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Abstract: Purpose: 
To assess a novel method of 3D co-registration of prostate MRI exams 
performed before and after prostate cancer focal therapy. 
 
Material and method:  
We developed a software platform for automatic 3D deformable co-
registration of prostate MRI at different time points and applied this 
method to ten patients who underwent focal ablative therapy.  MRI exams 
were performed preoperatively, as well as one week and six months post-
treatment. Rigid registration served as reference for assessing co-
registration accuracy and precision. 
 
Results:  
Segmentation of preoperative and postoperative prostate revealed a 
significant post-operative volume decrease of the gland that averaged 
6.49 cc (p=0.017). Applying deformable transformation based upon Mutual 
Information (MI) from 120 pairs of MRI slices, we refined by 2.9 mm (max 
6.25mm) the alignment of the ablation zone (AZ), segmented from contrast-
enhanced images on the one-week post-operative exam, to the 6-month post-
operative T2-weighted images. This represented a 500% improvement over 
the rigid approach (p=0.001), corrected by volume. The dissimilarity by 
Dice index of the mapped AZ using deformable transformation vs. rigid 
control was significantly (p=0.04) higher at the ablation site compared 
to the whole gland. 
 
Conclusion:  
Our findings illustrate our method's ability to correct for deformation 
at the ablation site.  The preliminary analysis suggests that deformable 
transformation computed from MI of pre-operative and follow-up MRI is 
accurate in co-registration of MRI exams performed before and after focal 
therapy. The ability to localize the previously ablated tissue in 3D 
space may improve targeting for image-guided follow-up biopsy within 
focal therapy protocols. 
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Title 
3D registration of mpMRI 

for assessment of prostate cancer focal therapy 
 
Short Title 

Assessment of prostate cancer focal therapy  
 
 
Introduction: 

Contemporary methods of multi-parametric MRI (mpMRI) of the prostate have greatly 

improved the ability of radiologists and urologists to detect prostate cancer 1. mpMRI 

allows physicians to diagnose clinically significant cancer in its early stage, to plan 

prostatectomy and radiation therapy, and to detect local recurrence.  

Combined with the trend of earlier detection, noninvasive prostate cancer therapies 

are gaining interest. Focal therapies (FT) aim to combine oncologic benefit with 

preserved continence and erectile function. The use of this tissue preservation 

approach is evolving and FT is being applied to more aggressive disease than when 

initially proposed 2,3. Clinical FT trials depend on mpMRI for tumor localization, 

treatment planning, and post-treatment follow-up 4–7.  

 

There is no consensus regarding optimal assessment of oncologic success of FT 3,8,9. 

Current criteria of successful FT involve negative histology at the treatment site. 

Different methods have been proposed to detect cancer recurrence after FT. While 

invasive transrectal prostate biopsy or transperineal mapping biopsy are often 

performed, mpMRI-targeted biopsy has shown promising results 10,11. Such 

assessment by MRI requires an ability to delineate on imaging the ablation zone (AZ) 

that is characterized histologically by homogeneous coagulation necrosis 12,13. In 

addition, it has been suggested 14,15, that mpMRI underestimates the total tumor 

*Unmarked Manuscript (excl. author details)
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volume, requiring to include some surrounding margin within the AZ for a complete 

focal ablation. After treatment, dynamic contrast-enhanced (DCE) MRI delineates AZ 

as a devascularized,  non-enhancing area 4. Within several weeks after treatment, 

the AZ shrinks, often leading to a changed configuration of the gland 9,16.  

These novel therapeutic developments require a reliable and accurate software 

system for assessment of the changes in the prostate gland, including tissue 

necrosis, due to ablation. To be effective, such a system must depict how the viable 

tissue is reorganized around the AZ. Thereby requiring a comparison of pre-

treatment and post treatment images of the prostate. Development of image 

registration methods for this application is challenging. First, one must register 

longitudinal MRI, including different sequences, across different time points. Second, 

inherent in focal therapy, the tissue changes are inhomogeneous. Third, the 

variations in shape between the preoperative and postoperative exams are highly 

dependent on treatment delivery, location of the tumor, energy choice, as well as 

surrounding tissues. These factors makes it difficult to use a normative atlas to 

facilitate registration.   

 

Fei et al. 17 described a mutual Information based rigid-transform method to align a 

preoperative prostate T2 weighted (T2W) imaging sequence to an intra operative 

sequence. Wu et al. 18 combined mutual Information measure with low-order 

polynomial transformation to register spectroscopy with the prostate deformed by 

inflated intra-rectal balloon. Using a finite elements method (FEM), Marami et al 19 

validated a registration approach between MRI acquired with an endorectal coil and 

the intraoperative MRI. Toth et al. 20 also used FEM to model the changes in prostate 

shape after laser ablation. 
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It has been have previously demonstrated that the deformation of the gland after 

surgery is well captured by the affine transformation T that incorporates nonisotropic 

3D sheer and stretch factors 21. This technique was also found to accurately define a 

3D target for focal therapy based on MRI findings 14. We have now implemented an 

image-based framework for accurate estimation of the affine transform from the pre-

FT to the post-FT MRI. This study evaluates the method using longitudinal mpMRI 

acquired before and after modern interstitial laser22 and photodynamic FT23. This 

study aims to assess this novel method of 3D co-registration of prostate MRI exams 

performed before and after prostate cancer focal therapy, in order to facilitate focal 

therapy follow up. 

 

Material and Methods 

Patients  

Ten male patients, aged 65 +/- 6.4 years, diagnosed with localized prostate cancer at 

biopsy (median PSA 5.1ng/ml, median Gleason Score 6) underwent FT. Five patients 

were treated by interstitial laser procedure within the MRI bore 4 and five by 

photodynamic therapy, included in an earlier publication23. Local institutional review 

board approved this study. 

Image acquisition 

All patients underwent a pre-operative mpMRI, and two follow-up post-operative 

mpMRI (one week and 6 months after treatment, fig.1) using 3T Magnetom Trio 

system equipped with a pelvic phase array (Siemens Healthcare, Erlangen, 

Germany). Each exam used identical MpMRI protocol that included a T2W sequence, 

a diffusion-weighted sequence, and a DCE-MRI exam specified in detail below. 
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The anatomical T2W images through the pelvis were acquired using turbo spin-echo 

sequence with parameters: TR = 4950 ms, TE = 122 ms, axial orientation, 256 x 256 

acquisition matrix, no interslice gap, 180 x 180 mm field of view, 3 mm slice 

thickness, 3 signal averages.  

Diffusion weighted sequence was based on axial fat-suppressed single shot 

echoplanar imaging with TR=4100 ms, TE=86 ms, diffusion gradient b-values of 50 

and 1000 s/mm2; slice thickness 3 mm; 100 x 100 matrix; 200 x 200 mm field of 

view,10 signal averages. ADC maps were reconstructed inline.  

DCE-MRI exam consisted of continuous acquisition of T1-weighted 3 mm thick 

contiguous images (240 x 240 mm field of view; matrix 128 x 128) every 15 sec after 

IV administration of 0.1 mmol/kg of gadopentetate dimeglumine (Magnevist; Bayer 

HealthCare Pharmaceuticals, Montville, NJ). The contrast agent was administered as 

an intravenous bolus via power injector (Spectris; Medrad, Warrendale, Pa), followed 

by a 20-mL saline flush, both administered at a 3 mL/sec injection rate. 

Image analysis 

Our image processing workflow (figure 2) includes estimating 3D rigid body 

coregistration of mpMRI modalities within each exam; and image coregistration 

across-exams using non-rigid (affine) transform. 

 

Coregistration framework  

The user interaction consists of a reduction of the field of view to the prostate gland 

and immediate surrounding tissues (step 2 figure 2) that can be done in few seconds. 
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A senior urological surgeon performed this step. 

 There are several novel features of the system: 1) the parameters of the affine 

transform T are estimated only from prostate tissue, thus ignoring confounding signal 

from adjacent regions like the muscle, rectum or the bladder; 2) the iterative voxel-

similarity algorithm is supplemented by the multi-dimensional gridding of initial 

parameters. The goal is to make the estimate of T insensitive of the initial value and 

to avoid being trapped in a suboptimal local optimum; and 3) the software is 

designed to be used on multi-core platforms. 

Image coregistration consists of two tasks: determining the transformation T that 

relates points in the source image V1 with the corresponding points in the target 

image V2 and applying the transformation T to the source image, resulting in the 

coregistered volume V2’ = T(V1). Signal interpolation is another necessary step. Our 

coregistration process is controlled using the dialog box shown in figure 3. The 

optimization is done in two stages:  

1) “Autofocus” stage: exhaustive search over multiple initial approximations drawn 

from a discrete grid of parameters that define T (6 parameters for rigid body, 12 

parameters for affine transform). The most promising candidates (those having 

largest similarity measure) are passed to the second, fine-tune stage. The number of 

selected candidates is controlled by the "power" factor P. Large values of P may 

improve the accuracy of coregistration at the cost of longer processing time. 

2) “Fine-tune” stage: iterative search for a local maximum of the similarity measure 

(initialized at P settings from autofocus stage). We refine P most promising affine 

transforms using the parallelized implementation of the Nelder–Mead algorithm, a 

method for unconstrained optimization24 The available measures include signal 
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intensity differences25, signal correlation 26, uniformity of ratio image27,28, and mutual 

information (MI) and normalized MI 29–32. Mutual Information33 (MI) was selected as 

the similarity metric due to its demonstrated robustness in multimodality registration, 

especially when applied within-subject. MI has been used successfully in registration 

of prostate MRI17,18. While signal characteristics of untreated and treated tissue may 

be different, untreated portions of the gland constitute a vast majority of tissue 

volume3. 

Our framework allows the user to restrict the similarity measure to a predefined 3D 

region called "target". In this study the target region was the prostate and 

immediately (approximately 5 mm margin) surrounding tissue 34. The idea is to focus 

the similarity on the organ of interest, while ignoring possible misalignment of 

background structures as well as confounding image (curves of bladder neck or 

anterior wall of rectum). 

 

Estimating transformations within-exam and across exams  

The parameters for coregistering different MRI sequences within each exam were: 

target ROI=yes, subsample=3, autofocus grid = 10mm, rotation = 10°, transform = 

rigid, measure = mutual information, interpolation = sinc.  Coregistration of MRI 

sequences across exams used the similar parameters except transform = affine, 

scale deformation=2 and shear=5. Here a rigid method was explored as a control for 

affine, to assess the significance of deformation (stretching and sheering) induced by 

therapy and to describe local changes that take place following FT.  
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For each patient and each exam, the resulting transformations were saved for later 

recall, to be applied to landmarks or subregion masks (ROI) placed within the source 

volume. This allowed visualization of AZ from the 1 week post-FT MRI superimposed 

over the prostate 6-month post-FT.  

The coregistration software was written in C++ using Microsoft Foundation Class and 

Intel Threading Building Blocks libraries. The program exploits parallel processing.  

 

Error analysis and segmentation of prostate gland and ablation zone 

 

To analyze registration error, two operators   with experience in prostate anatomy   

manually segmented in consensus the different 3D masks (or ROIs): preoperative 

prostate, 6 months post operative prostate, and AZ. ROIs excluded the seminal 

vesicles. The first two ROIs were traced on T2W images.  Segmentation of the AZ, 

which was visualized in all 10 cases, was derived from the latest DCE time-point from 

the 1-week post-FT MRI (Fig. 4B). Ground truth segmentation was done in 

consensus by a radiologist  who completed an abdominal radiology fellowship with 

over 5 years’ experience in interpretation of prostate mp MRI and a senior urological 

surgeon with 3 years in practice. The geometrical transformations T estimated in the 

process of coregistration were applied to these 3D ROIs. 

 

The ROIs served to assess the accuracy of rigid and non-rigid transformation models 

(Fig. 5). It should be noted here that a future clinical/surgical use of the system does 

not require fine manual segmentation of the whole prostate.  
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We have measured the mismatch between transformed pre-op region and the region 

manually segmented at follow-up, the latter considered as the ground truth. Three 

types of error measures were evaluated:  

1) volume changes -- while important, this measure is the least informative, as unlike 

the other two measures it doesn't capture subtle shape changes.  

2) the Hausdorff distance (HD), defined here as the maximum distance (in 

millimeters) between the structure boundaries 14. The HD was obtained for each slice 

composing an ROI. For each multislice ROI, the average of the maximum HD for 

each slice was calculated resulting in an average maximum HD. The purpose is to 

have 3D information for each ROI. 

3) Dice index 21 was defined as the volume ratio Di=             . The Dice 

index measures the normalized similarity between two different 3D masks ROIs 

based on their overlap. 

 

The co-registration process aims to transfer the location of the effectively ablated 

zone AZ based on early post contrast MRI to its residual location within the late 

control MRI. We further analyzed how the rigid Tr(V1) and non-rigid Ta(V1) 

transforms computed from mutual information measure for the entire gland (M=mask 

of whole gland) is able to align the AZ on V2 (late post-FT), as illustrated in figure 2. 

This entails direct comparison of the derived target for post-FT follow-up between the 

compensated AZ2’=Ta(Tdce(AZ)) and non-compensated deformations 

AZ2’’=Tr(Tdce(AZ)). We compared Di AZ2’/ AZ2’’ to Di  M2’=Ta(M)/ M2’’=Tr(M) (figure 6, 

C). This compares the performances of the two algorithms at the location of the AZ to 

those for whole gland mapping. Analogously, we compared the HD for the same 

ROIs, resulting of AZ2’- AZ2’’ and M2’- M2’’ (figure 7, C), normalized by volume. 
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These measures were compared using the paired t-test or Wilcoxon signed rank test 

(for data that didn't satisfy Shapiro-Wilk test of normality).  A p value less than 0.05 

was used to establish significance. All tests were done using R statistical software, 

(version 3.0.2, Sep 2013, R foundation for Statistical Computing, Vienna, Austria). 

 

  

Results 

Volumetric analysis 

There was a significant ~14% reduction in prostate volume (table 1, figure 6) 

between an average of 46.5 ml pre-FT to 40.0 ml post-FT (p=0.017, paired T-test, 

mean 6.50, 95% confidence interval (CI) [1.46 - 11.54]). The volume of the AZ obtained 

by direct segmentation was significantly correlated (R=0.738, p= 0.015) with the 

difference in prostate volume between the pre-FT and post-FT examinations. 

However, the volume of AZ was on the average 13.8 ml, approximately double the 

difference D in pre-FT and post-FT volumes (table 1) and statistically different from D 

(paired t-test, T=-2.38, p=0.04; mean diff 7.33,   95% CI [0.38 - 14.27]). 

The blue bars in figure 6 illustrates the significant difference in volume between the 

rigid and deformable transforms of the whole prostate over the late post operative 

prostate at 6 months MRI, i.e.. M2’ vs M2’’. 

Analysis of image coregistration 

The 10 cases represented MRI volumes composed in total of 120 pair of slices for 

pre operative and late follow up T2 WI. In all cases, the mutual information algorithm 
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converged successfully and we were able to assess both non-rigid and rigid 

transformation for coregistration of the pre-FT and post-FT images. The software 

architecture successfully exploited multi-core processor parallelism  and shown by 

high loading on a 12-core CPU system (figure 7). A representative example is shown 

in figure 4.  

 

Table 2 compares of volume between the rigid M2’’, which serves as a control, and 

deformable M2’ transforms of the whole gland. The transforms of the pre-FT prostate 

to the post-FT prostate yielded a significantly lower volume (p=0.041; mean 

difference 2.3, 95% IC[0.1132 ; 4.4868])) using non-rigid transformation 

compared to the rigid approach (table 2). The difference of less than 1% of prostate 

volume after rigid transformation might be imputable to the interpolation errors, as 

rigid transformation conserve volume through. 

 

Table 3 lists the average values of Dice index and HD for the alignment of the whole 

gland described in Figure 6, AB. While the alignment is better (smaller HD, larger 

overlap) for affine transform, the difference didn’t reach significance (p=0.10 and 

0.20). These comparisons suggest a trend for higher accuracy using the non-rigid 

transformation.  

 

Analysis of AZ 

 

When whole gland was taken in account, the non-rigid transformation Ta provided 

better description of AZ than rigid transformation Tr (see table 4), reaching 1.99 mm 
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HD (or 0.72mm/ml, p=0.0019) and Di= 0.87 (p=0.046) versus HD=3.83 mm ( or 

0.15mm mm/ml), and Di=0.93. 

Figure 8 illustrates the changes between pre and post treatment MRI at the ablated 

location, with a 3D reconstruction of the prostate. 

 

 

Discussion 

 

The role of image registration in prostate cancer pathway 

Image coregistration plays an increasingly important role in prostate cancer. It 

permits us to characterize MR signal and image texture of cancer tissue through 

histological validation 21,35,36. There is a great interest in developing ultrasound biopsy 

fused to MRI 37–40. Image registration will also play an important role in both planning 

and follow-up of FT. This entails accurate mapping of lesion mask derived from pre-

treatment mpMRI to the space of treatment and post treatment images 14.  

 

The ability of contrast enhanced imaging, either ultrasound or MRI to visualize 

necrotic tissue permits initial assessment of FT 41. Several studies 3,8,9 converge by 

defining oncologic success of FT as negative biopsy at the treated area. (PSA is not 

helpful for monitoring FT outcome 42). Histologic post FT assessment depends on 

either random transrectal or transperineal approach 16,43. Transrectal option is prone 

to substantial sampling error and a high rate of false negative results. Transperineal 

mapping option requires repeat general anesthesia 44. mpMRI offers the promise to 

guide post-FT biopsy and overcome these limitations  42,43,45,46. However there are 

obvious concerns related to tissue displacement 47.  
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A critical step is to accurately locate AZ at follow-up biopsy to (a) evaluate the energy 

deposition within AZ, and/or (b) sample the surrounding tissue (tumor margin). The 

objective is to detect and manage treatment failure or cancer recurrence and possibly 

offer re-treatment. This task requires detecting low-volume cancer 42 and it requires 

exquisite precision. Ven et al. 48 estimated that, given a 0.3 ml target, a precision of 

1.9 mm is necessary to correctly grade 95% of aggressive tumor component in 

peripheral zone. The report of the START consortium concludes that defining the 

target for biopsy and being able to reliably sample such area remain fundamental 

problems [3]. The challenge is intensified if a lesion is poorly demarcated on the post-

FT images or it there are significant spatial deformations between pre- and post-FT 

images. To address this need, our study estimated the margin of error in AZ using 

affine transform and a novel coregistration framework. We chose rigid registration as 

a control.  

 

 

Challenge for image registration 

The current standard in radiologic in oncology are RECIST criteria, that unfortunately 

are subjective and don’t involve image registration. There is very limited literature on 

longitudinal registration describing the deformation of the gland after local treatment 

16,46. A recent report 20 aims to quantify changes of the gland after focal laser ablation 

using the finite elements method (FEM) align pre- and post-operative T2W images. 

The study notes the importance of knowing biomechanical properties of the tissue, 

including surrounding bladder and rectum. 
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Post-treatment volume loss  

We have observed a mean decrease in gland volume of 6.50 cc or 12.9%. This is 

significantly lower than the volume of the AZ, although the two measures were 

significantly correlated. Toth et al. 20 reported a similar decrease in gland volume at 

the same follow-up time delay in response to laser ablation. Volume shrinkage is 

likely due to the process of cicatrization with fibrosis 49. If confirmed, accounting for 

volume change will be an important requirement of any longitudinal analysis software. 

Clearly, volume-preserving rigid body coregistration is not capable to reflect volume 

loss, whereas the affine transform appears to correctly represent the volume loss due 

to FT. 

 

Coregistration accuracy 

Our image coregistration technique helps to assess FT and demonstrates that local 

treatment influences the deformation of the entire gland. We have observed the 

similarity of boundary changes at the gland (global) and the AZ (local) level. Both 

Dice Index and HD show the effect of non-rigid algorithm at AZ. The change in mean 

HD of 2.9 mm (maximum ~6 mm) between rigid and a non-rigid mapped AZ indicates 

the advantage of the deformable model to define an area of interest. This observation 

is important because it implies that currently available systems that ignore shrinkage 

may leave unsampled residual tissue and fail to detect residual/recurrent disease.  

 

We have also demonstrated that changes in AZ are well modeled by the affine 

transform. Normalized HD resulting from affine compensation was 0.75 mm/cc for the 

AZ, which is almost five times better than 0.15 mm/cc for the whole gland. The lower 

Dice index at the AZ location (0.88) in this experiment compared to the whole gland 
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(0.93) indicates the higher dissimilarity of the rigid and non-rigid transforms at this 

very zone of interest. These data indicate that the residual tissue at the former AZ 

location is more accurately mapped in the post-FT MRI using the non-rigid approach 

than without such compensation. This important finding shows the ability to 

successfully model tissue changes at the location of cancer that can be visualized on 

baseline mpMRI. Intensity changes at the location of the ablation were also reported 

by Toth et al. 20.  

 

We attribute good performance of longitudinal coregistration (all the attempted 

registrations were successful) to the use of discrete parameter gridding, introduced to 

avoid being trapped in local maxima. Moreover, our method computes the similarity 

measures from prostate alone. The reduced field of view decreases the 

computational effort and is not influenced by tissue motion outside the prostate. 

Mutual Information has been used in several applications for prostate registration like 

histology-MRI correlation21,50, intra procedural registration of MRI for focal 

ablation.17,51. The computation of the joint histogram for MI, as a fully image based 

method, seems to enable the registration. Longitudinal registration of medical 

imaging is still an area of active research53. The implementation of multi-core 

parallelism enables one to complete this complex task on standard desktop computer 

in a few minutes.  

 

Limitations 

We have evaluated the registration technique using volumetric and linear metrics 

(Dice index and HD) rather than using more conventional landmark approach. Clearly 
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identifiable landmarks are hard to detect on post-operative images. Assessment of 

the method in a larger cohort would be useful for validation of those initial findings.  

Our coregistration procedure includes manual steps in which the operator delineates 

the prostate gland and surrounding (approximately 5 mm) tissue. In a future study we 

plan to investigate (a) the relationship between the size of the mask and registration 

accuracy, and (b) inter-observer variability of the method. 

Clinical implications 

This work suggests that longitudinal image transformation may guide the location of 

targeted biopsy after FT. The shrinkage of AZ can be modeled prior to follow-up 

biopsy and incorporated in a US-guided sampling system 54.  A recent study 

evocated the benefit of a TRUS-MRI fusion platform that corrects for deformation on 

ultrasound due to the probe insertion, as compared to "cognitive registration" 55. Such 

implementation could also be used for in MR bore biopsy procedure56. Using 

longitudinal coregistration, one could consistently re-visit the same gland location 57, 

without limitations of implantable/imageable pellets proposed recently by Ghai et 

Tranchtenberg 58. Recently, Natarajan et al. 59 rose the question of assessment of 

treatment margin in their report of a phase 1 trial about focal therapy using in bore 

laser ablation with a transrectal approach. Our method may assist to discriminate 

infield/ outfield recurrence after focal therapy. Figure 9 summarizes the potential 

clinical implementation of our findings in focal therapy pathway and follow up.  

 

Toth and associates 20 provide preliminary validation of a competing framework 

based on FEM and requiring modeling the elastic effects of the bladder and the 

rectum. A direct comparison between FEM and purely image-based framework would 

be of interest. While further work is needed to validate software for accurate and safe 
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focal therapy procedures, our preliminary experience suggests the clinical utility of 

affine algorithms for mapping mpMRI findings between pre- and post-FT scans. Our 

workflow could be also extended to transformation models that involve higher degree 

of freedom. The longitudinal coregistration technique could also be applied to other 

image-guided procedures like liver ablation60 or focal kidney-sparing cancer therapy 

61. 

 

In summary, we have proposed a novel coregistration framework that has potential to 

provide image-guided target for post-FT biopsy. The affine algorithm can 

compensate and correct the deformation of an ablated zone and reach the needed 

accuracy of several millimeters. The technique offers the possibility to re-visit cancer 

location which was targeted and to plan follow up biopsy, facilitating accurate and 

safe follow up of focal therapy of prostate cancer.  
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Figures legends: 

Figure 1: Timeline of treatment and imaging exams. 
 
Figure 2: Image analysis workflow. 
 
Figure 3: The dialogue box defines the registration process 
 
Figure 4: Illustrative case of affine registration between pre-treatment (A) and 
post-treatment (photodynamic therapy) T2W volumes (C). Panel (B) shows 
delayed DCE image of the treated area, with ablated gland shown as non 
enhancing region. The bottom panel displays a postoperative T2W image 
overlayed with the corresponding preoperative image.  
 
Figure 5: Schematic illustration of various measures assesses in current study. 
A: analysis of errors in whole gland definition for rigid transform model M2 vs 
M2’’;  B: analysis of errors for affine transform model M2 vs M2’; C: analysis of 
errors in defining AZ (AZ2’-AZ2’’) vs (M2’- M2’’). 
 
Figure 6: Comparison between median pre-operative and 6 months post-
operative volumes of the prostate (orange bars). Comparison between median 
volume generated with rigid and non-rigid transforms (blue bars) shows that 
non-rigid trans-formation compensates better for volume loss due to focal 
therapy.  
 
Figure 7:  Demonstration of high CPU core usage on a 12-core computer achieved 
during registration. 
 
Figure 8: Post-surgical changes for a representative case involving dynamic 
phototherapy on left lobe. A,B: 3D rendering before and post treatment. 
Changes in shape and volume loss are observed in the left part of the gland. 
The pre-treatment view shows in red the lesion 10 mm in axial diameter, 
Gleason 6 (3+3). The post-treatment view displays in yellow the location of the 
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ablated zone. This yellow area needs to be sampled to rule out cancer at 
follow-up biopsy. The green line segment is the needle path for transperineal 
targeted biopsy. C: preoperative T2W image. D: preoperative ADC map. E: 
preoperative DCE image through the cancer focus (white arrow). F: late 
postoperative T2W image. G, post operative ADC map H: DCE image at the 
same level. Changes in shape and MRI signal are discernible at the site of 
ablation on the left side of the gland.  
 
Figure 9: graphical summary of implementation of 3D registration of mpMRI into focal 
therapy of prostate cancer pathway. Overlays of the prostate segmentation are 
presented on the extreme right MRI image with the green line as the post ablation 
segmentation, the blue the preoperative registered prostate using the non-rigid 
transformation and the orange using the rigid registration. 
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Table 1: Distribution of prostate volumes estimated from T2W images 
acquired before and after ablation (late control) and distribution of volume of 
ablated zone (AZ).  
 

  Prostate volume from T2W images Ablated Volume (cc) 
from DCE MRI 

 
Initial volume 

(cc) 
Post-ablation 
 volume (cc) 

Difference 
D (cc) 

median 51.64 46.73 6.70 7.88 
mean 46.49 39.99 6.50 13.82 

SD 23.67 20.25 7.05 13.67 
min 8.42 6.80 -3.60 1.07 
max 87.16 65.52 21.64 37.35 
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Table 2. Comparison of volumes between original T2 WI and their 
transform using rigid and deformable methods. 
 

 

 
Transformed Volumes 

 

Rigid Preop 
Transform volume 

(cc) 

Deformable Preop 
Transform volume 

(cc) 
median 50.71 48.22 
mean 45.41 43.23 

SD 22.81 21.17 
min 7.99 7.17 
max 81.02 73.67 
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Table 3: Alignment between whole gland obtained by mapping from 
pre-operative to post-operative T2W image and whole gland traced 
directly on post-operative image: comparison between rigid and affine 
coregistrations. 
 

 
 

Rigid registration Tr Affine registration Ta 

 
Hausdorff distance (mm)  

median 7.73 7.29 
mean 8.14 6.91 
max 9.46 9.98 
min 5.31 4.64 
SD 1.45 1.60 
p value p=0.20 

 
Dice index 

mean 0.82 0.84 
median 0.85 0.85 
max 0.91 0.92 
min 0.68 0.72 
SD 0.08 0.06 
p value p=0.10 
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Table 4. Compensation of the local deformation by affine algorithm: 
comparison between mapping accuracy of the location of the ablated 
zone and the whole gland, referring to measures shown in figure 6 C. 
 
 

 

 
Ta(AZ) vs Tr (AZ) Ta(M) vs Tr (M) 

 
Hausdorff distance (mm) 

median 1.99 3.83 
mean 2.99 3.84 
max 6.25 7.05 
min 1.10 1.10 
SD 2.10 2.21 

 
Normalized Hausdorff distance (mm/ml) 

mean 0.72 0.15 
median 0.22 0.09 
max 1.09 0.55 
min 0.05 0.03 
sd 0.57 0.17 
p value p=0.0019 

 
Dice index 

mean 0.87 0.93 
median 0.87 0.92 
max 0.96 0.98 
min 0.59 0.88 
SD 0.11 0.04 
p value p=0.046 
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