
The Journal of Supercomputing manuscript No.
(will be inserted by the editor)

Exploring Hybrid Parallel Systems for Probabilistic
Record Linkage

Murilo Boratto · Pedro Alonso · Clicia
Pinto · Pedro Melo · Marcos Barreto ·
Spiros Denaxas

Received: date / Accepted: date

Abstract Record linkage is a technique widely used to gather data stored in dis-
parate data sources that presumably pertain to the same real world entity. This
integration can be done deterministically or probabilistically, depending on the
existence of common key attributes among all data sources involved. The proba-
bilistic approach is very time consuming due to the amount of records that must
be compared, specifically in big data scenarios. In this paper, we propose and
evaluate a methodology that simultaneously exploits multicore and multi-GPU
architectures in order to perform the probabilistic linkage of large-scale Brazil-
ian governmental databases. We present some algorithmic optimizations to ensure
scalability and high accuracy. We also discuss performance results obtained with
different data samples, showing that a hybrid approach outperforms other config-
urations, providing an average speedup of 7.9 when linking up to 20.000 million
records.

Keywords Probabilistic Linkage · Public Health · Performance evaluation ·
Multicore · Multi-GPU

1 Introduction

The task of linking multiple, disparate database records representing data from
the same real world entity is known as record linkage [4], being a technique widely

Murilo Boratto
Núcleo de Arquitetura de Computadores e Sistemas Operacionais, Universidade do Estado da
Bahia, Salvador, Bahia, Brazil, E-mail: muriloboratto@uneb.br
Pedro Alonso
Departament of Information Systems and Computation, Universitat Politècnica de València,
Spain, E-mail: palonso@upv.es
Clicia Pinto · Pedro Melo · Marcos Barreto
Laboratório de Sistemas Distribúıdos, Universidade Federal da Bahia, Salvador, Bahia, Brazil,
E-mail: {cliciasp, pmelo, marcseb}@ufba.br
Spiros Denaxas
Institute of Health Informatics Research, School of Computer Science and Informatics, Uni-
versity College London, London, United Kingdom, E-mail: s.denaxas@ucl.ac.uk

2 M. Boratto et al.

used in biomedical and health research, finance, government and other domains.
Specifically in Health research, data stored in disparate information systems need
to be combined for diverse purposes including aggregation of medical and hospi-
tal services, assessment of public policies, track of patient care, surveillance and
monitoring. This is often a challenging task as data quality, complexity and size
dramatically differs among these information systems.

There are two main approaches for record linkage: deterministic and probabilis-
tic [6]. Deterministic linkage uses one or more unique identifying (key) attributes
that are common across the data sources to link records. When these common
attributes are absent, a combination of meaningful attributes should be used to
probabilistically link the records. In order to improve accuracy on matching de-
cisions, probabilistic methods must perform a huge number of comparisons and
calculate similarity indices. These are complex and highly time-consuming tasks.

Some techniques are used to reduce dimensionality, being blocking the prevalent
approach. Depending on hardware capabilities, one must group the records into
blocks according to some similarity criterion – usually the values of a given set of
attributes – to avoid unnecessary comparisons. Although reducing the execution
time, blocking can affect accuracy if records that must pertain to similar blocks
are not correctly grouped.

Other important issues related to heterogeneity and privacy arise from the
sensitive nature of health data. Data harmonization and anonymization must be
applied prior to the record linkage step, affecting, in turn, the execution time.

Given the complexity of implementing probabilistic record linkage methods
targeted to huge databases, novel algorithmic approaches able to fully exploit the
processing power of multiple resources are desired. Hybrid parallel architectures
can be considered a viable approach, even introducing some challenges in the design
of algorithms and related system software.

Our proposal is to simultaneously use all available CPU and GPU devices
present in a heterogeneous system and balance the workload among them to per-
form the necessary data linkage operations in a timely and accurate manner. We
deal with optimal workload distributions for hybrid systems [21], efficient grid con-
figurations, and analysis of data transfers, among other hardware specific issues.

Our research scope involves the linkage of several large Brazilian governmen-
tal databases with socioeconomic and health care data from the Brazilian Public
Health System. These databases are linked in order to create accurate“data marts”
(disease-specific data) used for epidemiological studies. These studies are part of
three major ongoing Brazil-UK scientific collaborations: 1) the 100 million cohort
project, targeted to assess the effects of a conditional cash transfer programme on
infectious diseases from 114 million individuals; 2) a long-term surveillance plat-
form for Zika and microcephaly, which aims to support a longitudinal study (2001
to 2030) of children diagnosed with microcephaly and other Zika-related illnesses;
and 3) a platform linking data from the Brazilian malaria ecosystem (transmission
vectors, notifications, and patient care) providing support for analytical methods
targeting malaria eradication.

This paper proceeds as follows: Section 2 brings information on some related
work. Section 3 presents our mathematical model to probabilistic record linkage.
Section 4 details the implementations of our model over different parallel architec-
tures. Section 5 presents our case studies and experimental results. Some conclu-
sions and future work ideas close the paper.

Exploring Hybrid Parallel Systems. . . 3

2 Related work

Record linkage is a well-known problem that appears in data integration scenar-
ios. The literature has a vast set of methods and tools providing from usual join
and cartesian products (traditional database systems) to new approaches designed
to deal with big data applications, such as NoSQL [17] and high-scalable infras-
tructures. Despite this apparent diversity, few proposals exploring hybrid parallel
architectures exist so far.

Design and the evaluation of sequential and parallel record linkage algorithms
are discussed in [12]. One approach implements a pipeline to concatenate, sort and
block records, generating a graph of matching pairs. Its speedup varies from 2 to
20 with a 5 million records synthetic data set, and is 85 as many times faster than a
previous Java implementation with a real data set of circa 1.1 million records. The
parallel version was tested with a 6 million records synthetic data set, presenting
a linear speedup varying from 7.5 to 26.4 (from 8 to 32 cores, respectively). These
methods are deeper explained in [11] and a Web-based version, called RLT-S, is
discussed and compared to other existing free tools (Febrl and FRIL) in [10].

A MATLAB-based parallel record linkage is presented in [9]. The authors define
clean and dirty data sets, based on inclusion and symmetric difference relation-
ships, and evaluate sequential and parallel methods over 5.000 records.

In [7], a new simhash and hamming distance implementation, targeted to iden-
tify near-duplicate documents, is discussed. The authors use public document data
sets to evaluate the proposed method over CPU and GPUs architectures, obtaining
speedups of up to 17% depending on the GPU utilized.

A Näıve Bayes algorithm for automatic document classification implemented
over GPUs is discussed in [1]. The authors use six document databases (Medline,
Reuters, Amazon etc) with variable number of attributes. The proposed method
presents very similar accuracy on CPUs and GPUs and speedups varying from 12
to 35 depending on the database used.

Parallel executions of privacy-preserving linkage methods over GPUs are dis-
cussed in [19]. The authors present an OpenCL-based [14] implementation re-
sponsible for the filtering and similarity check phases of a standard record lin-
kage pipeline. Tests were executed considering two data sets scaled up to 500.000
records, providing improvements of 10 to 20% in a hybrid scenario.

The scalability of record linkage is also discussed in [18], with an emphasis on
blocking and clustering techniques. The authors use two public data sets to eval-
uate different ways (canopy clustering, object reduction) a scalable record linkage
method can be implemented, with execution times in the magnitude of hours but
with very accurate (more than 93%) results.

In [8], several algorithms for pairwise comparisons are presented and their
results over NVIDIA and OpenCL GPUs, as well Intel CPUs are discussed. The
authors claim a speedup of up 10 times for a dataset with 1.7 million records
containing music data from freedb.org.

Table 1 summarizes existing approaches presenting some kind of parallelization
on multicore or GPU environments. We compared proposals that are closest to ours
in terms of: i) kind of processing unit (CPU or GPU) performing computation;
ii) use of privacy-preserving techniques to anonymize identifiable attributes; iii)
use of blocking strategies to reduce pairwise comparison; and iv) scalability over
datasets larger than 10 millions of records.

4 M. Boratto et al.

Table 1: Parallel Approaches to Probabilistic Record Linkage.

Characteristics

References GPU CPU
Privacy-

preserving
Blocking

Load
balancing

Dataset
>10M

Simhash [7] X

Dup. detection [8] X X

MATLAB [9] X

Hierar. clustering [11] X X

PPJoin [19] X X X

Our Solution X X X X X X

To the best of our knowledge, there is no privacy-preserving record linkage
able to simultaneously explore hybrid environments. Our approach contributes
to the field in terms of i) the amount of data being probabilistically linked; ii)
a mathematical model exploiting characteristics of hybrid parallel architectures
to ensure scalability to huge databases; and iii) high accuracy results given the
absence of gold-standards for probabilistic data linkage.

By way of complementing, it is important to notice new approaches targeting
the supporting of data analytics advertised under the term “GPU databases”.
Among the existing approaches so far, we can mention MapD1, Kinetica [13],
SQream2, Alenka3, and BlazingDB4. All of them leverage the processing power
of multiple GPUs to support machine learning, visualisation and other analytics
functions over large data sets.

3 Mathematical model to record linkage

A theoretical approach to record linkage was first formalised by Fellegi and Sun-
ter [6] and their model is currently widely accepted. Let the records in a dataset
A be Ra and the records in a dataset B be Rb. A record linkage process intends to
classify each pair (a, b) generated from the cross-product A × B in two resulting
datasets: M (matches or true positives) and U (non-matches or true negatives).
Usually, a third dataset is formed with all “dubious” records (false positives and
false negatives). Since the desired cardinality for record linkage is 1 : 1, meaning
no duplicates are selected, the maximum size of the dataset M is equivalent to the
smallest input dataset.

The probabilistic approach considers that pairwise classification is given by
comparing common identifier attributes, such as name and date of birth, and cal-
culating a similarity index to decide if the pairs match or not. Therefore, consider
α(a) and β(b) information inherent to a and b, respectively, a comparison function
γ can be given by γ(α(a), β(b)).

1 https://www.mapd.com/
2 https://sqream.com/
3 https://github.com/antonmks/Alenka
4 https://blazingdb.com/index.html

Exploring Hybrid Parallel Systems. . . 5

Fig. 1: Setup of Bloom filters.

Given the sensitive nature of health care data, we need to apply anonymization
prior to linkage. We rely on Bloom filters [2], which are vectors of lenght l initialized
with 0’s. The text to be anonymized is decomposed into bigrams, i.e. character
pairs including spaces. Each bigram bg, from the set S = {bg1, bg2, ..., bgn}, guided
by h hash functions, is mapped to a specific position between 0 and l − 1. The
value in the mapped position is changed from 0 to 1. This stage is illustrated in
Fig. 1, in which dense and dashed arrows represent different hash functions.

The linkage step itself is performed over the set of Bloom filters where a simila-
rity measure must be calculated. We use Sørensen-Dice (or F1) score,

SD =
2|N bg a ∩N bg b|
N bg a+N bg b

, (1)

in which N bg a ∩ N bg b is the number of bits mapped for each bigram that
can be found in both filters, being N bg a the number of bits mapped for each
bigram in the first filter and N bg b the number of bits mapped for each bigram
in the second filter. In our case, N bg a and N bg b represent the number of bits
“1” in the filters. Dice calculation returns values ranging from 0 to 1, which we
normalized from 0 to 10, 000.

One of the key issues in probabilistic linkage is to determine which values for
SD must be used to decide if a pair matches. We should define upper and lower
cut-off values to classify pairs as matches or non-matches being aware that a high
value for the upper cut-off point may incur in a high number of false non-matches,
whereas a low value can return lots of false matches. The overall goal is to achieve a
high accuracy through the maximization of matches and the reduction of dubious
records. This is a challenging task due to the absence of gold-standards and to the
influence that data characteristics (quality, nature etc.) cause on the results.

4 Parallelization of probabilistic record linkage

The most critical operation within a linkage pipeline is pairwise comparison, which
results in a massive usage of computational resources. Considering that the com-
parison step has complexity of O(n ×m), plus the complexity of similarity mea-
sure function, the number of iterations, as well as the size of files generated, grow
quadratically. This complexity hinders the use of traditional technologies, leading
to the exploitation of parallelism to provide scalability and timely executions.

6 M. Boratto et al.

Algorithm 1 Sequential probabilistic linkage model.
INPUT
matrixA, matrixB /* larger and smaller matrix */
nlines_a, nlines_b /* number of lines of matrixA and matrixB */
num_col /* number of columns of both matrices */
bloomA, bloomB /* bloom filter of one record from matrixA and matrixB */

OUTPUT
/* Dice values which corresponds to the similarity between

two records represented as bloom filters */

1: cpu_exec (int *matrixA, *matrixB, nlines_a, nlines_b, num_col) {
2: int *bloomA = malloc(nlines_a * num_col);
3: int *bloomB = malloc(nlines_b * num_col);
4: for(int i = 0; i < nlines_a; i++) {
5: for (int j = 1; j < num_col; j++) {
6: bloomA[j-1] = matrixA[i * num_col + j];
7: }
8: for (int k = 0; k < nlines_b; k++) {
9: for (int l = 1; l < num_col; l++) {
10: bloomB[l-1]= matrixB[k * num_col + l];
11: }
12: dice(bloomA, bloomB, num_col);
13: }
14: }
15: }

In this paper, we evaluate the behavior of similarity calculation using the Dice
index. This function considers the comparison of two records previously trans-
formed into fixed size Bloom filters. A primary understanding of this process
considers only one running thread (sequential approach). Then, we show paral-
lel optimizations targeting multicore and multi-GPU environments.

4.1 The sequential approach to data linkage

Algorithm 1 shows the sequential approach. Function cpu_exec receives as argu-
ments two matrices (matrixA and matrixB), their respective sizes (nlines_a and
nlines_b) and a fixed column size corresponding to Bloom information.

A commonly strategy applied to reduce the execution time of pairwise com-
parison is blocking [20], which groups together records presenting similar values
in given attributes. Although blocking helps to avoid unnecessary comparisons,
they can degrade the accuracy if records referring to the same entity were mistak-
enly included in different groups that will never be compared. Blocking strategies
should be carefully chosen, specially when dealing with large data sets. Our best
sequential approach applies blocking.

4.2 Using multicore and multi-GPU

The sequential approach described in Algorithm 1 has been used as a basis for
the proposed parallel version for multicore and multi-GPU environments. Algo-
rithm 1 makes use of the Dice function shown in Algorithm 2 that implements (1).

Exploring Hybrid Parallel Systems. . . 7

Algorithm 2 Dice function for similarity calculation.
INPUT
bloomA, bloomB /* bloom filter of one record from matrixA and matrixB */
num_col /* number of columns of both matrices */

OUTPUT
/* Dice value which correspond to the similarity between

two records represented as bloom filters */

1: float dice(int *bloomA, int *bloomB, int num_col) {
2: float a = 0, b = 0, h = 0;
3: for (int i = 0; i < num_col; i++) {
4: if (bloomA[i] == 1) {
5: a++;
6: if (bloomB[i] == 1) h++;
7: }
8: if (bloomB[i] == 1) b++;
9: }
10: float dice = (h * 2.0) / (a + b);
11: return dice;
12: }

Fig. 2: General scheme of combined processing units

As it is not hard to see we can exploit parallelism to calculate matrix elements
and perform summation by partitioning the outermost loop (indexed by i) into
independent chunks. These chunks, in turn, can be of different sizes, so that we
can accommodate the workload onto a heterogeneous environment.

In a first stage, the heterogeneous parallel version is based on partitioning
the workload representing the computation of elements of matrices A and B into
two main sets. Each one of the two sets is simultaneously addressed over the
available CPU subsystem or the GPU subsystem, respectively. We have used a
static strategy to dispatch data and tasks to the available processors. As we need
to have one CPU thread linked to each GPU, we initialize the runtime with as many
CPU threads as CUDA devices [3] plus a number of CPU threads linked to each
CPU core. Figure 2 shows a schema of data movement represented as a model of a
multicore and multi-GPU environment in which each group of processing elements
executing a parallel computational kernel is seen as a combined processing unit.

8 M. Boratto et al.

Algorithm 3 Using multiple GPU devices and multicore.
INPUT
matrixA, matrixB /* larger and smaller matrix */
matrizA_gpu, matrizA_cpu /* part of matrixA manipulated by GPU and CPU */
nlines_a, nlines_b /* number of lines of matrixA and matrixB */
num_col /* number of columns of both matrices */
pu_threshold /* stores the fraction of matrixA assigned

to each processing unit */
qtd_gpu /* amount of gpus available for computing */

OUTPUT
/* Dice values which corresponds to the similarity between

two records represented as bloom filters */

1: omp_set_nested(1);
2: omp_set_num_threads(num_gpus);
3: #pragma omp parallel num_threads(qtd_gpu+1)
4: {
5: int id = omp_get_thread_num();
6: if(id == 0) {
7: int *matrixA_cpu = split(matrixA, pu_threshold);
8: #pragma omp parallel num_threads(threads_cpu)
9: {
10: int id_nested = omp_get_thread_num();
11: cpu_exec(matrixA_cpu, matrixB, nlines_a, nlines_b, id_nested);
12: }
13: }
14: else if(id != 0) {
15: cudaSetDevice(id);
16: cudaGetDevice(&gpu_id);
17: int *matrixA_gpu;
18: matrizA_gpu = split(matrixA, pu_threshold);
19: kernel(matrixA_gpu, matrixB, nlines_a_gpu, nlines_b);
20: }
21: }

Algorithm 3 shows the scheme used to distribute the workload over two com-
putational resources. Objects matrixA and matrixB represent the input data sets
containing the records to be compared. The matrixA is divided (split function at
lines 7 and 18) and delivered to each CPU core while matrixB is fully broadcast to
keep consistency. We store these matrices into arrays so each thread, identified as
thread_id, independently whether it is linked to a CPU or a GPU, stores a chunk
of matrixA. This chunk is calculated in pu_threshold. The call cpu_exec() per-
forms the comparison in the same way as demonstrated in the sequential version
(Algorithm 1), although some new thread management is required.

GPUs in our system are identified with integers (gpu_id in line 16). The first
thread is bound to multicore execution, being responsible for creating the team of
CPU worker threads (threads_cpu). The remaining threads are bound to GPUs.
The core computation performed by the GPUs is implemented by the kernel()

function and the core computation performed by the CPU cores is in cpu_exec().

Computation performed by GPUs is implemented in the kernel() function,
called in line 19 of Algorithm 3. This function firstly performs the typical opera-
tions of uploading data from the CPU to the GPU prior to call the CUDA ker-

Exploring Hybrid Parallel Systems. . . 9

nel. Thus, in order to execute this kernel, it is supposed that matrixA, matrixB,
nlines_a and nlines_b have been previously uploaded into the GPU memory.

The problem to be solved through the kernel is highly parallelizable. All el-
ements from matrixA and matrixB can be computed concurrently. We need to
imagine the shared data as a one-dimensional cube where each position has a par-
tial comparison of each element of matrixA and matrixB. In other words, elements
matrixA, and matrixB, for all i, contain the partial comparison corresponding to
a given element, taking into account the parity between the array element and the
thread coordinates. After this, it is necessary to add all partial comparisons.

However, the total amount of shared memory is what really determines the
size of thread blocks. Anyway, the limitation in the number of threads per block
is easily overcome by the number of blocks that can be run concurrently. More
blocks means that data computed by each block in that dimension and stored in
the shared memory should be also shared among the thread blocks. This can only
be done through global memory yielding in a performance penalty.

5 Experimental Results

Our execution board comprises 4 Intel Xeon processors at 3.33 GHz and 100 GB
DDR3 main memory. Each processor has 6 cores with 12 MB of cache memory.
The board also contains 2 NVIDIA Tesla C2070 GPUs featuring each GPU 14
multiprocessors (SM) with 32 stream processors (SP) each (448 cores in total).
Floating point operations follow the IEEE 754-2008 standard. It is expected up to
515 Gigaflops of double-precision peak performance in each GPU. The installed
CUDA toolkit is version 7.5.

In our experiments we use a parallel version of Algorithm 3 implemented using
OpenMP [16] and CUDA [15] for the probabilistic linkage model used in our het-
erogeneous environment. Many parameter values were used at installation time to
estimate the best values for system parameters. The available range for CPU cores
(c) is 1, 2, . . . , 32, with Intel Hyper-Threading [5] set. Then, we checked for GPUs
workloads (w) from 10% to 45%. The input sizes of the problem and the number
of records (s) for the experiments were 1, 000, 000, 2, 000, 000, . . . , 20, 000, 000. Ta-
ble 2 shows execution times of different values of system parameters and emphasize
in bold those that are the best ones.

There are two important observations: (1) c values depend on the problem size
(s) in the system under test; and (2) for each problem size and for different values
of w, we obtain a different optimum value for c on each execution environment.
Be aware of this variability is essential to make good decisions in the selection of
optimum algorithm parameters. We did experiments with different combinations of
s, c, and w, considering the problem size to obtain the model on a given platform.

Due to the high time required for the sequential execution, and even to the
parallel run using only the CPU cores, we also apply a standard blocking strategy
before the comparison step begins. These results, shown in Fig. 3, are useful for
performance comparison in subsequent steps. The execution time with multiple
threads is denoted by “CPU cores”. On the CPU side, the calculation data mart
is distributed among threads and each thread runs exclusively on a CPU core.
Versions denoted by “1 GPU” and “2 GPUs” represent executions in one device
and two devices, respectively.

10 M. Boratto et al.

Table 2: Execution times obtained with different values for the performance pa-
rameters (the best values are marked in boldface).

w = 45, 45, 10 w = 40, 40, 20 w = 35, 35, 30
s c t(s, c, w) c t(s, c, w) c t(s, c, w)

1, 000, 000 16 4.21 16 4.24 24 4.14
2, 000, 000 16 4.67 16 4.60 24 4.58
4, 000, 000 16 5.62 24 5.52 28 5.43
6, 000, 000 24 6.64 24 6.44 32 6.23
8, 000, 000 24 7.53 24 7.42 32 7.36

10, 000, 000 24 8.13 24 8.14 32 8.01
12, 000, 000 24 8.76 32 8.79 32 8.35
14, 000, 000 32 9.81 32 9.28 32 9.33
16, 000, 000 32 10.31 32 10.33 32 10.54
18, 000, 000 32 11.47 32 11.04 32 10.64
20, 000, 000 32 12.91 32 12.05 32 11.52

The heterogeneous model (“Hybrid”) uses all cores available in the hetero-
geneous system. In this model, the threads are executed by all the computing
elements in the machine with the suitable number of CPU cores and the two
GPUs. The results show that the parallel CPU algorithm reduces the execution
time significantly, as can be observed in Fig. 3.

We show in Fig. 3(a), Fig. 3(b) and Fig. 3(c), the execution time and the
speedup, respectively, for the probabilistic linkage algorithms with different sizes
ranging from 1, 000, 000 to 20, 000, 000. The execution was carried out on each sub-
system independently (CPU cores, 1GPU, 2GPUs and Hybrid) to have a measure
for comparison purposes.

Speedup has been obtained with regard to the use of the CPU cores subsystem
using a blocking strategy. As can be seen in Fig. 3(c), the maximum speedup is
around 8 with the hybrid subsystem, presenting a difference in performance that
can be observed more clearly. Both plots show how the use of GPUs in our system
clearly outperforms the computation on the CPU cores.

We show different aspects of the behavior of the algorithm with different work-
loads. Figure 3(d) plots the evolution of time regarding identical GPUs. Based on
the experiments, it can be observed that the value w obtained through the theo-
retical derivation is the best to be chosen if we use 2 GPUs and all the CPU cores.
This experiment shows the reduction in time achieved by the use of 2 GPUs and
the CPU cores, and how this improvement grows with the problem size due to the
parallelization of the probabilistic linkage. As expected, the number of records does
not represent a big difference for different workloads due to the small weight of
communications (CPU-GPU) compared to the weight of computations. The best
behavior is around (w) = (GPU, GPU, CPU) = (35%, 35%, 30%) for the system
under test.

6 Conclusions and Future Directions

The parallel algorithm developed in this project enables to efficiently compute the
core computation that appears in the problem of probabilistic record linkage. We

Exploring Hybrid Parallel Systems. . . 11

Fig. 3: Performance of probabilistic record linkage algorithms by varying the prob-
lem size. (a) Execution time. (b) Execution time without CPU cores. (c) Speedup
rate. (d) Workload distribution.

have shown how it is possible to solve current computational problems associated
with the problem of record linkage. To show this, we have addressed a particular
case in the context epidemiological studies that involve the management of very
large Brazilian governmental datasets, what results in substantial benefits for the
public health in this country. The solution proposed is simple and efficient, allowing
to exploit the heterogeneous nature of the underlying computational resources. Our
model of implementation and workload distribution is portable, so it can be used
on many configurations including many multicore CPUs, NVIDIA GPUs, even
processors based on the Intel MIC architecture.

There exists, however, an important issue to address in the future related to
the difficulty of management of very large datasets. The large amount of memory
required by the process is currently the hurdle we are facing to scale the proposed
work to databases with more than 100 million records.

Acknowledgments

This work has been partially supported by CNPq, FAPESB, Bill & Melinda Gates
Foundation, The Royal Society (UK), Medical Research Council (UK), NVIDIA

12 M. Boratto et al.

Hardware Grant Program, Generalitat Valenciana (grant PROMETEOII/2014/003),
Spanish Government and European Commission through TEC2015-67387-C4-1-R
(MINECO/FEDER), and network CAPAP-H. We have also worked in cooper-
ation with the EU-COST Programme Action IC1305, “Network for Sustainable
Ultrascale Computing (NESUS)”.

References

1. Andrade, G., Viegas, F., Ramos, G.S., Almeida, J., Rocha, L., Gonçalves, M., Ferreira, R.:
GPU-NB: A fast CUDA-based implementation of Näıve Bayes. In: 2013 25th International
Symposium on Computer Architecture and High Performance Computing, pp. 168–175
(2013)

2. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commun. ACM
13(7), 422–426 (1970)

3. Cook, S.: CUDA Programming: A Developer’s Guide to Parallel Computing with GPUs,
1st edn. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (2013)

4. Doan, A., Halevy, A., Ives, Z.: Principles of Data Integration. Elsevier Science (2012)

5. Étienne, E.Y.: Hyper-threading. TurbsPublishing (2012)
6. Fellegi, I.P., Sunter, A.B.: A theory for record linkage. Journal of the American Statistical

Association 64, 1183–1210 (1969)
7. Feng, X., Jin, H., Zheng, R., Zhu, L.: Near-duplicate detection using GPU-based simhash

scheme. In: 2014 International Conference on Smart Computing, pp. 223–228 (2014)
8. Forchhammer, B., Papenbrock, T., Stening, T., Viehmeier, S., Naumann, U.D.F.: Dupli-

cate detection on GPUs. In: BTW, pp. 165–184. Köllen-Verlag (2013)
9. Kim, H.s., Lee, D.: Parallel linkage. In: Proceedings of the Sixteenth ACM Conference on

Conference on Information and Knowledge Management, CIKM 2007, pp. 283–292. ACM,
New York, NY, USA (2007)

10. Mamun, A.A., Aseltine, R., Rajasekaran, S.: RLT-S: A web system for record linkage.
PLOS ONE 10(5), 1–9 (2015)

11. Mamun, A.A., Aseltine, R., Rajasekaran, S.: Efficient record linkage algorithms using
complete linkage clustering. PLOS ONE 11(4), 1–21 (2016)

12. Mamun, A.A., Mi, T., Aseltine, R., Rajasekaran, S.: Efficient sequential and parallel algo-
rithms for record linkage. Journal of the American Medical Informatics Association 21(2),
252–262 (2014)

13. Mizell, E., Biery, R.: How GPUs are defining the future of data analytics (2017)
14. Munshi, A., Gaster, B., Mattson, T.G., Fung, J., Ginsburg, D.: OpenCL Programming

Guide, 1 edn. Addison-Wesley Professional (2011)
15. NVIDIA Corporation: NVIDIA CUDA C programming guide (2010). Version 3.2
16. OpenMP Architecture Review Board: OpenMP application program interface version 4.0

(2013)
17. Pokorny, J.: NoSQL databases: A step to database scalability in web environment. In:

Proceedings of the 13th International Conference on Information Integration and Web-
based Applications and Services, iiWAS ’11, pp. 278–283. ACM, New York, NY, USA
(2011)

18. Rendle, S., Schmidt-Thieme, L.: Scaling Record Linkage to Non-uniform Distributed Class
Sizes, pp. 308–319. Springer Berlin Heidelberg, Berlin, Heidelberg (2008)

19. Sehili, Z., Kolb, L., Borgs, C., Schnell, R., Rahm, E.: Privacy preserving record linkage
with ppjoin. In: Datenbanksysteme für Business, Technologie und Web (BTW), pp. 85–104
(2015)

20. Winkler, W.E.: The state of record linkage and current research problems (1999)
21. Zhong, Z., Rychkov, V., Lastovetsky, A.: Data partitioning on multicore and multi-GPU

platforms using functional performance models. IEEE Transactions on Computers 64(9),
2506–2518 (2015)

