category aims to measure connectedness or spillover exclusively from

market data, using econometric models, without making assumptions about the dis-

tress propagation dynamics between the financial institutions. The advantage of this

approach with respect to network modeling is that market data are readily available,

and that different types of interconnections between banks have already been aggre-

gated by the market. However, the drawback is that this approach does not provide an

explanation of how stress propagates between banks, and that it relies on the underly-

ing assumption of market efficiency, which is not realistic [Shiller, 2003]. Nevertheless,

one can assume that, although markets are not efficient, prices do reflect to some extent

the aggregate information (or expectations) about the underlying assets. Prominent

examples of literature in this category include Adrian and Brunnermeier [2016] who

propose ∆CoVaR as a measure of systemic risk and Brownlees and Engle [2016] who

introduce SRISK as a measure of systemic risk contribution of a firm. Less recent em-

pirical work includes Diebold and Yilmaz [2009, 2012, 2014], Caceres et al. [2010],

Billio et al. [2012], Claeys and Vasicek [2014], Lucas et al. [2014]. Dungey et al.

2Admati et al. [2013] report that banks tend to find ways to get around regulations in order to invest
in mortgage-backed securities and derivatives via structured-investment vehicles which are off balance
sheet items. Such leeway allowed by regulations creates regulatory boundaries, making it difficult for
outsiders to know what banks actually report.
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[2005] provide a summary of empirical models of contagion up to 2005.

Of particular relevance for the first empirical analysis in Chapter 5 of this PhD

thesis is the work of Diebold and Yilmaz [2009, 2012, 2014], who merge network

theory to the well-known multivariate econometric tools, namely VAR and FEVDs,

and influenced subsequent studies such as McMillan and Speight [2010], Bubák et al.

[2011], Fujiwara and Takahashi [2012], Klößner and Wagner [2014], Alter and Beyer

[2014], Chau and Deesomsak [2014], Fengler and Gisler [2015], Demirer et al. [2017],

and Geraci and Gnabo [2018]. This strand of contributions uses vector autoregression

(VAR) and forecast error variance decompositions (FEVDs) to quantify unpredictabil-

ity of each of the variables in the network. In addition, the VAR-FEVD method allows

for disentanglement of the contribution to unpredictability due to endogenous interde-

pendencies from that due to exogeneous shocks.

In this research we take a somewhat complementary approach to inferring inter-

dependencies between financial institutions from market data, which belongs to this

category of literature. We will refer to interdependency interchangeably as network

connectedness, total connectedness, system-wide connectedness or total spillover.

2.3 Challenges in quantification of connectedness and

how this thesis overcomes them

2.3.1 Proprietary data

The greatest difficulty faced by research into financial interconnectedness and sta-

bility has been associated with data availability [Geraci and Gnabo, 2018]. Data on

bank cross-exposures are inaccessible, proprietary information which is why very few

studies including Furfine [2003], Upper and Worms [2004], and Degryse and Nguyen

[2004] quantify direct connectedness using interbank lending data. We avoid using pro-

prietary data and instead use listed banks’ stock prices which can be accessed through

various databases. To infer connectedness from market data, we do not make an as-

sumption that market is efficient but we do believe that stock prices reflect to some

extent the aggregate information about the banks including their performances and di-

rect and indirect connections they may have. It is worth emphasizing that using market

data allows us to capture both direct and indirect connections between the banks, which
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we would not be able to achieve by using interbank data because they reflect only direct

connections between the banks.

2.3.2 Survival bias

Literature on survival bias is found mostly in the context of measuring mutual fund

performance. As mutual fund databases tend to include only active funds [Rohleder

et al., 2010], a good overall performance measured from such data is likely to be a

result of failing funds being excluded from the dataset.

In the context of this research, a survival bias is a statistically incorrect conclusion

obtained from analyzing only financial institutions that made it past the crises and were

active over a specified sample period. We recognize that over the past few decades,

some financial institutions ceased to exist due to mergers, acquisitions, or bankruptcy

while others came into existence.

The problem with survival bias is that the number of active financial institutions is

underestimated while performance in terms of returns is overestimated. We find that a

data sample covering the period from 1990 to 2016 include a much smaller number of

active financial institutions than a data sample covering the period from 1990 to 1993.

Unlike mutual fund databases, stock databases generally have data for both active

and defunct stocks. We attempt to include defunct stocks in our study by performing

rolling-window analysis where each window covers a period of 750 days or 3 years of

daily data in Chapters 7 and 83. By decreasing the window size, short-lived stocks are

more likely to be included in our study and survival bias is reduced.

2.3.3 High dimensionality

High dimensionality refers to a characteristic of data in which the number of unknown

parameters p is of much larger order than sample size n. As the financial markets

becomes more complex and data are abundant, solving financial problems including

portfolio allocation, asset pricing and risk management becomes extremely challeng-

ing. To optimize the return or to manage the risk of a portfolio, many approaches

require estimating the covariance matrix of the asset returns in the portfolio. If we have

200 financial securities to be selected for asset allocation, the corresponding covariance

3We use 750 days to ensure we have enough observations in a window to reveal the true pattern
in the data and that the problem is not ill conditioned. Later we discuss in Section 5.2.2 that various
rolling-window sizes, e.g., 250, 300, 500, and 750 days do not significantly change the results.
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matrix has 20,200 parameters to estimate. As covariance matrices pervade every facet

of financial econometrics, from asset allocation, asset pricing, and risk management, to

derivative pricing and proprietary trading, it is crucial to obtain an accurate estimation

for them.

The curse of dimensionality was first recognized and discussed by Bellman [1961],

which indicates that to estimate an arbitrary function with a given level of accuracy the

number of observations n needed grows exponentially with respect to the number of

input variables p of the function. This is because as the number of input variables

increases, the number of parameters usually increases in a very rapid way, often ex-

ponentially. More generally, the curse of dimensionality refers to all undesirable char-

acteristics and consequences that come with high-dimensional data in the context of

behavior and performances of learning algorithms.

High-dimensional spaces show surprising geometrical properties that are counter-

intuitive [Verleysen and François, 2005]. Among these properties, the concentration of

norm phenomenon has the most impact on the design of data analysis tools. For ex-

ample, standard Euclidean norms may become unselective in high-dimensional spaces,

and the Gaussian kernels, commonly used in many tools, may become inappropriate

too. The curse of dimensionality prevents the use of most conventional modelling tech-

niques and forces us to look for more specific solutions.

In order to deal with consequences of the curse of dimensionality, a range of di-

mensionality reduction measures have been proposed. Two most common ways to

handle the curse of dimensionality are to sparsify the graph which represents the links

between the variables, and to reduce the data space dimensionality through appropriate

linear or nonlinear data projection methods.

a. Graph sparsification

Graph sparsification refers to the approximation of a graph by a subgraph that is sparse,

i.e., has less than a quadratic number of edges. The idea of graph sparsification is to ap-

proximate a given graph G by a sparse graph S on the same set of vertices. If S is close

to G in some appropriate metric, then S can be used as a proxy for G in computations

without incurring too much error. Because S has a small number of edges, computation

with and storage of S should be cheaper [Spielman and Srivastava, 2009]. Graph spar-

sification was introduced by Benczúr and Karger [1996] who used a near linear time
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procedure which takes as input an undirected graph G on n vertices and constructs a

weighted subgraph S with O(n log n/ε2) edges. A stronger class of graph sparsifiers

called spectral sparsifiers was introduced by Spielman and Teng [2011], which led to

the development of a number of efficient algorithms for constructing cut and spectral

sparsifiers [Batson et al., 2014].

b. Dimensionality reduction

Dimensionality reduction through linear data projection methods are done via tools

such as Principal Component Analysis (PCA) and Linear Discriminant Analysis

(LDA). PCA, the most traditional tool used for dimension reduction, projects data on a

lower-dimensional space, choosing axes to keep the maximum of the data initial vari-

ance. LDA finds a linear combination of features that separates two or more classes of

objects. The drawback of linear data projection is that nonlinear relationship between

the initial variables may be lost in the preprocessing step.

In order to capture the nonlinear relationship, kernel trick is employed to map the

data to higher dimensional space, then apply PCA on the transformed data. The method

is called Kernel PCA. Another nonlinear projection method is based on the concept of

“distance preservation.” The idea of the distance preservation methods is to find a lower

dimensional representation of data where the pairwise distances are preserved with

respect to the original data space. Sammon mapping, Curvilinear Component Analysis

(CCA), Curvilinear Distance Analysis (CDA), and Isomap belong in this category.

Dimensionality reduction techniques help identify and remove as much irrelevant

and redundant data as possible, which in turns allows learning algorithms to operate

more efficiently and effectively.

To mitigate the curse of dimensionality, this research employ tools which belong

in the graph sparsification category. In Chapter 5, we use regularization, specifically

ridge regression in the context of VAR-FEVD for NA (10 banks), ASEAN (39 banks),

and the EU (62 banks) banking networks. We expand our dataset to cover a much larger

global financial network in Chapters 7 and 8 which contains 914 financial institutions

that were active in 1990-1999 and 1,127 global financial institutions that were active

in 2000-2016. We also analyze 25 rolling windows which cover the three-year rolling

periods, e.g., 1990-1992, 1991-1993, ..., 2014-2016. The number of active financial
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institutions in each window ranges from the smallest, 1,680 companies in 1990-1992,

to the largest, 4,396 companies in 2009-2011.

Given the number of companies above, to continue using the VAR-FEVD model

on the global financial datasets will lead to over-parameterization, especially when we

take into consideration both lag and current returns. That is, the number of covariates

in our VAR regressions will exceed the number of observations for each firm. As such,

sparsity modeling is necessary to analyze the global financial network datasets. We

use LoGo-TMFG which is a novel sparsity algorithm based on information filtering

network for the empirical analyses in Chapters 7 and 8.
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Background: Econometric models for

estimation of connectedness

Summary: This chapter summarizes from current literature, including Sims [1980],

Greene [2003], Lutkepohl [2006], and Tsay [2010], the econometric analysis tools

that are widely used for estimation of connectedness: the vector autoregressive (VAR)

model and forecast error variance decomposition (FEVD). In addition, we provide a

recap of the discussion in Diebold and Yilmaz [2014], which demonstrates how FEVD

is linked to concepts from network theory.

3.1 Vector Autoregression (VAR)
The VAR models, introduced by Sims [1980], are a natural extension of the univariate

autoregressive (AR) model to multivariate time series. In an AR model, there is a single

linear equation of a single variable, where the current value of the variable is explained

by its own lagged values. In a VAR model there are K linear equations describing K

variables. Each variable in a VAR model is endogenous, i.e., it is explained by its own

lagged values as well as by lagged values of the other K −1 variables in the system.

Exogenous shocks are captured by the error terms, which may be contemporaneously

correlated with one another but are not serially correlated. Being an endogenous model,

VAR may give rise to the issue of incompleteness of the system, i.e., there are other

factors than the variables in the system that affect the variables in the system. However,

such omitted variables are accounted for by the error terms.

The reduced-form VAR(1) model for K variables describes a relationship between

the current observation of each of the K variables and the first lags of all K variables .
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It is a system of equations in which the i-th equation describes the linear relationship

between the i-th dependent variable yi,t and the explanatory variables which are the first

lags of all variables {y1,t−1, ...,yK,t−1}.

Following Lutkepohl [2006], the VAR(1) model can be expressed in matrix nota-

tion as

yyyt = AAAyyyt−1+uuut . (3.1)

where yyyt = (y1t , ...,yKt)
′ is a K ×1 vector of demeaned K variables, AAA is a fixed K ×K

matrix of VAR coefficients, and uuut = (u1t , ...,uKt)
′ is a K-dimensional white noise pro-

cess. Euuut = 000,E(uuutuuu′t) = ΣΣΣuuu is non-singular and may be non-diagonal, i.e., contempora-

neous correlation among {u1, ...,uK} is allowed. However, there is no serial correlation

E(uuutuuu′s) = 000 for s ≠ t.

When including p lags of each variables, we obtain a VAR(p) model where each

lag i = 1,2, ...p has the corresponding K ×K matrix AAAiii of VAR coefficients:

yyyt = AAA1yyyt−1+ ...+AAApyyyt−p+uuut (3.2)

The VAR(p) process with p > 1 can be written in the K p-dimensional VAR(1) form

[Lutkepohl, 2006] as in the Equation (3.3) below, which is simpler to analyze than the

form in Equation (3.2).

YYY t = AAAYYY t−1+UUU t , (3.3)

where

YYY t ∶=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

yyyt

yyyt−1

⋮

yyyt−p+1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶
(K p×1)

, AAA ∶=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

AAA1 AAA2 ⋯ AAAp−1 AAAp

IIIK 000K ⋯ 000K 000K

000K IIIK ⋯ 000K 000K

⋮ ⋱ ⋮ ⋮

000K 000K ⋯ IIIK 000K

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(K p×K p)

, UUU t ∶=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

uuut

000K

⋮

000K

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

´¹¹¹¸¹¹¹¹¶
(K p×1)
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provided that yyyt = (y1t , ...,yKt)
′ is a K×1 vector of demeaned K variables, 000K is a K×K

matrix of zeros, and IIIK is a K×K identity matrix.

3.1.1 Moving average (MA) representation

Under stationarity 1, the K p×1 vector YYY t has the following moving average (MA) or

Wold representation [Lutkepohl, 2006]:

YYY t =UUU t +AAAUUU t−1+AAA2UUU t−2+ ...

=
∞

∑
i=0

AAAiUUU t−i, (3.4)

where YYY t is expressed in terms of past and present error vector UUU t . The MA represen-

tation of yyyt can be obtained by premultiplying Equation 3.4 by the (K ×K p) matrix

JJJ ∶= [IIIK,000K, . . . ,000K
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

K×K p

].

yyyt = JJJYYY t =
∞

∑
i=0

JJJAAAiJJJ′JJJUUU t−i =
∞

∑
i=0

ΦΦΦiuuut−i, (3.5)

where the K×K matrices ΦΦΦi, i = 0, ..., p is defined as ΦΦΦi ∶= JAAAiJJJ′. Note that Φ0 = JJJAAA0JJJ′ =

IIIK , UUU t = JJJ′JJJUUU t and uuut = JJJUUU t .

3.1.2 Forecast error variance decomposition (FEVD)

FEVD is a structural analysis tool associated with VAR, which is used to determine how

much of the forecast error variance of one variable is explained by the exogenous shock

occurred another variable in the VAR system. In other words, FEV Di j is the portion

of the variability of the error in forecasting a variable y j that is due to the variability in

the structural shock to the error term ui, associated with variable yi
2. The summary of

FEVD in this section is based on Lutkepohl [2006].

1YYY t is stationary if det(IIIK p −AAAz) ≠ 0 for ∣z∣ ≤ 1. yt is stationary if det(IIIK −AAA1z− ...−AAApzp) ≠ 000 for
∣z∣ ≤ 1

2For example, if there are two variables in our system, namely GDP and interest rate, for a given
forecast horizon, there will be four FEVDs: (1) the percentage of the variance of the error made in
forecasting GDP that is due to a specific shock to the error term in the interest rate equation, (2) the
percentage of the variance of the error made in forecasting interest rate that is due to a specific shock to
the error term in the GDP equation, (3) the percentage of the variance of the error made in forecasting
interest rate that is due to a specific shock to the error term in the interest rate equation, and (4) the
percentage of the variance of the error made in forecasting GDP that is due to a specific shock to the
error term in the GDP equation.
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Recall the MA form of VAR in Equation (3.5), i.e., yyyt = ∑
∞
i=0 ΦΦΦiuuut−i. We decom-

pose ΣΣΣu, which is the covariance matrix of uuu, into a product of the lower triangular

PPP and its transpose PPP′, i.e., ΣΣΣu = PPPPPP′ and substitute ΘΘΘi = ΦΦΦiPPP and wwwt−i = PPP−1uuut−i into

Equation (3.5) and obtain

yyyt =
∞

∑
i=0

ΦΦΦiPPPPPP−1uuut−i =
∞

∑
i=0

ΘΘΘiwwwt−i. (3.6)

Note that while the components uit and u jt in uuut may be correlated, the components wit

and w jt in wwwt are orthogonal. That is, PPP−1 orthogonalizes uuut , resulting in the orthogo-

nalized error term wwwt whose covariance matrix ΣΣΣw is orthogonal:

ΣΣΣw = E(PPP−1uuuuuu′(PPP−1
)′) = PPP−1

ΣΣΣu(PPP−1
)′ = IIIK. (3.7)

yyyt+1 and its forecast value yyyt(1) given the information at time t are, respectively,

yyyt+1 = µµµ +ΘΘΘ0wwwt+1+ΘΘΘ1wwwt +ΘΘΘ2wwwt−1+ . . . , (3.8)

yyyt(1) = µµµ +ΘΘΘ1wwwt +ΘΘΘ2wwwt−1+ . . . (3.9)

The 1-step ahead forecast error for yyy given the information at time t is the difference

between the actual value and forecast value of yyyt+1 given the information at time t

yyyt+1−yyyt(1) =ΘΘΘ0wwwt+1. (3.10)

In matrix form, the 1-step ahead forecast error for yyy is

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

y1,t+1−y1,t(1)

y2,t+1−y2,t(1)

y3,t+1−y3,t(1)

⋮

yK,t+1−yK,t(1)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

θ11,0 θ12,0 . . . θ1K,0

θ21,0 θ22,0 . . . θ2K,0

θ31,0 θ32,0 . . . θ3K,0

⋮

θK1,0 θK2,0 . . . θKK,0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

w1,t+1

w2,t+1

w3,t+1

⋮

wK,t+1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(3.11)

For each component yi of yyy, the 1-step ahead forecast error and the variance of the
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1-step forecast error are

yi,t+1−yi,t(1) = θi1,0w1,t+1+θi2,0w2,t+1+ . . .+θiK,0wK,t+1 (3.12)

var(yi,t+1−yi,t(1)) = θ
2
i1,0+θ

2
i2,0+ . . .+θ

2
iK,0 =

K
∑
k=1

θ
2
ik,0 =MSE(yi,t(1)). (3.13)

We then decompose the forecast error variance of each variable y j into contributions

from a one-standard deviation shock associated with each of the variables yi in the

system:

FEV Di j,1 =
θ 2

ji,0

∑
K
k=1 θ 2

jk

=
θ 2

ji,0

MSE(y j,t(1))
. (3.14)

For h-step ahead FEVD derivation, please refer to A.2.

3.2 The intersection of network theory and VAR

As discussed in Diebold and Yilmaz [2014] the spillover or connectedness table, Ta-

ble 3.1, is put together using the h-step ahead FEVDs. The table helps visualize pair-

wise connectedness for each pair of banks and total connectedness for the entire system.

Diebold and Yilmaz [2014] successfully merged the well-known multivariate

econometric analysis tools VAR and FEVDs to concepts from network theory by show-

ing that the spillover table is analogous to a weighted adjacency matrix, a concept from

network theory, which measure pairwise directed links. They propose the following

connectedness metrics using as inputs the ch
i j elements from Table 3.1.

Table 3.1: Diebold and Yilmaz’s h-step ahead spillover table where ch
i j =FEV Dh

ji for h = 1,2, ...

x1 x2 . . . xK To others

x1 ch
11 ch

12 . . . ch
1K ∑K

j=1 ch
1 j, j ≠ 1

x2 ch
21 ch

22 . . . ch
2K ∑K

j=1 ch
2 j, j ≠ 2

⋮ ⋮ ⋮ ⋱ ⋮ ⋮
xK ch

K1 ch
K2 . . . ch

KK ∑K
j=1 ch

K j, j ≠K

From others ∑
K
i=1 ch

i1,
i ≠ 1

∑K
i=1 ch

i2,
i ≠ 2

. . .
∑K

i=1 ch
iK ,

i ≠K
1
K ∑

K
i, j=1 ch

i j, i ≠ j
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Pairwise connectedness or pairwise spillover

Pairwise connectedness (ch
i j) represents the magnitude of link or connection from vari-

able i to variable j. In the variance decomposition jargon, ch
i j is the share of forecast

error variance of variable j coming from a shock to variable i. It is worth noting that

generally ch
i j ≠ ch

ji, that is, the contribution from variable i to variable j does not gener-

ally equal the contribution from variable j to variable i.

Directional connectedness (inward and outward)

Total directional connectedness can be further categorized into two metrics: inward

connectedness and outward connectedness which are equivalent to a node’s in-degree

and out-degree respectively. Inward connectedness to Bank j, denoted c∶, j, is the sum

of bilateral connectedness from all other banks to Bank j,

c∶, j =
K
∑
i=1

ci j (3.15)

Outward connectedness from variable i, denoted ci,∶, is the sum of bilateral connected-

ness from variable i to all other variables,

ci,∶ =
K
∑
j=1

ci j. (3.16)

One can subtract the inward connectedness from the outward connectedness to obtain

net connectedness for each bank. If the bank has positive net connectedness, it is a net

impacter. On the other hand, if it has a negative net connectedness, it is a net impactee.

Total connectedness or total spillover

Total connectedness or total spillover ( 1
K ∑

K
i, j=1 ch

i j, i ≠ j) is a system-wide measure of

connectedness. It is equal to the average of the inward connectedness of all variables in

the network, or equivalently the average of the outward connectedness of all variables.

In other words, total connectedness is the average level of spillover in the network and

is equivalent to a node’s mean degree. A total connectedness value of 0.4 means that on

average, 40 percent of the forecast error variance of the variables in the system comes

from interdependency or connectedness of the variables in the system. Higher values of

total connectedness correspond with higher contagion within the network and stronger
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connection among variables in the network.

3.2.1 Variable ordering in VAR, the resulting FEVDs, and total

connectedness

The ordering of the endogenous variables in the VAR system has an impact on the

resulting FEVDs. That is, two different orderings of the endogenous variables give rise

to different FEVD values. A shock to the first variable in the system affects the forecast

errors of all other variables, a shock to the second variable does not affect the forecast

error of the first variable but affects the forecast errors of the third to last variables, and

so on. If we follow this recursive relationship, it is clear that a shock to the last variable

in the system has no effect on the other variables but itself. Hence, each ordering of the

endogenous variables results in an upper triangular FEVD matrix with the first element

on the main diagonal equals 100. Each endogenous variable has the maximum impact

onto the network when it is the first variable in the system. On the contrary, each

endogenous variable has the minimum impact onto the network (i.e., the only impact it

has is onto itself but not to the other variables) when it is the last variable in the system.

In several occasions, one may be able to order the endogenous variables based on

their importance supported by economic theory. Often times, to impose certain variable

ordering involves making restrictive assumptions which we try to avoid in carrying out

this research. One way to get around the issues associated with variable ordering is to

take the average of N FEVD matrices from N random orderings of the variables, where

N is sufficiently large 3.

Another way to solve the problem of variable ordering is to use the generalized

variance decomposition (GVD) framework of Koop et al. [1996] and Pesaran and Shin

[1998] to compute order-invariant FEVDs, as demonstrated in Diebold and Yilmaz

[2012, 2014].

Although FEVDs are affected by variable ordering, the aggregate metric such as

total connectedness is robust to Cholesky ordering; that is, the difference between total

connectedness estimates across orderings is often quite small [Diebold and Yilmaz,

2014].

3If N is too small, the range of each FEVD value and metrics derived from it can be significantly
underestimated [Klößner and Wagner, 2014].





Chapter 4

Background: Granger causality &

transfer entropy

Summary: In this chapter we summarize the well-known Granger causality which

is a part of the VAR analysis and the concepts of entropy, mutual information, and

transfer entropy which come from information theory. Granger causality and transfer

entropy are used for causality tests in Chapter 5 while entropy, mutual information, and

transfer entropy are among the analytical tools used in Chapters 7 and 8. Chapters 5,

7 and 8 are original empirical work and are the main contribution of this PhD thesis.

This chapter concludes with a discussion on the equivalence of Granger causality and

transfer entropy, which are the main findings in Barnett et al. [2009].

4.1 Granger causality

Granger causality is a concept of causation defined by Granger [1969] based on a sim-

ple idea that a cause occurs before an effect and if a variable x causes a variable y, x

must occur before y and should help improving predictions of y.

As discussed in Lutkepohl [2006], Granger causality requires all relevant infor-

mation up to and including period t is known in its most demanding definition. Let

Ωt be all such relevant information, yt(h∣Ωt) the optimal, minimum MSE h-step ahead

predictor of yt+h, based on the information set Ωt , Σy(h∣Ωt) the corresponding h-step

ahead forecast MSE for y, and Ωt ∖{xs∣s ≤ t} the set of all relevant information exclud-

ing past and present history of xt . The process xt is said to Granger-cause yt if, for at
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least one forecast horizon h ∈ {1,2, ...},

Σy(h∣Ωt) < Σy(h∣Ωt ∖{xs∣s ≤ t}). (4.1)

That is, xt is Granger-causes yt if including xt in predicting yt yields lower MSE than

that obtained when excluding xt for at least one forecast horizon h ∈ {1,2, ...}. In other

words, if yt+h can be more efficiently predicted when xt is taken into account, then xt is

Granger causal for yt . On the contrary, Granger non-causality implies that the forecast

of yt obtained from including xt in the set of predictor variables is the same as the

forecast of yt obtained without including xt in the set of predictor variables.

In general, not all the relevant information in the universe is available which makes

impossible the formulation of the optimal predictor given Ωt . A less demanding def-

inition of Granger causality is often used in practice [Lutkepohl, 2006]. That is, the

information in the past and present of the process, denoted {ys,xs∣s ≤ t}, is considered

as opposed to all the information in the universe, Ωt . Furthermore, in the context of

Granger causality analysis, emphasis is generally given to comparing optimal linear

predictors as opposed optimal predictors.

The definition of Granger causality does not cover instantaneous correlation or

instantaneous causality between xt and yt , which are commonly observed in practice.

If u1,t , the innovation to xt and u2,t the innovation to yt are correlated, there is in-

stantaneous causality between xt and yt . That is, instantaneous causality refers to the

causation that exists between observations of xt and yt that occur at the same time. In

general, if x is Granger-causal for y but there is no instantaneous causation between x

and y, one may conclude that the “real” causality is stronger.

4.1.1 Granger causality, instantaneous linear feedback, and total

independence

Suppose we model two stationary stochastic process xt and yt using: (1) the univariate

AR model and (2) the multivariate VAR model.
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Model 1: The univariate autoregressive (AR) model

xt =
∞

∑
p=1

c1,pxt−p+e1t ,var(e1t) = γ1, (4.2)

yt =
∞

∑
p=1

c2,pyt−p+e2t ,var(e2t) = γ2. (4.3)

Model 2: The multivariate vector autoregressive (VAR) model

xt =
∞

∑
p=1

a11,pxt−p+
∞

∑
p=1

a12,pyt−p+u1t ,var(u1t) = σ1, (4.4)

yt =
∞

∑
p=1

a21,pxt−p+
∞

∑
p=1

a22,pyt−p+u2t ,var(u2t) = σ2 (4.5)

where the error terms u1t and u2t are not serially correlated but are allowed to be con-

temporaneously correlated with covariance matrix Σ =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

σ1 σ12

σ12 σ2

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, whose off-diagonal

entries are σ12 = cov(u1t ,u2t)
1.

Granger proposed an intuitive conclusion that if σ1 is less than γ1 by some statisti-

cal measure, then yt is said to have a causal effect on xt . However, formulation of a test

statistic was not specified in Granger [1969]. Geweke [1982] viewed Granger causal-

ity as a measure of linear feedback, and proposed three measures of linear feedback, a

measure of linear dependence, and the formulations of the measures as follows.

The linear feedback from yt to xt , or the Granger causal effect of yt on xt is repre-

sented by

Fy→x = ln
γ1

σ1
. (4.6)

If Fy→x = 0, y has no causal effect on x and if Fy→x > 0 y has causal effect on x 2.

The instantaneous linear feedback between x and y is Fx.y = lnσ1σ2
∣Σ∣

, where ∣Σ∣ is the

determinant of the matrix Σ. There is no instantaneous linear feedback between x and

y (Fx.y = 0) if σ12 = 0, implying ∣Σ∣ = σ1σ2. On the contrary, there exists instantaneous

1It is worth emphasizing that γ1 measures the inaccuracy of the autoregressive forecast of xt based on
its lagged values, while σ1 measures the inaccuracy of forecasting xt based on the lagged values of both
xt and yt . If xt and yt are independent, a12,p = a21,p = 0, σ12 = 0,γ1 = σ1, and γ2 = σ2.

2Similarly, Granger causal effect of x on y is represented by Fx→y = ln γ2
σ2

and x has Granger causal
effect on y iff Fx→y > 0.
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linear feedback between x and y (Fx.y > 0), if σ12 ≠ 0.

A related concept which is the total (linear) dependence between x and y is given

by Fx,y = ln γ1γ2
∣Σ∣

. Fx,y = 0 if x and y are independent and Fx,y > 0 if x and y are not

independent. In sum, Fx,y =Fy→x+Fx→y+Fx.y, that is, the total interdepencence between

the two time series xt and yt comprises three components: two directional causal effects

due to temporal interactions, and the instantaneous linear feedback due to exogenous

factors, e.g., a common driving factor.

Often we will have that xt Granger causes yt and yt Granger causes xt . In this

case we have a feedback system, indicating that the variables x and y are related. We

can make further statement about the direction of net information transfer between xt

and yt using the equivalence of Granger causality and transfer entropy which will be

discussed in Section 4.3.

4.2 Entropy, mutual information, and transfer entropy

4.2.1 One-dimensional random variable

Shannon [1948] introduces the concept of entropy and defines entropy of a random

variable X , denoted H(X), as a measure of uncertainty about X . Given p(x) the

probability that X = x, H(X) = −∑x p(x) log p(x). The joint entropy for X and Y ,

H(X ,Y) = −∑x,y p(x,y) log p(x,y), where p(x,y) is the probability that X = x and Y = y,

measures the uncertainty associated with the set of variables X and Y .

Based on Shannon [1948], the conditional entropy H(Y ∣X), is a measure of what

X does not say about Y , which, in other words, is “the amount of uncertainty remaining

about Y after X is known” is given by

H(Y ∣X) =H(X ,Y)−H(X). (4.7)

Mutual information, denoted I(X ;Y), refers to the concept of mutual dependence

between two random variables X and Y [Shannon, 1948]. I(X ;Y) quantifies the amount

of information obtained about X through Y which is equal to I(Y ;X) the amount of

information obtained about Y through X . Mutual information is essentially “what X

says about Y ” or “what Y says about X” or the reduction in uncertainty that knowing

either variable provides about the other. Based on Wyner [1978], the value of mutual
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information is derived from the entropies involving the two random variables:

I(X ;Y) =H(X)−H(X ∣Y) =H(Y)−H(Y ∣X) (4.8)

=H(X)+H(Y)−H(X ,Y) =H(X ,Y)−H(X ∣Y)−H(Y ∣X) (4.9)

The Venn diagram below illustrates the relationship among H(X), H(Y), H(X ,Y),

H(X ∣Y), H(Y ∣X), and I(X ;Y). Note that H(X ,Y) is analogous to the union of two sets,

I(X ;Y) is analogous to the intersection of two sets, H(X ∣Y) is analogous to X −Y and

H(Y ∣X) is analogous to Y −X . In addition, H(X) ≥H(X ∣Y) and H(Y) ≥H(Y ∣X).

H(X ∣Y)

H(X) H(Y)

H(Y ∣X)I(X ;Y)

H(X ,Y)

The transfer entropy from X to Y , denoted T E(X →Y), measures the uncertainty

on Y accounted for by the past of X , given the past of Y [Schreiber, 2000]. In other

words, transfer entropy T E(X →Y) quantifies the reduction of uncertainty on the vari-

able Y that is provided by the knowledge of the past of the variable X taking in consid-

eration the information from the past of Y . Based on Schreiber [2000], T E(X →Y) is

equal to the mutual information between Y and the past of X , conditioned on the past

of Y . As such, one could view transfer entropy as conditional mutual information.

T E(X →Y) = I(Y ;X−∣Y−) (4.10)

=H(Y ∣Y−)−H(Y ∣Y−,X−) (4.11)

=H(Y,Y−)+H(Y−,X−)−H(Y,Y−,X−)−H(Y−), (4.12)

where X− = {Xt−1, ...,Xt−K} and Y− = {Yt−1, ...,Yt−L} are the past of X and Y , K the

number of lags for X and L the number of lags for Y .
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4.2.2 Multidimensional random variable

The review in this section is summarized from Barnett et al. [2009]. For n-dimensional

multivariate normal variables X , transfer entropy is given by

H(X) =
1
2

log((2πe)n∣ΣX ∣), (4.13)

where ∣ ● ∣ denotes determinant of a matrix and ΣX is the covariance of X . Likewise,

for m-dimensional multivariate normal variables Y , transfer entropy is given by H(Y) =

1
2 log((2πe)m∣ΣY ∣). The joint set of variables X ,Y ∈Rn+m has the joint entropy H(X ,Y),

and the conditional entropy H(Y ∣X):

H(X ,Y) =
1
2

log((2πe)n+m∣ΣX ,Y ∣), (4.14)

H(Y ∣X) =
1
2

log((2πe)m∣ΣY ∣X ∣), (4.15)

where ΣX ,Y is the joint covariance matrix and ΣY ∣X is the conditional covariance of Y

given X , which is equal to the covariance of the residual from regressing Y on X .

The mutual information I(X ;Y) and transfer entropy T E(X →Y) are given by

I(X ;Y) =
1
2
(log ∣ΣY ∣ − log ∣ΣY ∣X ∣), (4.16)

T E(X →Y) =
1
2
(log ∣ΣY ∣Y− ∣ − log ∣ΣY ∣Y−,X− ∣). (4.17)

4.3 Equivalence of Granger causality and transfer en-

tropy
Barnett et al. [2009] discuss the equivalence of Granger causality and the more recent

concept of transfer entropy under Gaussian assumptions. While Granger causality is

a statistical notion of causal influence based on VAR prediction, transfer entropy is

a tool from information theory used to measure information transfer between jointly

dependent processes. The concept of transfer entropy from Y to X was formulated by

Schreiber [2000] as the degree to which Y disambiguates the future of X beyond the

degree to which X already disambiguates its own future.

Given X , Y , and the conditioning variable Z, the transfer entropy of Y to X given
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Z is non-negative and is defined as

T E(Y → X ∣Z) ∶=H(X ∣X−,Z−)−H(X ∣X−,Y−,Z−), (4.18)

where H(⋅) denotes entropy and X−,Y−,Z− denote the past values of X ,Y,Z. For jointly

multivariate Gaussian variables X ,Y,Z the transfer entropy of Y to X is

T E(Y → X ∣Z) ∶=
1
2

ln(
∣ΣX ∣X−,Z− ∣

∣ΣX ∣X−,Y−,Z− ∣
) (4.19)

The concept of Granger causality for multivariate variables X and Y as proposed

by Geweke [1982] is as follow. Given the regression models for X and Y :

Xt = αt +(Xt−1+ ...+Xt−p+Zt−1+ ...+Zt−r)A+ut (4.20)

Xt = α̃t +(Xt−1+ ...+Xt−p+Yt−1+ ...+Yt−q+Zt−1+ ...+Zt−r)Ã+ ũt , (4.21)

FY→X ∣Z = ln(
∣Σu∣

∣Σũ∣
) = ln(

∣ΣX ∣X−,Z− ∣

∣ΣX ∣X−,Y−,Z− ∣
) . (4.22)

Comparing T E(Y → X ∣Z) in Equation (4.19) and FY→X ∣Z in Equation (4.22), we find

that Granger causality and transfer entropy are equivalent up to a factor of 2 for jointly

Gaussian processes X ,Y,Z:

FY→X ∣Z = 2T E(Y → X ∣Z). (4.23)

In information theory, one can compare T E(Y → X ∣Z) with T E(X → Y ∣Z) to

understand which is the prevalent verse of information transfer. If T E(Y → X ∣Z) >

T E(X →Y ∣Z), the direction of the information transfer goes from Y to X . On the con-

trary, if T E(X → Y ∣Z) > T E(Y → X ∣Z), the direction of the information transfer goes

from X to Y . As previously shown that transfer entropy and Granger causality are pos-

itively related, one can also compare FY→X ∣Z with FX→Y ∣Z to infer information transfer

direction. If FY→X ∣Z > FX→Y ∣Z , the direction of the information transfer goes from Y to

X and if FX→Y ∣Z > FY→X ∣Z , the direction of the information transfer goes from X to Y

[Barnett et al., 2009].





Chapter 5

Empirical analysis: Connectedness

estimation using VAR-FEVD

Summary: In this chapter we quantify connectedness in the North American (NA)

banking system, the European Union (EU) banking system, and the Southeast Asian

(ASEAN) banking system, by analyzing banks’ stock returns from 2005 to 2015 using

our improved VAR-FEVD methodology. Our analysis covers two levels of granular-

ity: pairwise connectedness and total, system-wide connectedness. For pairwise anal-

ysis, we focus on discussing the properties of pairwise connectedness which are the

i j-elements in the spillover table, Table 3.1. For system-wide analysis, we compute

total connectedness for each banking system as an endogenous system in which the

stock return of each bank is a function of its own lag and the lags of all other banks in

the system. Then we perform Granger causality and transfer entropy tests on the three

total connectedness measures in order to investigate lead-lag relationships between the

three systems. A portion of this chapter has been published in the Journal of Network

Theory in Finance as Tungsong et al. [2018].

5.1 Related literature
Diebold and Yilmaz [2009, 2012, 2014, 2015a] and Yilmaz [2010] were the first to

use the VAR-FEVD framework to measure network spillover, directional spillover, and

pairwise spillover. The Diebold-Yilmaz Spillover Index was introduced in Diebold and

Yilmaz [2009] via the study of volatility spillovers within a network of 19 global equity

markets between 1992 and 2007. While Yilmaz [2010] focused on return and volatil-

ity spillovers in 10 East Asian countries between 1993 and 2008, Diebold and Yil-
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maz [2012] investigated volatility spillovers between four asset classes including stock,

bond, commodity, and FX using U.S. market data between 1999 and 2010. Diebold and

Yilmaz [2014] studied connectedness within the network of 13 major U.S. financial in-

stitutions and showed that their connectedness measures computed using VAR-FEVD

are analogous to a network’s adjacency matrix, in which each element represents the

link between a pair of nodes. Diebold-Yilmaz total connectedness, which is the sum of

all FEVDs divided by the number of nodes, is equivalent to a node’s mean degree in

the context of a weighted and directed network. Diebold and Yilmaz [2015b] analyzed

the Trans-Atlantic network of major U.S. and European banks using Generalized VAR

which allows the shocks to be correlated and appropriately accounted for. Demirer et al.

[2017] studied the network of global banks which prompts the application of LASSO-

VAR to address the high dimensional nature of the problem. According to Demirer

et al. [2017], there is little empirical research on global bank connectedness due to the

curse of dimensionality associated with analyzing large networks.

The VAR-FEVD framework has been used, improved, and modified by other au-

thors in their research including the following. McMillan and Speight [2010] measured

return and volatility spillovers between three major FX pairs including EURUSD, EU-

RGBP, and EURJPY while Fujiwara and Takahashi [2012] analyzed stock indices of

12 global economies using the methodology in Diebold and Yilmaz [2009]. Bubák

et al. [2011] used vector heterogeneous autoregressive model (VHAR) with multi-

variate GARCH errors to measure the dynamics of volatility spillover between Cen-

tral European currencies and the EURUSD. Klößner and Wagner [2014] improved the

methodology in Diebold and Yilmaz [2009] by proposing a new divide-and-conquer

strategy to significantly reduce computing time while obtaining the full range of results

from all orderings of variables. Chau and Deesomsak [2014] modified the methodol-

ogy in Diebold and Yilmaz [2012] and constructed the Financial Stress Spillover Index

(FSSI) to measure spillovers across the U.S. equity, debt, banking, and foreign ex-

change markets. Alter and Beyer [2014] used a VAR with exogenous variables (VARX)

model on CDS spreads to assess the systemic effect of an unexpected shock to the cred-

itworthiness of a sovereign or bank index. Awartani and Maghyereh [2013] investigated

the dynamic spillover of return and volatility between oil and equities in the Gulf Coop-

eration Council Countries between 2004 and 2012. Zhou et al. [2012] used generalized
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VAR-FEVD framework to measure directional volatility spillovers between the Chi-

nese and world equity markets. Antonakakis [2012] used dynamic correlations and

VAR-FEVD to analyze return co-movements and volatility spillovers between major

exchange rates before and after the introduction of the euro.

5.2 Methodology

5.2.1 The VAR(1) and FEVD

In this research we model stock returns as jointly normally distributed following a

stationary multivariate autoregressive process as described by VAR. In particular, we

view the financial network as an endogenous system in which the stock return of each

financial institution is a linear function of its lags and the lags of the returns of other

financial institutions in the system. The financial network may be perturbed by an

exogenous shock originally occurred to one financial institution, whose effect is spilled

over to the other institutions through various channels of contagion. Connectedness is

an aggregate measure of how strongly linked the financial network is. The larger and

more numerous the channels of contagion, the more connected is the network, and the

more affected the network is by an exogenous shock.

To measure connectedness in a financial network, we would like to forecast fu-

ture returns of each financial institution and analyze the forecast errors i.e. the un-

predictability of the model, which represent uncertainty faced by the financial system.

Following Diebold and Yilmaz [2009, 2012, 2014], we decompose the forecast error

associated with a financial institution into effects from each of the other financial in-

stitutions in the system. The aforementioned decomposed effects are pairwise, repre-

senting connectedness between any two financial institutions. By aggregating pairwise

connectedness we obtain system-wide or total connectedness which is a measure of

how the financial system as a whole is affected when an external shock occurred to a

financial institution.

We find that the VAR of order 1 i.e. VAR(1) best fits our dataset based on the BIC

and HQ information criteria. In classical VAR estimation, the coefficients A in Equa-

tion 3.1 is estimated using ordinary least squares (OLS) method, where the following
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sum of squares is minimized with respect to AAA:

(yt −AAAyt−1)
′(yt −AAAyt−1). (5.1)

OLS is performed, one by one, on each equation from y1t to yKt which belong to a

system of simultaneous equations yt . We then decompose the forecast variances ob-

tained from the VAR estimation and uncover the network structure of each of the three

banking systems as per Section 3.1.2.

Although the classical VAR is appropriate for systems with small numbers of vari-

ables, it can be overparameterized as the number of endogenous variables increases. As

a consequence, the classical VAR usually generates imprecise forecasts in high dimen-

sional systems, which are commonly observed in practice.

We propose improvements upon the classical VAR estimation, which was used

in the pioneering work of Diebold and Yilmaz [2009, 2012, 2014], in Sections 5.2.2

and 5.2.3 below. First, we propose giving the data points exponential decay weights,

where smaller weights are assigned to more remote observations, to mitigate the effects

associated with outliers in a rolling-window estimation. Second, we handle increased

dimensionality using ridge regression, which is a regularization method.

5.2.2 Technical Improvement 1: Exponential smoothing

Equal weighting of time series data is counterintuitive because it implies that events

(prices or returns) occurring further in the past are as informative as those occurring

more recently. On the contrary, more recent events are more informative than those

further in the past in both descriptive and forecasting contexts. If each data point re-

ceives equal weighting, the impact of a distant outlier remains significant as long as it

is included in the rolling window.

Pozzi et al. [2012] showed that exponential weighting is useful in characterizing

dynamic dependency structure of a financial time series and discussed the importance

of optimal tuning of weights, especially a tradeoff between alleviating the lasting effect

of outliers and maximizing significance and robustness 1. The optimal rolling-window

1The authors studied dynamic correlations of time series and pointed out that inappropriate weights
given to the time series can destabilize the system of correlations, i.e., raise the condition number of the
matrix, change the structure of the matrices’ eigenvalues, and distort the distribution of coefficients.
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size ∆t and weight structure are jointly determined and the weights are defined as

wt =w0 exp(
t −∆t

θ
) ,∀t ∈ 1,2, ...,∆t, (5.2)

where θ > 0 is the weights’ characteristic time which can vary for flexibility. For their

study of 300 NYSE stocks, Pozzi et al. [2012] found the optimal relationship between

θ and ∆t to be

θ =
∆t
3
. (5.3)

In this research, we compute log returns for the stocks and multiply them by 100

for ease of reading, then we assign exponential weights to the log returns, using

∆t = 300,θ = ∆t
3 = 300

3 = 100. We have conducted our study with rolling windows of

various sizes e.g. 250, 300, 500, and 750 days and found that different window sizes

do not significantly change the results.

5.2.3 Technical Improvement 2: Ridge regression

In estimating the VAR model, we use ridge regression to regularize the coefficients

AAA of the VAR, i.e., to shrink the elements of AAA towards zero. As our data are high

dimensional, ridge regression helps prevent overfitting and mitigate the unreliability of

VAR coefficients and forecasts due to the coefficients AAA’s high variances. The ridge

regression estimation problem is to minimize the following penalized sum of squares:

(yt −AAAyt−1)
′(yt −AAAyt−1)+λAAA′AAA, (5.4)

where λ is the tuning parameter or regularization parameter. In this research we

perform ridge regression estimation on the scaled returns with tuning parameters

λ = 0.001,0.01,1,100,200,500, and 1000 on each equation yit in the VAR. We find

that λ < 100 does not provide enough regularization and λ = 100,200,500, and 1000

lead to similar results; in this thesis we discuss the results from λ = 100.

5.3 Data
We collect daily stock prices from January 2005 to October 2015 of banks headquar-

tered in North America (NA), the European Union (EU), and Southeast Asia (ASEAN)

from Compustat database. We include only the financial institutions in the sub-industry
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“Banks” i.e. those having GICS 2 sub-industry code 40101010 and compute daily log

returns for each bank. Our sample includes 10 publicly listed banks in NA (Canada and

US), 66 banks in the EU and 39 banks in ASEAN. All banks in the NA banking system

list their stocks in the New York Stock Exchange (NYSE), some of the bigger EU and

ASEAN bank stocks also trade in the NYSE, but most of the EU and ASEAN banks

stocks trade in their own national stock markets. Tables 5.1, 5.3, and 5.4 list the banks

in the three regions and provide summary statistics.

Unlike Diebold and Yilmaz [2009] who view all financial institutions as belonging

to one global system, we group the banks into three regional banking systems and test

for causality among their spillover structures. There are economic reasons that support

analyzing the banks based on their geographical regions as follows.

1. The three banking systems are geographically distant, which is likely to impede

inter-regional business relationships as banks tend to have two-way lines with

banks nearer to them than further away.

2. The banks’ equities in the three banking systems trade in different stock markets

which have significantly different trading hours. For example, as the ASEAN

markets close, The EU markets open while the NYSE has not begun trading for

the day. Putting all the banks together in one system would introduce time-zone

related bias in our causality analysis.

3. Different stock markets are at different stages of development which influence the

markets’ trading environments, trading restrictions, types of market participants,

and how prices reflect information.

4. Within each region banking regulations are fine-tuned in order to facilitate cross-

border business transactions as well as increase competition. For example, it has

been documented that the financial markets of Canada and the US had already

been highly integrated prior to NAFTA, from which point they have become even

more integrated [White, 1994]. In addition, the Canadian and American bank

stocks in our sample trade in the same capital market (NYSE). As for the EU

and ASEAN, bank stocks trade mostly in their own national stock markets, but
2The Global Industry Classification Standard (GICS) is a standardized classification system for eq-

uities developed jointly by Morgan Stanley Capital International (MSCI) and Standard and Poor’s.
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Table 5.1: List of actively traded banks that are headquartered in North America (Canada and
the U.S.) between 2005-2015.

Bank name Country Mean return Volatility
(%, daily) (%, daily)

1. Canadian Imperial Bank (CIBC) CAN 0.01 1.82
2. Bank of Montreal (BMO) CAN 0.01 1.69
3. Royal Bank of Canada (RBC) CAN 0.03 1.73
4. Toronto Dominion Bank (TD) CAN 0.03 1.65
5. Bank of Nova Scotia (BNS) CAN 0.01 1.72

6. Citigroup (CITI) USA -0.08 3.70
7. Bank of America Corp (BAC) USA -0.04 3.51
8. Wells Fargo & Co (WFC) USA 0.02 2.86
9. JP Morgan Chase & Co (JPM) USA 0.02 2.64

10. US Bancorp (USB) USA 0.01 2.32

the cross-country differences and trading restrictions are relatively low due to the

economic community agreements (EU and ASEAN) that are in place.

Based on the above four reasons, it is intuitive to view one region as an endogenous

system, analyze the structure of the unexplained or shock component of the system, and

then analyze how the shock component of each system relates to that of another.

Table 5.1 lists all 10 banks headquartered in North America that were actively

traded between 2005-2015 and summarizes their mean daily returns and daily volatil-

ities. While both Canadian and American banks have similar average daily returns,

the returns of the Canadian banks are less volatile than those of the American banks.

Table 5.2 lists all 39 banks headquartered in Southeast Asia that were actively traded

between 2005-2015 and summarizes their mean daily returns and daily volatilities. The

Malaysian and Singaporean banks on average have lower volatilities than those based in

other countries. Similarly Tables 5.3 and 5.4 list all 66 banks headquartered in the Eu-

ropean Union that were actively traded between 2005-2015 and summarize their mean

daily returns and daily volatilities. The Greek banks on average have higher volatilities

than those based in the other countries.
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Table 5.2: List of Southeast Asian headquartered banks that were actively traded in 2005-2015.

Bank Country Market cap Mean return Volatility
($ billion) (%, daily) (%, daily)

1 Bank Rakyat Indonesia IDN 20.43 0.07 2.56
2 Bank Permata IDN 0.54 0.02 1.93
3 Bank Danamon IDN 2.23 0.00 2.73
4 Bank Maybank Indonesia IDN 0.79 0.00 2.67
5 Bank Cimb Niaga IDN 1.07 0.02 2.51
6 Panin Bank IDN 0.17 0.03 2.68
7 Bank Negara Indonesia IDN 6.66 0.04 2.50
8 Bank Central Asia IDN 23.21 0.08 2.06
9 Bank Mandiri IDN 15.75 0.05 2.54

10 Public Bank MYS 16.15 0.04 0.90
11 Malayan Banking MYS 18.70 0.00 1.23
12 RHB Capital MYS 3.73 0.03 1.58
13 AMMB Holdings MYS 3.04 0.01 1.51
14 AFFIN Holdings MYS 0.97 0.01 1.65
15 Alliance Financial Group MYS 1.15 0.01 1.52
16 BIMB Holdings MYS 1.35 0.03 2.13
17 CIMB Group Holdings MYS 7.92 0.02 1.54
18 Hong Leong Bank MYS 6.17 0.03 1.14
19 Philippine National Bank PHL 1.20 0.03 2.39
20 Bank of Philippine Islands PHL 6.97 0.03 1.79
21 China Banking Corp PHL 1.36 0.04 1.39
22 Metropolitan Bank and Trust PHL 4.67 0.05 2.12
23 Security Bank Corp PHL 1.86 0.07 1.87
24 Rizal Commercial Bank Corp PHL 0.94 0.03 2.19
25 Union Bank PHL 1.22 0.05 1.77
26 BDO Unibank PHL 7.33 0.05 2.04
27 United Overseas Bank SGP 19.62 0.01 1.49
28 DBS Group Holdings SGP 25.23 0.01 1.49
29 Oversea-Chinese Banking SGP 22.71 0.02 1.33
30 Krung Thai Bank THA 6.79 0.02 2.11
31 Siam Commercial Bank THA 11.44 0.03 2.02
32 Bangkok Bank THA 8.04 0.02 1.81
33 Bank of Ayudhya THA 6.15 0.03 2.41
34 Kasikornbank THA 10.94 0.04 1.97
35 TMB Bank THA 3.12 -0.01 2.40
36 Kiatnakin Bank THA 0.91 0.00 1.94
37 Tisco Financial Group THA 0.96 0.02 2.11
38 Thanachart Capital THA 14.3 0.03 2.13
39 CIMB Thai Bank THA 0.76 -0.01 2.75
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Table 5.3: List of EU headquartered banks that were actively traded in 2005-2015 (1).

Bank name Country Mean return Volatility
(%, daily) (%, daily)

1 Oberbank Ag AUT 0.02 0.38
2 Erste Group Bk Ag AUT -0.01 2.95

3 KBC Group Nv BEL 0.00 3.50
4 Dexia Sa BEL -0.21 7.76

5 Hellenic Bank CYP -0.08 3.08

6 Komercni Banka As CZE 0.01 2.10

7 IKB Deutsche Industriebank DEU -0.13 3.90
8 Commerzbank DEU -0.08 3.09
9 DVB Bank Ag DEU 0.03 1.38

10 HSBC Trinkaus & Burkhardt DEU 0.00 1.73
11 Comdirect Bank Ag DEU 0.02 1.83
12 Deutsche Postbank Ag DEU 0.00 2.15

13 Danske Bank As DNK 0.01 2.11
14 Jyske Bank DNK 0.02 1.94
15 Nordea Invest Fjernosten DNK 0.01 1.43
16 Sydbank As DNK 0.03 1.93

17 Banco Santander Sa ESP 0.00 2.16
18 BBVA ESP -0.01 2.12
19 Banco Popular Espanol ESP -0.07 2.30
20 Bankinter ESP 0.01 2.28
21 Banco De Sabadell Sa ESP -0.02 1.89

22 BNP Paribas FRA 0.00 2.56
23 Natixis FRA -0.01 3.12
24 Societe Generale Group FRA -0.02 2.86
25 Credit Agricole Sa FRA -0.02 2.78
26 CIC (Credit Industriel Comm) FRA 0.00 1.41

27 Barclays Plc GBR -0.03 3.23
28 HSBC Hldgs Plc GBR -0.02 1.72
29 Royal Bank of Scotland Group GBR -0.10 3.91
30 Standard Chartered Plc GBR 0.00 2.44
31 Lloyds Banking Group Plc GBR -0.05 3.37

32 Piraeus Bank Sa GRC -0.22 5.04
33 Attica Bank Sa GRC -0.23 5.88
34 Eurobank Ergasias Sa GRC -0.31 5.52
35 National Bank of Greece GRC -0.20 4.81
36 Alpha Bank Sa GRC -0.15 4.69

37 Zagrebacka Banka HRV 0.00 2.58
38 Privredna Banka Zagreb Dd HRV 0.01 2.37

39 OTP Bank Plc HUN 0.00 2.63
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Table 5.4: List of EU headquartered banks that were actively traded in 2005-2015 (2).

Bank name Country Mean return Volatility
(%, daily) (%, daily)

40 Unicredit Spa ITA -0.05 2.90
41 Credito Emiliano Spa ITA 0.00 2.26
42 Intesa Sanpaolo Spa ITA 0.00 2.61
43 Banca Popolare Di Sondrio ITA -0.01 1.83
44 Banca Carige Spa Gen & Imper ITA -0.10 2.39
45 Banco Desio Della Brianza ITA -0.02 1.76
46 Banco Popolare ITA -0.06 2.86
47 Banca Popolare Di Milano ITA -0.03 2.78
48 Banca Monte Dei Paschi Siena ITA -0.12 2.96

49 Bank of Siauliai Ab LTU -0.06 2.97

50 ING Groep Nv NLD -0.01 3.14
51 Van Lanschot Nv NLD -0.03 1.62

52 Mbank Sa POL 0.05 2.34
53 Bank Handlowy W Warzawie Sa POL 0.01 2.05
54 ING Bank Slaski Sa POL 0.04 1.90
55 Bank BPH S.A. POL -0.09 4.48
56 Bank Millennium Sa POL 0.03 2.62
57 Bank Plsk Kasa Opk Grp Pekao POL 0.00 2.26
58 Bank Zachodni Wbk Sa POL 0.04 2.15
59 Getin Holding Sa POL -0.02 3.16
60 Powszechna Kasa Oszczednosci POL 0.00 2.02

61 Banco BPI Sa PRT -0.03 2.46
62 Banco Comercial Portugues Sa PRT -0.09 2.76

63 Svenska Handelsbanken SWE 0.02 1.86
64 Skandinaviska Enskilda Bank SWE 0.01 2.55
65 Nordea Bank Ab SWE 0.02 2.05
66 Swedbank Ab SWE 0.01 2.53
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5.4 Empirical result: Pairwise analysis
In this section we will present, interpret, and discuss pairwise connectedness for the

NA banking system between 2005 and 2016 which was estimated using the improved

VAR-FEVD framework discussed in Section 5.2. The purpose of this section is to

provide a background to help understand pairwise connectedness as we believe it is an

important stepping stone for understanding the system-wide, total connectedness and

appreciating how meaningful the metric is for measuring total connectivity.

5.4.1 Properties of FEVDs

The (i, j) element of an FEVD matrix represents pairwise connectedness from variable

i to variable j. In econometric jargon, the (i, j) element is the proportion of forecast

error variance of variable j that is due to a shock to variable i. As the proportion of

forecast error variance of variable i that is due to a shock to variable j needs not to

equal the proportion of forecast error variance of variable j that is due to a shock to

variable i, FEVD matrices are not symmetric.

For each variable j, the sum of impacts on variable j’s forecast error variance that

come from shocks to all other variables including variable j equals 100. In other words,

each column in the FEVD matrix sums to 100. Each row i in the FEVD matrix does not

sum to 100 as it represents the impacts a shock to variable i has on all other variables’

forecast error variances.

The ordering of the endogenous variables in the VAR system has an impact on the

resulting FEVD matrix as discussed in Section 3.2.1 A shock to the first variable in the

system affects the forecast errors of all other variables, a shock to the second variable

does not affect the forecast error of the first variable but affects the forecast errors of

the third to last variables, and so on. A shock to the last variable in the system has no

effect on the other variables but itself. As a consequence, each ordering of endogenous

variables results in an upper triangular FEVD matrix with the first element on the main

diagonal equals 100. Each variable’s impact onto the network is maximized when it is

placed first and minimized when it is placed last.

To discuss the properties of FEVDs, we focus on empirical FEVD matrices for the

NA banking system between 2005 and 2016. The NA FEVDs characterize pairwise

links between 10 banks headquartered in Canada and the United States, whose equities
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Table 5.5: NA banking network: 10-step ahead FEVDs from one random ordering of the 10
banks. This is the first window’s forecast (for March 17, 2006) based on the first
300 days of train data (January 4, 2005-March 3, 2006). Estimation is done using
ridge regularized VAR with exponential smoothing.

RBC CITI BNS BAC TD WFC JPM CIBC USB BMO
RBC 100.00 0.22 9.64 0.97 40.65 0.26 0.05 23.70 0.25 14.37
CITI 0.00 99.78 0.47 54.54 0.04 50.02 39.69 0.05 40.24 3.82
BNS 0.00 0.00 89.89 0.32 17.00 0.14 1.27 6.10 0.38 13.80
BAC 0.00 0.00 0.00 44.17 0.34 12.13 4.12 0.17 11.22 0.44
TD 0.00 0.00 0.00 0.00 41.98 0.04 0.12 0.35 0.92 6.07
WFC 0.00 0.00 0.00 0.00 0.00 37.40 3.41 0.07 5.14 0.02
JPM 0.00 0.00 0.00 0.00 0.00 0.00 51.33 2.57 2.06 0.86
CIBC 0.00 0.00 0.00 0.00 0.00 0.00 0.00 67.00 0.31 1.57
USB 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 39.50 3.49
BMO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 55.57

are listed in stock exchanges in the U.S during the period between 2005 and 2016.

Table 5.5 is the 10-day-ahead FEVD matrices from one random ordering of the 10

banks, in which Royal Bank of Canada (RBC) is placed first and the shock to RBC

has impact on forecast error variances of all other banks in the network while Bank of

Montreal (BMO) is placed last which results in it having no impact on forecast error

variances of any other banks.

To avoid making an assumption about the ordering of the variables, we take the

average of 200 FEVD matrices from 200 random orderings of variables. The resulting

average FEVD matrix is still asymmetric but no longer triangular, with each element

(i, j) representing the average of impacts that shocks to the i-th variable have on the

forecast error variance of the j-th variable. Table 5.6 illustrates the average FEVD

matrix computed from 200 random-ordered 10-day-ahead FEVD matrices for the NA

banking network.

We are aware that Diebold and Yilmaz [2014] discussed the appeal of generalized

variance decompositions (GVDs) in that they are independent of ordering. However,

our own analysis, as well as that in Diebold and Yilmaz [2014], shows that the range

of system-wide total connectedness, the average of the sum of pairwise connectedness,

is very small across Cholesky orderings. We believe that the average of 200 Cholesky

orderings yields robust results, similar to those from GVDs.
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Table 5.6: NA banking network: 10-step ahead forecast error variance decompositions
(FEVDs), averaged of 200 tables corresponding to 200 random orderings of the
10 banks. This is the first window’s forecast (for March 17, 2006) obtained from
analyzing the first 300 days of returns data (January 4, 2005-March 3, 2006) using
ridge regularized VAR with exponential smoothing.

RBC CITI BNS BAC TD WFC JPM CIBC USB BMO
CIBC 78.64 4.48 8.34 5.51 4.37 0.08 0.08 0.11 1.19 0.24
BMO 3.69 70.65 3.35 8.05 6.53 1.11 0.42 0.29 0.40 1.85
RBC 7.38 3.45 70.73 14.01 2.14 0.08 0.22 0.12 0.19 0.11
TD 4.70 8.89 14.49 60.03 11.66 0.34 0.29 0.12 0.18 0.45
BNS 3.82 6.90 2.29 10.78 73.48 0.14 0.37 0.12 0.63 0.27
CITI 0.07 1.69 0.07 0.31 0.17 54.53 15.10 12.80 10.26 9.63
BAC 0.10 0.47 0.27 0.37 0.42 13.94 49.43 14.17 7.55 11.22
WFC 0.14 0.36 0.13 0.19 0.22 11.33 14.22 51.08 8.56 11.92
JPM 1.18 0.53 0.22 0.18 0.70 10.08 8.59 9.79 62.17 10.05
USB 0.27 2.58 0.12 0.57 0.31 8.37 11.27 11.40 8.86 54.27

5.4.2 Upperbound and lowerbound FEVDs

We mentioned briefly in Section 5.4.1 that impact of each variable onto the network is

maximized when the variable is placed first, and minimized when it is placed last. If

we place a variable i first, its impacts on each of the remaining variables are the same,

independent of the ordering of the remaining variables 3. We conjecture that these are

the upperbound impacts of variable i on all other variables including itself. In order

to gain insight into the upperbound of each bank’s impact onto the network, we select

10 variable orderings corresponding to placing each of the 10 banks first. We then

construct the upper bound FEVD matrix whose row i comes from an ordering in which

Bank i is placed first, resulting in Bank i having the maximum impact onto the network.

The (i, j) element in the upperbound FEVD matrix for the NA network (Ta-

ble 5.7a) represents the maximum impact a shock to variable i has on forecast error

variance of variable j. An upperbound FEVD differs from a standard FEVD (Table

5.6) in three aspects: (1) the diagonal elements of the upperbound FEVD are equal to

100, (2) the columns of the upperbound FEVD do not sum to 100 and (3) the upper-

bound FEVD matrics are symmetric.

On the other hand, we construct the lowerbound FEVD matrix whose row i comes

3Supposed there are 3 banks in a banking network, the impact of A on B and A on C are the same in
the two orderings {A,B,C} or {A,C,B}
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from an ordering in which Bank i is placed last, resulting in Bank i having the minimum

impact onto the network. If we place variable i last, its impacts on all other variables

are zero and the impact onto itself is maximized and is a constant, even though there is a

change in the order of the remaining variables. We believe that these are the lowerbound

of variable i’s impact. In other words, the lowerbound impact of variable i is the impact

onto itself when it is placed last.

RBC CITI BNS BAC TD WFC JPM CIBC USB BMO
CIBC 100 14.83 23.70 20.02 14.96 0.20 0.26 0.00 2.43 0.03
BMO 14.83 100 14.37 29.89 23.36 4.54 2.50 1.53 1.09 7.14
RBC 23.70 14.37 100 40.65 9.64 0.22 0.97 0.26 0.05 0.25
TD 20.02 29.89 40.65 100 34.51 0.01 1.21 0.01 0.68 1.59
BNS 14.96 23.36 9.64 34.51 100 0.69 1.82 0.08 2.47 1.38
CITI 0.20 4.54 0.22 0.01 0.69 100 55.10 50.25 39.73 40.44
BAC 0.26 2.50 0.97 1.21 1.82 55.10 100 57.27 37.05 48.92
WFC 0.00 1.53 0.26 0.01 0.08 50.25 57.27 100 39.11 49.31
JPM 2.43 1.09 0.05 0.68 2.47 39.73 37.05 39.11 100 38.90
USB 0.03 7.14 0.25 1.59 1.38 40.44 48.92 49.31 38.90 100

a Upperbound 10-step ahead FEVDs, each row i of the table comes from an ordering in which
Bank i is placed first, resulting in Bank i having maximum impact onto the network.

RBC CITI BNS BAC TD WFC JPM CIBC USB BMO
CIBC 64.19 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
BMO 0.00 55.57 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
RBC 0.00 0.00 51.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00
TD 0.00 0.00 0.00 37.61 0.00 0.00 0.00 0.00 0.00 0.00
BNS 0.00 0.00 0.00 0.00 57.64 0.00 0.00 0.00 0.00 0.00
CITI 0.00 0.00 0.00 0.00 0.00 34.53 0.00 0.00 0.00 0.00
BAC 0.00 0.00 0.00 0.00 0.00 0.00 30.18 0.00 0.00 0.00
WFC 0.00 0.00 0.00 0.00 0.00 0.00 0.00 32.23 0.00 0.00
JPM 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 44.78 0.00
USB 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 37.16

b Lowerbound 10-step ahead FEVDs, each row i of the table comes from an ordering in which
Bank i is placed last, resulting in Bank i having minimum impact onto the network

Table 5.7: NA banking network: upper and lowerbounds 10-step ahead FEVDs. This is the
first window’s forecast (for March 17, 2006) based on 300 days of train data from
January 4, 2005 to March 3, 2006 using ridge regularized VAR with exponential
smoothing.

The lowerbound FEVD matrix for the NA banking network is shown in Table 5.7b.

A lowerbound FEVD is another special case of FEVD matrix; it is diagonal whose

elements (i, i) represent the minimum impact a shock to variable i has on the forecast
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error variance of itself, and the columns of the lowerbound FEVD do not sum to 100.

Subtracting each (i, i) element of the lowerbound FEVD from 100, we obtain the sum of

impacts on bank i from all other banks in the network; we conjecture that the quantity

is the maximum vulnerability of bank i. If we denote the lowerbound of variable i’s

impact Ii
L, the quantity (100− Ii

L) is the maximum vulnerability of variable i.

5.4.3 FEVDs vs. Pearson correlations

The Pearson product-moment correlation coefficient (r) is the standardized covariance

between two variables which measures linear relationship between the two variables.

The value of Pearson’s r falls between -1 and 1 inclusive and the squared value of r

is the coefficient of determination (R2). Table 5.8 illustrates the squared correlations

(coefficient of determination), multiplied by 100, between the equity returns of the 10

banks in the NA network between January 4, 2005-March 3, 2006.

Table 5.8: NA banking network: squared correlation (r2) or coefficient of determination r2,
multiplied by 100. The values are obtained from 300 days of returns data from
January 4, 2005-March 3, 2006.

RBC CITI BNS BAC TD WFC JPM CIBC USB BMO
CIBC 100 31.17 18.27 29.64 24.59 0.23 0.93 1.80 1.98 1.04
BMO 31.17 100 19.52 35.16 31.62 2.29 2.09 3.06 1.37 4.39
RBC 18.27 19.52 100 33.97 21.11 0.23 2.39 1.23 1.48 1.31
TD 29.64 35.16 33.97 100 39.64 0.33 2.62 1.39 1.61 2.86
BNS 24.59 31.62 21.11 39.64 100 0.68 2.16 1.03 2.49 1.20
CITI 0.23 2.29 0.23 0.33 0.68 100 44.16 40.47 42.43 34.76
BAC 0.93 2.09 2.39 2.62 2.16 44.16 100 48.47 44.89 43.76
WFC 1.80 3.06 1.23 1.39 1.03 40.47 48.47 100 40.86 44.61
JPM 1.98 1.37 1.48 1.61 2.49 42.43 44.89 40.86 100 41.31
USB 1.04 4.39 1.31 2.86 1.20 34.76 43.76 44.61 41.31 100

FEVDs differ from correlations in that the former convey both contemporaneous

and temporal relationship between the variables while the latter reflect only contem-

poraneous relationship. In order to compare a squared correlation matrix to an upper-

bound FEVD matrix, we conducted two tests for the equivalence of two covariance

matrices, namely the Box’s M test and the F test. Our test statistic corresponding to

the box’s M test is 4.968 which is not significantly larger than the critical value of 73

(χ2
55,α = 55). Also, our test statistic corresponding to the F test is 0.104 which is not
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significantly larger than the critical value of 1.47 (F(55,96),α = 0.05). The result indi-

cates that the upperbound FEVD matrix (Table 5.7a) is not statistically distinguishable

from the squared correlation matrix (Table 5.8). This indicates that FEVDs contain

more information about contemporaneous relationship than that about temporal rela-

tionship between variables.

5.4.4 Rolling window analysis

To capture the dynamics in changing financial environments, we divide our data into

2415 windows, each window comprises 300 daily equity returns of 11 NA banks, and

allow for time-variation of the VAR parameters. Table 5.9a is the average of 200 10-

day-ahead FEVD matrices from 200 random orderings of 10 banks in the NA banking

network using data between December 12, 2006-February 13, 2008. The FEVDs are

computed from the forecast errors for February 28, 2008. Table 5.9b is the average

of 200 10-day-ahead FEVD matrices from 200 random orderings of 10 banks in the

NA banking network using data between December 12, 2006-February 13, 2008. The

FEVDs are computed from the forecast errors for December 24, 2014.

Comparing Table 5.6 in Section 5.4.1 and Table 5.9a in this section, we see how

the 10-day-ahead FEVDs corresponding to the forecast for February 28, 2008 have

changed from those corresponding to the forecast for March 17, 2006. One particular

observation worth noting is that clustering seems to have reduced in February 2008. In

Table 5.6, the 10-day-ahead within-border FEVDs linking two Canadian banks or two

American banks are significantly higher than cross-border FEVDs linking a Canadian

bank to an American bank on March 17, 2006. However, the difference between the 10-

day-ahead FEVDs linking two Canadian banks or two American banks and those link-

ing a Canadian bank to an American bank seems to be significantly lower on February

28, 2008 as in Table 5.9a. Looking at the Tables 5.6, 5.9a, and 5.9b, we see that clus-

tering decreased significantly in February 2008 from March 2006 but increased again

in December 2014. This suggests that cross-border links were significantly stronger

during crisis periods e.g. 2008 than non-crisis periods e.g. 2006, 2014.

The evolution of FEVDs can be uncovered by plotting pairwise FEVDs for each

pair of banks over the forecast horizon. Figure 5.2 plots the pairwise FEVDs from and

to Bank of Montreal (BMO) between 2005-2015. It is worth noting that the values
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RBC CITI BNS BAC TD WFC JPM CIBC USB BMO
CIBC 48.87 9.28 8.53 9.10 8.68 4.14 3.74 2.52 3.53 3.54
BMO 8.34 41.57 8.81 8.38 9.55 5.65 4.03 3.02 4.40 3.47
RBC 7.76 9.09 32.04 11.61 12.79 6.47 5.73 4.12 5.34 5.18
TD 9.05 8.87 11.74 33.51 11.72 5.13 4.97 5.00 6.82 5.67
BNS 8.91 10.84 13.45 12.31 37.57 6.66 4.46 4.19 4.97 4.43
CITI 4.02 5.81 6.27 5.05 5.64 43.06 8.90 8.03 8.16 6.91
BAC 3.08 3.25 4.47 3.60 2.79 7.28 31.09 9.79 12.91 8.24
WFC 2.16 2.55 3.36 3.87 2.84 6.44 10.34 38.29 10.51 11.17
JPM 3.85 4.87 5.82 6.89 4.44 8.51 16.80 13.34 32.07 12.88
USB 3.96 3.86 5.52 5.68 3.98 6.66 9.95 11.68 11.30 38.50

a The 500th window’s 10-step ahead average FEVDs (forecast for February 28, 2008 based on
300 days of train data between December 12, 2006-February 13, 2008).

RBC CITI BNS BAC TD WFC JPM CIBC USB BMO
CIBC 33.40 14.53 16.02 15.90 15.38 2.96 2.63 2.96 3.37 2.43
BMO 12.68 31.73 13.90 11.52 13.95 2.64 2.56 3.69 3.22 2.87
RBC 12.12 12.42 33.25 10.51 11.73 1.64 1.60 1.98 2.28 1.54
TD 14.03 11.50 12.04 29.74 13.26 3.56 4.58 4.14 4.78 3.31
BNS 14.54 15.28 14.39 14.50 30.48 3.84 3.58 4.83 4.22 3.40
CITI 2.83 2.73 1.95 3.39 3.11 33.81 16.54 10.84 16.70 13.31
BAC 1.90 1.92 1.42 3.20 2.12 13.73 30.22 10.04 13.24 10.67
WFC 2.44 3.31 1.98 3.31 3.41 8.90 10.26 34.19 10.79 13.98
JPM 3.55 3.56 3.12 4.70 3.69 17.18 16.48 13.67 29.83 13.52
USB 2.52 3.03 1.94 3.23 2.88 11.74 11.55 13.67 11.57 34.98

b The 2250th window’s 10-step ahead average FEVDs (forecast for December 24, 2014 based
on 300 days of train data between October 10, 2013-December 10, 2014).

Table 5.9: NA banking network: Comparing 10-step ahead average FEVDs for the 500th and
the 2250th windows. Estimation is done using ridge regularized VAR with expo-
nential smoothing.

of the FEVDs between BMO and another Canadian bank are generally higher (be-

tween 0.04 and 0.2) than those between BMO and an American bank (between 0 and

0.1). Moreover, the fluctuations over the horizon of FEVDs between BMO and another

Canadian bank are significantly less than those of FEVDs between BMO and an Amer-

ican bank. In other words, the values of within-border FEVDs are more stable than

those of cross-border FEVDs throughout different economic and financial episodes.

Figure 5.3 plots the FEVDs from and to JPMorgan Chase (JPM) between 2005-

2015. Similarly, the values of FEVDs between JPM and another American bank are

generally higher (between 0.05-0.2) than those between JPM and a Canadian bank
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Figure 5.1: Average pairwise spillovers between regions in North America 2006-2015.

(between 0 and 0.1). There are also less fluctuations in the FEVDs between JPM and

another American bank than in the FEVDs between JPM and a Canadian bank.

Figure 5.1 illustrates average pairwise links between the Canada and the U.S.

Comparing the two within-border links (CAN-CAN, US-US), we find that the US-

US link leads the CAN-CAN link. The CAN-US and US-CAN links are quite similar,

with the CAN-US link being slightly higher than the US-CAN link, suggesting that on

average, directional link from Canada to the U.S. is stronger than the U.S. to Canada.

Comparing the American banks are more vulnerable to a shock coming from the Cana-

dian side than vice versa. Comparing these vulnerability results with an independent

indicator such as the credit ratings, market capitalizations, volatilities, and leverages of

the banks given in Table 5.10, we conclude that the U.S. banks in general are more vul-

nerable to spillovers from the Canadian banks, receive lower credit ratings, have higher

volatilities, and have higher market capitalization than the Canadian banks.

Figure 5.4 illustrates net spillovers for North American banks from 2005-2015.
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Figure 5.2: Pairwise spillovers from and to Bank of Montreal (BMO) between 2006-2015.

Table 5.10: North American banks: Current (2015) values of market capitalization, credit rat-
ing, average daily volatility, and leverage.

Bank Market capitalization Credit rating Volatility D/E ratio
($ billion) (daily, %)

CIBC 26.77 Aa3 1.81 0.81
BMO 25.84 Aa3 1.68 1.36
RBC 61.04 Aa3 1.72 2.43

TD 54.07 Aa1 1.64 1.82
BNS 40.54 Aa2 1.70 1.63
CITI 163.48 Baa1 3.72 1.89
BAC 146.56 Baa1 3.51 1.97
WFC 281.51 A2 2.86 1.39
JPM 238.24 A3 2.64 2.24
USB 76.11 A1 2.32 1.39
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Figure 5.3: Pairwise spillovers from and to JPMorgan Chase (JPM) between 2006-2015.

A net spillover is calculated from the difference between the sum of outward and the

sum of inward directional links. For example, the net spillover for CIBC is equal to

the sum of directional links from CIBC to all other banks less the sum of directional

links from all other banks to CIBC. The net spillovers of Canadian banks are closer to 0

between 2006 to 2008 and 2013 to 2015 but the division between the net receivers and

net transmitters of shocks are more clear between 2009 and 2012. Bank of Montreal

(BMO) appears to be a net receiver of shocks from all other banks nearly throughout

the sample period of 2005-2015, except for a small period at the end of 2011. The net

spillovers of the U.S. banks are closer to 0 between 2006 to 2007 and 2013 to 2015

but the division between the net receivers and net transmitters of shocks are more clear

between 2008 and 2012. Bank of America Merrill Lynch (BAC) appears to be a net

receiver throughout the 2005-2015 sample period.
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Figure 5.4: Net spillover (outward spillover less inward spillover) of each bank in North Amer-
ica 2006-2015.

Table 5.11 summarizes the maximum and minimum net spillovers for each of

the 10 banks in the NA banking system. The net spillovers for 9 out of 10 banks

fluctuate around 0, with the exception of Bank of America Merrill Lynch (BAC) being

the only net receiver throughout the 2005-2016 sample period. This suggests that Bank

of America Merrill Lynch is the most vulnerable bank, as it receives shocks from the

other banks more than disperse its shock to the other banks in the network.

5.4.4.1 Clustering

An important finding in this section is clustering—banks based in the same country are

more strongly linked than those from two different countries due to being commonly

exposed to the same economic and regulatory environments. Throughout different eco-

nomic and financial episodes, the links between banks based in the same countries fluc-

tuate less than those between two banks from different countries. This suggests that the

strength of cross-border links changes depending on the state of economy; however,
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Table 5.11: Net spillover of each bank in North America over the period from 2006 to 2015

Bank Min spillover Mean spillover Max spillover
CIBC -0.0084 0.0578 0.1191
BMO -0.0599 -0.0240 0.0178
RBC -0.1241 -0.0413 0.0655

TD -0.0588 0.0127 0.0992
BNS -0.0208 0.0633 0.1672
CITI -0.0335 0.0270 0.1016
BAC -0.2192 -0.1000 -0.0204
WFC -0.1207 -0.0485 0.0338
JPM -0.0280 0.0661 0.1277
USB -0.0708 -0.0131 0.0852

the strength of within-border links appears significantly more stable over time.

An intuitive explanation to this is that banks based in Canada are commonly ex-

posed to the Canadian economic environment through, for instance, shared customer

base, banking regulations, the state of the Canadian economy, interbank lending activi-

ties, and interbank trades of financial products. A Canadian bank and an American bank

are commonly exposed to, for example, fluctuations in the NYSE in which both are

listed, the American economic and regulatory environments in which the bank equities

are traded, the cross-border interbank lending and interbank trades of financial prod-

ucts. The within-border links have a larger component arising from common exposure

to real-sector fluctuations e.g. shared customer base, regulations, while cross-border

links have a larger component arising from exposure to financial fluctuations.

5.5 Empirical result: System-wide analysis

In this section, we use our exponentially weighted, ridge-regularized VAR-FEVD

methodology, hereafter known as “improved VAR”, discussed in Section 5.2 and mea-

sure time-varying network connectedness for three banking systems, namely North

America (NA), the European Union (EU), and Southeast Asia (ASEAN). Specifically,

we aggregate the pairwise connectedness between banks in each banking system to ob-

tain a measure of total connectedness for the system. We then analyze lead-lag relation-

ships among the three systems by performing Granger causality and transfer entropy

tests on the network connectedness time series.
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5.5.1 Total connectedness

Figures 5.5, 5.6, and 5.7 illustrate the total connectedness computed from the stan-

dard VAR and improved VAR models for the ASEAN, EU, and NA banking systems

respectively. For all three systems, the total connectedness from the standard VAR (red

marker) is generally smoother, less volatile, and varies within a smaller range than the

total connectedness from the improved VAR (blue marker). Over the period from 2006

to 2015, the ASEAN total connectedness from the standard VAR varies between 0.32

and 0.53 while that from the improved VAR varies between 0.23 and 0.63. The EU

total connectedness from the standard VAR varies between 0.47 and 0.72 and that from

the improved VAR varies between 0.42 and 0.78. The NA total connectedness from the

standard VAR varies between 0.38 and 0.72 while that from the improved VAR varies

between 0.31 and 0.78.

It is evident in Figures 5.5, 5.6, and 5.7 that the effect of outliers is retained for the

entire window length in the standard VAR case while for the improved VAR case the

effect of outliers quickly diminishes. Because all data points are equally weighted in the

standard VAR, the effects of outliers are retained until the rolling window move away

from the outliers. In addition, in the improved VAR case we observe much clearer peaks

which correspond to high connectivities of the system. The improved VAR estimation

thus allows for better identification of point events i.e. events concentrated at specific

times. On the contrary, the total connectedness obtained from standard VAR is much

less informative than that obtained from the improved VAR—all the peaks in total

connectedness from the standard VAR are less obvious than those from the improved

VAR. If total connectedness from the standard VAR is used as the system’s fragility or

vulnerability measure, one will not be able to identify several peaks corresponding to

extreme connectedness in the ASEAN banking system in 2009, 2010, 2011, 2013, and

2015, in the EU banking system in early and late 2007, 2010, 2013, and 2014, and in

the NA banking system in 2006, 2007, 2008, 2010, end of 2011, 2013, 2014, and 2015.

In Diebold and Yilmaz [2009], global spillovers in equity index returns and volatil-

ities were measured. They found that the return spillovers demonstrate “a gently in-

creasing trend but no bursts, whereas volatility spillovers display no trend but clear

bursts.” Our results in Figures 5.5, 5.6, and 5.7 allow us to observe both trends and

bursts in the return spillovers of all three banking systems. Thus, applying exponential
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weights onto the data allows for clear peaks to be observed in the return spillovers,

which was not visible in Diebold and Yilmaz [2009]. By using exponential weights

our research improves Diebold and Yilmaz’s methodology and enables us to better

identify extreme connectedness and more accurately interpret the total connectedness

graphs. In addition, the use of ridge regression reduces the variance of the VAR co-

efficient estimates, which in turn increases the reliability of the FEVDs, from which

network connectedness is derived. In Figure 5.6, the sudden jump and drop in the EU

total spillover from the standard VAR around January 2011 reflects such high variance

problem.

Figure 5.8 illustrates the individual benefits of exponential weights and ridge re-

gression in the context of total spillover estimation for the NA banking network. Using

only ridge regression would help reduce the problem of high variability of the VAR co-

efficient estimates but would not produce the clear peaks in total spillover. On the other

hand, applying only exponential weights would make the peaks in total spillover more

visible but the VAR coefficients would still fluctuate widely as observed around August

2011. In other words, we obtain superior results (clearer peaks, lower estimation vari-

ances) when both exponential weights and regularization are applied simultaneously.

We were aware after the completion of our research that Demirer et al. [2017] uses

the regularization technique LASSO in VAR estimation. We believe that LASSO can be

used in our research instead of ridge regression and can potentially produce more inter-

pretable pairwise results because the former does both variable selection and shrinkage

while ridge regression does not do variable selection. The drawback of LASSO is the

difficulty of implementation and significantly longer runtime, which makes it less ap-

pealing especially in the context of total, system-wide connectedness. Using LASSO

or ridge regression is thus a decision to balance runtime, implementation difficulty, and

interpretability of pairwise results. Because the differences between pairwise metrics

from LASSO and ridge regression are averaged out when we compute total connected-

ness, we feel that ridge regression is more suitable for our research.
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Figure 5.5: ASEAN banking system: Comparison between total spillover computed using clas-
sical VAR approach and the improved VAR approach with ridge penalization and
exponential smoothing. 300-day rolling window.
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Figure 5.6: EU banking system: Comparison between total spillover computed using classi-
cal VAR approach and the improved VAR approach with ridge penalization and
exponential smoothing. 300-day rolling window.
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Figure 5.7: NA banking system: Comparison between total spillover computed using classi-
cal VAR approach and the improved VAR approach with ridge penalization and
exponential smoothing. 300-day rolling window.
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Figure 5.8: NA banking system: Comparison between total spillover computed using (1) im-
proved VAR approach with ridge penalization and exponential smoothing, (2) VAR
with exponential smoothing, (3) VAR with ridge penalization, and (4) classical
VAR approach. 300-day rolling window.
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Combining the ASEAN, EU, and NA total spillovers from the improved VAR

models in Figures 5.5, 5.6, and 5.7 we obtain Figure 5.9 with major events labeled on

the graph when they occurred. Over the period from 2006 to 2015, the values of the

NA spillover are generally higher than those of the EU and ASEAN banking systems

with the exceptions in 2006 to mid 2007, early 2011, early 2013 and mid 2014. More

specifically, total connectedness in the NA banking system was the highest from mid-

2007 onward, total connectedness in the EU banking system was the highest from 2005

to mid-2007 but was second highest from mid-2007 to 2016, and total connectedness

in the ASEAN banking system was the lowest throughout the entire sample period. As

the total spillover is a measure of total connectivity, it appears that the NA banking

system is generally more interconnected and vulnerable to contagion than the EU and

ASEAN banking systems.

From visual inspection of Figure 5.9, we found that total spillover within the

NA banking system tends to lead those within the EU and ASEAN systems and total

spillover within the EU system tends to lead that of the ASEAN system. This prompts

us to perform linear and non-linear causality tests (Granger causality and transfer en-

tropy tests detailed in Section 5.5.2) on the spillover time series of the three banking

systems in order to investigate how connectivity and systemic vulnerability in each

region influence the others.
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5.5.2 Causality tests on regional spillovers

In order to test for lead-lag relationships among the NA, EU, and ASEAN total

spillovers, we perform two causality tests, namely the Granger causality test and trans-

fer entropy test. While Granger causality test is linear in nature, transfer entropy can

be linear and non-linear.

5.5.2.1 Granger causality tests

We first analyze Granger causality relationships among the spillovers of the three bank-

ing systems over the full sample period from 2006 to 2015. Acknowledging that the

stock market closing time in ASEAN leads that of the EU, which leads that of North

America, we test for Granger causality over various lag horizons ranging from 1 day to

30 days.

Our findings in Table 5.12 indicate that the NA spillover Granger-causes the EU

spillover over forecast horizons from 2-30 days but it does not Granger-cause the EU

spillover over the forecast horizon of 1 day. In other words, 2 to 30-day lagged values

of the NA spillover have significant predictive power on the EU spillover. In the reverse

direction, the EU spillover Granger-causes the NA spillover over forecast horizons of

3-30 days but not over forecast horizons of 1-2 days.

The NA spillover Granger-causes the ASEAN spillover over forecast horizons of

2-30 days but not over forecast horizon of 1 day. In the reverse direction, the ASEAN

spillover also Granger-causes the NA spillover over forecast horizons of 2-30 days

but not over forecast horizon of 1 day. The EU spillover Granger-causes the ASEAN

spillover over forecast horizons of 2-30 days but not over forecast horizon of 1 day.

In the reverse direction, the ASEAN spillover also Granger-causes the EU spillover

forecast horizons of 2-30 days but not over forecast horizon of 1 day.

For all three spillover pairs (NA-EU, NA-ASEAN, and EU-ASEAN), Granger

causality is significant in both directions. The case in which Granger causality is sig-

nificant in both directions can be resolved using the equivalence of transfer entropy

and the F-statistics obtained from Granger causality tests under the multivariate Gaus-

sian framework, as previously discussed in Section 4.3 of this paper and in more detail

in Barnett et al. [2009]. More specifically, in order to make inference regarding the

net Granger causality direction or the net information flow, we compare the magnitude
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of the F-statistic associated with Granger causality test in one direction to that of the

reverse direction for each of the three regional spillover pairs.

Our results in Table 5.12 show that all values of FNA→EU are greater than those

of FEU→NA, suggesting that net information flows from the NA spillover to the EU

spillover and the NA spillover Granger-causes the EU spillover on a net basis. Compar-

ing the values of FNA→ASEAN and those of FASEAN→NA, we find that net information flows

from the NA spillover to the ASEAN spillover and the NA spillover Granger-causes the

ASEAN spillover on a net basis. Similarly, we compare the values of FEU→ASEAN and

those of FASEAN→EU and find that net information flows from the EU spillover to the

ASEAN spillover and the EU spillover Granger-causes the ASEAN spillover on a net

basis. Our results in Table 5.12 align with the findings of Rapach et al. [2013] who

observed that lagged U.S. returns are significant predictors of numerous non-U.S. in-

dustrialized countries, but lagged non-U.S. returns have limited predictive ability with

respect to the U.S. returns.

For robustness, we perform Granger causality tests on total spillovers of the three

regions over the three 800-day sub-periods: (1) March 28, 2006 to June 10, 2009, (2)

June 11, 2009 to August 10, 2012, and (3) August 18, 2012 to November 2, 2015. The

results are illustrated in Table 5.13.

The first period of March 28, 2006 to June 10, 2009 covers the Global Financial

Crisis of 2007-2009. In this period we find that the NA spillover Granger-causes the

EU spillover for 2-30 day forecast horizons but not for 1-day forecast horizon and in

the reverse direction, the EU spillover does not Granger-cause the NA spillover for any

forecast horizons. This suggests that the net Granger causality direction is from the NA

to EU. The NA spillover Granger-causes the ASEAN spillover for forecast horizons of

2-30 days but not for forecast horizon of 1 day and in the reverse direction, the ASEAN

spillover also Granger-causes the NA spillover for 2-30 day forecast horizons but not

for 1-day forecast horizon. Because all significant values of FNA→ASEAN are greater

than those of FASEAN→NA, the net Granger causality direction is from NA to ASEAN.

The EU spillover Granger-causes the ASEAN spillover for 2-30 forecast horizons but

not for 1-day forecast horizon while in the reverse direction, the ASEAN spillover does

not Granger-cause the EU spillover for all forecast horizons.

The second period of June 11, 2009 to August 10, 2012 covers most of the euro-
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Table 5.12: Tests for Granger causality between regional spillovers: March 28, 2006-
November 2, 2015 (full sample).

Hypothesis F-statistic F0.05 F0.01

H0: NA Granger-causes EU
lag = 1 day 0.43 3.85 6.65
lag = 2 days 11.95∗∗∗ 3.85 6.65
lag = 3 days 17.49∗∗∗ 3.85 6.65
lag = 4 days 18.19∗∗∗ 3.85 6.65
lag = 5-30 days 18.26∗∗∗ 3.85 6.65

H0: EU Granger-causes NA
lag = 1-2 days 3.57 3.85 6.65
lag = 3-30 days 4.26∗∗ 3.85 6.65

H0: NA Granger-causes ASEAN
lag = 1 day 1.04 3.85 6.65
lag = 2 days 43.61∗∗∗ 3.85 6.65
lag = 3 days 36.23∗∗∗ 3.85 6.65
lag = 4-30 days 36.61∗∗∗ 3.85 6.65

H0: ASEAN Granger-causes NA
lag = 1 day 3.68 3.85 6.65
lag = 2 days 23.06∗∗∗ 3.85 6.65
lag = 3-30 days 18.28∗∗∗ 3.85 6.65

H0: EU Granger-causes ASEAN
lag = 1 day 2.14 3.85 6.65
lag = 2 days 14.85∗∗∗ 3.85 6.65
lag = 3 days 12.28∗∗∗ 3.85 6.65
lag = 4-30 days 11.35∗∗∗ 3.85 6.65

H0: ASEAN Granger-causes EU
lag = 1 day 0.16 3.85 6.65
lag = 2 days 9.20∗∗∗ 3.85 6.65
lag = 3 days 7.75∗∗∗ 3.85 6.65
lag = 4 days 7.98∗∗∗ 3.85 6.65
lag = 5-30 days 5.98∗∗∗ 3.85 6.65
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Table 5.13: Tests for Granger causality between regional spillovers. Each period covers 800
days, i.e., (1) 28/03/2006 -10/06/2009, (2) 11/06/2009-10/08/2012, (3) 18/08/2012-
02/11/2015. The critical F-statistic are 3.86 at 5% significance level and 6.69 at 1%
significance level

Hypothesis F (1) F (2) F (3)

H0: NA Granger-causes EU
lag = 1 day 3.29 3.19 1.80
lag = 2 days 10.67∗∗∗ 1.77 2.01
lag = 3 days 11.00∗∗∗ 15.23∗∗∗ 2.01
lag = 4 days 12.75∗∗∗ 15.23∗∗∗ 2.01
lag = 5-30 days 11.22∗∗∗ 14.94∗∗∗ 2.01

H0: EU Granger-causes NA
lag = 1 day 0.27 8.43∗∗∗ 1.78
lag = 2 days 0.27 7.05∗∗∗ 1.78
lag = 3 days 0.27 5.70∗∗ 1.78
lag = 4-30 days 0.27 5.70∗∗ 1.78

H0: NA Granger-causes ASEAN
lag = 1 day 0.37 0.70 0.19
lag = 2 days 13.36∗∗∗ 38.83∗∗∗ 0.31
lag = 3 days 11.29∗∗∗ 28.16∗∗∗ 0.08
lag = 4-30 days 12.30∗∗∗ 28.16∗∗∗ 0.17

H0: ASEAN Granger-causes NA
lag = 1 day 2.27 1.75 0.53
lag = 2 days 7.80∗∗∗ 27.82∗∗∗ 0.53
lag = 3 days 7.80∗∗∗ 15.77∗∗∗ 0.53
lag = 4-30 days 7.80∗∗∗ 15.77∗∗∗ 0.53

H0: EU Granger-causes ASEAN
lag = 1 day 0.37 13.53∗∗∗ 1.09
lag = 2 days 8.78∗∗∗ 12.74∗∗∗ 0.84
lag = 3 days 7.83∗∗∗ 9.55∗∗∗ 0.34
lag = 4 days 6.80∗∗∗ 9.55∗∗∗ 0.21
lag = 5-30 days 8.88∗∗∗ 9.55∗∗∗ 0.21

H0: ASEAN Granger-causes EU
lag = 1 day 2.76 5.48∗∗ 0.80
lag = 2 days 2.37 7.97∗∗∗ 3.80
lag = 3 days 2.07 5.14∗∗ 3.80
lag = 4 days 1.93 7.56∗∗∗ 3.80
lag = 5-30 days 1.22 6.34∗∗ 3.80
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zone crisis. In this period we find that the NA spillover Granger-causes the EU spillover

for 3-30 day forecast horizons but not for 1-2 day forecast horizons while in the reverse

direction, the EU spillover Granger-causes the NA spillover for all forecast horizons.

Comparing the values of FNA→EU and those of FEU→NA for 3-30 day forecast horizons,

we find that the 3 to 30-day lagged values of NA spillover have predictive power over

the EU spillover but the 1 to 2-day lagged values of the EU spillover have predictive

power over the NA spillover. This suggests that over 1 and 2-day windows, informa-

tion flows from EU to NA but over 3 to 30-day windows, information flows from NA

to EU on a net basis. The NA spillover Granger-causes the ASEAN spillover for 2-30

day forecast horizons but not for 1-day forecast horizon and in the reverse direction,

the ASEAN spillover also Granger-causes the NA spillover for 2-30 forecast horizons

but not for 1-2 day forecast horizon. Because all significant values of FNA→ASEAN are

greater than those of FASEAN→NA, the net Granger causality direction is from NA to

ASEAN. The EU spillover Granger-causes the ASEAN spillover for all forecast hori-

zons and in the reverse direction, the ASEAN spillover Granger-cause the EU spillover

for all forecast horizons. The net Granger causality direction is from the EU to ASEAN

because all values of FEU→ASEAN are greater than those of FASEAN→EU .

The third period of August 18, 2012 to November 2, 2015 covers some of the

Greek crisis. In this period, none of the values of the F-statistics is significant, suggest-

ing no Granger causality in any of the regional spillover pairs.

In sum, our Granger causality results in Table 5.13 suggest that total connectedness

in NA dominated those from other regions during the Global Financial Crisis while

total connectedness in the EU became more dominant during the eurozone crisis. In

other words, net information flowed from NA to EU and ASEAN during the Global

Financial Crisis while net information flowed from the EU to NA (for shorter horizons)

and ASEAN (for all horizons) during the eurozone debt crisis.

5.5.2.2 Transfer entropy tests

In this section we compute transfer entropy and information flow using changes of

total connectedness (one and five-day changes) in the three regions—the NA, EU, and

ASEAN banking systems—in order to quantify the lead-lag relationships among them.

We estimate transfer entropy using both a linear and non-linear approaches.
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The linear approach computes transfer entropy TY→X using the relationship with

Granger causality in Equations 4.23, 4.20 and 4.21. The non-linear approach taken

from Tungsong et al. [2018] estimates entropies by first discretizing the signal, i.e.

variable A with mean µA and standard deviation σA, into three states respectively asso-

ciated with a central band of values within µA±δσA and two external bands associated

with values smaller than µA −δσA and larger than µA +δσA. Denote respectively p0
A,

p−A and p+A the relative frequencies of the observations in the three bands, we estimate

entropy as H(A) = −p−A log p−A− p0
A log p0

A− p+A log p+A. The joint entropy of two variables

is equivalently defined by the combination of values of the two variables in the three

bands obtaining 9 combined states p−,−A,B, p−,+A,B, p+,−A,B, p+,+A,B, p−,0A,B, p+,0A,B, p0,−
A,B, p0,+

A,B, p0,0
A,B

from which joint entropy can be estimated as H(A,B) = −∑r,s={0,+,−} pr,s
A,B log pr,s

A,B. If

TY→X > TX→Y , then the direction of the information transfer goes from Y to X . Con-

versely, if TX→Y > TY→X , then the direction of the information transfer goes from X to

Y . The net information flow between X and Y is quantified as TX→Y −TY→X .

The results for the daily differences in total connectivities and one-day lag are

reported in Table 5.14. Statistical significance was estimated with respect to a null

hypothesis via permutation test using 10,000 permutations for each measure. We recall

that the linear measure is equivalent to Granger causality where a significant transfer

entropy corresponds to a validated Granger causality. The non-linear measure was

computed for fluctuation bands at δ = 1,2,3 standard deviations. We observe that there

is a significant information transfer between NA and EU, NA and ASEAN and the EU

and ASEAN which prevails the opposite direction. For the linear case, this implies

NA Granger causes the EU, NA Granger causes ASEAN and the EU Granger causes

ASEAN. We observe that the non-linear test provides consistent results with those from

the linear test for all values of δ , demonstrating robustness of the result.

We also observe that there are significant causal relations in the opposite direc-

tions. Given the extended temporal lags between the three regions it is fair to question

whether one-day lag and one-day time horizon will asymmetrically affect markets de-

pending on their relative opening hours. We therefore compute transfer entropy and

information flow across regions for time-horizon and lag of 5 days instead of one day.

Transfer entropies and information flows, computed from non-overlapping five-day re-

turns for the entire period, are reported in Table 5.15. We find that the results are
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Table 5.14: Transfer entropy between regional spillovers: March 28, 2006-November 2, 2015
(full sample), computed from one-day changes in the total spillover.

Method T ENA→EU T EEU→NA Net Information Flow

linear 0.004722∗∗ 0.001354∗ 0.003369
non-linear treshold σ 0.005251∗∗∗ 0.006711∗∗ -0.001460
non-linear treshold 2σ 0.003980∗∗∗ 0.002012∗ 0.001968
non-linear treshold 3σ 0.004939∗∗∗ 0.000561 0.004378
Method T ENA→AS T EAS→NA Net Information Flow

linear 0.017336∗∗∗ 0.008931∗∗∗ 0.008405
non-linear treshold σ 0.008789∗∗∗ 0.005837∗∗ 0.002953
non-linear treshold 2σ 0.005348∗∗∗ 0.002305∗ 0.003042
non-linear treshold 3σ 0.003150∗∗ 0.002803∗∗∗ 0.000348
Method T EEU→AS T EAS→EU Net Information Flow

linear 0.005659∗∗ 0.003633∗∗ 0.002026
non-linear treshold σ 0.005553∗∗ 0.001262 0.004291
non-linear treshold 2σ 00.005960∗∗∗ 0.000228 0.005732
non-linear treshold 3σ 0.004238∗∗∗ 0.002118∗∗∗ 0.002120

* p-value < 0.05, ** p-value < 0.01, *** p-value < 0.001.

Table 5.15: Transfer entropy between regional spillovers: March 28, 2006-November 2, 2015
(full sample), computed from weekly changes (5 days) in the total spillover.

Method T ENA→EU T EEU→NA Net Information Flow

linear 0.008003∗ 0.001255 0.006747
non-linear threshold σ 0.009204 0.009474 -0.000271
non-linear threshold 2σ 0.017228∗∗∗ 0.003196 0.014032
non-linear threshold 3σ 0.024087∗∗∗ 0.002335∗ 0.021752
Method T ENA→AS T EAS→NA Net Information Flow

linear 0.017200∗∗ 0.003703 0.013497
non-linear threshold σ 0.010598∗ 0.004354 0.006244
non-linear threshold 2σ 0.006509 0.006475 0.000034
non-linear threshold 3σ 0.002107 0.006805∗∗∗ -0.004698
Method T EEU→AS T EAS→EU Net Information Flow

linear 0.022020∗∗ 0.000619 0.021401
non-linear threshold σ 0.021641∗∗∗ 0.002374 0.019267
non-linear threshold 2σ 0.022964∗∗∗ 0.002900 0.020063
non-linear threshold 3σ 0.007488∗∗ 0.000405 0.007083

* p-value < 0.05, ** p-value < 0.01, *** p-value < 0.001.

consistent with those for one-day time horizon and lag reported in Table 5.14 with the

main difference being lower statistical significance, most likely because the time series

for the five-day changes are five times shorter than the time series for daily changes.
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5.6 Full vs. sparse network connectedness
In this section we illustrate network connectedness of the three banking systems com-

puted from transfer entropy in the context of sparse modeling discussed in Chapter 6.

As the data used to produce Figure 5.10 are the same as those used to produce Fig-

ure 5.9, we can look at Figure 5.10 and Figure 5.9 analogously.

While the total connectedness metric computed from FEVDs of the full network

and that computed from transfer entropy of the sparse network can identify major crises

correctly, the total connectedness derived from the sparse network demonstrates much

clearer peaks during the crises. For example, the NA total connectedness computed

from the sparse network allows us to distinguish major crises e.g. the Global Financial

Crisis, the European sovereign debt crisis, the US credit downgrade, and the LIBOR

scandal, from smaller crisis events. The NA total connectedness surrounding those

major crises are much higher than that surrounding smaller crises. This confirms that

the sparse network has higher signal-to-noise ratio which improves the interpretability

of the connectedness measure, allowing for better inference and identification of crises.

On the contrary, the connectedness measure computed based on the full network, which

has lower signal-to-noise ratio, does not provide clear visibility of peaks associated with

extreme events.
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5.7 Conclusion
In this chapter we quantify pairwise and system-wide connectedness in the NA, EU,

and ASEAN banking systems using our improved VAR-FEVD methodology on banks’

stock returns from 2005 to 2015 and demonstrate that the results from the improved

VAR-FEVD framework are superior to those from the classical VAR framework pro-

posed by Diebold and Yilmaz [2009, 2012, 2014]. Our proposed VAR-FEVD improves

the classical VAR-FEVD method in two ways. First, the problems of unreliability of

forecasts and high variance due to increased dimensionality are addressed through the

use of ridge regression. Second, we mitigate the sensitivity to outliers in remote obser-

vations by assigning exponential weights to data points, with more recent data points

receiving larger weights. In this way, we obtain visible connectedness peaks which

enable us to identify crises that took place in the three banking systems—NA, EU, and

ASEAN.

Our time-varying total connectedness metric for each banking system indicates

temporal changes in the systemic risk, with peaks during major crisis events and troughs

during normal periods, which are similar to those observed in other financial systems

(Diebold and Yilmaz [2009, 2012, 2014], Chau and Deesomsak [2014], Alter and Beyer

[2014], Fengler and Gisler [2015], and Demirer et al. [2017]. In general, the level of

total connectedness in the NA banking system is the highest, followed by those of the

EU, and ASEAN banking systems respectively.

We test for Granger causality over the full sample and three subsamples covering

the period from 2006 to 2015 and find that there is causality in both directions e.g.

NA to EU vs. EU to NA, NA to ASEAN vs. ASEAN to NA, and EU to ASEAN vs.

ASEAN to EU. The F-statistics associated with NA to EU, NA to ASEAN, and EU to

ASEAN are higher than the opposite directions, suggesting that net information flows

from NA to EU and EU to ASEAN. Our results support the findings in research such as

Rapach et al. [2013] which provides evidence that lagged U.S. returns are significant

predictors of numerous non-U.S. industrialized countries but lagged non-U.S. returns

have limited predictive ability with respect to the U.S. returns.

For robustness, we perform nonlinear causality tests based on transfer entropies

and information flows computed on the changes of total connectedness in the three

banking systems. We find that there is a significant information flow from NA to EU,
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NA to ASEAN and EU to ASEAN, consistent with the results from our Granger causal-

ity tests.

The contributions of our research are three folds. First, we provide technical im-

provements including the assignment of exponential weights to the data and the ap-

plication of ridge regression on the VAR estimation, which mitigates the sensitivity to

outliers problem and the curse of dimensionality and eventually leads to better iden-

tification of crisis events and more insightful interpretation of the results. Second,

we study the structures of total spillover in the three banking systems—NA, EU, and

ASEAN. While other studies such as Diebold and Yilmaz [2009] and Demirer et al.

[2017] analyze a global network composed of financial institutions from many regions,

we investigate individually the NA, EU and ASEAN banking systems and show that,

despite the regions’ geographical distances, they are affected in various degrees by

major financial crisis events originated in dominant regions such as the NA and EU

banking systems. Third, we perform a Granger causality and transfer entropy test on

the connectedness time series generated by the improved VAR-FEVD method. This is

to investigate the causal relationships among the spillover structures of the aforemen-

tioned three banking systems. To the best of our knowledge, this causality study is the

first of its kind.

The intuition for using VAR framework in our analysis is that we view a banking

system as an endogenous system composed of banks, each of which is subject to ex-

ternal shocks to itself as well as transmission of risk from the others within the system.

The VAR methodology also allows for inference of systemic risk using market data

such as stock returns of banks, which are available to the public. This differentiates our

study from previous studies such as Furfine [2003], Upper and Worms [2004], Degryse

and Nguyen [2004] which use interbank lending data which are proprietary informa-

tion and inaccessible to the public. Using stock returns to infer systemic risk enables

us to capture both direct and indirect connections between the banks, which we cannot

achieve using interbank data as they reflect only direct connections between them.





Chapter 6

Background: Sparse models for

connectedness estimation

Summary: In this chapter we provide a summary of the sparsity modeling frame-

work called LoGo-TMFG, which is implemented in this research, and related concepts

including graphical models and Gaussian Markov Random Field (GMRF). We also dis-

cuss the well-known graphical lasso algorithm and its drawbacks, which motivate us to

use the LoGo-TMFG.

Common issues when dealing with large datasets are non-invertible covariance

matrices and overparameterization which leads to other issues such as overfitting and

unreliable estimates and forecasts. It is often the case that a model with fewer param-

eters has stronger predictive power and can better describe the statistical variability of

data than overparameterized models. One way to obtain such a parsimonious model is

to use sparsity modeling.

The idea of sparsity modeling is to keep the significant non-zero patterns (repre-

senting signal) and discard insignificant patterns (representing noise) in the full infor-

mation set, whereby increasing the signal to noise ratio. In the context of our research,

such patterns are the links between two nodes in a high dimensional network.

The point of departure for sparsity modeling in this research is to formulate the

links or relationships between the nodes as a graphical model, specifically a GMRF.

An important feature of a GMRF is the precision matrix, which describes conditional

dependence of the nodes. The elements of the precision matrix are non-zero only for

neighbors, i.e., nodes that are conditionally dependent, and diagonal elements. Non-

neighbors or nodes that are conditionally independent are represented by zeros in the
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precision matrix.

At the end of this chapter, we discuss relationships between the precision matrix

and conditional covariance which will be useful for computing conditional entropy,

mutual information, and transfer entropy.

6.1 Graphical models
In this section we summarize from existing literature probabilistic graphical model

concepts that we use to understand the joint distribution of the random variables in our

network and to measure connectedness between the variables. Connectedness in the

context of this research is defined as conditional dependence between two variables,

given all other variables in the network.

In graphical models, each of the variables is represented by a node (vertex), a

set of nodes with certain connectedness structure is called a network (graph), and a

connection between two nodes is referred to as a link (edge). The presence of a link be-

tween two variables in a graphical model means they are conditionally dependent while

the absence of a link between two variables means they are conditionally independent

given the other variables [Bishop, 2006].

When discussing conditional independence, we have to bear in mind that condi-

tional independence does not equate unconditional independence. For example, if two

nodes A and B are not directly linked to each other but they are linked via another

node C, we can say that A and B are unconditionally dependent but are conditionally

independent given C. In other words, A and B are conditionally independent given C

as there is no path between A and B that does not pass through C. This conditional

independence feature is a variation on the Markov property, that is, the state of a node,

e.g., A, is a function only of the states of its neighbors, e.g. C, since all other nodes,

e.g., B, in the graph are conditionally independent of A given the neighbors of A.

Our aim is to use graphs to represent the conditional dependence structure that

best describes the relationship between variables which are the log returns of the global

financial institutions. We will focus primarily on undirected graphs, which has con-

ditional independence as described above; these graphs are commonly referred to as

Markov Random Fields. More specifically, the type of Markov Random Fields that is

of interest to us is the Gaussian Markov Random Field (GMRFs) which are used to
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encode multivariate Gaussian distributions. The GMRFs have well-understood math-

ematical properties, leading to tractable analysis, simpler interpretation of results, as

well as computationally efficient learning algorithms [Barfuss et al., 2016]. As a re-

sult, GMRFs are often used for modeling continuous variables in practical applications

including finance, computer vision, sparse sensing, gene expression, biological neural

networks, climate networks, geostatistics, and spatial statistics [Barfuss et al., 2016].

As autoregressive processes are GMRFs, the VAR-FEVD for connectedness

framework described in Section 3.1 is related to the analysis of conditional dependence

using sparsity modeling on a GMRF construct described in this section.

6.1.1 Gaussian Markov Random Fields (GMRFs)

A Gaussian Markov Random Fields (GMRF) or Gaussian graphical model (GGM) is

a simple and widely-used construct of jointly normally distributed random variables

yyy = (y1, ...,yp)
′ with the Markov property yi ⊥ y j∣y∖{yi,y j}, that is, yi and y j are inde-

pendent conditionally on all other variables {yk,k ≠ i, j}. The GMRF has the property

that all conditional distributions are also Gaussian.

A GMRF is a major class of graphical model representing dependencies in an

undirected network (i.e., the links do not carry arrows), which may be cyclic 1 [Bishop,

2006]. Given a random vector yyy = (y1, ...,yp)
′ with mean µµµ and precision matrix QQQ > 000

whose graph is G = (V = {1, ...,K},E), where V is a set of vertices 1, ...K and E is a set

of edges {i, j} in the graph G. The random vector yyy is called a GMRF if its density has

the forms

f (yyy) = (2π)−p/2det(QQQ)1/2 exp(−
1
2
(yyy−µµµ)′QQQ(yyy−µµµ)) , (6.1)

and Qi j ≠ 0 if and only if {i, j} ∈ E. In other words, yi and y j are conditionally indepen-

dent if and only if the (i, j)th element of QQQ is zero [Rue and Held, 2005].

1This is in contrast to another major class of graphical model, the Bayesian network, which is directed
and acyclic.
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Elements of the precision matrix QQQ have the following conditional interpretations.

E(yi∣y∖yi) = µi−
1

Qii
∑
j, j≠i

Qi j(y j −µ j), (6.2)

Prec(yi∣y∖yi) =Qii, (6.3)

Corr(yi,y j∣y∖yi) = −
Qi j

√
QiiQ j j

, i ≠ j (6.4)

6.2 Sparse precision matrix estimation

Given a data matrix YYY n×p, which is a sample of n realizations from a p-dimensional

Gaussian distribution with zero mean and positive definite covariance matrix ΣΣΣ, the

traditional way to estimate a precision matrix QQQ = ΣΣΣ
−1 under the Gaussian model is to

maximize the log-likelihood of the data with respect to QQQ,

l(QQQ) = logdetQQQ− tr(SSSQQQ), (6.5)

where SSS is the sample covariance matrix. This results in the maximum-likelihood esti-

mate of QQQ,

Q̂QQ = SSS−1
=

1
n
[

n
∑
i=1

(yyyi− ȳyy)(yyyi− ȳyy)′]
−1

. (6.6)

In general, the sample covariance matrix SSS is a reliable estimate of the true covari-

ance matrix when p << n, but when p > n, SSS is singular [Ledoit and Wolf, 2012], which

means the maximum-likelihood estimate Q̂QQ cannot be computed. In the case where p

is close to n, there is still a large number of parameters, i.e., p(p+3)
2 to estimate, which

often results in overfitting and the sample covariance matrix SSS being estimated with a

lot of errors [Ledoit and Wolf, 2012].

It is often the case that a model with fewer parameters has stronger predictive

power and can better describe the statistical variability of data than overparameterized

models. Thus, it is desirable to use a parsimonious model to describe high dimensional

datasets, and in the GMRF context, one can arrive at such model by constraining a

selected number of second moments. The unconstrained moments are then associated

with zeros in the sparse inverse covariance matrix QQQ.
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According to Barfuss et al. [2016], there are four main approaches to learn the

sparse structure of a GMRF: (1) the constraint based approach, (2) score based ap-

proach, (3) constrained optimization based approach, and (4) information filtering net-

works based approach. In Sections 6.2.1 and 6.2.3 below, we discuss the widely-used

algorithm graphical lasso, which is a constrained optimization based approach and the

novel LoGo-TMFG algorithm which is based on information-filtering networks.

6.2.1 Graphical lasso

The graphical lasso or Glasso, introduced by [Friedman et al., 2008] is arguably the

most widely-used approach to estimate a sparse precision and covariance matrix. In

order to understand the Glasso algorithm, we start by considering a data matrix YYY n×p,

which is a sample of n realizations from a p-dimensional Gaussian distribution with

zero mean and positive definite covariance matrix ΣΣΣ.

As previously mentioned, the task of estimating ΣΣΣ based on the n samples when

p> n is not a trivial task because in the case where p> n, the sample covariance matrix SSS

will be singular and the ML estimate Q̂QQ does not exist. In the case where p≤ n when SSS is

positive definite and the ordinary MLE does exist, the QQQ is not sparse and often poorly

behaved. By trading off maximality of the log-likelihood for parsimony, the Glasso

algorithm aims to find as sparse a solution as possible that still adequately explains the

data [Banerjee et al., 2008].

Rather than maximizing the log-likelihood in Equation (6.5), the Glasso algorithm

maximizes the `1-penalized log-likelihood,

l(QQQ) = logdetQQQ− tr(SSSQQQ)−λ∥QQQ∥1, (6.7)

where SSS = 1
n∑

n
i=1(yyyi− ȳyy)(yyyi− ȳyy)′ is the sample covariance matrix of YYY , ȳyy is the sample

mean vector, ∥QQQ∥1 is the `1 norm, the sum of the absolute values of the elements of

QQQ. The Glasso problem is to maximize the `1-penalized log-likelihood subject to the

non-negative definite precision matrix QQQ.

In learning the structure of the GMRF YYY , the Glasso uses the `1 regularization

to control the number of zeros (i.e., sparsity) in the precision matrix. That is, if λ is

sufficiently large, the estimate Q̂QQ will be sparse due to the lasso-type penalty `1 on the

elements of QQQ. A larger value of λ corresponds to a sparser solution that fits the data



98 Chapter 6. Background: Sparse models for connectedness estimation

less well while a smaller λ corresponds to a solution that fits the data well but is less

sparse. In addition, the `1 regularization ensures that the estimated covariance matrix is

always invertible, no matter how small the ratio of sample size n to number of variables

p is.

The Glasso treats the estimation of the sparse precision matrix as a constrained

optimization problem and exploits the fact that there is a one-to-one correspondence

between zeros in the precision matrix and absent edges in the graph. The Glasso can be

solved using several optimization algorithms, however, the simplest and most widely-

used one proposed by Friedman et al. [2008] is based on coordinate descent algorithm.

Glasso operates on the sample covariance matrix SSS via block coordinate descent which

maintains a positive definite covariance matrix at every row and column update. How-

ever, the estimated precision matrix is not the exact inverse of SSS and as a result, it is not

always positive definite. Algorithms (1) and (2) [Friedman et al., 2008] illustrate the

Glasso method.

Algorithm 1 Graphical lasso

1. Initialize W = S+λ I. The diagonal of W remains unchanged in what follows.
2. Repeat for j = 1,2, ...p,1,2, ...p, ... until convergence:

i. Partition the matrix W into part 1: all but the j-th row and column, and part 2:
the j-th row and column,

ii. Solve the estimating equations W11β − s12+λ .Sign(β) = 0 using the pathwise
coordinate-descent algorithm for the modified lasso defined in Algorithm (2),

iii. Update w12 =W11β̂ .

3. In the final cycle (for each j), solve for q̂12 = −β̂ .q̂22, with 1
q̂22

=w22−w′
12β̂ .

Algorithm 2 Pathwise coordinate descent for graphical lasso
1. Let V =W11, the update has the form
2. For j = 1,2, ..., p−1,1,2, ..., p−1, ...,

β̂ j ←
τ (s12 j −∑k≠ jVk jβ̂k,λ)

Vj j
(6.8)

where τ is the soft-threshold operator τ(x,t) = sign(x)(∣x∣ − t)+.
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6.2.2 Critiques of graphical lasso

Despite being the most well-known sparsity algorithm, the Glasso share similar draw-

backs with other `1-based methods. Relevant to this research is the fact that the Glasso

is generally unreliable with respect to larger networks and tends to yield overly spar-

sified or disconnected graphs. Heinavaara et al. [2016] analyzed real gene expression

data and showed that (1) all `1-based methods fail dramatically for models with nearly

linear dependencies between the variables and (2) all `1-based methods become unre-

liable for larger networks. Zhao and Yu [2006] concluded that `1 penalization shrinks

the estimates for non-zero values too heavily such that true non-zero values are often

wrongly pushed toward zero.

In addition, Glasso is less computationally efficient than information filtering

network-based algorithms such as LoGo-TMFG Barfuss et al. [2016] described in the

next section. This is due to the fact that Glasso constructs the global sparse network

from a full covariance matrix while LoGo-TMFG does so from summing the local

sparse precision matrices.

6.2.3 Novel sparsity algorithm: LoGo-TMFG

An alternative approach to estimate inference models, proposed by Barfuss et al.

[2016], is called LoGo (Local Global). The LoGo combines information filtering net-

works such as triangulated maximally planar graphs (TMFG) or minimum spanning

trees (MST) with GMRFs in order to estimate the global sparse inverse covariance from

a simple sum of local inverse covariances computed on small sub-parts of the network.

The fact that the LoGo algorithm breaks down a large problem involving a large matrix

into small problems involving much smaller matrices makes it particularly suitable to

analyze high dimensional datasets whose correlation matrices are not invertible.

The LoGo algorithm is statistically robust and computationally efficient as it is

based on local, low-dimensional inversions, allowing parallel computations and partial

updating when the properties of some variables change without having to recompute

the entire model. Compared to the Glasso, the LoGo is much less computationally

intensive and yields comparable or better maximum likelihood results [Barfuss et al.,

2016].

Barfuss et al. [2016] discuss two variants of the LoGo algorithm, namely the
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LoGo-TMFG and the LoGo-MST. Both the LoGo-TMFG and LoGo-MST are spar-

sity structure estimation algorithms which constructs a global sparse network from the

sums of small, local networks; however, the difference is that the LoGo-TMFG builds

a network from triangulated planar graphs (TMFG) while the LoGo-MST does so from

minimum spanning trees (MSTs). The following section summarizes the LoGo-TMFG

algorithm which is a main methodology used in the experiments in Chapters 7 and 8.

6.2.3.1 Triangulated maximally planar graph (TMFG)

In the LoGo-TMFG algorithm, a network is represented by a triangulated graph (or

chordal graph) which is a type of planar graph 2, in which every cycle of length four

and greater has a cycle chord. The network is made up of four-node cliques (4-cliques)

and separators which are three-node cliques (3-cliques). By representing a network

as a system comprising 4-cliques and 3-cliques, we reduce the inversion of a high

dimensional matrix into a sum of inversions of matrices corresponding to the 4-cliques

and 3-clique separators [Barfuss et al., 2016].

Given the triangulated graph as our network, we can write the joint probability

density function for our data, which are the set of p variables YYY = (yyy1, ...,yyyp)
′, in terms

of the following factorization into cliques and separators,

f (YYY) =
∏

M
m=1 fCm(YYY Cm)

∏
M−1
n=1 fSn(YYY Sn)

k(Sn)−1
. (6.9)

where fCm(YYY Cm) and fSn(YYY Sn) are the marginal probability density functions of the

variables constituting the clique Cm and the separator Sn. k(Sn) counts the number

of disconnected components produced by removing the separator Sn and is therefore

equal to the degree of the separator in the clique tree.

In the context of LoGo-TMFG, we start by computing a triangulated graph from

a tetrahedron and inserting recursively vertices inside existing triangles (T2 move) in

order to approximate a maximal planar graph with the largest total weight. Then we use

the local inversion formula in Equation 6.10 to estimate the sparse inverse covariance

2A planar graph is a graph that can be embedded in the plane in such a way that its edges do not cross
one another but intersect only at their endpoints.
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matrix J using as inputs cliques and separators from the triangulated planar graph.

Ji, j = ∑
C s.t.{i, j}∈C

(SSS−1
C )i, j − ∑

S s.t.{i, j}∈S
(k(S )−1)(SSS−1

S )i, j , (6.10)

where S is sample covariance matrix and Ji, j = 0 if {i, j} are both not a part of a common

clique. Equation (6.10) is a simple formula that reduces the global problem of a p× p

matrix inversion to a sum of local inversions of matrices whose dimensions are the sizes

of the cliques Cm and separators Sn. In other words, only four observations are enough

to produce a non-singular global estimate of the inverse covariance using triangulated

maximally planar graph (TMFG).

In order to construct a model that is closest to what is observed, we search for the

set of parameters, JJJ, associated with the largest likelihood of observing the observations

{y11, ...,y1q},{y21, ...,y2q}....,{yp1, ...,ypq}. The log-likelihood of the model distribu-

tion function, f (YYY), with parameters JJJ, is associated with the empirical estimate of the

covariance matrix SSS as follows.

log l(JJJ) =
n
2
(logdet(JJJ)− tr(SSSJJJ)− p log(2π)) (6.11)

One can show that for all decomposable graphs, following Equation (6.10), tr(SSSJJJ) = p.

This makes maximizing Equation (6.11) simpler as the maximization problem reduces

to maximizing logdet(JJJ),

logdet(JJJ) =
M−1
∑
n=1

(k(S )−1) logdet(SSSSn)−
M
∑
m=1

logdet(SSSCm) (6.12)

From Algorithm (3) [Barfuss et al., 2016] we see that the algorithm constructs a tri-

angulated graph initially with a tetrahedron, C1 = {v1,v2,v3,v4} whose correlation de-

terminant det(RRRC1) is the smallest. Then we iteratively introduce inside existing tri-

angular faces the vertex that maximizes logdet(RRRS ) logdet(RRRC ) where C and S are

the new clique and separator created by the vertex insertion. The LoGo-TMFG algo-

rithm produces a 3(p−2)-edged decomposable graph, which is a clique-tree compris-

ing four-cliques which are connected by three-clique separators. For LoGo-TMFG,

k(Sn) always equals 2.
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Algorithm 3 LoGo-TMFG
Input: A sample covariance matrix SSS ∈ Rp×p and the associated correlation matrix
RRR ∈ Rp×p

Output: JJJ a sparse estimation of the inverse covariance matrix

1. JJJ← 0 Initialize JJJ with zero elements.
2. C1← Tetrahedron,{v1,v2,v3,v4}, with the smallest det(RRRC1)

3. T ← Assign to T the four triangular faces in
C1 ∶ {v1,v2,v3},{v1,v2,v4},{v1,v4,v3},{v4,v2,v3}.

4. V ← Assign to V the remaining p−4 vertices not in C1.
5. While V is not empty, do:

i. Find the combination of {va,vb,vc} ∈ T and vd ∈ V with the largest
det(RRR{va,vb,vc})

det(RRR{va,vb,vc,vd})
. Note that {va,vb,vc,vd} is a new 4-clique C , {va,vb,vc} be-

comes a separator S , three new triangular faces, {va,vb,vd}, {va,vc,vd}, and
{vb,vc,vd} are created.

ii. Remove vd from V .

iii. Remove {va,vb,vc} from T .

iv. Add {va,vb,vd},{va,vc,vd},{vb,vc,vd} to T .

v. Compute Ji, j = Ji, j +(S−1
{va,vb,vc,vd}

)
i, j
−(S−1

{va,vb,vc}
)

i, j
.

6.3 Inverse covariance matrix & conditional covariance

The precision matrix has elements that are conditional dependencies of the variables. If

variables Xi and X j are from multivariate normal distribution, and the (i, j)th element in

the precision matrix is zero, we then have that Xi and X j are conditionally independent

given all other variables [Friedman et al., 2008].

Via Schur complement, the inverse of a block within the precision matrix provides

conditional covariances of the variables in the block given all other variables. The joint

covariance matrix of two multivariate random variables XXX ∈ Rn and YYY ∈ Rm is ΣΣΣX ,Y =
⎡
⎢
⎢
⎢
⎢
⎢
⎣

ΣΣΣXX ΣΣΣXY

ΣΣΣY X ΣΣΣYY

⎤
⎥
⎥
⎥
⎥
⎥
⎦

. The block ΣΣΣXX ∈ Rn×n is the variance matrix of XXX , ΣΣΣYY ∈ Rm×m is the

variance matrix of YYY , ΣΣΣXY ∈Rn×m is the covariance matrix between XXX and YYY , and ΣΣΣY X ∈

Rm×n is the covariance matrix between YYY and XXX , which is equal to the transpose of ΣΣΣXY .
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The conditional covariance of YYY given XXX is the Schur complement of ΣΣΣXX in ΣΣΣX ,Y ,

ΣΣΣY ∣X = ΣΣΣYY −ΣΣΣY X ΣΣΣ
−1
XX ΣΣΣXY . (6.13)

Similarly, the conditional covariance of XXX given YYY is the Schur complement of

ΣΣΣYY in ΣΣΣX ,Y , ΣΣΣX ∣Y = ΣΣΣXX −ΣΣΣXY ΣΣΣ
−1
YY ΣΣΣY X . Given a precision matrix JJJ and its counterpart

covariance matrix ΣΣΣX ,Y , both of which can be partitioned into block matrices. Using

block matrix inversion, the relationship between JJJ and ΣΣΣX ,Y is as follow.

ΣΣΣX ,Y = JJJ−1
=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

J11 J12

J21 J22

⎤
⎥
⎥
⎥
⎥
⎥
⎦

−1

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

(J11−J12J−1
22 J21)

−1 −J−1
11 J12(J22−J21J−1

11 J12)
−1

−(J22−J21J−1
11 J12)

−1J21J−1
11 (J22−J21J−1

11 J12)
−1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.

(6.14)

J = ΣΣΣ
−1
X ,Y =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

ΣΣΣXX ΣΣΣXY

ΣΣΣY X ΣΣΣYY

⎤
⎥
⎥
⎥
⎥
⎥
⎦

−1

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

(ΣXX −ΣXY Σ−1
YY ΣY X)−1 −Σ−1

XX ΣXY (ΣYY −ΣY X Σ−1
XX ΣXY )

−1

−(ΣYY −ΣY X Σ−1
XX ΣXY )

−1ΣY X Σ−1
XX (ΣYY −ΣY X Σ−1

XX ΣXY )
−1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.

(6.15)

Putting together Equation (6.14) and Equation (6.15), we can see that

ΣY ∣X = (J22)
−1 = ΣYY −ΣY X Σ

−1
XX ΣXY . (6.16)

The unconditional covariance of Y can be computed from either the large matrix J−1,

ΣYY = (J−1)22, or via Schur complement using blocks of J−1, ΣYY = (J22−J21J−1
11 J12)

−1.

We can use the equality between conditional covariances and inverses of blocks within

a precision matrix in computing mutual information and transfer entropy. The mutual

information I(X ;Y) in Equation (4.16) can be computed from the determinants of ΣY ∣X

and ΣY , via the identity ∣M−1∣ = 1
∣M∣ :

I(X ;Y) =
1
2
(log ∣(J22−J21J−1

11 J12)
−1∣ − log ∣(J22)

−1∣), (6.17)

=
1
2
(log ∣J22∣ − log ∣J22−J21J−1

11 J12∣) . (6.18)

The transfer entropy T E(X →Y) = 1
2(log ∣ΣY ∣Y− ∣− log ∣ΣY ∣Y−,X− ∣) in Equation (4.17) can
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be computed by applying Schur’s complement on the joint covariance matrix ΣX−,Y−,Y

and its corresponding precision matrix J,

ΣX−,Y−,Y =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ΣX−,X− ΣX−,Y− ΣX−,Y

ΣY−,X− ΣY−,Y− ΣY−,Y

ΣY,X− ΣY,Y− ΣY,Y

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= J−1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

J11 J12 J13

J21 J22 J23

J31 J32 J33

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

−1

. (6.19)

The covariance matrix of Y conditional on the past values of Y and X is:

ΣY ∣X−,Y− = J−1
33 . (6.20)

The joint covariance matrix of Y and the past of and X , conditional on the past of Y is:

ΣX−,Y ∣Y− =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

J11 J13

J31 J33

⎤
⎥
⎥
⎥
⎥
⎥
⎦

−1

. (6.21)

The covariance matrix of Y conditional on the past of Y is the following

ΣY ∣Y− = (J33−J3,1J−1
1,1J1,3)

−1 (6.22)



Chapter 7

Empirical analysis: Sparse regional

network construction using

LoGo-TMFG

Summary: In this chapter we use a novel sparsity algorithm called LoGo-TMFG,

proposed by Barfuss et al. [2016], to quantify connectedness in the global financial

network comprising all publicly listed financial institutions in ten economic regions of

the world. The necessity for sparsification arises from the fact that our global financial

network datasets are wide, i.e., the sample size is much smaller than the number of

variables.

Combining sparsity modeling with well-known information theoretic measures

such as mutual information and transfer entropy, we learn about the global financial

network and analyze the interactions between them. In addition, we propose two met-

rics based on transfer entropy called “impact” and “vulnerability,” which measure, re-

spectively, how much one region affects another and how much one region is affected

by another.

Our global financial network comprises financial institutions in the financial sector

in ten economic regions of the world. We perform both full-sample and rolling-window

analyses. Our two full-sample datasets cover the period from 1990 to 1999 and from

2000 to 2016, containing respectively 914 and 1,127 financial companies that were

active throughout the respective sample periods. Our rolling-window datasets comprise

twenty five rolling windows, each of which comprises three years of daily returns for
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a large number of financial companies, i.e., from 1,680 companies in the 1990-1992

window to 4,310 companies in the 2014-2016 window.

For comparison, we use graphical lasso which is the well-known sparsity algo-

rithm on our datasets, yielding disconnected graphs in which none of the financial in-

stitutions is connected to the others, which we believe is unrealistic. The underperfor-

mance of graphical lasso when used on our datasets supports the findings in Zhao and

Yu [2006] and Heinavaara et al. [2016] who conclude that `1-based methods generally

become unreliable for larger networks and graphical lasso often wrongly pushes true

non-zero elements toward zero.

7.1 Methodology

7.1.1 The LoGo-TMFG algorithm

The LoGo-TMFG proposed by Barfuss et al. [2016] combines the triangulated maxi-

mally planar graphs (TMFG), which is an information filtering network, with a Gaus-

sian graphical model (GGM) and estimates the global sparse inverse covariance by

simply summing up the local inverse covariances computed on small sub-parts of the

network. In the LoGo-TMFG algorithm, a high-dimensional network is broken down

into four-node cliques (4-cliques) and three-node cliques (3-cliques) which are called

separators. By representing a network as a system comprising 4-cliques and 3-cliques,

our high-dimensional matrix inversion problem is reduced into a sum of inversions of

small matrices corresponding to the 4-cliques and 3-cliques. In other words, our global

network is obtained from computing the sum of local networks, hence the name LoGo.

The implementation of the LoGo-TMFG algorithm is outlined in Algorithm 3 in Chap-

ter 6. After the sparse inverse covariance matrix J is estimated using LoGo-TMFG,

we use it as input to compute conditional mutual information and conditional transfer

entropy for each economic region of the global network.

7.1.2 Conditional mutual information and conditional transfer en-

tropy

We analyze a network which comprises three sets of variables {X ,Y,W}, where X can

be viewed as stock returns of companies in Region X , Y as stock returns of companies

in Region Y , and W as stock returns of companies in Region W , respectively. The
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entropy of X conditioned on Y is given by

H(X ∣Y) =
1
2

log(2πe)m∣ΣX ∣Y ∣, (7.1)

where m is the dimension of ΣX ∣Y . The precision matrix or inverse of the covariance

matrix of X conditioned on Y is given by

Σ
−1
X ∣Y = J(X ,X)−J(X ,W)J(W,W)−1J(W,X), (7.2)

where J(i, j) is the precision matrix associated with Region i and Region j. The mutual

information between X and Y conditioned on W is given by

I(X ,Y ∣W) =H(X ∣W)−H(X ∣Y,W), (7.3)

where H(X ∣W) and H(X ∣Y,W) are conditional entropies. The transfer entropy from X

to Y conditioned on the rest of the variables in the system W , denoted T E(X →Y ∣W) is

the mutual information between the past of X and present of Y conditioned on the past

of Y and present of W ,

T E(X →Y ∣W) = I(X−,Y ∣W,Y−) =H(Y ∣W,Y−)−H(Y ∣W,Y−,X−). (7.4)

Conditional mutual information and conditional transfer entropy allows us to esti-

mate, respectively, the contemporaneous and temporal links between two variables with

the effect from a third variable removed. In this way we can truly focus on measuring

the link that reflects direct relationship between the two variables of interest, which is

not driven by another variable being present in the system.

7.2 Economic regions of the world

In this section we provide a description of the data used in estimation of the sparse

global financial network over the period from 1990 to 2016 which covers many major

crisis episodes including the Mexican economic crisis of 1994, the Asian financial crisis

of 1997-1998, the Russian financial crisis of 1998, the Dotcom bubble of 1999-2000,

the global financial crisis of 2007-2008, and the eurozone crisis of 2009-2014.
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From Compustat North America and Compustat Global databases, we obtained

daily prices from 1990 to 2016 for companies in the financial sector from 117 countries

globally. We then adjusted the closing prices for events such as stock splits using

the total adjustment factor provided by Compustat and computed log returns for each

stock. We take as a guideline the World Bank’s categorization of economic regions

to divide the countries into economic regions, however with two modifications. First,

we split the World Bank’s “Asia and Pacific” region into three regions, namely East

Asia, Southeast Asia, and Australia to better reflect the regions’ economic diversity.

For the same reason as above, we divide the World Bank’s “Europe and Central Asia”

into Europe and West Asia. Table 7.1 provides the list of economic regions, number of

countries and the names of the countries in each economic region in our sample.

In our research we analyzed the full-sample datasets as well as rolling-window

datasets where each window covers a period of three years (750 trading days). While

our two full-sample datasets allow us to look at connectedness over the correspond-

ing sample periods in aggregate, our rolling-window datasets provide an opportunity

to analyze the time-varying dynamic of connectedness. In several ways the rolling-

window datasets make up for the limitations associated with the longer full-sample

datasets. That is, the full-sample datasets include only companies that are alive for

decades but exclude companies that are new, short-lived or bankrupt, which most likely

have had significant contributions to connectedness and systemic risk. As such, ana-

lyzing datasets which contain only companies that are active over a long time period

often leads to a survival bias, which in turn leads to false conclusions in several ways.

Our two full-sample datasets cover the periods from 1990 to 1999 and from 2000

to 2016, containing 914 and 1,127 financial companies that are active throughout the

respective sample periods. Our rolling-window datasets comprise twenty five rolling

windows, each of which features three years of daily returns for a large number of

financial companies, i.e., between 1,680 companies in the 1990-1992 window to 4,310

in the 2014-2016 window. The rich datasets in our study are one of the key features of

our research that make our contribution unique; to the best of our knowledge, published

research to date that empirically measures financial connectedness has not used datasets

of this size.
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Table 7.1: List of countries in each economic region

Code Region Number of
countries

Country

1. NA North America 3 Bermuda, Canada, United States
2. SA South America 17 Argentina, Bahamas, Barbados, Brazil, Belize,

Cayman Islands, Chile, Colombia, Ecuador, Ja-
maica, Mexico, Panama, Peru, Peuto Rico,
Trinidad and Tobago, Venezuela, Virgin Islands

3. AF Africa 14 Boswana, Cote d’Ivoire, Ghana, Kenya, Malawi,
Mauritius, Namibia, Nigeria, Senegal, South
Africa, Tanzania, Uganda, Zambia, Zimbabwe

4. EU Europe 35 Austria, Belgium, Bulgaria, Switzerland,
Cyprus, Czech Republic, Germany, Denmark,
Spain, Estonia, Finland, France, Great Britain,
Guernsey, Greece, Greenland, Croatia, Hungary,
Ireland, Italy, Jersey, Liechtenstein, Lithuania,
Luxembourg, Monaco, Malta, Netherlands,
Norway, Poland, Portugal, Romania, Serbia,
Slovakia, Slovenia, Sweden

5. ASW West Asia 5 Georgia, Kazakhstan, Russia, Turkey, Ukraine
6. ME Middle East 16 Algeria, Bahrain, Egypt, Iran, Iraq, Israel, Jor-

dan, Kuwait, Lebanon, Morocco, Oman, Pales-
tine, Qatar, Saudi Arabia, Tunisia, United Arab
Emirates

7. ASS South Asia 8 Afghanistan, Bangladesh, Bhutan, India, Mal-
dives, Nepal, Pakistan, Sri Lanka

8. ASE East Asia 6 China, Hong Kong, Japan, Korea, Macau, Tai-
wan

9. ASSE Southeast Asia 10 Brunei, Burma, Cambodia, Indonesia, Laos,
Malaysia, Philippines, Singapore, Thailand,
Vietnam

10. AU Australia 3 Australia, New Zealand, Papua New Guinea

7.3 Full-sample analysis

Table 7.2 shows the number of financial companies in each of the ten economic regions

of the world for the the 1990-1999 and 2000-2016 full-sample periods. In 1990-1999,

North America had the largest number of financial companies (530), followed by East

Asia (173), and Europe (150) and the bottom three with respect to number of financial

companies were West Asia (2), the Middle East (1) and South Asia (2). In 2000-

2016, North America had the largest number of financial companies (586), followed

by Europe (233), and East Asia (176) and the bottom three with respect to number of

financial companies were the Middle East (2), West Asia (14), South America (15),
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Table 7.2: Number of financial companies in each of the ten economic regions of the world for
the 1990-1999 and 2000-2016 full-sample datasets

Region 1990-1999 2000-2016
1. North America 530 586
2. South America 4 15
3. Africa 5 15
4. Europe 150 233
5. West Asia 2 14
6. Middle East 1 2
7. South Asia 2 24
8. East Asia 173 176
9. Southeast Asia 36 47

10. Australia 11 15
Total 914 1127

Africa (15), and Australia (15).

It is worth mentioning that the full samples exclude companies that were alive

for less than the durations of the sample periods. Hence, the full samples exclude

companies that were bankrupt which may have had significant contribution to volatility,

connectedness and systemic risk.

Figure 7.1(a) and Figure 7.1(b) illustrate the topology graphs of the financial com-

panies that were active in 1990-1999 and in 2000-2016 full-sample periods, respec-

tively. The links in the graph correspond to non-zero values in the sparse inverse co-

variance matrices for the corresponding periods, estimated using the LoGo-TMFG al-

gorithm, implying the existence of conditional dependence between pairs of variables.

In other words, the presence of a link indicates contemporaneous relationship between

a pair of nodes, conditioned on all other nodes. In both figures, clusters of companies

with strong relationship are represented by groups of nodes that are pulled in closer to

one another. It appears that as the number of financial companies increased from 914

companies in 1990-1999 to 1,127 companies in 2000-2016, so did the number and size

of clusters.

Figure 7.2(a) and Figure 7.2(b) illustrate the conditional mutual informations of

the ten economic regions in 1990-1999 and in 2000-2016 respectively. We grouped

914 financial companies in 1990-1999 and 1,127 financial companies in 2000-2016

by economic regions and computed conditional mutual information between a pair of
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(a) Sparse network of 914 financial companies
in 1990-1999

(b) Sparse network of 1,127 financial
companies in 2000-2016

Figure 7.1: Sparse network of global financial companies in 1990-1999 and 2000-2016, con-
structed from the non-zero entries in the sparse inverse covariance matrix estimated
using the LoGo-TMFG algorithm.

economic regions conditioned on all other regions, using as input the sparse inverse co-

variance matrix, which had been estimated using the LoGo-TMFG algorithm on weekly

log returns of the financial companies.

North America and Europe had the strongest link because the conditional mutual

information between the two regions was the highest followed by that between Europe

and East Asia, both in 1990-1999 and in 2000-2016. The link between North America

and Europe weakened overtime, provided that the mutual information between the two

regions decreased to 1.48 in 2000-2016 from 4.96 in 1990-1999. Similarly, the link

between Europe and East Asia weakened over time (0.86 in 1990-1999 and 0.33 in

2000-2016). On the contrary, North America and South America became more inter-

connected over time (0.01 in 1990-1999 and 0.27 in 2000-2016).

Figure 7.3(a) and Figure 7.3(b) plot the conditional transfer entropies for the

ten economic regions of the world in 1990-1999 and in 2000-2016 respectively. The

conditional transfer entropy was computed using as input the sparse inverse covari-

ance matrix, which had been estimated using the LoGo-TMFG algorithm on weekly

log returns of the financial companies. The thickness of the line corresponds to the

magnitude of the link between the regions. In general, the economic regions were more

interconnected in the 2000-2016 period than in the the 1990-1999 period, provided
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that the magnitudes and number of the links between regions in the 2000-2016 sample

are greater than those in the 1990-1999 sample. It is worth nothing that mutual infor-

mation represents contemporaneous connectedness while transfer entropy represents

temporal connectedness.

Table 7.3 and Table 7.4 summarize the transfer entropies from an economic region

to the rest and vice versa for the periods of 1990-1999 and 2000-2016 respectively. In

1990-1999, the three most impactful economic regions are North America, East Asia,

and Europe and the three most vulnerable economic regions are Europe, East Asia, and

North America. In 2000-2016, the three most impactful economic regions are North

America, Europe, and South America and the three most vulnerable economic regions

are Europe, North America, and South America. The emergence of South America,

despite having a small number of financial companies (15), reflects the new economic

era of the region in the 2000s which is characterized by steady and high economic

growth. According to Garry and Carlos Moreno-Brid [2015], Real GDP growth of

South America grew on average 1.8 percent in the 1980s, climbed to 3.1 percent in the

1990s and further expanded to 3.6 percent over the period from 2000-08. In the wake

of the global financial crisis, South America’s quick recovery in 2010, with a real GDP

growth of 6.3 percent, was evidence of the region’s solid macroeconomic foundations.

As mentioned previously, the full samples include only companies that were alive for

the entire durations of the sample periods and exclude companies that were bankrupt

which may have had significant contribution to connectedness and systemic risk. As a

consequence, the results are subject to the survival bias and one should interpret them

with caution.
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(a) Mutual information between economic regions of the world in
1990-1999

(b) Mutual information between economic regions of the world in
2000-2016

Figure 7.2: Mutual information between the ten economic regions between in 1990-1999 and
2000-2016. We grouped 914 financial companies in 1990-1999 and 1,127 financial
companies in 2000-2016 by economic regions and computed conditional mutual
information between a pair of economic regions using as input the sparse inverse
covariance matrix, which had been estimated via the LoGo-TMFG algorithm.
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(a) Conditional transfer entropy in 1990-1999
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Europe W Asia

Mid East

S Asia

E Asia

SE Asia

Aus/NZ

N America

S America

(b) Conditional transfer entropy in 2000-2016

Figure 7.3: Conditional transfer entropy between the ten economic regions during the full-
sample periods of 1990-1999 and 2000-2016, using as input the sparse inverse
covariance matrix, which had been estimated via the LoGo-TMFG algorithm.
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Table 7.3: Transfer entropy from each region to the rest and from the rest to each region during
the 1990-1999 period computed from the sparse inverse covariance matrix estimated
using LoGo-TMFG algorithm.

region → rest TE rest → region TE
1. N America → rest 0.123 rest → N America 0.139
2. S America → rest 0.003 rest → S America 0.003
3. Africa → rest 0.010 rest → Africa 0.015
4. Europe → rest 0.146 rest → Europe 0.133
5. W Asia → rest 0.001 rest →W Asia 0.000
6. Mid East → rest 0.001 rest →Mid East 0.000
7. S Asia → rest 0.001 rest → S Asia 0.003
8. E Asia → rest 0.046 rest → E Asia 0.076
9. SE Asia → rest 0.064 rest → SE Asia 0.031

10. Australia → rest 0.015 rest → Australia 0.009

Table 7.4: Transfer entropy from each region to the rest and from the rest to each region during
the 2000-2016 period computed from the sparse inverse covariance matrix estimated
using LoGo-TMFG algorithm.

region → rest TE rest→ region TE
1. N America → rest 0.325 rest → N America 0.255
2. S America → rest 0.096 rest → S America 0.099
3. Africa → rest 0.034 rest → Africa 0.016
4. Europe → rest 0.230 rest → Europe 0.439
5. W Asia → rest 0.023 rest →W Asia 0.031
6. Mid East → rest 0.007 rest →Mid East 0.028
7. S Asia → rest 0.027 rest → S Asia 0.030
8. E Asia → rest 0.036 rest → E Asia 0.059
9. SE Asia → rest 0.014 rest → SE Asia 0.040

10. Australia → rest 0.002 rest → Australia 0.027

7.4 Sparse network estimation using graphical lasso
We implemented graphical lasso with both least angle regression (LARS) and

coordinate descent (CD) solvers using graph lasso function from Python’s

scikit-learn library, with regularization parameter λ = {0.001,0.005,0.01,0.05,

0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9}. Despite the fact that all covariance matrices

(full and rolling-window) have eigenvalues between -1 and 1, during estimation

we encountered the two following errors especially for lower regularization, e.g.,

λ = {0.001,0.005,0.01,0.05,0.1}:

• FloatingPointError: Non SPD result: the system is too ill-conditioned for this
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solver. The system is too ill-conditioned for this solver. For some windows,

this error disappears as we increase regularization to, e.g., λ = 0.4,0.5, for other

windows, this error disappears only with very high regularization, e.g., λ = 0.9.

• OverflowError: int too large to convert to float. This error disappears as we

increase regularization to λ ≥ 0.1.

None of the rolling windows can be estimated with λ < 0.1. Different windows

(full and rolling) can be estimated without error with different minimum λ but the

results are unrealistically too sparse graphs for all windows—all graphs have no non-

zero edges which means none of the firm is connected to the others.

Computational time depends on the type of solver (CD or LARS) and the dataset

size. In general, the CD solver takes longer than LARS for a given dataset and the

larger the dataset, the longer it takes to complete a run. For a dataset whose number

of observations n = 748 and dimension p = 2,578, graphical lasso with LARS takes

approximately 1.8 times longer than LoGo-TMFG (298 vs 166 seconds). For another

dataset that is twice as large (n = 748, p = 5,156), graphical lasso with LARS takes

approximately 6.2 times longer than LoGo-TMFG (7,050 vs 1,145 seconds).

The underperformance of graphical lasso when used on our datasets is due to the

algorithm’s tendency to over-sparsify larger networks which leads to unreliable graph

estimates. This is because graphical lasso constructs the global network “top-down”

by sparsifying the large global covariance matrix, contrary to LoGo-TMFG which con-

structs a global network “bottom-up” by summing small local precision matrices. Our

findings supports [Zhao and Yu, 2006] who conclude that `1-based methods generally

become unreliable for larger networks and Heinavaara et al. [2016] who conclude that

graphical lasso shrinks the estimates for the non-zero elements too heavily and often

wrongly pushes true non-zero elements toward zero.

7.5 Rolling-window analysis
We analyze twenty five rolling-window periods, each of which comprises three years of

log returns of financial companies that were active throughout the period. In aggregate,

our rolling-window samples cover the period from 1990 to 2016. Table 7.5 summarizes

the total number of companies in each of the ten economic regions for each three-year

window from 1990 to 2016.
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Table 7.5: Number of financial companies in each economic region for all twenty five three-
year periods between 1990-2016

Year NA SA AF EU ASW ME ASS ASE ASSE AUS Total
1990-92 1163 4 7 225 1 2 5 195 60 18 1680
1991-93 1203 5 8 267 2 3 8 205 67 20 1788
1992-94 1247 6 12 286 2 2 10 210 79 27 1881
1993-95 1311 22 14 310 2 3 9 241 123 40 2075
1994-96 1412 25 19 392 2 6 12 265 166 51 2350
1995-97 1378 31 36 436 10 6 33 301 154 56 2441
1996-98 1347 33 47 518 13 13 45 343 158 61 2578
1997-99 1402 40 44 544 18 15 50 355 158 61 2687
1998-00 1492 46 49 594 19 21 50 361 159 53 2844
1999-01 1688 39 49 581 35 22 53 360 152 53 3032
2000-02 1690 34 43 606 39 22 53 351 146 55 3039
2001-03 1710 36 64 657 38 29 57 400 145 66 3202
2002-04 1676 40 68 664 80 46 68 419 157 71 3289
2003-05 1720 45 74 660 108 47 87 427 178 79 3425
2004-06 1742 48 72 694 141 47 112 446 180 94 3576
2005-07 1769 49 63 680 89 52 119 440 164 95 3520
2006-08 1715 55 71 696 121 55 124 450 158 98 3543
2007-09 1652 64 96 771 169 62 161 457 166 94 3692
2008-10 1636 75 100 800 224 63 195 458 162 98 3811
2009-11 1530 126 143 989 363 71 322 468 242 142 4396
2010-12 1468 121 136 935 374 77 375 464 263 127 4340
2011-13 1404 123 138 885 374 82 427 467 266 123 4289
2012-14 1336 126 143 848 390 83 564 479 262 118 4349
2013-15 1305 132 149 817 385 85 623 475 260 112 4343
2014-16 1251 125 144 803 377 88 661 477 269 115 4310

Measured by total number of companies, the global financial network grew every

year from 1990 to 2011, was the largest in the period from 2009 to 2011 with 4,396

companies, from which point it declined every year with 4,310 companies in 2016.

North America has the greatest number of financial companies, followed by Europe,

East Asia, and South Asia. The number of financial companies in North America

increased gradually from 1990, with a plateau between 1999 and 2010 and a peak

in the period from 2005 to 2007 (1,769 companies); it contracted from 2007 onward,

ending at 1,251 companies in 2016. Similarly, the number of financial companies in

Europe increased gradually from 1990, peaked in the period from 2009 to 2011 (989

companies), after which it declined every year with 803 companies in 2016.

It is worth noting that the number of financial companies in North America and
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Europe were the highest during the financial bubble preceded a crisis. More specifi-

cally, the birth rate of companies in North America reached its plateau just before the

Dotcom bubble, after which it declined and became negative after the Global Finan-

cial Crisis. In Europe, the number of financial companies peaked prior to the eurozone

crisis in 2009, after which it dropped sharply. However, the number of financial compa-

nies in each of the other eight regions which are generally less economically developed

than North America and Europe increased overtime, with that of South Asia growing

the most rapidly.

(a) Sparse network topology of 1,680
financial companies in 1990-1992

(b) Sparse network topology of 3,543
financial companies in 2006-2008

(c) Sparse network topology of 4,310
financial companies in 2014-2016

Figure 7.4: Sparse network of global financial companies in 1990-1992, 2006-2008, and 2014-
2016 rolling windows, constructed from the non-zero entries in the sparse inverse
covariance matrix estimated using the LoGo-TMFG algorithm.
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Figure 7.4(a), Figure 7.4(b), and Figure 7.4(c) illustrate the topology graphs of

financial companies that were active in the 1990-1992, 2006-2008, and 2014-2016

rolling windows, respectively. The links in the graphs correspond to non-zero values in

the sparse inverse covariance matrices for the respective windows, estimated using the

LoGo-TMFG algorithm on weekly returns. Similar to the full-sample results, we see

that the number and size of clusters increased with the number of financial companies.

7.5.1 Transfer entropy

Figures 7.5, 7.6, 7.7, and 7.8 report the conditional transfer entropies for the ten eco-

nomic regions of the world in 1990-1992, 1997-1999, 2006-2008, and 2014-2016 re-

spectively. Both daily and weekly returns incorporate information regarding interde-

pendencies between the economic regions. While conditional transfer entropies in Fig-

ure 7.5(a), Figure 7.6(a), Figure 7.7(a), and Figure 7.8(a) were computed from sparse

inverse covariance matrices estimated using daily log-returns, those in Figure 7.5(b),

Figure 7.6(b), Figure 7.7(b), and Figure 7.8(b) were computed from sparse inverse co-

variance matrices estimated using weekly log-returns.

The thickness of the line corresponds to the magnitude of the link between the

regions and the number of lines corresponds to the number of links between the regions.

For the same rolling windows, using weekly returns as input results in stronger links

than using daily returns because weekly returns are generally of greater magnitudes

than daily returns.

In general, the ten economic regions of the world were more interconnected during

crises, e.g., the Asian crisis in 1997-1999, and the subprime crisis and global financial

crisis in 2006-2008 than during normal periods, e.g., 1990-1992. The effect of global-

ization also leads to more interconnections between economic regions in more recent

periods than in those further in the past as evidenced by the increase in the number

of pairwise links between the ten economic regions, e.g., in 2014-2016 compared to

1990-1992. For example, South Asia connected with many more economic regions in

2006-2008 and 2014-2016 than in 1990-1992 and 1997-1999.

North America and Europe were connected to all other economic regions of the

world in all 25 rolling windows. This is not surprising because North America and Eu-

rope have always been the most dominating regions. The pairwise links between North
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(a) Conditional transfer entropy from daily returns 1990-1992
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(b) Conditional transfer entropy from weekly returns 1990-1992

Figure 7.5: Conditional transfer entropy between the ten economic regions of the world during
the period of 1990-1992, using as input the sparse inverse covariance matrix, which
had been estimated via the LoGo-TMFG algorithm.

America and Europe were the strongest in all rolling windows, suggesting that the two

regions were the most connected economic regions than any other pair of regions, with

their interconnectedness reaching the highest point in 2006-2008 during the subprime

crisis and the Global Financial Crisis.
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(a) Conditional transfer entropy from daily returns 1997-1999
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(b) Conditional transfer entropy from weekly returns 1997-1999

Figure 7.6: Conditional transfer entropy between the ten economic regions of the world during
the period of 1997-1999, using as input the sparse inverse covariance matrix, which
had been estimated via the LoGo-TMFG algorithm.



122Chapter 7. Empirical analysis: Sparse regional network construction using LoGo-TMFG

N America

S America

Africa

Europe W Asia

Mid East

S Asia

E Asia

SE Asia

Aus/NZ

N America

S America

(a) Conditional transfer entropy from daily returns 2006-2008
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(b) Conditional transfer entropy from weekly returns 2006-2008

Figure 7.7: Conditional transfer entropy between the ten economic regions of the world during
the period of 2006-2008, using as input the sparse inverse covariance matrix, which
had been estimated via the LoGo-TMFG algorithm.
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(a) Conditional transfer entropy from daily returns 2014-2016
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(b) Conditional transfer entropy from weekly returns 2014-2016

Figure 7.8: Conditional transfer entropy between the ten economic regions of the world during
the period of 2014-2016, using as input the sparse inverse covariance matrix, which
had been estimated via the LoGo-TMFG algorithm.
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7.5.2 Impact and vulnerability

We measure the impact of a region by computing transfer entropy from the region to the

rest of the world. Similarly, we measure vulnerability of a region by computing transfer

entropy to the region from the rest of the world. We observe that North America and

Europe have been the most dominating regions, having significantly higher impact and

vulnerability than the other economic regions of the world. The impact and vulner-

ability measures are computed using the elements from the sparse inverse covariance

matrix obtained from using the LoGo-TMFG on weekly returns. In Figure 7.9, the im-

pacts and vulnerabilities of North America and Europe are approximately twice as high

as those in the other regions. East Asia and Southeast Asia were the third and fourth

most impactful and vulnerable regions from 1992 to 2007, after which the Middle East,

South Asia and Australia took over.
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Figure 7.9: Impact and vulnerability of each economic region of the global financial network.
Impact of each region is the sum of weekly transfer entropy from that region to
the rest. Vulnerability of each region is the sum of weekly transfer entropy to that
region from the rest.

According to Figure 7.10 North America was a net impacter in 1996, 2008-2011

and 2013-2014, Europe was a net impacter in 1992-1995, East Asia was a net impacter
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Figure 7.10: Net impact of each region of the global network, computed from subtracting a
region’s vulnerability from its impact.

in 1997, 2000 and 2005, and South Asia was a net impacter in 2001-2004, 2006-2007,

and 2013-2016. When North America was the largest net impacter in 2008-2011, Eu-

rope was the largest net receiver, followed by Australia, East Asia and Southeast Asia.

Europe was the biggest net receiver in 1996-2001 and 2005-2016 and a net receiver

throughout the 20-year period from 1996-2016. North America was a net receiver

throughout the ten-year period from 1997-2007. Despite a small positive impact it had

in 1993-1994, Australia was a net receiver throughout the entire sample period from

1990-2016.

7.5.3 Inter-regional and intra-regional links

Figures 7.11 and 7.12 illustrate the pairwise time-varying number of links from and to

North America and Europe, respectively. For South America, Africa, West Asia, the

Middle East, South Asia, East Asia, Southeast Asia and Australia refer to Figures B.1,

B.2, B.3, B.4, B.5, B.6, B.7, and B.8 in Appendix B.1.

The number of links, which is equal to the number of non-zero conditional transfer

entropies, indicates how many financial institutions from each region are connected to

financial institutions from the other economic regions. That is, if conditional transfer

entropy from a North American company, say, NA1 to a European company EU1 is
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different from zero, that counts as one link. Furthermore, if conditional transfer entropy

in the reverse direction—from EU1 to NA1—is different from zero, that counts as one

more link and we have in total two links.

Focusing on the graphs that illustrate the number of intra-regional links or the links

between financial companies within the same region, one finds that the number of links

between North American financial institutions decreased over time, suggesting that

fewer North American financial companies stayed connected over time. In 1990 there

were 1,163 financial companies in North America with roughly 3,600 intra-regional

links (on average 3.10 links for every one company) but in 2016 there were 1,251

financial companies with roughly 2,500 intra-regional links (on average 2.00 links for

every one company). The number of links between European financial institutions

increased steadily from 1990 to 2000, plateaued between 2000 and 2005, then increased

slightly and peaked in 2011 before dropping from 2011 onward. For other regions

which are smaller than North America and Europe, the number of intra-regional links

generally increased overtime.

The number of inter-regional links or links between financial companies from two

different regions increased over time for each pair of regions, except between North

America and Europe which generally increased until 2011 but decreased thereafter.
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Figure 7.11: Number of links from North America to the other economic regions and from the
other economic regions to North America, computed based on conditional trans-
fer entropy for the period from 1990 to 2016. The conditional transfer entropy
was computed using sparse inverse covariance matrix estimated via LoGo-TMFG
algorithm. Over time, the number of links between financial companies in North
America and those in the other regions increased but the number of links between
financial companies within North America decreased, suggesting increasing inter-
regional links but decreasing intra-regional links. North America is connected
with Europe the most, followed by East Asia, Southeast Asia, South Asia, and the
Middle East.
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Figure 7.12: Number of links from Europe to the other economic regions and from the other
economic regions to Europe, computed based on conditional transfer entropy for
the period from 1990 to 2016. The conditional transfer entropy was computed us-
ing sparse inverse covariance matrix estimated via LoGo-TMFG algorithm. Eu-
rope was connected with North America the most, followed by East Asia, South-
east Asia, the Middle East and South Asia. The number of links between Euro-
pean companies and those in the Middle East and South Asia increased signifi-
cantly in 2010. The number of intra-regional links between European companies
increased steadily and peaked in 2011 before declining slightly thereafter.
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7.6 Conclusion
In this chapter we address the curse of dimensionality using a novel sparsity modeling

technique called LoGo-TMFG to measure interdependency between financial compa-

nies in ten economic regions of the world, namely North America, South America,

Africa, Europe, West Asia, the Middle East, South Asia, East Asia, Southeast Asia and

Australia. We analyzed daily and weekly stock returns over two full samples covering

the periods from 1990-1999 and 2000-2016 and 25 rolling-window samples covering

3-year periods from 1990 to 2016. Six interdependency metrics are computed in this

chapter including the number of links, magnitude of links, conditional mutual informa-

tion, conditional transfer entropy, impact, and vulnerability.

With regards to number of companies, the global financial network grew every

year between 1990 and 2011 with the largest number of companies in the window cov-

ering 2009-2011, after which it declined slightly and ended with 4,310 companies in

the window covering 2014-2016. The number of companies in North America grew

steadily from 1,163 companies in 1990-1992 to 1,769 in 2005-2007, but declined grad-

ually thereafter, ending with 1,251 companies in 2014-2016. That is, the number of fi-

nancial companies in North America peaked during a financial bubble which preceded

the Global Financial Crisis. The size of the European financial sector grew steadily

with 225 companies in 1990-1992 to 989 companies in 2009-2011, after which it con-

tracted, ending with 803 companies in 2014-2016. Similar to North America, the size

of the European financial sector was the largest during the financial bubble which pre-

ceded the eurozone crisis. For other regions, the number of companies grew over time,

with the most rapid growth occurring in South Asia, from 5 companies in 1990-1992

to 661 companies in 2014-2016.

The number of intra-regional pairwise links, computed based on conditional trans-

fer entropies, between North American financial institutions decreased over time, sug-

gesting that fewer North American financial companies stayed connected over time.

Similarly, the number of intra-regional pairwise links between European financial in-

stitutions increased steadily from 1990 to 2000, plateaued between 2000 and 2005, then

increased slightly and peaked in 2011 before dropping from 2011 onward. For other re-

gions which are smaller than North America and Europe, the number of intra-regional

pairwise links generally increased overtime. The number of inter-regional pairwise
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links between financial companies from two different regions increased over time for

each pair of regions, except for North America vs. Europe which generally increased

until 2011 but decreased thereafter.

The regionally aggregated conditional mutual informations and conditional trans-

fer entropies in both the full and rolling-window samples suggest that the ten eco-

nomic regions of the world became more interconnected over time—the number and

magnitude of the two interconnectedness metrics generally increased over time. In all

samples the conditional transfer entropy between Europe and North America was the

largest, with significantly larger magnitude than that of the next strongest link. During

the 2006-2008 period which covers the subprime crisis and the Global Financial Crisis,

the conditional transfer entropy between Europe and North America was the highest,

and much higher than those in the other time periods, suggesting that the two regions

were the most interconnected during the crises.

Impact and vulnerability of a region are conditional transfer entropies from that

region to the rest of the world and to that region from the rest of the world, respectively.

Our impact and vulnerability metrics suggest that North America and Europe were

the two most impactful and vulnerable regions over time, with East Asia coming third

having impact and vulnerability below a third of those of North America and Europe.

We also demonstrate that graphical lasso which is the most popular sparsity al-

gorithm underperforms LoGo-TMFG. This is due to the fact that graphical lasso con-

structs a global network “top-down”, i.e., by sparsifying the global covariance matrix

but LoGo-TMFG constructs a global network “bottom-up”, i.e., from sums of small

local networks. When used to analyze our extremely large datasets, graphical lasso

yields unrealistically disconnected graphs with all off-diagonals equal zero. This cor-

responds with Zhao and Yu [2006] and Heinavaara et al. [2016] who conclude that

`1-based methods generally become unreliable for larger networks and graphical lasso

often wrongly forces true non-zero elements toward zero.



Chapter 8

Empirical analysis: Sparse industrial

network construction using

LoGo-TMFG

Summary: This chapter provides an insight that complements what we know about

the global financial network put forward in Chapter 7. While in Chapter 7 we look at the

global financial network as an aggregate of ten economic regions of the world, in this

chapter we look at the global financial network as comprising four industries, namely

banks, diversified financials, insurance, and real estate. Using the same datasets and

metrics as in Chapter 7, e.g., number of links, conditional mutual informations, condi-

tional transfer entropies, impact, and vulnerability, we analyze the interactions between

the four industries on the global scale. In addition, we perform a more granular analysis

by zooming in on each economic region and analyzing the connectivities between the

four industries within it. The empirical results of this chapter help us understand the

importance of each industry in the global network as well as in each of the 10 economic

regions.

8.1 Four industries within the financial sector
The financial sector, whose GICS 1 code is 40 comprises four industries including

banks (4010), diversified financials (4020), insurance (4030), and real estate (4040).

1The Global Industry Classification Standard (GICS), as previously mentioned in Section 5.3 is a
standardized classification system for equities developed jointly by Morgan Stanley Capital International
(MSCI) and Standard and Poor’s.



132Chapter 8. Empirical analysis: Sparse industrial network construction using LoGo-TMFG

Banks (4010) encompass commercial banks (diversified banks, regional banks)

and thrifts & mortgage finance. Diversified financials (4020) encompass diversified

financial services (multisector holdings, specialized finance), consumer finance, and

capital markets (asset management & custody banks, investment banking & broker-

age, diversified capital markets). Insurance (4030) comprises insurance brokers, life

& health insurance, multi-line insurance, property & casualty insurance and reinsur-

ance. Real estate (4040) comprises Real Estate Investment Trusts (diversified REITs,

industrial REITs, mortgage REITs, office REITs, residential REITs, retail REITs, spe-

cialized REITs) and real estate management & development. Table 8.1 provides further

information on industry classification for the financial sector.

There are extensive business ties between the four industries of the financial sec-

tor, although some have emerged more recently than others. The ties between insurance

companies and commercial banks and those between insurance companies and diver-

sified financial companies came about as insurance companies moved away from their

core activities into insuring financial products, issuing credit-default swaps, derivatives

trading, and investment management [Billio et al., 2012]. Large insurance companies

such as AIG were a significant player in the derivatives market prior to and during

the global financial crisis. AIG was bailed out by the US government during the cri-

sis mostly due to concerns about the effects on other financial institutions which have

derivative exposures to AIG [Liu et al., 2015].

As a result of regulatory changes and financial innovations, the banking industry

has been transformed over the past decade. The repeal of Glass-Steagall Act means

commercial banks can now engage in investment banking activities. Financial innova-

tions such as securitization have increased the complexities of financial products, nar-

rowing the distinction between loans, bank deposits, securities, and trading strategies.

The types of business relationships between banks, investment management firms, and

insurance companies have also changed. While banks and insurance companies pro-

vide credit to investment management firms, they also compete against them through

their own proprietary trading desks. Similarly, investment management firms use in-

surers to provide principal protection on their funds and compete with them by offering

insurance products such as catastrophe-linked bonds [Billio et al., 2012].

Billio et al. [2012] analyzed the returns of financial institutions and found that
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Table 8.1: Industry classification

Industry
Group
Code

Industry
Group

Industry
Code

Industry Subindustry
Code

Subindustry

4010 Banks 401010 Commercial Banks 40101010 Diversified Banks
40101015 Regional Banks

401020 Thrifts & Mortgage
Finance

40102010 Thrifts & Mortgage Finance

4020 Diversified
Financials

402010 Diversified Financial
Services

40201010 Consumer Finance (discon-
tinued in 2003)

40201020 Other diversified Financial
Services

40201030 Multi-Sector Holdings
40201040 Specialized Finance

402020 Consumer Finance 40202010 Consumer Finance
402030 Capital Markets 40203010 Asset Management & Cus-

tody Banks
40203010 Investment Banking & Bro-

kerage
40203010 Diversified Capital Markets

4030 Insurance 403010 40301010 Insurance Brokers
40301020 Life & Health Insurance
40301030 Multi-Line Insurance
40301040 Property & Casualty Insur-

ance
40301050 Reinsurance

4040 Real
Estate

404010 Real Estate (discon-
tinued in 2006)

40401010 Real Estate Investment Trusts
(discontinued in 2006)
Real Estate Management &
Development (discontinued in
2006)

404020 Real Estate Invest-
ment Trusts (REITs)

40402010 Diversified REITs

40402020 Industrial REITs
40402030 Mortgage REITs
40402040 Office REITs
40402050 Residential REITs
40402060 Retail REITs
40402070 Specialized REITs

404030 Real Estate Manage-
ment & Development

40403010 Real Estate Management &
Development
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banks and insurers seem to have more significant impact on hedge funds and brokers

than vice versa, and the pattern was more significant prior to the Global Financial Cri-

sis. Banks were found to be more central to systemic risk than hedge funds which

constitute the so-called shadow banking system. The authors attributed the asymmetry

of impacts to the nature of business ties between the financial institutions, i.e., banks

lend capital to hedge funds and insurers but not the other way around. In addition,

banks and insurers may have taken on risks from other activities, which are typically

core businesses of hedge funds, beyond lending and deposit taking. As a result, banks

and insurers constitute the “shadow hedge-fund system” which traditional banking reg-

ulations are unable to handle.

8.2 US vs. European financial institutions
It is common knowledge that business environments and organizational cultures vary

from country to country and from firm to firm. The US capital markets are less reg-

ulated, significantly larger, and much more developed than any other global markets.

Despite the fact that European policy makers have been advocating for an economy

less reliant on bank but more reliant on capital markets, Europe in aggregate is a bank-

based economy. In other words, corporates in general raise capital for their operations

in the form of bank loans. According to a report by the Chicago Mercantile Exchange

(CME), approximately 80 percent of corporate debt in Europe is in the form of bank

lending, with the rest coming from the corporate bond markets; on the other hand, 80

percent of corporate debt in the U.S. are bonds [Brecht, 2015].

8.2.1 Commercial banks

One of the main factors contributing to the difference between US and European com-

mercial banks are accounting standards. As of 2017, US banks adhere to a combination

of FASB and Basel I, II and III regulations while delaying the changeover to Interna-

tional Accounting Standards (IAS) and Basel III.

The FASB permits US banks to understate their derivative positions and keep most

mortgage-linked bonds off their balance sheets [Weigand, 2015], which encourages US

banks to securitize or sell on many of their loans into the much more developed institu-

tional loan market, whereas a far larger proportion of European bank loans remain on
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bank balance sheets [Brecht, 2015]. As securitization allows banks to swiftly transfer

part of their credit risk to the markets (including institutional investors such as hedge

funds, insurance companies and pension funds), US banks transmit more risks to the

other industries in the US financial sector than European banks do [Carbo-Valverde

et al., 2011]. As a result, regulatory requirements on US bank capital can be signifi-

cantly underestimated.

According to Onaran [2013], if US banks followed the International Accounting

Standards regarding disclosure of derivatives and consolidated mortgage securitiza-

tions, the capital ratios for JP Morgan and Bank of America, the two largest US lenders,

would fall below the required level of 4 percent. The capital ratios for Citigroup and

Wells Fargo would fall to just above 4 percent, from 7 and 9.5 percent respectively. The

FASB accounting rules allow US banks to net their derivative positions and as a result,

erase about USD 4 trillion in assets. By packaging most mortgages into securities, US

banks can trim an additional USD 3 trillion in assets. On the contrary, the Interna-

tional Accounting Standards does not allow European banks that sell covered bonds to

finance mortgage originations to move off their balance sheets the mortgages that back

the covered bonds. Similarly, Canadian banks, which use international standards, are

not allowed to move mortgages off their balance sheets, even though about 75 percent

are insured by the government.

The leverage ratio, which limits the amount banks can borrow in order to make

loans, adversely punishes holding relatively safe assets such as mortgages or govern-

ment bonds which are what the majority of European banks holds. On the contrary,

American banks are not as affected by the leverage ratio as they hold relatively few

mortgages on their balance-sheets with the help of government agencies like Fannie

Mae and Freddie Mac who buy mortgages from banks for securitization.

Another important characteristic of the US banking market is the presence of a

large number of localized US commercial banks. The lack of full nationwide branching

for commercial banks is a result of the restriction on inter-state expansion of US banks

which was lifted in late 1990s. Today only a few banks have an extensive network of

branch locations, notably Bank of America, JP Morgan Chase, and Wells Fargo. In

addition, with the US Federal Reserve restriction on how much a bank can lend to a

customer, many US companies have several, or in some cases tens or even hundreds of,
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banking relationships while companies in other developed economies such as Canada

have only one primary commercial bank relationship [Masson, 2007].

8.2.2 Investment banks and brokerage firms

Large European investment banks are generally more indecisive and less efficient rel-

ative to large American banks, which was evident in the American banks’ quicker

restructuring during crisis events. In addition, American investment banks are sig-

nificantly larger than their European counterparts. As size matters in banking, the

American bigger firms gain higher market shares and as a result, half of all global

investment-banking revenues are generated in the US [banks, 2017].

8.3 Full-sample analysis
Table 8.2 illustrates conditional transfer entropies between the four industries namely

banks, diversified financials, insurance, and real estate, for the full sample covering

1990-1999. Transfer entropies represent temporal interdependency between the indus-

tries and the transfer entropy from A to B does not have to equal the transfer entropy

from B to A. In our analysis we estimated the sparse inverse covariance matrix us-

ing the LoGo-TMFG algorithm on weekly returns, then computed conditional transfer

entropies corresponding to each pair of industries using the elements of the inverse co-

variance matrix. Similarly, Table 8.3 illustrates conditional transfer entropies between

the four industries for the full sample covering 2000-2016.

Figures 8.1(a) and 8.1(b) illustrate conditional mutual information between the

four industries of the global financial sector. Mutual informations represent contempo-

raneous interconnectedness and the mutual information from A to B must equal that

from B to A. Banks vs. diversified financials had the highest mutual information fol-

lowed by banks vs. insurance and diversified financials vs. insurance.

Table 8.2: Transfer entropy between the four industries in the period from 1990 to 1999 com-
puted from the sparse inverse covariance matrix estimated using LoGo-TMFG algo-
rithm.

4010 4020 4030 4040

4010 0 1.0569 0.6621 0.3297
4020 0.9637 0 0.3929 0.1203
4030 0.3892 0.3080 0 0.0576
4040 0.2995 0.1314 0.0660 0
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Table 8.3: Transfer entropy between the four industries in the period from 2000 to 2016 com-
puted from the sparse inverse covariance matrix estimated using LoGo-TMFG algo-
rithm.

4010 4020 4030 4040

4010 0 0.6440 0.3101 0.0168
4020 0.3760 0 0.0513 0.0108
4030 0.1607 0.1355 0 0.0005
4040 0.0378 0.0013 0.0005 0

(a) Mutual information between the four
industries in 1990-1999

(b) Mutual information between the four
industries in 2000-2016

Figure 8.1: Mutual information between the four industries between in 1990-1999 and 2000-
2016. We grouped 914 financial companies in 1990-1999 and 1,127 financial com-
panies in 2000-2016 by industry and computed conditional mutual information be-
tween a pair of industries using as input the sparse inverse covariance matrix, which
had been estimated via the LoGo-TMFG algorithm.

8.4 Rolling-window analysis
Similar to Section 7.5, we analyze twenty five rolling-window periods, each of which

comprises three years of log returns of financial companies that were active throughout

the three-year period. In total we cover the 27 years of daily financial stock data from

1990 to 2016. Figure 8.2 provides annual global breakdown indicating the total num-

ber of companies in each of the four industries—commercial banks (4010), diversified

financials (4020), insurance (4030), and real estate (4040) for each three-year window

from 1990 to 2016. Refer to Table B.1 in Section B.2 for the numbers corresponding

to Figure 8.2. Overall, the number of banks increased from 1990 to 2011 but declined
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thereafter, ending in 2016 with 1,593 banks. The number of diversified financial com-

panies increased the most rapidly throughout the entire rolling window samples, and

in 2016 nearly half (2,159 out of 4,310) of the companies belonged in this industry.

The number of insurance companies increased rather slowly over the rolling samples

while the number of real estate companies increased from 1990 to 2000 but declined

thereafter, ending in 2016 with 16 companies.

Figure 8.3 plots the total number of companies in each industry for each economic

region over 25 three-year rolling windows from 1990 to 2016. North America, South

America, and Africa are the regions in which banks outnumbered companies in the

other industries. However, for the rest of the regions, diversified financial companies

outnumbered companies in the other industries.
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Figure 8.2: Annual breakdown indicating the total number of companies in each of the four
industries of the global financial network.

Figure B.9 and Figure B.10 in Section B.2 plot respectively the average annual-

ized log returns and the average annualized standard deviations by industry for all ten

economic regions of the world between 1990 and 2016. In general, the returns of all

financial industries were low but volatilities were high during crises, e.g., the Asian

financial crisis 1997-1999, the Global Financial Crisis 2007-2009, the Eurozone crisis

2009-2012. Except for South America, banks in all regions have lower volatility than

those of the other industries.
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Figure 8.3: Annual breakdown indicating the total number of companies in each of the
four industries—commercial banks (4010), diversified financials (4020), insurance
(4030), and real estate (4040)—for ten economic regions of the global network.

8.4.1 Inter-industry links

Figures 8.4, 8.5, and 8.6 illustrate the pairwise time-varying number of links from and

to each of the four industries in the global network, the US, and Europe, respectively.

The number of links equals the number of non-zero conditional transfer entropies,

which were computed using the sparse inverse covariance matrix obtained from the

LoGo-TMFG algorithm. The time-varying number of links indicates how many finan-
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cial institutions from each industry are connected to financial institutions from the other

industries for the period from 1990 to 2016. It is a way to keep track of inter-industrial

connectivities over time.

For the global network, the number of links between real-estate firms (4040) and

those in the other industries decreased over the entire sample period from 1990 to 2016,

suggesting a gradual decline in connectivity between real-estate and the other indus-

tries. This reflects the fact that the number of real-estate firms globally declined over

time. The number of links between banks (4010) and diversified financials (4020)

companies, those between banks (4010) and insurance (4030), and those between di-

versified financials (4020) and insurance (4030) increased over time.

For the US, the number of inter-industry links between all pairs of industries de-

creased over time. For Europe, the number of links between banks (4010) and diver-

sified financials (4020) and those between diversified financials (4020) and insurance

(4030) increased, while the number of all other inter-industry links decreased over time.
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Figure 8.4: Global network: Number of links from each industry to the others and vice versa.



8.4. Rolling-window analysis 141

1995 2000 2005 2010 2015

0

100

200

300
4010-4020

4020-4010

1995 2000 2005 2010 2015

0

50

100

150

4010-4030

4030-4010

1995 2000 2005 2010 2015

0

100

200

4010-4040

4040-4010

1995 2000 2005 2010 2015

0

50

100

150

4020-4030

4030-4020

1995 2000 2005 2010 2015

0

50

100

150

4020-4040

4040-4020

1995 2000 2005 2010 2015

Year

0

20

40

60

N
u

m
b

e
r 

o
f 

li
n

k
s

Number of links from and to each industry - US

4030-4040

4040-4030

Figure 8.5: US: Number of links from each industry to the others and vice versa.
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Figure 8.6: Europe: Number of links from each industry to the others and vice versa.
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8.4.2 Impact and vulnerability by industry

Similar to Section 7.5.2, we compute impact from an industry to the rest and vulnera-

bility of an industry due to fluctuations in the other industries. Impact of an industry is

the sum of transfer entropies from that industry to the rest of the industries and vulner-

ability is the sum of transfer entropies from the rest of the industries to that industry.

Transfer entropies are computed using the elements from the sparse inverse covariance

matrix which is obtain from using the LoGo-TMFG algorithm on weekly returns.

The top panels in Figure 8.7, Figure 8.8, Figure 8.9, Figure 8.10, Figure 8.11,

Figure 8.12, Figure 8.13, Figure 8.14, Figure 8.15, Figure 8.16, Figure 8.17, and Fig-

ure 8.18 illustrate the time-varying impact due to each of the four industries to the

remaining three industries during the period between 1990 to 2016 within the global

network, North America, the US, South America, Africa, Europe, West Asia, the Mid-

dle East, South Asia, East Asia, Southeast Asia, and Australia respectively. The cor-

responding bottom panels illustrate the time-varying vulnerability of each of the four

industries to fluctuations from the remaining three industries for the aforementioned

regions.

For the global network, commercial banks (4010) had the highest impact in all

years from 1992 to 2010 but diversified financials (4020) became the highest impactful

industry from 2011-2016. Commercial banks (4010) had the highest impact in 2008,

after which their impact declined until 2011 when it picked up again. The two most vul-

nerable industries in the global financial network were commercial banks (4010) and di-

versified financials (4020). While the difference in vulnerabilities of commercial banks

(4010) and diversified financials (4020) were insignificant prior to 2005, it became ev-

ident from 2005 to 2016, with diversified financials (4020) being the most vulnerable

during the subprime crisis in 2005-2006, the Global Financial Crisis in 2008-2009 and

the eurozone crisis in 2010-2013. However, commercial banks (4010) became the most

vulnerable industry in 2014-2016. Insurance (4030) and real estate (4040) were the sec-

ond least and the least impactful and vulnerable industries in the global network. It is

worth noting that the difference between the impacts and vulnerabilities due to each of

the four industries were small from 1992 to 1996 but became significantly larger from

1997 onwards, with the impact and vulnerability of real estate (4040) peaking in 2008

and plunging thereafter to almost zero.
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Figure 8.7: Global Network: Time-varying impact due to each industry and vulnerability of
each industry for the global network.
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Figure 8.8: North America: Time-varying impact due to each industry and vulnerability of
each industry for North America.

North America which comprises three countries including Bermuda, Canada, and

the US was tremendously dominated by the US. As a result, the patterns of impacts

and vulnerabilities of the four industries of North America are similar to those of the
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US. Commercial banks (4010) was the most impactful and the most vulnerable indus-

try, followed by diversified financials (4020), insurance (4030) and real estate (4040) in

North America and in the US over the entire sample period from 1990 to 2016. The im-

pact of commercial banks (4010) gradually increased from the beginning of the sample

period in 1992, peaking in 2008 and declining thereafter. Similar pattern is observed for

vulnerability of commercial banks (4010), except its peak occurred in 2011. The US is

predominantly dominated by commercial banks (4010) whose impact and vulnerability

are significantly larger than those of other industries.
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Figure 8.9: US: Time-varying impact due to each industry and vulnerability of each industry
for the U.S.

For South America, commercial banks (4010) was generally the most impactful

industry from 1992 to 2013, after which diversified financials (4020) became the most

impactful. The most vulnerable industry for South America in 1992-2002, 2004, and

2007-2013 was commercial banks (4010), while in the remaining years of the sample

diversified financials (4020) was the most vulnerable. This makes sense as the majority

of financial companies in South America over the entire sample period were commer-

cial banks. The number of companies in diversified financials (4020) were half of that

in commercial banks (4010), until 2011 where the number of companies in diversified

financials (4020) increased more rapidly to 75 percent of that in commercial banks
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(4010). There were virtually no insurance companies until 2005, after which a handful

of them emerged, while real estate companies were almost non-existent over the entire

sample period. As a consequence, insurance (4030) had close to zero impact and vul-

nerability prior to 2005 but their impact and vulnerability increased steadily from then

on. The impact and vulnerability of real estate (4040) remained close to zero over the

entire sample period.
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Figure 8.10: South America: Time-varying impact due to each industry and vulnerability of
each industry for South America.

From 2008 onward, Africa had more commercial banks than any other financial

institutions. In 2016, the number of commercials is roughly 1.5 times that of diversified

financial companies and twice as many of that in insurance, while there were close to

zero real estate companies. In 2003-2006 and 2012-2016 commercial banks (4010)

was the most impactful industry in Africa but for the majority of the remaining years

diversified financials (4020) was the most impactful. Diversified financials (4020) was

the most vulnerable in most years over the sample period except in 1998-2001 where

insurance was the most vulnerable and in 2013-2016 where commercial banks (4010)

was most vulnerable.
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Figure 8.11: Africa: Time-varying impact due to each industry and vulnerability of each in-
dustry for Africa.
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Figure 8.12: Europe: Time-varying impact due to each industry and vulnerability of each in-
dustry for Europe.

For Europe, commercial banks (4010) was the most impactful industry in 1992-

1996 but in 1997-2016, the most impactful industry was diversified financials (4020).

The impact of diversified financials (4020) peaked in 2009, 2011, and 2013, after which



8.4. Rolling-window analysis 147

time it started to decline. The impact of commercial banks (4010) peaked in 2008 and

declined thereafter. The most vulnerable industry in Europe over the entire sample pe-

riod was diversified financials (4020), followed by commercial banks (4010), insurance

(4030) and real estate (4040). The vulnerability of diversified financials (4020) peaked

in 2008, 2009, 2011, and 2013, after which time it started to decline. The vulnerability

of other industries peaked in 2008-2009 and declined thereafter. Starting from 2007

onward, the gap between vulnerability of diversified financials (4020) and those other

industries became significantly large. That is, the vulnerability of diversified finan-

cials (4020) were at least three times greater than the vulnerabilities of the other three

industries.
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Figure 8.13: West Asia: Time-varying impact due to each industry and vulnerability of each
industry for West Asia.

West Asia is a relatively small region comprising Georgia, Kazakhstan, Russia,

Turkey, and Ukraine. Most financial companies in West Asia are commercial banks

(4010) and diversified financials (4020), which are the two most impactful and vulner-

able industries of the region. While the impact and vulnerability of insurance (4030)

are rather sizable over the sample period, those of real estate (4040) are insignificant.

The biggest industry by number of companies in the Middle East was diversified

financials (4020) in 1992-1997, commercial banks (4010) in 1998-2009 and diversified
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financials (4020) in 2010-2016. The most impactful industry corresponded with the one

comprising the largest number of companies at a given time period. That is, commercial

banks (4010) was the most impactful in 1998-2004 and 2006-2008 while diversified

financials (4020) the most impactful in 1992-1997, 2005, and 2009-2016. Diversified

financials (4020) was the most vulnerable industry in all years except 2003-2004. There

were roughly half as many insurance companies as the number of companies in the

largest industry over the sample period. The impact and vulnerability of insurance

(4030) is thus approximately half of the top industry. The impact and vulnerability of

real estate (4040) began to rise in 2005, peaked in 2010, and declined thereafter to a

value close to zero in 2016.
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Figure 8.14: Middle East: Time-varying impact due to each industry and vulnerability of each
industry for the Middle East.

South Asia had roughly the same number of commercial banks and diversified

financial companies from 1992 to 2010, after which time the number of diversified

financial companies increased exponentially. In 2016, there were five times as many

diversified financial companies as commercial banks. As such, the most impactful and

vulnerable industries were both commercial banks (4010) and diversified financials

(4020) in 1992-2010, after which period diversified financials (4020) was the most im-

pactful and vulnerable industry. The number of insurance companies in South Asia
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were negligible until 2010 when it rose quickly to roughly 75 percent of that of com-

mercial banks throughout the period from 2011 to 2016. As a consequence, the impact

and vulnerability of insurance (4030) increased substantially after 2010. The number

of real estate companies was negligible over the entire sample period, resulting in the

industry’s small impact and vulnerability.
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Figure 8.15: South Asia: Time-varying impact due to each industry and vulnerability of each
industry for South Asia.

East Asia was dominated by banks for ten years between 1990 to 2000, after which

the number of diversified financial companies exceeded that of banks and continued

to increase sharply. The number of banks in East Asia remained unchanged around

roughly 120-150 banks throughout the entire sample period from 1990 to 2016. There

were much fewer number of insurance and real estate companies than banks and diver-

sified financials over the sample period. The most impactful and vulnerable industry

in East Asia was diversified financials (4020) except in 1993-1998 when banks (4010)

was the most impactful. Despite having much fewer number of companies than banks

(4010), insurance (4030) and real estate (4040) have relatively significant impact on the

region and are quite vulnerable.

Prior to 1995, banks (4010) was the industry that had the largest number of com-

panies in Southeast Asia’s financial sector. Between 1995 and 2004, there were roughly
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Figure 8.16: East Asia: Time-varying impact due to each industry and vulnerability of each
industry for East Asia.

the same number of banks and diversified financials, after which the number of diver-

sified financials started to increase significantly. Diversified financials (4020) was the

most impactful industry throughout the entire sample period (1990-2016) and was also

the most vulnerable industry throughout the entire sample period except in 1990-1995

and in 1998.

Before 2005 Australia had more real estate companies than any other types in

the financial sector, after which time the number of companies in diversified financials

(4020) started to increase exponentially and the industry became the largest by number

of companies. The impact of real estate (4040) was not significantly larger than those

of other industries even during the period between 1992-2005 when there were many

more real estate companies than the other types. Diversified financials (4020) was the

most impactful from 2003 onward and the most vulnerable from 1996 onward.
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Figure 8.17: Southeast Asia: Time-varying impact due to each industry and vulnerability of
each industry for Southeast Asia.
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Figure 8.18: Australia: Time-varying impact due to each industry and vulnerability of each
industry for Australia.
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8.5 Conclusion
In this chapter we measure interdependency between four industries of the global fi-

nancial sector: banks, diversified financials, insurance, and real estate. We analyzed

weekly stock returns in two full samples (1990-1999, 2000-2016) and 25 rolling win-

dows, each covering 3 years from 1990 to 2016. Five interdependency metrics are

computed: number of links, conditional mutual information, conditional transfer en-

tropy, impact, and vulnerability.

In both two full samples, banks and diversified financials were the two most in-

fluential industries in the context of temporal interconnectivity. Conditional transfer

entropy was the largest from banks to diversified financials, followed by that from di-

versified financials to banks, banks to insurance, and insurance to banks, with the low-

est transfer entropies between insurance and real estate. In terms of contemporaneous

interdependency, banks and diversified financials had the highest mutual information

followed by banks and insurance.

In rolling-window analysis, we find that banks outnumbered the other types of fi-

nancial institutions between 1990 and 2010, after which diversified financial companies

outnumbered the others. The number of banks increased steadily from 1990 to 2010

and declined thereafter, the number of real estate companies increased slowly from

1990 to 2000 and declined from 2000 onward. Over the entire sample period from

1990 to 2016, the number of diversified financial companies increased rapidly while

the number of insurance companies increased relatively slowly. North America, South

America, and Africa are the regions in which banks were the most numerous but for

the other regions, diversified financial companies were the most numerous.

In terms of impact and vulnerability, banks had the highest impact and vulnerabil-

ity in North America and in the US for all years and in South America for most years.

This is consistent with the findings in Billio et al. [2012] where banks transmit more

shocks than other types of financial institutions. Diversified financials generally had

the highest impact and vulnerability in Europe, the Middle East, South Asia, East Asia,

Southeast Asia, and Australia. In Africa and West Asia, banks and diversified financials

took turns being the highest impactful and vulnerable industry.



Chapter 9

General Conclusions

This research measures time-varying connectivity in the global financial network using

two frameworks. First, we keep all links in the global financial network and mea-

sure connectedness in the full network using improved vector autoregresion (VAR) and

forecast error variance decomposition (FEVD). Second, we sparsify the links in the

global financial network using the novel, information filtering networks-based algo-

rithm called LoGo and measure connectedness in the sparse network using conditional

transfer entropy and mutual information.

In the first empirical analysis, we use our improved VAR to measure time-varying

connectedness within each of the three banking systems—North America, the Euro-

pean Union, and Southeast Asia using banks’ stock returns from 2005 to 2016. Our

improved VAR applies exponential weights onto the data in each rolling window, with

more recent data points receiving higher weights than data points that are further in

the past. In addition, we used ridge regression to estimate the parameters of our VAR

model, in order to mitigate the curse of dimensionality.

The time-varying connectedness obtained from our improved VAR indicates that

there are temporal changes in the systemic risk in the three banking systems, with

peaks during major crisis events and troughs during normal periods. In general, the

level of total connectedness in the North American banking system was the highest,

followed respectively by those of the EU, and ASEAN banking systems. This indicates

that the North American banking system was the most interconnected, in which shocks

were more likely to be transmitted from one institution to another than in the EU and

ASEAN.

We perform Granger causality test to investigate lead-lag relationships among the
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three regions’ connectedness and find that the North American network connectedness

has predictive power on the EU network connectedness and the EU network connect-

edness has predictive power on the ASEAN network connectedness. We also perform

linear and non-linear transfer entropy tests to validate our Granger causality test results.

The non-linear test results are consistent with those from the linear test, demonstrating

robustness. We found that there is a significant net information transfer from North

America to the EU, from North America to ASEAN and from the EU to ASEAN.

To mitigate survival bias, we analyze rolling windows of data featuring between

1,680 to 4,396 companies in the global financial sector from 1990 to 2016. As a re-

sult, we have time-varying, high dimensional datasets that have many more variables

than observations. To deal with the curse of dimensionality, we model sparsity in our

network using the LoGo algorithm, which breaks down a large problem of estimat-

ing a high dimensional covariance matrix into significantly simpler problems involving

estimating much smaller matrices. This quality makes the LoGo algorithm suitable

to analyze high dimensional datasets where large standard errors and overfitting are a

predominant issue.

In modeling sparsity, we divide our study into two parts. First, we categorize

the global financial companies by economic region and compute mutual information,

transfer entropy, and derive measures of impact and vulnerability from transfer entropy

for each economic region.

We find that other than North America and Europe, the number of financial com-

panies in each region increased over time. The number of companies in North America

reached its plateau just before the Dotcom bubble, after which it slowed down and

dropped after the Global Financial Crisis. In Europe, the number of companies peaked

prior to the eurozone crisis in 2009, after which it dropped sharply.

The economic regions were more interconnected during crises, e.g., the Asian cri-

sis in 1997-1999, and the subprime crisis and Global Financial Crisis in 2006-2008

than during normal periods, e.g., 1990-1992. Over time, more economic regions be-

came interconnected as evidenced by the increase in the number of links between the

regions. North America and Europe were connected to all other economic regions in

all rolling windows and the link between the two regions was much stronger than those

between all other regions.
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Based on our impact and vulnerability measures, North America and Europe were

the most dominating regions, having significantly higher impact and vulnerability than

the others. East Asia and Southeast Asia were the third and fourth most impactful and

vulnerable regions until 2007, after which the Middle East, South Asia and Australia

began to emerge.

Second, we categorize the global financial companies by industry and compute the

same metrics, i.e., number of links, mutual information, transfer entropy, impact and

vulnerability for each industry. We also perform a more granular analysis by dividing

each economic region into industries and compute impact and vulnerability for each

industry within the economic region. We found that banks had the highest impact

and vulnerability in North America in all years and in South America in most years

throughout the entire sample period from 1990 to 2016. Diversified financials generally

had the highest impact and vulnerability in Europe, the Middle East, South Asia, East

Asia, Southeast Asia, and Australia. In Africa and West Asia, banks and diversified

financials took turns being the most impactful and vulnerable industry.

Lastly, we show that the network connectedness measure computed from transfer

entropy of the sparse network and that computed from the FEVD of the full network

are similar. While both measures could correctly identify past crisis periods, the mea-

sure computed from transfer entropy demonstrates much clearer peaks during major

crisis events, e.g., the Global Financial Crisis, the European sovereign debt crisis, the

US credit downgrade, and the Libor scandal. This suggests that the sparse network

increases the signal-to-noise ratio in the data and improves the interpretability of the

connectedness measure, allowing us to make better inference than the full network.

The connectedness metrics obtained throughout this research capture both direct

and indirect links between the financial institutions. This differs from the findings in ex-

isting work that uses bilateral exposure information e.g. interbank lending data to infer

network connectedness because such data reflect only direct connectedness between

the banks. Indirect connectedness arisen from factors such as similarity in business

models, trading, investment and risk management strategies, and common exposures to

economic fluctuations are not captured in the literature on bilateral exposures.

The main contributions of this thesis are in both the methodologies and actual

empirical analyses. On the methodology part, we propose technical improvements to
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the VAR-FEVD which lead to superior results compared to the standard VAR. We also

add to the graphical lasso literature by providing an empirical proof that the algorithm

yields unreliable results for our large datasets and illustrate that the novel LoGo-TMFG

algorithm leads to better outcome in this case. In addition, we propose “impact” and

“vulnerability” which are computed from conditional transfer entropies as additional

connectednesss metrics. On the empirical analysis part, we apply VAR-FEVD on

unique datasets and conduct causality tests on the resulting total connectedness metrics,

which provides valuable insight on the lead-lag relationship between connectedness in

different economic regions. Moreover, we analyze the entire global financial network

using LoGo-TMFG, which is the first both in terms of the dataset and application of

the algorithm, resulting in new, useful findings.

Our research findings are beneficial especially for policy makers, e.g., the central

banks, who can use our connectedness metrics to enhance systemic risk monitoring.

The insight from our research findings and methodologies used can also benefit those

who work in the macro research or macro trading desks at a bank, asset manager, or

trading firm. In addition, the methodologies used in our research can be applied to other

sequential datasets beyond financial data.

9.1 Critiques
While we believe our research contributes significantly to the systemic risk literature, it

is not without a flaw. A drawback of mutual information and transfer entropy which are

key metrics in this research is that they are unit-free which requires using the metrics

in a relative, rather than absolute, fashion. That is, transfer entropy from A to B is of

magnitude 4 means nothing until we compare it to, say, transfer entropy from C to B. If

transfer entropy from A to B is greater than transfer entropy from C to B, it means more

information flows from A to B more than from C to B. In contrast, the connectedness

measure computed from the forecast error variance decomposition (FEVD) allows for

a more convenient interpretation. That is, FEV DA−>B, which has a value between 0

and 1, can be read as a proportion in the uncertainty of B that is contributed by A.

In addition, the results of both the VAR-FEVD and LoGo-TMFG algorithms are

more robust at aggregate levels—system-wide, region-wide and industry-wide—rather

than at the pairwise level. Other areas of improvement are listed in the Section 9.2
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below.

9.2 Futher research
The material presented in this thesis can be extended in a number of directions. Firstly,

the applications of the VAR-FEVD and LoGo-TMFG algorithms are not limited to the

financial sector. On the contrary, the algorithms could straightforwardly be extended to

measure interconnectedness between various other sectors, such as manufacturing, en-

ergy, transportation, pharmaceuticals, and healthcare, to name a few. It is also possible

to use the VAR-FEVD methodology on other sequential datasets that demonstrate au-

toregressive properties; while the author believes that the LoGo-TMFG algorithm has

wider applications with respect to types of data.

Secondly, we use ridge regression on the VAR-FEVD in order to deal with high

dimensional datasets; however, other estimation techniques such as the lasso could

also be applied onto the VAR-FEVD methodology. The well-known lasso regression

method is likely to enable the VAR-FEVD to better handle wide datasets because the

lasso performs both variable selection and regularization while ridge regression does

only regularization. In addition, the lasso will put insignificant VAR coefficients to

zero, allowing for better estimation of the pairwise connectedness measure which will

enhance the interpretability of the pairwise results.

Lastly, the analyses in this thesis are not of predictive nature but both the VAR-

FEVD and LoGo-TMFG algorithms are capable of performing predictive analysis. The

ability to forecast future levels of connectivities will be useful for many parties in-

cluding the financial institutions and regulators in preventing disastrous financial crises

from taking place.





Appendix A

Partial correlation vs. forecast error

variance decomposition

A.1 Partial correlation
If X and Y are correlated with a third variable Z, X and Y may be correlated simply

because they are correlated with Z. Partial correlation allows measuring the correlation

between X and Y that is not due to their both being correlated with Z.

If X , Y and Z are jointly Gaussian variables. uX and uY are the residuals from the

following linear regressions

X = a1Z+uX (A.1)

Y = a2Z+uY (A.2)

Partial correlation of X and Y given Z is given by

ρX ,Y ⋅Z =
u′X uY

√
(u′X uX)(u′Y uY )

(A.3)

In a VAR(1) model in which each of the variables X1, X2 and X3 is a function of

its own first lag and the first lags of the other variables, we have

X1,t = a11X1,t−1+a12X2,t−1+a13X3,t−1+u1,t (A.4)

X2,t = a21X1,t−1+a22X2,t−1+a23X3,t−1+u2,t (A.5)

X3,t = a31X1,t−1+a32X2,t−1+a33X3,t−1+u3,t (A.6)
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Partial correlation of X1 and X2 given Z = {X1,t−1,X2,t−1,X3,t−1} is

ρX1,X2⋅Z =
u′1u2

√
(u′1u1)(u′2u2)

(A.7)

A.2 h-step ahead FEVD

The derivation of the h-step ahead FEVD start with the actual value yt+h and the h-step

ahead forecast value for yt given the information at time t

yt+h = µ +Θ0wt+h+Θ1wt+h−1+Θ2wt+h−2+ . . .+Θhwt + . . . (A.8)

yt(h) = µ +Θhwt +Θh+1wt−1+ . . . , (A.9)

and the h-step ahead forecast error

yt+h−yt(h) =Θ0wt+h+Θ1wt+h−1+ . . .+Θh−1wt+1. (A.10)

In matrix form
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The h-step ahead forecast error for y j is

y j,t+h−y j,t(h) = θ j1,0w1,t+h+θ j2,0w2,t+h+ . . .+θ j1,h−1w1,t+1+ . . .+θ jK,h−1wK,t+1

(A.12)

=
h−1
∑
i=0

(θ j1,iw1,t+h−i+ . . .+θ jK,iwK,t+h−i)

=
K
∑
k=1

θ jk,0wk,t+h+ . . .+θ jk,h−1wk,t+1).

The MSE of y j,t(h) is

E((y j,t+h−y j,t(h))2) =
K
∑
k=1

(θ
2
jk,0+ . . .+θ

2
jk,h−1) =

h−1
∑
i=0

K
∑
k=1

θ jk,i. (A.13)

The contribution to the forecast error variance (or the MSE of the h-step ahead forecast)

of variable y j that is due to the innovation wk (a one-standard deviation shock to the

variable k) is θ 2
jk,0+θ 2

jk,1+ . . .+θ 2
jk,i =∑

h−1
i=0 (e′jθiek)

2.

FEVD jk,h =
∑

h−1
i=0 (e′jθiek)

2

∑
h−1
i=0 ∑

K
k=1 θ 2

jk,i

=
∑

h−1
i=0 (e′jθiek)

2

MSE(y j,t(h))
. (A.14)





Appendix B

Rolling-window analysis

B.1 Sparse regional networks: Interregional links
Figures B.1, B.2, B.3, B.4, B.5, B.6, B.7, and B.8 plot respectively the number of

links from South America, Africa, West Asia, the Middle East, South Asia, East Asia,

Southeast Asia, and Australia to the other economic regions and the number of links in

the opposite direction for 25 rolling windows between 1990 and 2016.

The numbers of links are conditional transfer entropies computed using sparse

inverse covariance matrix which is estimated using LoGo-TMFG algorithm. In general,

the number of intra-regional and inter-regional links in all abovementioned regions

increased over time from 1990 to 2016.
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Figure B.1: South America: Number of links from South America to the other economic re-
gions and vice versa for 25 rolling windows between 1990 and 2016. In general,
the number of links between financial companies within South America and be-
tween South American companies and those in the other regions increased over
time, with the largest increase in 2010. South America is connected with North
America the most, followed by Europe, and East Asia.
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Figure B.2: Africa: Number of links from Africa to the other economic regions and vice versa
for 25 rolling windows between 1990 and 2016. The number of links between
financial companies within Africa and between African companies and those in
the other regions generally increased over time, with the largest increase in 2011.
Africa was connected with North America the most, followed by Europe, and
South Asia.
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Figure B.3: West Asia: Number of links from West Asia to the other economic regions and
and vice versa for 25 rolling windows between 1990 and 2016. West Asia was
connected with Europe the most, followed by North America. The number of links
between West Asia and the others increased over time, with the most significant
increase in 2010.
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Figure B.4: The Middle East: Number of links from the Middle East to the other economic
regions and and vice versa for 25 rolling windows between 1990 and 2016. The
Middle East was connected with North America the most, followed by Europe and
South Asia. The number of links between the Middle East and the other regions
increased over time, with the most rapid increase in 2010 but a slight drop in 2014.
In general, the number of intra-regional links within companies in the Middle East
increased over time, with the most significant increase between 2007 and 2010.
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Figure B.5: South Asia: Number of links from South Asia to the other economic regions and
vice versa for 25 rolling windows between 1990 and 2016. South Asia was con-
nected with North America the most, followed by Europe, the Middle East and
East Asia. The number of links between South Asia and the other regions in-
creased over time, with the most rapid increase in 2010 but a slight drop in 2014.
The number of intra-regional links within companies in the South Asia increased
over time, with a sharpe rise between 2005 and 2015.
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Figure B.6: East Asia: Number of links from East Asia to the other economic regions and vice
versa for 25 rolling windows between 1990 and 2016. East Asia was connected
with North America the most, followed by Europe and Southeast Asia. The num-
ber of links from and to East Asian financial companies (both inter-regional and
intra-regional) increased over time.
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Figure B.7: Southeast Asia: Number of links from Southeast Asia to the other economic re-
gions and vice versa for 25 rolling windows between 1990 and 2016. Southeast
Asia was connected with North America the most, followed by Europe and East
Asia. The number of links from and to Southeast Asia increased over time, with the
most rapid increase occuring around 2004 and 2010 for Southeast Asia vs. North
America and Southeast Asia vs. Europe. For Southeast Asia vs. other regions, the
number of links increased the most rapidly in 2010.
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Figure B.8: Australia: Number of links from Australia to the other economic regions and vice
versa for 25 rolling windows between 1990 and 2016. Australia was connected
with North America the most, followed by Europe and East Asia. The number
of links between the Australia and the other regions increased over time, with the
most rapid increase occuring around 2005 and 2010.
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B.2 Sparse industrial networks: Additional data sum-

mary

Figure B.9: Time-varying average annualized log returns by industry in all ten economic re-
gions of the world between 1990 and 2016.
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Figure B.10: Time-varying average annualized average standard deviations by industry in all
ten economic regions of the world between 1990 and 2016.
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Table B.1: Number of financial companies in each industry globally for all 25 three-year peri-
ods between 1990-2016, where 4010 is banks, 4020 is diversified financials, 4030
is insurance, and 4040 is real estate

4010 4020 4030 4040 Total

1990-92 861 364 271 184 1680
1991-93 899 408 283 198 1788
1992-94 913 446 309 213 1881
1993-95 959 525 338 253 2075
1994-96 1080 588 349 333 2350
1995-97 1125 634 335 347 2441
1996-98 1162 695 356 365 2578
1997-99 1239 731 349 368 2687
1998-00 1317 798 344 385 2844
1999-01 1511 815 337 369 3032
2000-02 1503 846 340 350 3039
2001-03 1537 965 354 346 3202
2002-04 1554 1030 365 340 3289
2003-05 1579 1119 389 338 3425
2004-06 1643 1196 396 341 3576
2005-07 1632 1213 377 298 3520
2006-08 1624 1256 373 290 3543
2007-09 1664 1366 386 276 3692
2008-10 1709 1448 391 263 3811
2009-11 1784 1828 503 281 4396
2010-12 1746 1834 532 228 4340
2011-13 1701 1884 537 167 4289
2012-14 1661 2017 545 126 4349
2013-15 1632 2090 544 77 4343
2014-16 1593 2159 542 16 4310
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