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Recently, a grid compatible Simplex variant has been demonstrated to identify optima consistently
and rapidly in challenging high throughput (HT) applications in early bioprocess development. Here,
this method is extended by deploying it to multi-objective optimization problems. Three HT chroma-
tography case studies are presented, each posing challenging early development situations and
including three responses which were amalgamated by the adoption of the desirability approach. The
suitability of a design of experiments (DoE) methodology per case study, using regression analysis in
addition to the desirability approach, was evaluated for a large number of weights and in the pres-
ence of stringent and lenient performance requirements. Despite the adoption of high-order models,
this approach had low success in identification of the optimal conditions. For the deployment of the
Simplex approach, the deterministic specification of the weights of the merged responses was avoided
by including them as inputs in the formulated multi-objective optimization problem, facilitating this
way the decision making process. This, and the ability of the Simplex method to locate optima, ren-
dered the presented approach highly successful in delivering rapidly operating conditions, which
belonged to the Pareto set and offered a superior and balanced performance across all outputs com-
pared to alternatives. Moreover, its performance was relatively independent of the starting conditions
and required sub-minute computations despite its higher order mathematical functionality compared
to DoE techniques. These evidences support the suitability of the grid compatible Simplex method
for early bioprocess development studies involving complex data trends over multiple responses. ©
2018 The Authors Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of Ameri-
can Institute of Chemical Engineers Biotechnol. Prog., 34:1393–1406, 2018
Keywords: chromatography, design of experiments, desirability, high throughput bioprocess
development, multi-objective optimization, Pareto front, Simplex optimization

Introduction

The elucidation and definition of the design space of a process
is often the culmination of development efforts including the com-
pletion of experiments across multiple scales. Approximations of
the design space can be obtained from the early stages of biopro-
cess development which will evolve, along with the process itself,

until an optimized process has been established. In such early
stages, high throughput (HT) studies are routinely implemented to
identify attractive process conditions for further investigation
which will aim to characterize them in detail. These studies are
often facilitated by robotic automation and are frequently evalu-
ated, for both upstream and downstream operations, with the
adoption of model-driven analyses such as design of experiments
(DoE) (e.g., Refs. 1–4). Multivariate data analysis is also emerging
as a tool for multivariate statistical process control and for
deconvoluting chromatograms in downstream processing.5

Here, regression analysis is used in a DoE approach to scout
combinations of inputs so as to determine how they affect a set
of objective functions, or outputs/responses. These can include
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quantities such as yield, impurity, and contaminant levels, and
so on. In these investigations, a multi-objective optimization
problem can be defined and be addressed by overlaying the
response surfaces of the considered outputs so as to obtain win-
dows of operation in a graphical fashion.6

While such an approach for DoE-based studies is straightfor-
ward for a small number of responses, it becomes increasingly
complex as their number increases since numerous slices in both
input and output multidimensional spaces need to be observed so
as to determine the presence of an optimum across all responses
and the holistic behavior of a process in its proximity. Hence, alter-
native techniques are used for such studies which seek to amal-
gamate even a large number of individual responses into a single
objective or response.6 The graphical analysis of such a composite
response is then simplified significantly as only slices in multidi-
mensional input spaces need to be considered. In this multi-
objective optimization situation, such amalgamation techniques
deliver scalar optima based on user defined criteria. The latter are
often represented by weights on the considered responses whose
definition poses challenges as it requires expert knowledge on a
system which may not always be available.7 In multicriteria deci-
sion making applications, this challenge can be met by adopting a
stochastic approach to deliver valuable information on the impact
of the weights to the decision-making process (e.g., Refs. 8 and 9).
Similar to this approach is the inclusion of the weights as inputs in
the formulation of numerical multi-objective optimization prob-
lems (e.g.10). In both cases, the decision maker is empowered as
the uncertainty in weight definition is taken into account.

The implementation of data-driven, or experimental, optimiza-
tion differs from numerical optimization, as here the parametriza-
tion of objective functions requires results as opposed to in silico
evaluations. This accentuates the importance of both efficacy and
efficiency in data-driven optimization. It has been demonstrated
that a gridded variant of the Simplex technique meets such
requirements, and more so compared to model-driven DoE
approaches, as it is successful in rapidly reaching optimal operat-
ing conditions in challenging early phase HT investigations.11,12

In this work, this Simplex-based approach is extended further by
deploying the technique in three HT chromatography-based case
studies to optimize objective functions comprised of multiple
responses. Three responses are considered simultaneously in each
case study; namely, yield, residual host cell DNA content, and
host cell protein (HCP) content. Each display strong nonlinear
effects within the studied experimental spaces which make them
challenging. To enable multi-objective optimization, using the
Simplex technique, these responses were amalgamated through
the desirability approach.13–15 To facilitate decision making, this
used the approach of including the response weights, together
with the experimental inputs, in the optimization problem. In
essence, the Simplex method was tasked with searching through a
complex space, of both experimental conditions and response
weights, for a scalar optimum in a rapid fashion. The success of
the gridded Simplex technique in achieving this is compared
against inferences made based on a DoE approach using regres-
sion models. Here, quartic models (i.e., of fourth order) were used
to increase their compatibility with the challenging nature of the
case studies and to assist the application of the DoE approach.

Materials and Methods

Desirability approach

The desirability approach13–15 merges multiple responses, for a
given set of input combination, into the total desirability, D. It is

a commonly met methodology in DoE applications offered by
popular commercial software packages such as Design Expert®

(Stat-Ease, Inc., MN). In this approach, the considered, k = 1,
2, …, K, responses (yk) are scaled between 0 and 1 (fractions
inside brackets of Eqs. 1 and 2) and are used in functions return-
ing the individual desirabilities, dk. Equations 1 and 2 are applied
when a response is to be maximized or minimized, respectively.
In these equations, a target value Tk, is compared against lower
(Lk) and upper (Uk) limits within a set of inequalities so as to
enable the optimization of the kth response. The wk exponents are
weights which change the shape of dk from a straight line
(i.e., wk = 1) to concave up or down (i.e., wk lower or greater than
1, respectively). Hence, they determine the relative importance of
reaching Tk against the alternatives. D is then calculated from dk
by Eq. 3. It is important to highlight, that Eqs. 1–3 return values
in [0,1]. Furthermore, a value approaching 1 depicts a good per-
formance as opposed to a value of 0. Hence, investigations using
desirabilities typically aim to maximize D to identify optima.
In deploying the desirability approach, the decision maker is

required to: (1) distinguish the responses between those that are
to be maximized and those that are to be minimized; (2) estab-
lish the values of Tk, Uk, and Lk; and (3) select K weights, wk.
The first is intuitive whereas the second can fulfil the role of
constraints on the individual responses. For example, in mini-
mizing an impurity level (Eq. 2), Tk could coincide with the
detection limit of a highly sensitive analytical method whereas
Uk could be set based on commonly regulatory acceptable
values (e.g., Ref. 16). Setting these levels creates an admissible
region of conditions wherein all responses will meet end-user
requirements. The selection of weights will determine the opti-
mal conditions based on the differences between the individual
desirabilities. Thus, weight specification is a critical and chal-
lenging task for the decision maker. The complexity introduced
by this requirement is not unique to the desirability approach;
all response amalgamation techniques face the same challenge.
However, the desirability approach delivers optima belonging
to the Pareto set17 which is not true for other techniques based
on, for example, weighted sums.18 This additional feature is
valuable for the end-user as obtaining a member of the Pareto
front, or set, prevents the selection of a solution which is worse
than an alternative in all responses.19,20 Hence, the desirability
approach yields members of the Pareto set and assists in the
selection of a scalar optimum; a condition leading to an optimal
composite response. This feature is considered in the deploy-
ment of the gridded Simplex method, described next.

dk ¼
1 yk > Tk
yk −Lk
Tk −Lk

� �wk
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Grid compatible Simplex algorithm

The grid compatible Simplex algorithm variant21 allows for
the experimental deployment of the Simplex optimization
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technique to coarsely gridded data, typical of those gener-
ated in early stage bioprocess development activities. Per-
forming early stage studies with the gridded Simplex
method entails the preprocessing of the gridded search space
by assigning monotonically increasing integers to the levels
of each factor and replacing any missing data points with
highly unfavorable surrogate points.11 This is followed by
the definition of a starting point, or initial simplex, and the
evaluation of the experimental conditions defined by the
coordinates of its vertices in the input space, X. The method
then enters an iterative domain where it suggests test condi-
tions for evaluation and the obtained response is then con-
verted, by the method itself, into a new set of test conditions
for evaluation. When replication is present, as it is good
experimental practice, averaged responses are used. By fol-
lowing this process, the method optimizes a user defined
objective function by moving away from unfavorable areas
of a search space and focusing on the more promising exper-
imental conditions until it identifies an optimum. A detailed
account of this Simplex algorithm variant can be found in
Ref. 21.

The iterative workflow encapsulates the deployment of the
gridded Simplex method where actions and the completion of
experiments take place in real time. In this work, however, the
Simplex method was deployed on an already evaluated grid of
test conditions (i.e., all conditions were evaluated in brute
force before Simplex deployment). While this deviates from
its intended use, it serves to simulate the deployment of the
technique, had the data not already been generated. At the
same time, it allows for a thorough assessment of performance
and an unbiased comparison against more common regression
analysis-based DoE approaches.

Case studies

Three case studies are presented here with data originating
from full factorial HT investigations of chromatographic sepa-
rations. These are binding studies using the filter plate format,
which is typically selected for such applications (the method
can, however, be applied to investigations involving alterna-
tive HT formats such as miniature columns12). Ion exchange
and multimodal resins were considered in these studies, run in
flowthrough mode. They aim to evaluate the impact of three
inputs on three outputs comprised of the yield, and the resid-
ual host cell DNA and HCP contents. A summary of the case
studies can be found in Table 1. Their experimental details are
given in the following section.

Experimental Details for Case Studies 1–3. High throughput
experiments were conducted on a Tecan Evo® 200 liquid han-
dling system (Tecan Systems, Inc., San Jose, CA). 96-well
AcroPrep™ filter plates (P/N 5065, Port Washington, NY)
were used for these studies with a pore size of 1.2 μm. These
were filled with process intermediates diluted to a concentra-
tion of 1.14 g L−1 in 700 μL volumes and at buffering condi-
tions specified in Table 1. The load conditions in Case Studies
1 and 3 were comprised of an IgG1 isotype mAb (pI 8.4).
Case Study 2 used a load condition with an IgG4 mAb
(pI 6.7). The desired conductivity was achieved with NaCl
additions. Resin volumes in each well were varied from 2.7 to
16 μL to obtain the desired resin loadings between 50 and
300 g L−1 (Table 1). Both Case Studies 1 and 2 used the
Poros™ 50 HQ anion exchange resin (Thermo Fisher Scien-
tific, Waltham, MA). Case Study 3 used the multimodal resin,
Capto™ Adhere (GE Healthcare, Piscataway, NJ). Upon resin
addition and loading, the plates were agitated for 60 min at
1,250 rpm. This was followed by flowthrough fraction collec-
tion in 96-well plates via vacuum filtration. The analysis of
these fractions involved yield determination with a reverse
phase HPLC assay.22 Briefly, a gradient from 20 to 57%
Buffer B was run for 55 column volumes. Buffer A was 0.1%
TFA in water and Buffer B was 0.1% TFA in acetonitrile.
HCP was quantified using a Cygnus ELISA assay kit
(P/N F640, Cygnus Technologies, Southport, NC) with a min-
imum detection at 30 ppm. DNA content was determined
using a PicoGreen® dye (Thermo Fisher Scientific) and fluo-
rescence measurements with excitation and emission wave-
lengths at 480 and 520 nm, respectively.

Data analysis

Regression Analysis. The regression analysis DoE-based
approach was applied here, along with the desirability tech-
nique, in a usual fashion. Experimental data were used to fit
regression models which were then used to obtain predicted
response values for the different experimental conditions.
Once available, the predicted responses (i.e., ŷk) were amal-
gamated through the desirability approach (Eqs. 1–3) to yield
predicted total desirabilities. These were used to capture trends
and identify operating conditions leading to the most favorable
overall performance based, essentially, on model predictions.
Experimental studies through DoE methodologies use, typi-
cally, designs allowing for the unbiased estimation of up to
second-order model terms. Here, however, the trends in the
experimental data were highly nonlinear and hence high-order

Table 1. Details of Case Studies 1–3

Case Study 1 2 3

Product mAb (IgG1, pI 8.4) mAb (IgG4, pI 6.7) mAb (IgG1, pI 8.4)
Chromatography mode Anion exchange Anion exchange Multimodal
Grid conditions 48 (duplicated)
Inputs Levels
A: pH 6.9, 7.2, 7.5, 7.8 6.0, 6.5, 7.0, 7.5 5.8, 6.8, 7.3, 7.8
B: Load (g L−1) 100, 150, 300 50, 125, 175 75, 150, 300
C: Conductivity (mS cm−1) 2.5, 4.0, 6.0, 10.0 3.4, 5.0, 7.0, 10.0 3.5, 7.0, 14.0, 25.0

Responses
(1): y1 %Yield Maximize
(2): y2 Host Cell Protein content (ppm) (HCP) Minimize
(3): y3 Host Cell DNA content (ppb) (DNA) Minimize

Weights of responses
(1): wyield 0.5, 1.0, 2.0
(2): wHCP 0.5, 1.0, 2.0
(3): wDNA 0.5, 1.0, 2.0
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model terms were required to improve the likelihood of a suc-
cessful application of the DoE approach. Consequently,
models including up to 4th order terms (quartic) were consid-
ered, similar to those tested in Ref. 23. The structure of these
models supported the consideration of complex nonlinear
effects. Their analysis was carried out in MATLAB 2014a
(The MathWorks® Incorporated, MA) with stepwise regres-
sion24 using P-values of 0.05 and 0.1 for adding and remov-
ing, respectively, terms from an intermediate model. Different
initial model structures were postulated prior to reduction and
final model acceptance took place by selecting the one leading
to the lowest root mean square error. The derived models were
used to enable accurate point estimations and hence no model
hierarchy was maintained. The fitting of such models was
made possible using all available experimental data in the
model building process (excluding missing data). While this
resembles a brute force approach, it is important to underline
that all inferences were made based on model predictions as it
would occur in an investigation using typical designs such as
composite designs.

To obtain a rigorous understanding about the performance
of the described DoE approach, the aforementioned procedure
was applied multiple times to generate a population of results.
To achieve this, three weight values were examined per
response (Table 1) the combination of which returned i = 1,
2, …, 27 unique sets, or triplets, of weights. Hence, for the ith
set of weights, a predicted total desirability was obtained
(i.e., D̂i) the maximum of which corresponded to a predicted
optimum, x̂i*, in the gridded experimental space, X, for the
given case study. The performance of the DoE approach was
then quantified for each case study by comparing the model
derived D̂i and x̂i* to their respective counterparts, Di and xi*
which were both obtained based on the raw experimental data.
The comparison used two metrics: (1) the Pearson correlation
coefficient25 between Di and D̂i, rDi,D̂i

and; (2) the Euclidean
distance between xi* and x̂i*, λxi, x̂i* . The former describes the
ability of the models to make predictions capturing the trends
in Di, as it is only affected by random error25 and is not to be
confused with the nonparametric Spearman’s rank correlation
coefficient,26 ρ, used here to assess trade-offs between
responses. Typically, a rDi ,D̂i

≥
ffiffiffiffiffiffiffiffiffi
0:60

p
depicted an acceptable

performance in capturing trends in the data whereas a
rDi ,D̂i

≥
ffiffiffiffiffiffiffiffiffi
0:95

p
indicated that almost the entirety of the data

trends were captured.27 Conversely, the distance λxi , x̂i* , which
was also calculated by assigning monotonically increasing
integers to the levels of each factor in X (Grid compatible Sim-
plex algorithm section), was used to account for the iterative
workflow in DoE studies wherein a design space is moved
based on the results of earlier studies. Within the context of
DoE, and the analysis presented here, if a model missed the
optimum xi*, the likelihood of including it within the search
space of a follow-up study increases as λxi , x̂i* decreases fromffiffiffiffiffiffiffi
2:0

p
(the length of a face diagonal in a unit cube). Hence, a

λxi, x̂i* ≤
ffiffiffiffiffiffiffi
2:0

p
meant that a follow-up study would be highly

likely to reach the optimum, even if an earlier study had
missed it. The 27 values of rDi ,D̂i

and λxi , x̂i* , one each for a set
of weights, were then used in inequalities, described in detail
in the Supporting Information, to obtain a success rate of the
DoE approach per case study. This was based on the ratio of
instances wherein the inequalities were met over the total
number of instances (i.e., 27). These results represented the
general suitability of a regression analysis DoE-based

approach per case study for a large number of specified
weights and in the presence of stringent and lenient perfor-
mance requirements.

Simplex Method. The deployment of the Simplex method in
the three case studies took place as described in the Grid com-
patible Simplex algorithm section and it used the averaged
measured total desirabilities, Di for each of the aforementioned
27 sets of weights on the three responses (Regression analysis
section). A traditional application of the Simplex method
would involve the deployment of the technique to identify
optima in each case study and for each set of weights. Here,
however, to make the weights part of the optimization prob-
lem itself, the three-dimensional gridded input space, X, was
expanded to the gridded space XW according to Scheme
1 (Supporting information also including an executed exam-
ple) in an additional set-up step prior to method deployment
for each case study. Likewise, all Di were joined in a single
overall desirability, DT, which was the objective function to be
maximized. This is similar to the implemented manipulations
in Ref. 12 and as a result the Simplex method was deployed in
each case study to identify, simultaneously, the operating con-
dition and set of weights leading to the maximum desirability
value in DT denoted as xw*. This is the global scalar optimum
which was Pareto optimal and at the same time it delivered
the best and most balanced performance, as depicted by the
user-defined criteria (i.e., weights), within the admissible, due
to the constraints imposed by Uk and Lk (Desirability
approach section), region of the three responses in a case
study. This approach is similar to the deployment of the Sim-
plex method in Ref. 28 who used the interactive desirability
function approach of29 and is made possible since Eqs. 1–3
return values that all belong to the same scale. Here, however,
the weights, or preference parameters, became inputs of the
optimization problem and were adjusted in an unsupervised
fashion by the Simplex method itself instead of implementing
this manually.
Similar to the DoE-based approach, success rates were also

calculated by obtaining a population of results through the
deployment of the Simplex method from 300 different and
randomly selected starting points. For each of these searches,
the reached optimum was compared against xw* and when
they coincided a given search was deemed to converge. Con-
versely, if the reached optimum did not coincide with xw*, but
the corresponding grid location belonged to the Pareto set
(i.e., no other condition within the search space was better in
all three responses) and led to a DT value within 1% to the
one at xw*, then the loss in the overall performance was not
critical. Hence, in this case the method was deemed to reach
to a near optimal condition with a highly attractive perfor-
mance across all three responses. In all other cases, the
method did not deliver an acceptable operating condition. For
the assessment of the Simplex method’s efficiency, in this
multi-objective optimization application, each of the afore-
mentioned searches was tracked so as to determine the rela-
tionship between the number of the evaluated, unique, test
conditions in X, and the improvement in the objective func-
tion, DT. It needs to be clarified that the used weights of the
three responses (Table 1), in all three case studies, were found
to lead to situations where the shapes of the individual desir-
abilities, as a function of the responses, matched the expected
behavior (i.e., linear, concave up and down) ensuring that the
chosen range was of interest. A wider range was also
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considered and while it led to more pronounced shapes in the
individual desirabilities, it did not affect the location of xw*.

The Simplex method was encoded for objective function
maximization in MATLAB 2014a (The MathWorks® Incorpo-
rated) on a dual Intel Xeon E5-2650 CPU workstation with
32 GB of RAM running Windows Server 2003 (Microsoft
Corporation, WA). The application of the method with the
Parallel Computing Toolbox (The MathWorks) allowed for
the parallel deployment of 30 simplex searches, with each last-
ing, typically, well below a minute in real time. Regression
analysis was implemented using standard functions supplied
with MATLAB’s Statistics and Machine learning Toolbox.

Results and Discussion

Data Trends and Pareto Optimality

The trends in the experimental data from the three case
studies can be observed in Figures 1–3 for the average yield,
HCP and DNA contents, respectively. In these figures, the
responses have been scaled to take values between 0 and 1, as
described in the Desirability approach section (value of 0 is
least favorable whereas value of 1 is most favorable). The
results from Case Studies 1 and 2 were in general agreement
with the behavior expected from running anion exchange
resins in flowthrough mode; buffer conditions are preferred
which increase the yield by diminishing electrostatic interac-
tions (i.e., high Conductivity and a pH lower than the prod-
uct’s pI) which could lead to a significant binding of the
product to the resin (Figures 1A,B). Conversely, a higher
purity in the flowthrough pool was reached through the
enhancement of the aforementioned interactions between the

anionic impurities and the resin (e.g., low Conductivity). Here,
the latter trend is more evident for the clearance of HCP
(Figures 2A,B) than it is for the removal of residual host cell
DNA (Figures 3A,B) for both Case Studies 1 and 2. The
trends in the DNA clearance data for Case Studies 1 and
2 appear to be highly nonlinear with respect to all three inputs
(i.e., pH, Load, and Conductivity). The complexity of these
dependencies is greater for Case Study 2 than for Case Study
1 because here the tested pH range also included the pI of the
protein which shifted the competition for the resin’s binding
sites in favor of the product at high pH values. This led to a
decreased DNA clearance (Figure 3B) with small effects on
the HCP clearance (Figure 2B). Furthermore, the dependency
between the Load and the HCP clearance was weak for both
Case Studies 1 and 2 (Figures 2A,B), whereas increasing the
Load, in these flowthrough anion exchange steps, returned a
further increase in the yield (Figures 1A,B). This can be attrib-
uted to the displacement of the weakly bound product by com-
peting solutes. The multimodal chromatography step in Case
Study 3, also ran in flowthrough mode, showed yield trends
(Figure 1C) that were significantly different to those in Case
Studies 1 and 2; increased yield is achieved by decreasing the
Conductivity whereas the Load has a considerably stronger
positive effect. The dependency between the inputs and the
HCP content (Figure 2C) was similar to the one observed in
Case Studies 1 and 2. Similar trends were also observed for
the removal of the DNA impurity, in terms of the observed
complexity, which appeared to be influenced by high-order
interactions including the Load input (Figure 3C).
The data trends in Figures 1–3 return a visual confirmation

of the challenging task of identifying windows of operation
wherein high yields are returned along with low impurity

Figure 1. Mesh plot of scaled yield, based on the fraction inside the brackets of Eq. 1, for Case Studies 1–3 in (A)–(C), respectively.(●)
Members of the Pareto front; (□) global scalar optimum in the conductivity, pH, and load input space. Blue color corresponds
to low yields whereas red color corresponds to high yields.
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contents. This accrues from the existence of the nonlinear
trends, for each of the individual responses, and trade-offs.
These are made apparent, for example, by comparing Fig-
ures 1B and 2B. Here, high yields are accompanied by high
HCP content in the flowthrough pool. More information about
these trade-offs can be obtained by the Pareto fronts in
Figure 4. The Pareto front for Case Study 1 (Figure 4A) dif-
fered to those of the remaining case studies since its members
lied predominantly on the upper edges of the formed cube.
Hence, a good clearance of host cell DNA was accompanied
by a good clearance of HCP and medium to high yields
whereas exceedingly high yields resulted in a significant dete-
rioration in the achieved clearance of both DNA and HCP.
This behavior accrues from the existence of both positive
(i.e., HCP/DNA content with ρ = 0.5776 and P-value
<0.0001) and negative (i.e., yield/DNA, with ρ = −0.6000 and
P-value <0.0001, and yield/HCP content with ρ ≈ −0.5646
and P-value <0.0001) correlations between the responses. In
Case Study 2, the front (Figure 4B) provided evidence for the
negative relationship between yield and HCP, as also shown
in Figures 1A and 2A (ρ = −0.6464 and P-value <0.0001),
and the weak dependence for the yield/DNA and HCP/DNA
pairs (i.e., insignificant correlations for both pairs) as in both
cases widely differing values of DNA content were obtained
for a wide range of achieved yields and HCP clearance. A
similar behavior was also displayed in Case Study 3 (Fig-
ure 4C) where the role of HCP content is analogous to the role
of DNA content; weak dependencies were observed between
HCP content, and both yield and DNA content
(i.e., insignificant correlations in both cases) whereas increases
in yield led to a less successful clearance of DNA
(ρ = −0.6720 and P-value <0.0001).

Data Complexity. The densely populated Pareto fronts in
Case Studies 1–3 can improve the chances of an investigation
to identify a Pareto optimal condition in a gridded space. At
the same time, however, this can render the identification of
the global scalar optimum, xw*, (Simplex method section) a
challenging task. In Figures 1–4, □ shows the grid location
leading to the maximal DT value for a given set of weights on
the responses in the input space X whereas in Supporting
Information Figures S1–S3 □ shows the exact location of xw*

in the six dimensional XW space. Since Supporting Informa-
tion Figures S1–S3 contain a large number of surfaces, a sub-
set of important results is shown in Figure 5. The Pareto fronts
in Figure 4 indicate that the xw* optima for each case study
are highly favorable conditions wherein good performance is
obtained across all three responses. This highlights the impor-
tance of the consideration of multiple weights for countering
situations wherein processes with skewed performance are
obtained due to a specification of weights which is in discord
with the behavior of the studied system. For example, in Case
Study 1 xw* had a scaled yield of ~0.96 and both scaled HCP
and DNA contents of >0.95 since further increases in any of
the responses would result in an overall deteriorated perfor-
mance. This is in contrast to the Pareto optimal condition with
the best clearance of HCP (shown by arrow in Figure 4A) as a
~0.05 scaled increase was accompanied with a decrease of
~0.2 units in scaled yield.
The identification of xw* can be complicated further by the

existence of nonlinear effects which could separate it from the
remaining members of the Pareto set. For example, in Case
Study 2 most of the Pareto optimal conditions corresponded to
a Load of 125 g L−1 but for this case study xw* had a Load
set at 175 g L−1 (□ in Figures 1B, 2B, and 3B). Similarly, in

Figure 2. Mesh plot of scaled HCP content, based on the fraction inside the brackets of Eq. 2, for Case Studies 1–3 in (A)–(C), respectively.
(●) Members of the Pareto front; (▷) missing data points (replaced by a surrogate); (□) global scalar optimum in the conductiv-
ity, pH, and load input space. Blue color corresponds to high HCP content whereas red color corresponds to low HCP content.
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Case Study 1, xw* had a Load of 100 g L−1 (□ in Figures 1A,
2A, and 3A) as opposed to the majority of the Pareto optimal
conditions being concentrated on the upper two levels of the
Load input. These observations serve to underline further the
complexity of the data and the challenging nature of the multi-
objective optimization problems posed by the three case stud-
ies. They are, therefore, ideally suited to assess the perfor-
mance of the Simplex method in not only identifying a
member of the Pareto front, but instead its capacity to locate
Pareto optimal conditions which also have a balanced perfor-
mance across all outputs. The success of the method, along
with the returned efficiency, is described next.

Deployment of grid compatible Simplex method

Identification of Optima. The responses from each case study
were combined based on the desirability approach for a total
of 27 sets of weights (Table 1) as described in the Simplex
method section. The obtained average total desirabilities, for
each of the tested sets of weights, Di, are depicted via mesh
plots in Supporting Information Figures S1–S3 for Case Stud-
ies 1–3 respectively whereas, as mentioned previously,
Figure 5 shows a sub-set of important results. The considered
weights of the responses returned 5, 2, and 3 unique grid loca-
tions (○ in Figure 4 and Supporting Information Figures S1–
S3) leading to the highest Di for a given set of weights per
case study respectively (xi*). In the first case study, the five
grid points (Supporting Information Figure S1) spanned a
wide range in all three inputs whereas in Case Study 3 the
three points (Supporting Information Figure S3) spanned wide

ranges across the pH and Conductivity inputs but were con-
centrated at a Load level of 300 g L−1. This is in agreement
with the trends displayed in Figures 1C, 2C, and 3C (i.e., the
majority of the Pareto optimal conditions have a Load set to
300 g L−1). Finally, in Case Study 2 the two grid locations
(Supporting Information Figure S2) were adjacent to each
other and not part of the majority of the Pareto optimal points
as the latter had a Load of 125 g L−1 (Figures 1B, 2B, and
3B). This trend was attributed to the fact that they offered
good performance across all three responses (Figure 4B).
The data depicted in Supporting Information Figures S1–S3

also show the spaces searched by the Simplex method
(i.e., XW space with the DT response) for the identification of
the optimal coordinates in the pH, Load, and Conductivity
input space, and the favorable weighting of the three
responses. As mentioned in the Simplex method section, the
method was initialized from 300 different and random starting
points to assess in detail its likelihood to converge to optima
and to ensure its unbiased deployment. In the second case
study, 92.3% of these searches reached to xw* (▪ in
Figure 5B). This was reached to by 63.7 and 48.3% of these
searches for Case Studies 1 and 3, respectively (▪ in Fig-
ures 5A,C respectively). The remaining of the searches con-
verged to a single local optimum for Case Studies 1 and 3 (4
in Figures 5A,C respectively). For Case Study 2, while multi-
ple local optima (4 in Supporting Information Figure S2)
were also reached, only one of them was predominant
(i.e., ~6.5% of the searches vs. a single search for the rest as
indicated by the arrows in Supporting Information Figure S2,
with the dominant local optimum also depicted by 4 in
Figure 5B). For all case studies, the identified local optima

Figure 3. Mesh plot of scaled host cell DNA content based on the fraction inside the brackets of Eq. 2, for Case Studies 1–3 in (A)–(C),
respectively.(●) Members of the Pareto front; (▷) missing data points (replaced by a surrogate); (□) global scalar optimum in
the conductivity, pH, and load input space. Blue color corresponds to high DNA content whereas red color corresponds to low
DNA content.
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belonged to the corresponding Pareto set (4 in Figure 4 show-
ing the grid location of a local optimum for a given set of
weights on the responses in the input space X) and, with the
exception of Case Study 2, they also coincided with xi*.

The lowest achieved convergence to xw* for Case Study
3 can be attributed, primarily, to the inclusion of missing data
(▷ in Figures 1C, 2C, 3C, and 5C and Supporting Informa-
tion Figure S3) which make the planar polygon formed in the
pH/Conductivity plane at the upper Load level concave in
close proximity to xw* (▪ in Figure 5C). This resulted in its
shielding from the Simplex method forcing it to follow only
limited trajectories in the searched space because the optimum
lied on a boundary of the pH, Conductivity, and Load space.
Despite this, the local optimum (4 in Figure 4C) led to a per-
formance which was within 1% of the maximal DT value and
hence it posed a viable alternative operating condition. The
same applied for the local optimum reached to by the Simplex
method for Case Study 1. Here, the local optimum (4 in
Figure 4A) was characterized by a decrease of ~0.07 units in
scaled yield and an increase of ~0.05 and ~0.02 units in scaled
HCP and DNA content, respectively. Consequently, for both
Case Studies 1 and 3, the Simplex method delivered either the
global scalar optimum or a near optimal condition. This is
supported further for Case Studies 1 and 3 by Figures 6A,C.
The Simplex method reached to a condition with such a simi-
lar performance to xw* even when only ~9% and ~3% of the
XW conditions in Supporting Information Figures S1 and S3,
respectively, had DT values within 1% of the one at xw*. The
method, however, failed to deliver an acceptable operating
condition when it converged to the predominant local opti-
mum of Case Study 2. Figure 4B shows that this condition
(4) led to a low improvement in terms of DNA clearance
(i.e., <0.01 unit) and significant loss in yield (~0.05 scaled

units) and HCP clearance (~0.1 scaled unit) compared to the
global scalar optimum (□). However, taking into account the
dense Pareto set (Figure 4B) and the fact that only ~1%
(Figure 6B) of the XW conditions (Supporting Information
Figure S2) led to a DT value which was within 1% of the one
at xw*, leads to the conclusion that the Simplex method can be
considered to be highly successful for this case study as well.
The results in Figure 6 also provide an additional description
of the complexity of the response surfaces in Supporting Infor-
mation Figures S1–S3.

Simplex Method Efficiency. While the deployment of the
Simplex method to Case Studies 1–3 was found to be success-
ful in identifying optima, it was also important to assess the
efficiency with which these were reached. This information is
presented in Figure 7. Here, the cumulative frequency of the
number of searches achieving a given performance, expressed
as a percentage of the DT value obtained at xw* per case study,
is examined as a function of the number of the evaluated grid
conditions in X. The displayed behavior demonstrates that, as
expected, allowing the Simplex method to continue searching
the investigated experimental space led to a convergence at
grid locations with improved overall performance. The selec-
tion of up to 24 conditions was considered (i.e., 50% of the
conditions in the pH, Conductivity, and Load input space, X)
and this was found to be sufficient for at least ~95% of the
simplex searches to reach conditions with DT values within
5% of the one at xw* for all case studies. This also serves to
underline the fact that, due to its nature, the method will
increasingly focus its evaluations in the more favorable areas
of the underlying response surface culminating to the encircle-
ment of an optimum. These deliver a description of its robust-
ness, as shown in Ref. 11 in the coarse grids used during early

Figure 4. Pareto fronts for Case Studies 1–3 in (A)–(C), respectively.(A)–(C) Show scaled (based on the fractions inside the brackets of
Eqs. 1 and 2) responses for yield, host cell DNA and HCP content.(●) Members of the front; (○) grid conditions belonging to
the front; (□) global scalar optimum in the conductivity, pH, and Load input space; (4) Simplex-derived local optimum in the
conductivity, pH and load input space. In (A)–(C), a value of zero is the least favorable (i.e., low yield, high HCP, and DNA
content) whereas a value of 1 is the most favorable (i.e., high yield, low HCP, and DNA content). Arrow denotes a condition
with a small improvement in DNA clearance accompanied by a significant decrease in yield.
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stage process development investigations. Conversely, reach-
ing grid locations with DT values which were within 1% of
the one at xw* is more challenging. For Case Study 1
(Figure 7A) such searches comprised ~90% of the population
of the 300 searches, whereas for Case Studies 2 and 3
(Figures 7B,C) these comprised ~35 and ~40% of the
searches, respectively. Likewise, the diametrically opposite sit-
uation of considering only 10 conditions, led to a very low
number of searches reaching to such favorable locations. Here,
it needs to be clarified that in the deployed XW space, an ini-
tial simplex had seven vertices and thusly a search with
10 evaluated conditions is one that has selected only three
additional conditions to those of the starting point. Taking this
into account, and the fact that ~70, ~25, and ~45% of the
searches reached to conditions with DT values within 5% of
the maximum, for Case Studies 1–3 respectively, demonstrate
that the Simplex method can lead to a condition with an
improved performance very rapidly.

Deployment of high-order regression models

To assess further the performance of the Simplex method, a
comparison is made here with a DoE approach using fourth
order regression models. These were calibrated and applied as
described in the Regression analysis section. The obtained
models are shown in the Supporting Information, along with

the predicted individual desirabilities (Supporting Information
Figures S4–S6). As mentioned in the Regression analysis sec-
tion, the success of this approach per case study was assessed
by calculating rDi ,D̂i

and λxi, x̂i* for each set of the 27 weights
and by comparing them against threshold values. The results
of these comparisons are shown graphically in Figure 8.
The deployment of the quartic models was severely chal-

lenged by the data when the most stringent requirements were
posed on rDi ,D̂i

and λxi , x̂i* (Regression analysis section). In this
case, the models were unsuccessful for both Case Studies
1 and 3 (18.52 and 0% in Figures 8A,C respectively) and with
a limited success for Case Study 2 (66.67% in Figure 8B).
Imposing less stringent success criteria (Regression analysis
section) for both λxi, x̂i* and rDi,D̂i

in Case Study 3 did not lead
to an improvement in the performance of the regression
model-based approach (Figure 8C). Here, while cases existed
wherein xi* and x̂i* coincided, the predictions of the model
cannot be considered to be reliable since rDi ,D̂i

values were
obtained which could be as low as ~0.65. The opposite trend
was also observed in Figure 8C as improved correlations
(i.e., rDi, D̂i

> 0:80) led to less well approximated optima based
on the model predictions (i.e., λxi , x̂i* > 2:0). This is made more
apparent for Case Study 1 (Figure 8A) where model predic-
tions, which correlated almost perfectly with the made mea-
surements (i.e., rDi,D̂i

> 0:95), resulted in wrongly identified
optima (i.e., λxi , x̂i* > 2:0), limiting therefore the success of the

Figure 5. Mesh plot of concatenated averaged measured total desirabilities, DT, for Case Studies 1–3 in (A)–(C), respectively for a selec-
tion of weights on the three responses (detailed results can be found in Figures S1–S3 in the supporting information).In (A) and
(B), the weights for the yield, HCP and DNA content responses were set to 0.5, 0.5, and 0.5 respectively whereas in (C) the
weights were set to 2.0, 0.5, and 0.5 respectively. In each of (A)–(C): (○) denotes total desirability optima per set of weights
based on the averaged raw measurements; (▪) denotes the global scalar optimum (also Simplex-derived best condition); (▲)
denotes the Simplex-derived local optimum; (▼) denotes the predicted optima per set of weights returned by the regression-
based analysis approach In (C), (▷) denote missing data points (replaced by a surrogate). Blue color denotes low total desir-
ability and red color denotes a high total desirability.
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approach for this case study. This behavior is similar to the
one observed in Ref. 11 Conversely, in Case Study 2 (Fig-
ure 8B), the relationship between λxi, x̂i* and rDi ,D̂i

is synergistic
since here strong correlations also led to accurate determina-
tion of the optimum. Hence, the best performance of the
regression model-based approach was obtained for Case Study
2. Together, these observations led to the conclusion that the
regression approach had low success across the presented case
studies.

Evaluation of the Simplex method-based approach for multi-
objective optimization

Concurrent Determination of Weights and Operating
Conditions Via the Grid Compatible Simplex
Method. Including the weights of the desirability approach
in the optimization problem was found to be of value in these
multi-objective optimization case studies. As shown in Ref. 17

and supported by Figure 4, the desirability approach by itself
returns optima that are members of the Pareto set. While this
offers protection against choosing conditions being entirely
suboptimal, the decision maker is still required to make a
choice regarding the most attractive condition because not all
Pareto set members will be interchangeable (Identification of
optima section for Case Studies 1 and 2). Hence, since the
desirability approach yields Pareto set members, using a deter-
ministic selection of weights could lead to operating condi-
tions not reflecting the true performance of the investigated
unit operation. An approach based on mathematical models is

less affected by this since, assuming that a model is fit for pur-
pose, its predictions can be used to investigate any weight
combination (e.g., Ref. 30). The development of models,
which can be used for such a task is not trivial (Deployment of
high-order regression models section), nor is it guaranteed
(e.g., Supporting Information for Case Study 3 and
Figure 8C). The inclusion of the weights of the desirability
approach in the optimization problem, attacked by the gridded
method, as described in the Simplex method section, is shown
to limit effectively the impact of weight selection on the iden-
tification of optimal conditions in the presence of multiple
responses. In all three case studies, this led to the identification
of optima (□ and 4 in Figures 1–4) which corresponded to
Pareto set members offering a balanced and good performance
across all three responses and which were consistent with the
behavior of the given system.
The inclusion of the weights as inputs in the optimization

problem leads to an increase of dimensionality. Despite this, a
significant number of Simplex searches identified conditions
with improved performance across the three responses, even
after a small number of evaluations (Figure 7). Likewise,
24 evaluations were adequate for more than 90% of the Sim-
plex searches to reach to a condition with a DT value within
1% of the one at xw* for Case Study 1 (Figure 7A). These
increased to 28 and 25 for Case Studies 2 and 3, respectively
(data not shown). If the Simplex method was, however, to be
deployed until 15 conditions had been evaluated (including
the seven conditions required for initializing a search), then a
small number of searches would return such favorable condi-
tions and a significant number (at least 60%) would lead to

Figure 6. Distribution of normalized total desirability across all considered weights (i.e., %max(DT)) for Case Studies 1–3 shown in (A)–
(C), respectively.
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Figure 8. Success of a regression-based approach for Case Studies 1–3 in (A)–(C), respectively.The x-axis shows the Pearson correlation
coefficient between the measured and predicted desirabilities for each set of the i = 1, 2, …, 27 weights, rDi,D̂i

. Likewise, the y-
axis shows the Euclidean distance between the measured and predicted optima per set of weights, λxi, x̂i* . (−) defines an accep-
tance region with low requirements (i.e., a λxi, x̂i* of at most

ffiffiffiffiffiffiffi
2:0

p
and rDi,D̂i

of at least
ffiffiffiffiffiffiffi
0:6

p
. (−) defines an acceptance region

with high requirements (i.e., a of at most 1.0 and a rDi,D̂i
of at least

ffiffiffiffiffiffiffiffiffi
0:95

p
).

Figure 7. Improvement of objective function for 10–24 simplex-based experiments across all 300 searches for Case Studies 1–3 in (A)–
(C), respectively.The shaded patches correspond to 95 and 99% of the maximum of total desirability across all considered
weights (i.e., %max[DT]) for each case study.
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conditions with DT values within 5% of the maximum
(Figure 7). As the deployment of a composite design in three
factors would require 15 unique points, it could be argued that
the Simplex-based approach is less efficient than a response
surface design approach. This would need to consider that the
built regression models would be of second order and hence,
most likely, be less capable of accounting for the observed
data trends. As indicated by the Supporting Information, and
the mesh plots in Figures 1–3, these are highly nonlinear as
the calibrated models include numerous terms of 3rd and 4th
order. Conversely, the deployment of the Simplex method
required, on average (�1 standard deviation), 27 � 8,
28 � 10, and 23 � 8 evaluations to reach to the global scalar
optimum for Case Studies 1–3 respectively. Hence, this
approach is successful for the implementation of rapid data-
driven multi-objective optimization via the grid compatible
Simplex method.

Grid Compatible Simplex Method vs. Regression Analysis-
Based DoE Approach. The aforementioned complexity of
the data trends in the case studies, for the considered
responses, presented a severe challenge to the regression anal-
ysis DoE-based approach despite of the adoption of the high-
est order models supported by the available experimental data.
Even considering the best performance of the DoE approach
alone, obtained when more lenient success criteria were in
place, was not adequate for establishing it as the more suc-
cessful approach between the two for the challenging case
studies used in this work. This holds even when only the con-
vergence to the global scalar optimum is considered for the
Simplex method (i.e., success rates of 63.7, 92.3, and 48.3%
vs. 66.67, 92.59, and 0% for Case Studies 1–3 respectively).
Taking also into account the cases where a near optimal condi-
tion was reached by the Simplex method enhances its superi-
ority over the approach based on the regression models for all
case studies.

The unsuccessful application of the high-order regression
models for Case Study 3 serves to highlight an additional
and important feature; the experimental effort made when
adopting a modelling approach, may not always be justified
by the returned results. In contrast, the Simplex method will
always reach to a solution even if this is not the global opti-
mum. In Case Study 3, for example, relying on the model
predictions would be wasteful for process development since
this approach was entirely unsuccessful based on the used
criteria (Figure 8C). The deployment of the Simplex method,
conversely, reached either the global scalar optimum or a
local optimum, representing a viable alternative operating
point, by selecting for evaluation only a subset of the condi-
tions in the search space (Identification of optima section).
Such results provide additional corroboration for the conclu-
sions drawn from previous investigations regarding the diffi-
culties met by DoE-based approaches in the face of complex
data sets.11,12

Implementation of Scouting Studies Via the Grid Compatible
Simplex Method. While the gridded Simplex method has
been shown to be effective, efficient, and versatile for numer-
ous case studies, its implementation is hampered by the lack
of a stand-alone software package that would make it readily
accessible to end-users. Currently, the method requires the
interaction with general computing software which necessi-
tates programming competence. At the same time, while the
Simplex method is well known and established (e.g., Design

Expert uses it for optimization purposes), the same may not
necessarily apply for experimenters who are the intended
users. The presence of a software would assist greatly to over-
come these; it would allow the technique to be deployed as a
functional efficient algorithm requiring only an initial method
set-up to return results since the method does not require any
data analysis steps and computations are performed automati-
cally and fast (sub-minute). This would cover aspects of the
method including problem definition (e.g., grid set up, multi-
objective, and single objective function optimization, etc.) and
initialization (i.e., where to start a Simplex search from). This
format is similar to optimization-based machine learning
approaches which can adopt derivative-free population optimi-
zation techniques. While these might be more capable of iden-
tifying global optima than Simplex-based techniques, they are
not as efficient. This limitation has led to the combination of
both optimization methods in numerical optimization applica-
tions (e.g., Refs. 31 and 32). Machine learning applications
can also be model based through the deployment of sophisti-
cated regression methods such as artificial neural networks
and support vector regression.33 While such techniques can
potentially cope better with complex data sets, they require
rigorous and expert model building, including calibration, ver-
ification, and validation, which can render them expensive to
use during typical HT studies in early bioprocess development
like those presented here. Hence, the Simplex method presents
an attractive approach for challenging HT case studies where
even high-order regression models have limited success and
other more sophisticated methods are expensive. However, the
lack of an easily accessible software can make its deployment
in case studies where the trends are expected to be linear and
simple to be less worthwhile compared to a typical DoE
approach.
Finally, as mentioned in the Grid compatible Simplex algo-

rithm section, the Simplex method was deployed here to sim-
ulate its intended contemporaneous deployment with data
generation. In its intended deployment, the method would be
used in these case studies as a support for analytics, as
described in Ref. 11, since the studies made use of slurry
plates. In other cases, such as studies using miniature columns
and other HT techniques with low parallelization levels, the
method can be used to guide, at the same time, both the selec-
tion of conditions to be evaluated and their analysis. The fast
computational execution of the method is essential in this as
the involved computations in each iteration are radically fas-
ter than the receipt of analytical results and hence they do not
pose a rate limiting step in process development activities. In
such situations, the ability of the Simplex method to also
deliver the demonstrated large performance improvements in
a small number of tests, even in complex search spaces like
those investigated here, would further enhance its capability
to assist in challenging early stage development problems
compared to other approaches. The in vitro contemporaneous
deployment of the Simplex method to challenging early bio-
process development situations, and its benefits, will be dem-
onstrated in future work.

Conclusions

The identification of process feasible windows of operation
can require the concurrent consideration of multiple perfor-
mance metrics for a given system. However, the traditional
approach of overlaying response surfaces graphically can
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become challenged in the presence of multiple responses. In
such cases, an alternative approach can be adopted wherein
the responses are combined in a composite objective function.
Here, the desirability approach was used in three case studies
in HT chromatography to investigate simultaneously the
effects of pH, Conductivity, and Load on outputs including
yield, and HCP and host cell DNA clearance. Obtaining
optima through a regression analysis-based DoE approach was
found to have limited success; even high-order regression
models failed to return both optimal conditions and account
for the data trends in the obtained desirabilities. By contrast,
the deployment of the grid compatible Simplex method was
significantly more successful in terms of efficacy and effi-
ciency. Since the deterministic specification of response
weights in the desirability approach may lead to conditions
which fail to reflect the performance of the investigated unit
operation, the weights were made part of the optimization
problem. Hence, optimal conditions in terms of inputs and
weights were returned by the Simplex method rapidly. This
resulted in the determination of operating conditions offering a
balanced performance across all outputs and it facilitated the
implementation of the grid compatible Simplex method in
multi-objective optimization problems. The presented results
provide further evidence of the suitability of the Simplex
method to early stage bioprocess development activities.
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Nomenclature

D total desirability
Di total desirability for ith set of weightsbDi predicted total desirability for ith set of weights
dk individual desirability of kth response
DT total desirability across all I sets of weights
i ith set of weights and row in matrix of weights
k kth response
K number of responses
Lk lower limit of kth response
r
Di,bDi

Pearson correlation coefficient between measured and
predicted total desirability for ith set of weights

Tk target value of kth response
Uk upper limit of kth response
wk weight for kth response
X space comprised of experimental conditions
xi, * grid location with maximum total desirability for ith

set of weights
^xi,* predicted grid location with maximum total desirabil-

ity for ith set of weights
XW space comprised of experimental conditions and

weights
xw* experimental condition and weights leading to maxi-

mal total desirability across all I sets of weights
yk kth response

byk predicted kth response
ρ Spearman’s rank correlation coefficient

Abbreviations

HCP Host cell protein.
HT High throughput.
pI isoelectric point.
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