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Abstract

In this study, novel core-shell nanostructures were fabricated through a modified
triaxial electrospinning process. These comprised a drug-protein nanocomposite
coated with a thin cellulose acetate (CA) shell. They were generated through the
simultaneous treatment of an outer solvent, an unelectrospinnable middle fluid, and an
electrospinnable core solution in triaxial electrospinning. SEM and TEM results
revealed that the core-shell nanofibers had linear and cylindrical morphologies with a
diameter from 0.66 to 0.87 um, and distinct core-shell structures with a shell
thickness from 1.8 to 11.6 nm. The presence of a CA coating eliminated the initial
burst release of ibuprofen seen from a monolithic drug-protein composite, and
allowed us to precisely manipulate the drug release (for a 90% percentage) over a
time period from 23.5 to 43.9 h in a tunable manner. Mathematical relationships
between the processing conditions, the nanostructures produced, and their functional

performance were elucidated.

Keywords: Modified triaxial electrospinning; detachable tri-layer spinneret;
cellulose acetate nanocoating; structural nanohybrids; linear drug release;

process—nanostructure—performance relationship

Chemical compounds studied in this article

Ibuprofen (PubChem CID: 3672); Gliadin (PubChem CID: 17787981); Cellulose
acetate (PubChem CID: 3084039); Methylene blue (PubChem CID: 6099); Basic
fuchsin (PubChem CID: 12447); 1,1,1,3,3,3-hexafluoro-2-propanol (PubChem
CID:13529); Trifluoroacetic acid (PubChem CID: 6422); Acetone (PubChem CID:

180); Acetic acid (PubChem CID: 176).
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1. Introduction

The ability to fabricate structures with controllable nanoscale architectures has
enabled the development of much new science and technology (Isaacoff & Brown,
2017), and 1s of vital importance in the development of new kinds of functional
nanomaterials, particularly for biomedical fields (Hubbell & Chikoti, 2012; Mehta, et
al., 2017; Haider, et al., 2018; Mitragotri, Burke, & Langer, 2014; Khoshnevisan, et
al., 2018; Wen, et al., 2017). Beyond simple monolithic structures, where the
composition is the same throughout, a range of more complicated nanostructures can
be envisaged. Of these, the most widely explored by far is the core-shell (or
core-sheath) structure, which contains separate and different core and shell
compartments (Li, et al., 2018; Lu, et al., 2018). These can either both be solid-state
phases (i.e., two different solids, one nested inside another), or the core could be a
liquid or even a gas (giving a hollow material) (Chang, et al., 2017; Wang, et al., 2018;
Mao, et al., 2018; Masoumifard, Guillet-Nicolas, & Kleitz, 2018; Nie, Fu, & Wang,
2010; He, et al., 2017; Eltayeb, Stride, & Edirisinghe, 2013; Lauhon, Gudiksen, Wang,
& Lieber, 2002). A simple search in Web of Science using “core shell” as the topic
reveals that 32,988 such studies (April 29, 2018) have been published within the last 5
years, equating to 18 publications on the topic per day. There are numerous methods
which can be used to generate this simple structure, and some excellent reviews have
focused on the preparation and application of core-shell materials (Chaudhuri & Paria,
2012; Qu, Wei, & Guo, 2013).

Electrospinning is a simple and straightforward process which can be used to
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create nanofibers from polymer solutions or melts. It has attracted much attention in
the research literature because the resultant nanofibers have many advantageous
properties, such as large surface areas, high porosity, and a continuous 3-D web
structure (Jiang, Uch, Agarwal, & Greiner, 2017; You, et al., 2018; Wang, et al., 2017;
Habiba, et al., 2018; Szabo, et al., 2018; Wali, et al., 2018). The process involves the
gjection of a polymer solution through a needle, termed the spinneret, towards a
collector plate. A high potential difference is applied between the two, resulting in the
conversion of the initial solution into 1-D nanofibers. The macrostructure of the
spinneret is mirrored in the products of electrospinning, allowing the generation of
complex nanostructures if the process is fully optimized. Such structures include
core/shell and Janus (side-by-side) architectures, as well as combinations of the two.
Electrospun materials are produced in a single step, and thus intricate nanoscale
architectures can be fabricated in a straightforward manner through the simultaneous
treatment of multiple working fluids in a direct and top-down manner (Zhao, Cao, &
Jiang, 2007; Starr, Budi, & Andrew, 2015; Han & Steckl, 2013; Jiang, et al., 2014;
Labbaf, Ghanbar, Stride, & Edirisinghe, 2014; Liu, Ni, Chase, & Rabolt, 2013; Yu, Li,
Williams, & Zhao, 2018; Lallave, et al., 2007; Jiang, et al., 2018).

The traditional single-fluid blending electrospinning process uses a single
solution to generate monolithic fibers, and accounts for over 95% of the publications
concerning electrospinning. However, although it is more complex to implement
experimentally, the simultaneous treatment of multiple fluids greatly increases the

capability of electrospinning to develop new functional nanomaterials. In a
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single-fluid electrospinning process, the working fluid must be electrospinnable,
which limits the range of systems which can be worked with. It is estimated that only
around 100 different polymers can be electrospun into nanofibers, and even then they
can only be processed within a narrow window of conditions (solvent, concentration,
molecular weight, etc) (Agarwal, Greiner, & Wendorff, 2013). In multiple-fluid
electrospinning processes, only one of the working fluids needs to be electrospinnable.
Hence, a very wide variety of unspinnable fluids, such as dilute solutions, solvents,
suspensions, and emulsions, can be processed into fibers with the aid of a spinnable
fluid companion.

Coaxial electrospinning, involving two liquids, one of which is nested inside
another, is by far the most widely explored multi-fluid electrospinning process. It can
be implemented with both solutions being spinnable, with a spinnable shell and
unspinnable core, or with a spinnable core and unspinnable shell (the latter process is
often termed “modified coaxial electrospinning™). The more complex triaxial process
(using three concentrically nested needles), while less studied, has also been
demonstrated to be useful in creating nanofibers with three-layer structures and
improved functional performance (Liao, et al., 2018; Zanjani, et al., 2017; Han,
Sherman, Filocamo, & Steckl, 2017; Liu, Ni, Chase, & Rabolt, 2013). Modified
triaxial electrospinning processes, where one of more of the fluids being processed is
not electrospinnable alone, have additionally been investigated (Yang, et al., 2016). A
series of situations can be envisaged depending on the electrospinnability of the outer,

middle, and inner working fluids. These processes proceed easily when two of the
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three working fluids are electrospinnable and compatible with each other, but become
challenging when only one of the fluids is electrospinnable. The production of fibers
using a spinnable middle fluid combined with unspinnable outer and inner working
fluids has been successfully implemented (Yang, et al., 2017), but Yang et al.
previously hypothesized that using an electrospinnable core solution to support
unspinnable outer and middle working fluids is not possible (Yang, et al., 2016).

In this paper, we developed a modified triaxial electrospinning process involving
an electrospinnable core solution, and were able to successfully use this to support
both an unspinnable middle polymer solution and an unspinnable outer fluid
(comprising a pure solvent). As a result, we could fabricate high-quality core/shell
fibers using this process. The concentration of the middle-layer polymer solution was
varied to adjust the thickness of the sheath compartments in the fiber products,
allowing the drug release profile to be tuned.

2. Materials and methods

2.1. Materials

Ibuprofen (IBU; 2-(4-isobutylphenyl)propanoic acid), was used as a model poorly
water-soluble drug, and was procured from the Zheng-Zhou Chuang-Mei
Biotechnology Co., Ltd. (Zhengzhou, China). Gliadin (extracted from wheat) was
obtained from the Miao-Sheng Biotechnology Co., Ltd. (Shanghai, China). Cellulose
acetate (CA, My = 100,000 Da, the degree of substitution was 2.5) was sourced from
Acros (NJ, USA). Colorants (methylene blue and basic fuchsin) and organic solvents

(including 1,1,1,3,3,3-hexafluoro-2-propanol [HFIP], trifluoroacetic acid [TFA],
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acetone and acetic acid) were of analytical grade and purchased from the Shanghai
Zi-Yi Chem. Co., Ltd. (Shanghai, China). Water was doubly distilled before use.
2.2. Electrospinning equipment and working fluids
The electrospinning apparatus was self-built, and a detachable trilayer concentric
spinneret was designed and manufactured in-house. Other components of the
equipment included three syringe pumps (two KDS100 and one KDS200,
Cole-Parmer, IL, USA), a high-voltage power supply (ZGF60kV/2mA, Wuhan
Hua-Tian Co., Ltd., Wuhan, China), and a flat piece of cardboard wrapped with
aluminum foil (employed as a collector). The electrospinning processes were
observed using a Canon camera (PowerShot SX50HS, Tokyo, Japan).

To prepare the inner working fluid, 4.0 grams of IBU were firstly placed into 100
mL solvent mixture of HFIP and TFA (8:2 v/v). Later, 16 grams of gliadin powders
were put into the drug solution, which was stirred using a magnetic stirrer for several
hours. The middle fluid was prepared by dissolving a certain amount of CA powders
into the mixture of acetone and acetic acid (2:1 v/v). The outer fluid was a plain
solvent of acetone and acetic acid (2:1 v/v).
2.3. Morphology
The morphological characteristics of the electrospun nanofibers were assessed with
the aid of a Quanta FEG450 scanning electron microscope (SEM; FEI Corporation,
Hillsboro, OR, USA). Prior to SEM observation, samples were sputter coated with
platinum under a nitrogen atmosphere to render them electrically conductive. Images

were recorded at an excitation voltage of 20 kV. The diameter distributions of the
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fiber formulations were analyzed using the Imagel] software (National Institutes of
Health, Bethesda, MD, USA) to measure diameters at 100 different points in the SEM
images.

2.4. Internal structure

The internal structures of the electrospun nanofibers were studied using a
transmission electron microscope (TEM; JEM 2100F, JEOL, Tokyo, Japan) under an
excitation voltage of 300 kV. The samples were prepared by fixing a lacey
carbon-coated copper grid on the collector and spinning directly onto it for a few
seconds.

2.5. X-ray diffraction

The physical form of the raw materials (IBU, CA, and gliadin) and the nanofibers
were assessed with an X-ray diffractometer (XRD; D/Max-BR, RigaKu, Tokyo, Japan)
supplied with Cu Ka radiation at 40 mV and 30 mA. Patterns were collected over the
20 range 5 — 60°.

2.6. Infrared spectrometry

An attenuated total reflectance—Fourier transform infrared (IR) spectrometer
(Nicolet-Nexus 670, Nicolet Instrument Corporation, Madison, USA) was employed
to study the raw materials and electrospun formulations. Spectra were obtained over
the wavenumber range 500 — 4000 cm ™' at a resolution of 2 cm™ .

2.7. In vitro dissolution tests

Following the Chinese Pharmacopoeia (Method II), an RCZ-8A paddle instrument

(Tianjin University Radio Factory, Tianjin, China) was used for in vitro dissolution
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tests (National Pharmacopoeia Committee, 2015). Before the tests were performed,
the apparatus was set to 50 rpm and 37 °C. One hundred milligrams of the medicated
nanofiber sample was placed into 600 mL of phosphate buffered saline (PBS, pH =
7.0, 0.1 mol/L). At predetermined time points, 5 mL aliquots were withdrawn from
the release medium, and 5 mL of fresh pre-headed PBS added to the dissolution
vessels to maintain a constant volume. The absorption of each sample was determined
at Admax = 264 nm, with a Lambda 750S UV-vis spectrophotometer (Perkin Elmer,
Waltham, MA, USA). The cumulative amount of IBU released was back-calculated
on the basis of a predetermined calibration curve. The dissolution tests of each sample
were repeated six times, and results are reported as mean £+ S.D.

2.8. Statistical analysis

The experimental data are presented as mean + SD. The results from the in vitro
dissolution tests were analyzed using one-way ANOVA. The threshold significance
level was set at 0.05. Thus, p (probability) values lower than 0.05 were considered to

be statistically significant.

3. Results and discussion

3.1. Modified triaxial electrospinning

A schematic of the modified triaxial electrospinning equipment is shown in Fig. 1.
Similar to a traditional single-fluid electrospinning experiment, the system consisted
of four parts: the power supply, spinneret, collector, and fluid-driving pumps.
Traditional triaxial electrospinning (with all of the working fluids being
electrospinnable) treats three fluids simultaneously, and as a result can create

three-layer nanofibers (Han, Sherman, Filocamo, & Steckl, 2017; Liu, Ni, Chase, &
9
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Rabolt, 2013). The modified tri-axial electrospinning approach explored in this work
greatly enhances the possibilities of generating novel materials, because there are only
a limited number of electrospinnable solutions but a virtually infinite range of

unspinnable liquids (Yang, et al., 2016; Yang, et al., 2017).
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Fig. 1 A schematic of the modified triaxial electrospinning process, and its potential

applications.

Here, two unspinnable liquids were implemented as the outer and middle
working fluids, with only the core solution being electrospinnable. The core
comprises a mixture of IBU and gliadin, while the middle fluid is a dilute CA solution,
and the outer liquid consists of acetone and acetic acid (2:1 v/v). The core solution is
spinnable and forms the fiber filaments, while the CA middle fluid is deposited on
this in the form of a thin “nanocoating™. The outer solvent helps to ensure a stable and

continuous preparation process.

The detachable triaxial spinneret. A detachable triaxial spinneret was
developed to guide the three working fluids (Fig. 1 and Fig. 2). The assembly of the
detachable spinneret is exhibited in Fig. 2a. A traditional two-layer concentric metal
spinneret was inserted in a 2.4 cm length of tapering polypropylene (PP) tubing
(internal diameter and wall thickness: 1.84 - 2.5 mm and 0.3 mm, respectively), with

the wider end of the PP tube located at the spinneret exit (as illustrated in Fig. 2b).
10
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The capillaries comprising the concentric metal spinneret had outer diameters and

wall thicknesses of 1.84/0.25 and 0.62/0.15 mm.

Fig. 2 Photographs showing the homemade trilayer concentric spinneret: (a) a
traditional two-layer concentric metal spinneret was inserted in a tapering PP tube; (b)
the resulting trilayer concentric spinneret (inset: close-up of the exit nozzles); (c) the

silica tube and needle used for the transport of the outer working fluid.

A sharp needle (outer diameter / wall thickness: 0.3/0.05 mm) was connected to
a length of highly elastic silica tubing (Fig. 2c¢), which was then connected to the
syringe containing the outer working fluid. The outer layer working fluid was then
carried to the triaxial spinneret simply by inserting the metal needle through the PP

tube.

This set-up differs somewhat from more traditional triaxial spinnerets, which
usually consist of three concentrically nested metal capillaries. It offers three
advantages. First, the detachable spinneret can be easily prepared and washed after
use. This can be very challenging with one-piece metal spinnerets, especially when
the core needle is very narrow. Second, the PP tube at the exterior is likely to be more
efficient in utilizing the electrostatic energy provided by the high-voltage power
supply than an entirely metal spinneret, as has been demonstrated with Teflon-coated

concentric spinnerets in coaxial electrospinning (Wang, et al., 2018). Third, PP is an

11
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excellent electrical insulator, and will have only minimal interactions with the
working fluids. In contrast, metal spinnerets are highly conductive, and there is the
potential for the liquids being expelled to interact with the spinneret to a certain extent,
rather than travelling directly to the collector and forming fibers. The PP surface thus
will have less negative effects on the exterior working fluid than a metal surface

would during the triaxial electrospinning process.

3.2. Implementation of the modified triaxial electrospinning processes

A photograph of the modified triaxial electrospinning system is illustrated in Fig. 3a.
The syringe containing the middle working fluid was directly connected to the
spinneret, while the inner fluid and the outer solvent were pumped to the spinneret
through the highly elastic silica gel tubes. Electrical energy was transferred to the
working fluids through an alligator clip fixed on the metal surface of the spinneret
(Fig. 3b).

Four different fiber formulations were prepared (Table 1). The first used a plain
solvent of acetone and acetic acid (2:1 v/v) for both the middle and outer fluids: hence,
although three fluids were being dispensed, two were the same, and the process
equated to modified coaxial electrospinning. As a result, the F1 fibers generated
comprise a monolithic composite with IBU dispersed throughout a gliadin matrix.

A typical modified triaxial electrospinning process (exhibiting a Taylor cone
followed by a straight fluid jet and then a whipping and bending region) is shown in
Fig. 3c for the preparation of the F3 formulation. In the absence of electrical charge,
the three working fluids formed a compound droplet (Fig. 3d), with the three layers

clearly visible because of the inclusion of methylene blue in the inner fluid (5 x 107°

12
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g/mL) and basic fuchsin in the middle solution. When a voltage of 15 kV was applied,
a compound Taylor cone was formed (Fig. 3e). During the electrospinning processes,
a stable concave surface of the outer solvent within the PP tube can be observed. This
is more obviously when 5 x 107" g/mL methylene blue was added into the outer
solvent mixture (Fig. 3f). When a droplet of the outer solvent mixture (ca. 0.007 mg)
was added on a PP film and a stainless steel plate (consisting of 1Cr18Ni9, the same
as the metal capillaries), the droplet on the metal plate spread out more open than on
the PP film (Fig. 3g). This give a hint that the PP surface exerted smaller drawing
force on the working fluids than the stainless steel surface, favorable for the stable

and robust electrospinning processes.

plate

0.5 mm

Fig. 3 Images of the modified triaxial electrospinning processes: (a) the triaxial
electrospinning system; (b) the connections of the working fluids and power supply to
the spinneret; (c) a typical electrospinning process for the preparation of F3; (d) the
compound droplet observed for F3 without an electrical charge; () the compound F3
Taylor cone which is observed after the application of a voltage (15 kV); (f) the
concave surface within the PP tube; and (g) the spreading of an outer solvent droplet

on the PP film and a stainless steel plate.
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Table 1 Parameters of the preparation of the four types of nanofibers. The outer fluid in all cases

comprised a mixture of acetone and acetic acid in a volume ratio of 2:1.

Working Middle fluid * Fluid flow rate (mL/h) Sheath
No. Structure
process (Wt%) Outer Middle  Inner” thickness (nm)
F1 Modified 0% CA 0.3 0.3 2 Monolithic 0
coaxial
F2 1% CA 0.3 0.3 2 Core-shell 1.82
F3 Modified 3% CA 0.3 0.3 2 Core-shell 5.85
triaxial
F4 5% CA 0.3 0.3 2 Core-shell 11.60

* The middle solution comprises CA in a mixture of acetone and acetic acid in a volume ratio of 2:1.

® The inner working fluid consisted of 4% (w/v) IBU and 16% (w/v) gliadin in a solvent mixture of HFIP and TFA (8:2 v/v).

3.3. Morphological characteristics and inner structures of the prepared
nanofibers

All of the fibers prepared have linear and cylindrical morphologies with smooth
surfaces (Fig. 4). No bead-on-a-string or spindle-on-a-string phenomena could be
observed. As the concentration of CA in the middle working fluid increased from 0%
w/v (F1) to 1% (F2), 3% (F3), and 5% (F4), the diameters of the nanofibers were
raised from 0.54 £+ 0.14 pm to 0.66 + 0.13 um, 0.72 + 0.13 um, and 0.87 £ 0.16 pm,

respectively.

Natural polymers such as CA (and others such as zein and ethyl cellulose) are
known to easily form a semi-solid substance at the nozzle of the spinneret during
electrohydrodynamic processing, even at low concentrations (Li, et al., 2017; Yang, et
al., 2018). Thus, in this study the outer solvent was used to prevent any clinging of
semi-solid CA to the spinneret, preventing blocking of the needles and ensuring a
stable and continuous electrospinning process. The outer solvent should also help the
electrical forces to draw the inner and middle fluids evenly during the solvent
exhaustion process (Yao, et al., 2018). These two effects of the outer solvent are

14



325  combined synergistially to ensure the formation of high-quality nanofibers regardless
326  of their composition (either monolithic F1 systems or core-shell hybrids in the case of

327 F2to F4).
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328
329  Fig. 4 SEM images of the nanofibers prepared in this work: (a) F1; (b) F2; (c) F3; (d)

330 F4.

331 The internal structures of F1 to F4 were investigated by TEM (Fig. 5). F1
332  displays a gradual decrease in the gray contrast level moving from the center to the
333  two boundaries, as a result of the thicknesses of the fiber declining (Fig. 5a). No phase
334  separation can be seen. This indicates that the IBU molecules are highly dispersed
335  throughout the gliadin matrix on the molecular level, without any drug particles
336 forming.

337 The F2, F3, and F4 fibers, in contrast, had clear core-shell nanostructures (Fig.
338  5b-5d, respectively). The CA coating of F2 is too thin to be seen in the main TEM
339 image (Fig. 5b), but a line around 2 nm in thickness can be seen at the fiber exterior in

340 the inset image, indicating successful fabrication of a core/shell structure. The CA

15
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coatings on F3 and F4 are clearer (see Fig. 5c and Fig. 5d), with estimated average
thicknesses of about 8 and 15 nm respectively. The CA coating for all of F2 — F4 is
evenly spread over the core IBU-gliadin composite. The outer solvent is thought to be

key in promoting such uniform coating during electrospinning.

Fig. 5 TEM images of the nanofibers: (a) F1; (b) F2; (c) F3; and (d) F4.

The average diameters of the nanofibers were determined using SEM images
(see Fig. 4) and found to be ca. 660, 720, and 870 nm for F2, F3, and F4 respectively.
Thus, the theoretical values of the different compartments’ thickness can be estimated
based on the equation for the volume of a cylinder:

(R} =R)p,Ls7 _FxC,
Rczchf” F;XCC

O _
O

where O, R, L, F, p and C represent the quantity of liquid dispensed, fiber radius, fiber
length, fluid flow rate, density, and solute concentration, respectively; and the
subscripts s, f, and c refer to the shell, the entire fiber, and the core. The L, terms can
be cancelled, and R, then calculated based the known values of R, and the densities of

[BU-gliadin composite (ca. 0.878 g/cm’) and CA (ca. 1.3 g/em’). For F2, F3, and F4,

16
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this yields R. values of 328.18, 354.15, and 423.40 nm, respectively. Thus, the CA
coating on fibers F2, F3, and F4 is estimated to be of 1.82, 5.85, and 11.60 nm in
thickness. The real thicknesses from the TEM images are slightly larger than these
calculated values. This is because, on one hand, the fast evaporation of solvent from
the surface of ejected fluids should make the shell CA coating have a smaller density
than usual. On the other hand, the medicated core nanocomposite might have a larger
density than both the IBU and gliadin. The filling effect of little IBU molecules in the
voids among gliadin molecules due to the favorable secondary interactions should
make the nanocomposites more compact than anticipation.

3.4. Physical form of the components and component compatibility

In the development of medicated nanomaterials of poorly water-soluble drugs, their
amorphous or crystalline state and their compatibility with carriers are vital for the
materials’ functional performances and stability of long term preservation (Borbas,
et al., 2016; Démuth, et al., 2018). The XRD patterns of the raw material powders
(CA, gliadin, and IBU) and the electrospun nanofibers are shown in Fig. 6a. IBU is a
crystalline material, as demonstrated by a series of sharp Bragg reflections in its XRD
pattern. In contrast, the polymer CA and the protein matrix gliadin displayed no
Bragg reflections in their XRD patterns, suggesting that these materials were
amorphous in nature. The fibers have no Bragg reflections in their patterns, instead
exhibiting broad haloes indicating that they all comprise amorphous solid dispersions.
This is commonly observed in electrospun systems, because of the very rapid nature

of the drying process. The amorphous state of IBU in the fibers allows the tailoring of

17
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its release profile, which can be controlled entirely by the polymer matrix in which it
is incorporated (rather than also being effected by the lattice enthalpy) (Kamaly,
Yameen, Wu, & Farokhzad, 2016; Démuth, et al., 2017; Jung, et al., 2018; Borbas, et

al., 2018; Wang, et al., 2018).
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Fig. 6 (a) XRD patterns of the raw materials and nanofibers, and (b) chemical

structures of the fiber components and their IR spectra

The chemical structures of the raw materials (CA, gliadin, and IBU), their IR
spectra, and the spectra of the nanofibers are given in Fig. 6b. The spectra of IBU

shows a characteristic peak at 1713 cm '

, which corresponds to the stretching
vibrations of its —C=0 groups. However, this peak disappeared from the spectrum of

the IBU-gliadin fiber F1. The lack of IR signs of IBU groups can be attributed to

several reasons, including its lower concentration in the fibers, the peak broadening
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effect of the amorphous form, and also the secondary interactions between gliadin and
IBU. These interactions include hydrogen bonds with the protons provided by gliadin
molecules, hydrophobic interactions between the benzene rings of IBU and the carbon
skeletons of gliadin, and also the electrostatic interactions (Li, et al., 2018; Wang, et
al., 2018). It is just because of good compability between gliadin and CA in the
electrospun products, good compability between the working fluids containing
gliadin/IBU and CA for coaxial electrospinning, and that new excipients are highly
desired in pharmaceutics (Xu, et al., 2017) that gliadin was chosen as a carrier
polymer for IBU in the present study.

A comparison of the spectra of F2, F3, and F4 with that of F1 reveals that the
core-shell materials had some additional peaks, for instance at 1724, 1236, and 1051
cm . These peaks are attributable to CA, and the F2 — F4 spectra can be regarded as
combinations of the CA and F1 spectra, indicating that the shell CA and the core
IBU-gliadin co-exist in F2 to F4 in a hybrid but not molecular composite manner. As
the thicknesses of the shell CA coating increases, the intensities of the characteristic
peaks of CA increase correspondingly. This observation can be closely related to use
of attenuated reflectance IR in these measurements: the penetration depth of the IR
probe in this technique is around 200 nm. Thus, the increase in the shell thickness
corresponds to a decrease in the amount of the core illuminated.

3.5. In vitro drug release
The in vitro IBU release profiles of the nanofibers are depicted in Fig. 7a. The period

of time taken for 100% release to be reached gradually increases as the thicknesses of
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the CA coating increased from 0 nm in F1 to 1.82, 5.85, and 11.60 nm for nanofibers
F2, F3, and F4. An enlarged image of the IBU release in the first 2 h is shown in Fig.
7b. In the first hour, F1, F2, F3, and F4 release 34.2 + 4.5%, 8.3 £ 4.6%, 5.4 £ 4.1%,
and 2.7 + 3.1% of the IBU loading respectively. The monolithic F1 material thus
shows a significant initial burst release. The core-shell nanohybrids F2 to F4 have
minimal initial bursts of release effects regardless of the thicknesses of the CA shell.
The CA coatings clearly improve the functional performance of the nanofibers in
terms of providing extended release durations and eliminating the initial burst release.

A zero-order equation was used to model the drug release data (Fig. 7¢). For F1
to F4, the linear fit equations were Q)= 24.89 + 6.94¢ (R, = 0.8997), O, = 10.36 +
3.19¢ (Ry = 0.9926), O3 = 5.34 + 2.41t (R3=0.9915), and Q,= 6.37 + 1.87¢t (R4 =
0.9854), respectively. These correlation coefficients, in addition to visual inspection
of the plots in Fig. 7c demonstrate that while the core-shell hybrids F2 to F4 have

close to zero-order release, F1 very clearly does not.

The in vitro drug release data were further analyzed in accordance with the

power law expression to eludicate the drug release mechanisms (Peppas, 1985):

M,
=—Lt =kt"
Q M

o

logQ = log(%) = nlog(t) +log(k)

©

where M, is the amount of drug released at time ¢, M., is the total amount of drug in
the fibers, £ is the rate constant, and 7 is a release exponent which is indicative of the

drug release mechanism. The regression equations for F1 to F4 (Fig. 7d) were log O)
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= 1.56 + 0.41 log t (R;=0.9911), log O,= 0.96 + 0.72 log t (Ry= 0.9945), log O3=
0.71 + 0.80 log t (R3 = 0.9976), and log Q4= 0.49 + 0.90 log t (R4 = 0.9961),
respectively. For F1, the exponent n was 0.41. This is smaller than the critical value of
0.45 (Peppas, 1985), suggesting that IBU was released through a typical Fickian
diffusion mechanism. However, all of the core-shell systems F2 to F4 had n > 0.45,
indicating a combination of diffusion and erosion mechanisms. However, the Peppas
power equation assumes that the drug is homogeneously distributed in the polymer
matrix, which is not the case for F2 - F4. Given that both CA and gliadin are insoluble
in water, it must be the case that diffusion of the drug through the fibers is the major
barrier to release, but the presence of the core/shell architecture confounded the

Peppas analysis.
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Fig. 7 In vitro dissolution test results (a) throughout the experimental duration and (b)
for the first 2 h (b). Data are shown as mean + S.D. from 6 independent experiments.
Fits to the IBU release data with (c) zero-order release kinetics and (d) the Peppas

power law expression are also shown.

3.6. Process—nanostructure—performance relationship
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The core-shell nanostructures developed in this work could be effectively designed by
controlling the fluids in the modified triaxial electrospinning processes. Their
functional performance is controlled by the CA concentration in the middle working
fluid. A linear equation can be developed (Fig. 8a) linking the CA coating thickness
(T) to the CA concentration (C): T = —0.371 + 2.306 C (R = 0.9947). It is thus
possible to precisely manipulate the coating thickness by varying the CA
concentration.

The CA layer thickness in turn has a major effect on the drug release behaviors
of the nanohybrids. The time taken for the release percentages to reach 30, 50, and
90% all increase with the coating thicknesses (Fig. 8b). The CA coating effectively

acts as a tool to control and tune the drug release rate from the core compartment.

(a) o] —m—30% (b)

124 ) —0—50%
4011 A 90%

L
IBU release time (h)
®

o] ¥

Thickness of CA coating (T, nm)

T T T T T - T . .
0 1 2 3 4 5 0 4 8 12
CA concentration (C, %) Thickness of blank CA nanocoating (nm)

Fig. 8 (a) The effect of the CA concentrations in the middle working fluid on the
thicknesses of the fiber coating and (b) the variation in IBU release profiles with the

CA coating depth (showing the time taken to reach 30, 50, and 90% release).

In conventional medicines, a crystalline drug is dispersed in a carrier matrix, and
the physical and chemical properties of the latter control the drug release properties in
vivo (Q1 & Craig, 2016). In the development of electrospun nanofibers via traditional
monoaxial blend electrospinning, drug molecules are uniformly distributed
throughout a filament-forming matrix in the form of an amorphous solid dispersion,
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as is the case for F1 in this study (Fig. 9). As a result, a burst release of drug is
observed, since the fibers have large surface areas and a significant proportion of the
drug is near the surface and so can dissolve into solution rapidly. When the blank CA
coating was added to the IBU/gliadin core in the modified triaxial electrospinning
process, this modulated the drug release behavior. A thicker CA coating layer (e.g. in
F4 cf. F2) could extend the drug release duration to a greater extent (Fig. 9). The F2 -
F4 formulations can be regarded as reservoir-type drug delivery systems, with the CA
layer controlling the release properties. A process—nanostructure—performance
relationship can hence be determined. This relationship could be used to develop new
types of functional nanomaterials allowing individualized administration ensuring

patients receive safe, effective, and economical treatments.

_Nanofiber F1

_Nanofiber F2

- Gliadin
ICON ‘ CA
— . L] IBU

_Nanofiber F4

Fig. 9 The core-shell structures of the fibers and drug distributions within them.

4. Conclusions

A modified triaxial electrospinning process was successfully developed in this
work and used to prepare a series of core-shell nanohybrids. The three fluids used for
electrospinning comprised a plain solvent (outer fluid), a non-electrospinnable dilute

cellulose acetate (CA) solution (middle) and an electrospinnable ibuprofen-gliadin
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solution (inner fluid). This led to the formation of ibuprofen/gliadin amorphous solid
dispersions coated with a thin layer of CA. The thickness of the coating could be
precisely tuned through the CA concentration in the middle solution. SEM and TEM
images revealed that the fibers had linear and cylindrical morphologies with a clear
core-shell nanostructure. The IBU in the nanofibers was amorphously distributed
throughout the core matrix, thought to be because it is able to form intermolecular
interactions with gliadin. In vitro dissolution tests showed an initial burst release to
arise from monolithic ibuprofen/gliadin fibers, but this was completely eliminated in
the systems with a CA coating. The coating also extended the release duration, with a
thicker coating layer leading to longer release times. This study hence provides a new
way to develop advanced functional nanomaterials and to control their properties via

process—nanostructure—performance relationships in triaxial electrospinning.
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