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Abstract: Raman spectroscopy is a novel tool used in the on-line monitoring and control of
bioprocesses, offering both quantitative and qualitative determination of key process variables
through spectroscopic analysis. However, the wide-spread application of Raman spectroscopy
analysers to industrial fermentation processes has been hindered by problems related to the high
background fluorescence signal associated with the analysis of biological samples. To address
this issue, we investigated the influence of fluorescence on the spectra collected from two Raman
spectroscopic devices with different wavelengths and detectors in the analysis of the critical process
parameters (CPPs) and critical quality attributes (CQAs) of a fungal fermentation process. The spectra
collected using a Raman analyser with the shorter wavelength (903 nm) and a charged coupled device
detector (CCD) was corrupted by high fluorescence and was therefore unusable in the prediction
of these CPPs and CQAs. In contrast, the spectra collected using a Raman analyser with the longer
wavelength (993 nm) and an indium gallium arsenide (InGaAs) detector was only moderately
affected by fluorescence and enabled the generation of accurate estimates of the fermentation’s
critical variables. This novel work is the first direct comparison of two different Raman spectroscopy
probes on the same process highlighting the significant detrimental effect caused by high fluorescence
on spectra recorded throughout fermentation runs. Furthermore, this paper demonstrates the
importance of correctly selecting both the incident wavelength and detector material type of the
Raman spectroscopy devices to ensure corrupting fluorescence is minimised during bioprocess
monitoring applications.

Keywords: Raman spectroscopy; fluorescence; fermentation monitoring; PLS modelling; critical
process parameters; critical quality attributes

1. Introduction

Raman spectroscopy is a non-invasive, non-destructive spectroscopic technique that exploits
molecular vibrations for the qualitative and quantitative analysis of molecules [1]. It has broad applications
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in biology and chemistry and has been applied in environmental and industrial applications [2]. Interest
in this form of spectral analyser from the biotechnology industry has gained momentum in recent
years [3], prompted by the release of the Process Analytical Technology (PAT) initiative by the FDA in
2004 [4]. The primary advantages of Raman spectroscopy as a PAT analyser relevant to bioprocesses
include, small sample volume requirement, no sample preparation, little interference from water in
the analysis of aqueous samples, ability to analyse through glass or plastic and high specificity for
a wide of nutrients and products [5,6]. Recent demonstrations of Raman spectroscopy applied to
bioprocesses have included real-time monitoring of nutrient concentrations and viable cell densities in
mammalian cell culture runs [7,8], ethanol production in Saccharomyces cerevisiae fermentations [9,10]
and nutrient and phenylalanine concentrations in an Escherichia coli fermentation [11]. More advanced
demonstrations include the on-line monitoring of a recombinant antibody titre during a mammalian cell
cultivation [12], in addition to the ability of Raman spectroscopy to monitor complex post-translational
modifications as shown by Li et al. [13] in the real-time monitoring of glycosylation during monoclonal
antibody production.

It is clear that Raman spectroscopy will play a pivotal role in the real-time monitoring and
control of bioprocesses. However, a major hurdle hindering the wide-spread adoption of these process
analysers relates to the high fluorescence observed during the analysis of biological molecules which
often overlay the important Raman scattering bonds, diminishing the ability to estimate the material of
interest [14,15]. There are various different methods to alleviate or suppress fluorescence in the analysis
of biological materials. Photo-bleaching has been demonstrated to reduce the recorded fluorescence in
the analysis of bone tissue through prolonged exposure of the sample to intense excitation from the
laser source decomposing fluorophores responsible for sample fluoresence [16]. Adjustments to the
confocal set-up has also been reported to reduce fluorescence by reducing its depth of focus which
effectively reduces the path length reducing the detected fluorescence resultant from outside of the laser
focus [17]. A technique known as shifted excitation Raman difference spectroscopy (SERDS) involving
the collection and subtraction of two Raman spectra in succession at slightly different laser wavelengths
was also demonstrated to eliminate fluorescence during the analysis of biological samples [17,18].
This technique creates a derivative-like spectrum with the background fluorescence signal eliminated,
enabling better resolution of the important Raman features [19]. Furthermore a technique known
as time-gated Raman spectroscopy can reduce fluorescence by exploiting the differing time scales
between Raman scattering and fluorescence absorbance. Whereas Raman scattering is completed
almost instantaneous (<1 picosecond) and fluorescence emission takes up 100–1000 times longer
(nanosecond range). Time-gated Raman spectroscopy works by illuminating a sample for a very
short time using a laser pulse. Provided the detection system is gated as to only detect those photons
scattered or emitted during the first few picoseconds only the important Raman photons will be
recorded while rejecting the majority of the unwanted fluorescence photons [20,21]. In addition
to these techniques the choice of the excitation wavelength of the Raman device can significantly
impact the level of observed fluorescence for the majority of samples based on the inverse relationship
between the excitation wavelength of the Raman device and the probability of sample fluorescence [2].
For example, Ultra-Violet Raman spectroscopy enables better noise-to-signal ratios due to the lower
wavelength and also can reduce the fluorescent interference as most species do not fluorescence below
an excitation band of 260 nm [15,22]. The detector material of the device can also be highly influential
on observed fluorescence, however, little research has been reported on the importance of this selection
criteria in the application of Raman spectroscopy to fermentation monitoring.

To address this issue and advance the use of this technology in fermentation applications,
two Raman spectroscopic analysers were implemented on a highly fluorescence fungal fermentation
process. One Raman analyser had an incident wavelength of 903 nm and used a silicon-based charged
couple device (CCD) detector and the second device had a 993 nm wavelength with an indium
gallium arsenide (InGaAs) array detector. Both analysers were implemented on a similar small-scale
fungal fermentation process with the objective of estimating the critical process parameters (CPPs)
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and critical quality attributes (CQAs) of the fermentation. These have been previously identified for
this process as the glucose and active pharmaceutical ingredient (API) concentration, respectively.
The spectral data collected using the Raman device with the shorter wavelength and CCD detector
was found to be significantly corrupted by a high background fluorescence signal in contrast to the
993 nm Raman device with the InGaAs detector which was only moderately affected by fluorescence.
The spectra collected from both analysers was correlated with the off-line concentrations of both
variables using partial least squares (PLS) modelling. Only the regression models generated using
the spectra recorded on the 993 nm device enabled accurate predictions of both the glucose and API
concentration. To the best of the authors’ knowledge, this is the first direct comparison of two Raman
spectroscopy devices with different incident wavelengths and detector material to monitor the same
fermentation process. This work highlights the need to better understand the fundamental principles
of fluorescence on recorded Raman spectra and demonstrates the importance of correct probe selection
in future applications of this novel technology to the biotechnology sector.

2. Experimental Section

2.1. Microorganism and Media

A proprietary fungus supplied by Pfizer was used to inoculate both fermentations that was
propagated from the same thawed culture stock supplemented with a proprietary nutrient feed.
The fungus produces a high concentration of a commercially available antibiotic, referenced as the
active pharmaceutical ingredient (API) concentration.

2.2. Bioreactor Conditions

Two fed-batch fungal fermentations (referred to as Fermentation A and Fermentation B) were
performed in a 5 L bioreactor with a working volume of approximately 3.6 L. Each bioreactor was set
to have identical operating conditions, both equipped with thermometers, dissolved oxygen and pH
probes. The temperatures of the reactors were kept at 28 ◦C using an external cooling jacket. The pH of
the culture was maintained at 6.2 by the addition of an acid/base solution using a proportional integral
derivative (PID) controller. Mixing was accomplished using a standard Ruston impeller operating at a
fixed RPM. The air flow rate was fixed to its upper limit for both fermentations. Off-line measurements
from Fermentation A were recorded once a day and for Fermentation B were recorded three times
a day. Glucose concentration was measured using an off-line analyser and the concentration of the
active pharmaceutical ingredient (API) was determined through high pressure liquid chromatography
(HPLC). Throughout the batch, glucose was controlled through Bolus glucose additions. Anti-foam
additions were added as required. Specific details regarding the microorganism, media composition
and vendor selections have been omitted for reasons of confidentiality.

2.3. Raman Spectroscopy Devices

In Fermentation A, a 993 nm Raman spectroscopy device with an indium gallium arsenide
(InGaAs) detector array with a spectral range of 200–2400 cm−1 and a resolution of 3 cm−1 was
implemented. In Fermentation B the laser wavelength of the Raman device was equal to 903 nm with
a spectral range of 200–2400 cm−1 and a resolution of 3 cm−1 using a silicon-based CCD detector. Each
device was connected to a portable computer that collected the spectra on-line and allowed for both
the integration time and number of averages to be manually adjusted throughout each fermentation.
Before use, each Raman device was calibrated to ensure each pixel number was correlated to the correct
wavenumber in the spectrograph. The calibration was performed by analysing the Raman spectra of
a known material and comparing the wavenumbers of the main peaks in the spectra to ensure they
corresponded to the known wavenumbers of the sample. Additional calibration samples were made up
to help identify the peaks of interest, these involved analysing the Raman spectra collected from aqueous
samples spiked with glucose (20 g L−1) and API (6 g L−1) additions.
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2.4. Raman Spectra Preprocessing and Wavelength Selection

The spectra collected by each device was combined with the off-line glucose and API
measurements and was used to generate two PLS models. In Fermentation A, ten off-line glucose
samples were recorded and 18 off-line samples for Fermentation B. For each fermentation eight off-line
samples of the API concentration were recorded. The off-line glucose samples were interpolated using
a cubic spline approximation and a 30-min sampling rate resulting in 522 and 475 sample points for
Fermentation A and B, respectively. The off-line API concentrations were interpolated in a similar
fashion resulting in approximately 360 sample points. The 30-min sampling rate was chosen to match
the sampling frequency of each Raman device that was set up to produce a single spectra every 30 min
through adjustment of the number of averages and integration times. The preprocessing of the spectra
utilised the de-spiking algorithm outlined in Mori et al. [23] and was baseline corrected as shown in
Eilers and Boelens [24]. The spectra were further preprocessed by calculating the first derivative of the
spectra using a Savitzky-Golay filter with a width of 15 and a polynomial order of 5, similar to the
preprocessing method outlined in Bocklitz et al. [6]. The preprocessed spectral data (Xspec) and the
corresponding off-line glucose (YGluc) and off-line API concentrations (YAPI) were divided up to ensure
each calibration data set adequately described the concentration ranges of both the glucose and API in
the validation data sets. Thus, the first 75 h of each fermentation were used for the calibration data sets
for the glucose measurements with the remaining used to validate the model. The calibration data used
for the prediction of the API concentration used the first six off-line measurements, additionally five
interpolated data points around each of the off-line API concentrations were included in the calibration
data set for both Fermentation A and B, consisting of a total of 30 data points. The validation data
set consisted of the data between these calibration data points and the remaining data after the sixth
off-line API concentration value.

The wavelengths associated with the glucose were identified through the analysis of the aqueous
calibration samples spiked with high concentrations of glucose (20 g L−1) and were taken as: 366:372
456:476 477:486 891:897 898:919 1589:1595 cm−1. The spectra collected during the analysis of the
calibration samples are available in Appendix A shown in Figure A1. The PLS model for the
API concentration was generated in a similar manner, taking the wavelengths as 720:732 786:793
800:806 cm−1. The optimum number of components for each PLS model were chosen based on the
root mean square error of correlation (RMSEC) and root mean square error of prediction (RMSEP) as
defined in Equation (6).

2.5. Partial Least Model Generation

The PLS model implemented the non-linear iterative partial least squares (NIPALS) algorithm as
outlined in detail by Wold et al. [25]. The preprocessed spectral data (Xspec) was first decomposed in to
R latent variables, generating a matrix of scores, T, and loadings, P with E as the residuals. The off-line
concentration of the glucose concentration (YGluc) was decomposed in a similar fashion generating
a matrix of scores, U, and loadings, Q with F as the residuals, defined below as:

Xspec = TP′ + E (1)

YGluc = UQ′ + F (2)

A vector of inner-relationships B is generated that relates scores of the X block to the Y block as:

B = XT
specT(XT

specXspec)
−1 (3)

The PLS model works iteratively for each latent variable and upon convergence a matrix of
regression coefficients β can be generated as follows:

β = W(PTW)−1diag(B) (4)



Bioengineering 2018, 5, 79 5 of 17

The cumulative sum of the regression coefficients predicts the response variable (ŶGluc) from the
X block taking R latent variables:

ŶGluc = Xspec

R

∑
r=1

β (5)

Similar procedure was undertaken for predictions of the active pharmaceutical ingredient (YAPI).

2.6. Validation of PLS Model

To select the number of latent variables to choose in the PLS model, the prediction error of the
model was calculated. The error related to the calibration data set was calculated using the root mean
square error of calibration (RMSEC) and for the validation data set the root mean square error of
prediction (RMSEP) was used. These functions were calculated as described in [26]:

RMSEC =

[
1
n

n

∑
i=1

(yi − ŷi)
2

]0.5

RMSEP =

[
1
p

p

∑
i=1

(yi − ŷi)
2

]0.5
(6)

where:
n: calibration samples
p: validation samples

yi: ith calibration sample
ŷi: ith validation sample

2.7. Raman Spectroscopic Fundamentals

The fundamental principles of Raman spectroscopy are outlined in Figure 1. The process involves
illuminating a sample using a monochromatic light source of fixed frequency equal to ν0 and analysing
the scattered light that is recorded using a detector. The energy of the light source is given by E = hν0

with h equal to Plank’s constant and ν0 equal to its frequency. The interaction of the light with the
sample can result in small frequency shifts (∆ν) and a resultant energy deviation. The interactions
of the light with the sample result in various scattering and absorbance phenomena as highlighted
in Figure 1.

Rayleigh scattering occurs when the light interacts with the molecules of the sample and the net
exchange of energy is zero i.e., energy of the incident light (hν0) is equal to the energy of the scattered
light. Conversely, if the sample gains energy from the light and is shifted up one vibrational state
then the frequency of the scattered light will be lower than the incident beam i.e., energy of scattered
light (hν0 − h∆ν) will be less than the energy of incident light (hν0), referred to as Stokes scatter. If the
interaction causes the sample to lose energy then the frequency of the scattered light will be higher
than the incident light i.e., the energy of the reflected beam (hν0 + h∆ν) will be greater than the energy
of the incident beam (hν0), this is known as anti-stokes scatter. It is the Stokes shifted scatter that is
usually measured by Raman spectroscopic analysers and referred to as Raman shift or Raman scatter
and often measured in terms of wavenumber in units of cm−1, typical ranging from 200 to about
3000 cm−1.

Both of these scattering phenomena result in the excitation of electrons of the sample to virtual
states which are lower in energy than an excited electronic transition state (E’). The net energy deviation
results in characteristic peaks in the resultant spectra. The positions of these peaks are defined by
the molecular structure of the sample and its chemical environment, allowing Raman spectroscopy
to be used for chemical identification and classification. Furthermore, the peak heights (or areas) of
the spectrum are assumed linearly proportional to the molecular concentration and consequently can
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be used to monitor the CPPs or CQAs of bioprocesses, provided the Raman analyser can detect the
material of interest [27].
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Figure 1. Schematic of the fundamental principles of Raman spectroscopy, highlighting the main
scattering and fluorescence excitations of a sample after it is excited using a monochromatic light source
of frequency equal to ν0.

The intensity of Raman scattering (IRaman) is very weak and is often difficult to detect,
the weakness of this signal is the primary limitation of Raman spectroscopy. This is evident by
comparing the intensity of Raman scattering to that of the source (ISource) and the signal received due
to Rayleigh scattering (IRayleigh) which was defined by [28] to be in the following range:

IRaman ≈ 10−4IRayleigh ≈ 10−8ISource (7)

It is therefore necessary to filter out the Rayleigh scattered light in order to detect the weak Raman
scattering effect [29].

In competition with the weak Raman scattering is fluorescence which is a non-scattering process
that occurs when the incident beam absorbs some energy from the light source and temporarily excites
the electrons with enough energy to be transferred up to a higher quantum state (E’). There are multiple
higher quantum states that the exited electrons can obtain and this is dependent on the energy and
wavelength of the external light source. The electrons in their excited state are unstable and as they
return to their respective ground state they release light with energy equal to hν0,1 ± h∆ν as highlighted
in Figure 1. The other main difference between fluorescence and Raman scattering is the time-scale
involved in each process, with the fluorescence process taking in the region of nanoseconds (10−9 s)
compared to the Raman scattering process which is much quicker and is completed in picoseconds
(10−12 s) [28].
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Molecules that are susceptible to this fluorescence process when excited by visible, ultra-violet
or near-infrared light are known as fluorophores or fluorescence molecules, these are typically
polyaromatic hydrocarbons or heterocycle molecules with several π bonds. In fermentation monitoring,
there are many known and unknown biological compounds that fluoresce. Typically, proteins, enzymes,
vitamins and primary and secondary metabolites from microbial growth have this property [5],
however culture fluorescence can also be related to culture conditions including cell density, viscosity
and product concentration [30]. Unfortunately in fermentation monitoring the onset of fluorescence is
a major problem with only one in every 104 scattered photons related to Raman scattering, even small
levels of fluorescence can mask out the signal rendering the analysis very difficult or redundant.

3. Results and Discussion

3.1. Fluorescence Observations

The spectra collected from two Raman spectroscopic devices were analysed to estimate the
glucose and API concentration, previously identified as the primary CPP and CQA on this small-scale
fungal fermentation. The spectra collected on the 993 nm Raman device was moderately influenced
by fluorescence in comparison to the spectra recorded by the 903 nm Raman device which was
significantly effected by fluorescence. Figure 2a highlights the large baseline shift which was mainly
attributed to fluorescence of the fermentation broth recorded on the 903 nm Raman device during
the first 90.5 h of the fermentation. A fourfold increase is observed in intensity as the baseline
spectra shifts from 0.4 × 104 a.u to nearly 1.6 × 104 a.u. Although this large increase is not atypical,
Cannizzaro et al. [31] observed a similar increase in baseline shift during the first 90 h of a fed-batch
process monitoring a Phaffia rhodozyma. However, some of the important Raman peaks observed in
Figure 2a are shown to be dwarfed by the strong background fluorescence signal in comparison to
the initial spectra recorded. These spectra were recorded using an integration time of 180 s taken
9 averages. In an attempt to improve the resolution of these Raman peaks and improve the signal to
noise ratio, the tuning parameters of the Raman 903 nm device were adjusted throughout the batch
as defined in Table 1. Although it is not recommended to adjust the tuning parameters of a Raman
device during a fermentation due to the complications in the generation of the subsequent regression
model. To ensure the important Raman peaks are not obscured by the prominent broad fluorescence
signals in-process changes are often necessary. Shih and Smith [32] previously demonstrated that
an increase in the integration time improved the resolution of the glucose peaks recorded on the
spectra collected using a 785 nm Raman device during an ethanol producing fermentation. In the
experiments performed here a similar increase in the intensity of the spectra was observed after the
integration time was increased to 270 s and the number of averages reduced to 6, as seen in Figure 2b.
However, the magnitude of the fluorescence also increased resulting in the saturation limit of the CCD
detector been reached. The saturation limit of this device is shown by the flat line of the spectra as
it approaches 60,000 counts in intensity during the hours of 91.5–97. In order to reduce the intensity
below this limit, the integration time was decreased to 60 s and the number of averages was increased
to 27 as shown in Figure 2c. A decrease in the intensity of the spectra was observed, however the weak
Raman signals were effectively masked out by the remaining broad background fluorescence signal.
Therefore the remaining spectra collected for this fermentation was effectively unusable (Figure 2d) as
no quantitative information could be extracted due to the dominance of the broad fluorescence signal.
The spectra collected using the 993 nm Raman device was only affected by moderate fluorescence
as shown in Figure 3a where clear Raman peaks are visible throughout the entire batch. As a result,
the tuning parameters of the device were kept constant throughout the fermentation.
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Figure 2. A subset of the raw spectra recorded by the 903 nm Raman spectroscopic device collected at
different tuning parameters with (a) recorded using an integration time of 180 s and taking 9 averages
over the time course of the fermentation from 0–90.5 h; (b) had an integration time of 270 s and
6 averages over the time course of 91.5–97 h; (c) had an integration time of 60 s and 27 averages over
the time course of 98.5–114.5 h and (d) was recorded using an integration time of 30 s and 54 averages
over the time course of 193.5–239 h.

Table 1. Summary of tuning parameters chosen for the 993 and 903 nm Raman throughout each batch.

Spectra
Reference

Start
(h)

End
(h)

# of
Spec

Integration
Time (s)

# of
Averages Issues Encountered

993 nm Raman Device

Spec0−260 0 260 520 180 9 Moderate Fluorescence

903 nm Raman Device

Spec0−90.5 0 90.5 181 180 9 Moderate Fluorescence
Spec91.5−97 91.5 97 10 270 6 CCD saturated

Spec98.5−114.5 98.5 114.5 32 60 27 High Fluorescence
Spec115.5−146.5 115.5 146.5 62 90 18 High Fluorescence
Spec146.5−193 146.5 193 93 60 27 High Fluorescence
Spec193.5−239 193.5 239 91 30 54 High Fluorescence
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Figure 3. Raw spectra collected from the 993 and 903 nm Raman spectroscopic devices, shown in
(a,b) respectively. The corresponding PLS model predictions compared against the on-line glucose
concentrations are shown in (c,d), respectively

3.2. Glucose Predictions of 903 and 993 nm Raman Spectroscopic Devices

The spectral data of each device and the corresponding off-line glucose measurements were used
to generate two separate PLS models as previously discussed. The number of components of each
model were chosen based on the RMSEC and RMSEP of both PLS models as defined by Equation (6).
Figure 4 compares these errors against the number of components of each PLS model for both the
903 and 993 nm Raman devices. For the 993 nm Raman device, four components were selected as
it corresponded to the lowest RMSEP. Taking additional components unnecessarily increases the
complexity of the model for a marginal decrease in the error of both the RMSEC and the RMSEP.
Similarly for 903 nm Raman device, three components were chosen based on similar observations.
The RMSEP for 903 nm Raman device is very poor in comparison to the 993 nm Raman device
suggesting the choice of components will have little influence on the predictability of the PLS model.
The generation of this PLS model is summarised in Figure 3c,d, showing the off-line glucose predictions
for the 993 and 903 nm Raman device, respectively. As the spectral data generated from the 993 nm
device was only moderately effected by fluorescence, this device generated accurate PLS predictions
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when compared to the fermentation’s off-line glucose concentrations as highlighted in Figure 3c.
Abu-Absi et al. [7] and Whelan et al. [33] demonstrated similar findings, both highlighting the
ability of a 785 nm Raman probe to predict the glucose concentration on-line throughout mammalian
fed-batch cell cultivations with both predictions shown to agree with the off-line measurements of the
glucose concentration.

The PLS model predictions of the glucose concentration in Fermentation B using the spectra
collected using the 903 nm Raman device were very poor when compared to the off-line values as
shown in Figure 3d. These poor predictions are related to the observed increase in fluorescence
with batch progression. Clearly the important Raman peaks related to changes in both the glucose
and product concentrations are masked out by this fluorescence accounting for the poor predictions
generated using the PLS model of this spectra. Additionally the large deviations in the predicted
glucose concentration can be accounted for by considering the changes to the integration times and
number of averages shown in Table 1. As the manipulation of these parameters are not accounted for
in the linear relationship generated by the PLS model and can be observed by the glucose predictions
shown in Figure 3d.
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Figure 4. RMSEC and RMSEP for 993 and 903 nm Raman device.

3.3. Influence of Raman Spectroscopic Incident Wavelength and Detector on Fluorescence

The two main factors contributing to the large difference observed in the intensity of fluorescence
effecting the spectra collected by both Raman analysers is related to the incident wavelength of each
device and the detector material used. The choice of the excitation wavelength can significantly impact
the level of observed fluorescence. In Raman spectroscopy the scattered energy of the light source is
inversely proportional to the fourth power of the excitation wavelength defined as:

IRaman ≈ (ν0)
4 ≈

(
1

λ0

)4
(8)

where:

IRaman : Intensity of Raman scattered light
ν0: Frequency of light source
λ0: Wavelength of light source

Therefore the longer wavelength of 993 nm Raman device results in a decrease in energy of the
light source compared to the 903 nm, hence reducing the probability of fluorescence by lowering the
energy available to excite the electrons of the sample up to their quantum states. Frank et al. [34] also
highlighted the importance of incident wavelength selection by studying the Raman spectra collected
from a human breast biopsy sample using seven different excitation wavelengths ranging from 406 nm
to 830 nm. The spectra collected with the 406 nm incident wavelength was completely dominated by a
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broad fluorescence peak whereas the spectra collected using the higher incident wavelengths (784 and
830 nm) resulted in high resolution spectra that enabled quantitative information to be extracted from
the spectral sample. Similarly, Volodin et al. [35] also demonstrated comparable results highlighting
the ability of a 1064 nm Raman device to correctly characterise a dark rum sample containing a strong
fluorescence background. However, when analysing the same sample using a 785 nm Raman device,
the rum sample could not be characterised as the signal was corrupted by high fluorescence. Similar to
the results presented here, the 785 nm Raman device used a CCD detector and the 1064 nm Raman
device had an InGaAs detector in their work.

Furthermore, the 903 nm Raman device uses a CCD detector which was highlighted to have
low quantum efficiency above wavelengths greater than 800 nm [15,36]. Li et al. [37] demonstrated
a similar rapid decrease in the quantum efficiency of CCD detectors in wavelengths above 850 nm.
In these regions the photon energy decreases below the silicon bandgap energy and the CCD detector
becomes transparent to the incident photons. This reduction in quantum efficiency combined with the
strong background fluorescence signal reduces the ability of this 903 nm device to detect the weak
Raman peaks. McCreery [2] also highlights the significant drop in quantum efficiency of CCD detectors
above 850 nm and highlights the optimum incident wavelength of Raman devices with CCD detectors
to be in the range of 600–850 nm. In contrast, however, Adar et al. [36] demonstrated that the indium
gallium arsenide (InGaAs) detector arrays have a high quantum efficiency at these higher wavelengths
which is demonstrated by the ability of the 993 nm device to produce clearly defined Raman peaks
throughout the entire fermentation. Figure 3 highlights the importance of correct detector material in
addition to incident wavelength when selecting a Raman spectroscopy device for a highly fluorescence
fermentation. However, it must be noted that fluorescence is sample and process specific. Raman
devices using low wavelength excitation sources can be implemented successfully for samples effected
by low or moderate fluorescence.

3.4. API Predictions of 993 nm Raman Spectroscopic Device

The on-line prediction of the API concentration of this fermentation was also investigated. The PLS
predictions of the API concentration in comparison to the off-line values using the spectra collected
from the 993 nm Raman device is shown in Figure 5. The product concentration predictions are in
good agreement with the off-line measurements. The ability to estimate the product concentration
on-line allows for the development of improved control strategies capable of improving product yields.
The prediction of the product in Fermentation B using the 903 nm Raman were very poor and as
a result these predictions are not shown. To date, few examples have reported on the ability of Raman
spectroscopy to accurately model the API concentration in fermentations processes. Examples include,
Cannizzaro et al. [31] who demonstrated the ability of 785 nm Raman device for the on-line production
of carotenoid production in a fed-batch P. rhodozyma fermentation in addition to the prediction of
antibody product concentrations in mammalian cell cultures [12,38]. The ability of the 993 nm Raman
device to accurately predict the API concentration in this fermentation system highlights the potential
benefits of applying this technology for the implementation of Quality by Design methodologies for
fermentation process improvements.
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Figure 5. Profile of PLS model of product generated using the spectra collected from the 993 nm Raman
device and the corresponding off-line concentrations of the API concentration. The dashed vertical
lines represent the time of the glucose additions.

4. Conclusions

Fluorescence is a major problem experienced by many scientists and engineers implementing
Raman spectroscopy to monitor and control biopharmaceutical processes. This paper is the first direct
comparison of two different Raman spectroscopy devices on the same fermentation highlighting the
significant influence of incident wavelength and detector material on fluorescence levels detected
by each device. The spectra recorded by the Raman spectroscopy device with the 903 nm incident
wavelength and a CCD detector was corrupted by high fluorescence and rendered the recorded spectra
unusable for regression analysis. However, the spectra recorded by the Raman spectroscopy device
with the 993 incident wavelength and an indium gallium arsenide (InGaAs) detector generated spectra
with only moderate levels of fluorescence. The spectra recorded by this device enabled accurate
estimations of both glucose and API concentrations through the generation of a PLS regression
model. Therefore this work demonstrates that although a lower incident wavelength increases
the Raman scattering effect it can also increase the level of fluorescence rendering the recorded
spectra obsolete. However, at elevated incident wavelengths the probability of fluorescence is
significantly reduced in addition to the Raman scattering effect which can be compensated for by
a more sensitive detector material as demonstrated by the 993 nm Raman probe with the InGaAs
detector. Thus Raman spectroscopy is a highly suitable tool for the quantification of the key process
parameters in biopharmaceutical processing. However, caution is advised in implementing this novel
tool particularly in the choice of the appropriate incident wavelength of the analyser and the sensor
detector material to ensure problems relating to high fluorescence do not impact on the quality of the
recorded spectra.
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Abbreviations

The following abbreviations are used in this manuscript:

API Active pharmaceutical ingredient
B Inner-relationship matrix for PLS model
CCD Charged couple device
CPP Critical process parameters
CQA Critical quality attributes
E Residual matrix in PLS model for X-data
F Residual matrix in PLS model for Y-data
FDA Food and drug administration
HPLC High pressure liquid chromatography
InGaAs Indium gallium arsenide
n Number of calibration points in PLS model
NIPLAS Non-linear iterative partial least squares
p Number of validation points in PLS model
P Loadings matrix in PLS model
PAT Process analytic technology
PID Proportional integral derivative
PLS Partial least squares
R Number of latent variables in PLS model
RMSEC Root mean square error of calibration
RMSEP Root mean square error of prediction
UV Ultra-violet
U Scores matrix in PLS model of Y-data
Q Loadings matrix in PLS model of Y-data
T Scores matrix in PLS model of X-data
Xspec X-data (spectral) in PLS model
yi ith calibration point in PLS model
ŷi ith validation point in PLS model
YGluc Y-data (glucose) in PLS model
YAPI Y-data (API) in PLS model
β Regression coefficients for PLS model
ν0 Incident wavelength of Raman device
h Planks constant

Appendix A. Raman Spectroscopy Operation

During the operation of Raman spectroscopy devices there are two main tuning parameters that
can be manipulated, these parameters influence the quality of the spectra collected, where:

• Integration time: relates to the detector exposure time, the longer the integration time the larger
the intensity of the Raman spectra. The intensity relates to the total accumulated charge recorded
on a single pixel. Large integration times can saturate the detector whereas small integration
times can decrease the Raman peaks below detectable levels, therefore a balance is required.

• Number of averages: refers to the number of spectra that were averaged to obtain a single
spectrum, used to improve the signal to noise (SNR) ratio.

Overview of Spectral Preprocessing Methods

Similar to the majority of spectroscopic analysis, Raman spectra must be preprocessed to
improve the predictability of the classification and regression models generated. The objective of
preprocessing is to remove all the unwanted physical phenomena that are uncorrelated with the
process. Bocklitz et al. [6] regards the following as the three primary disturbances associated with
Raman spectroscopy,
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1. Fluorescence and background Baseline Increase
2. Noise
3. Cosmic spikes

These unwanted artifacts are discussed below, highlighting the primary preprocessing methods
employed to remove or diminish their effects.

1. Fluorescence and background baseline increase

Fluorescence as discussed is a major problem in Raman spectroscopy often highlighted by a broad
background signal and/or baseline increase across the recorded spectra. Provided this fluorescence
does not completely inundate the weak Raman emission of the material of interest, preprocessing of
the spectra can remove this moderate fluorescence and help generate improved regression models.
There are various different preprocessing techniques available with polynomial fitting or calculating
the derivative of the spectral signal as the two most widely accepted techniques. Polynomial fitting
involves the subtraction of a least-squares fitted polynomial from the spectra. A fourth- to sixth- order
polynomial is generally used to approximate the fluorescence background signal and is then subtracted
from the original Raman spectra. This technique, however, can result in negative baseline corrected
spectral values which are difficult to interpret and non-physical [39]. An extension of this technique
is to perform weighted least-squares baseline correction which performs an optimisation function
across the whole spectra. Points with residuals greater than zero are weighted at each iteration of the
least-squares fitting algorithm resulting in non-negative baseline corrected spectra. The application of
this technique to some calibration spectra collected is shown in Figure A1, with further details of the
algorithm found in [24].

Alternatively the baseline shift can be corrected for by working with the first or second derivative
of a spectra. This transformation is linear with the curves produced retaining their quantitative aspects
in respect to the original spectra [26]. However, derivative calculations can sometimes amplify spectral
noise. This is avoided by smoothing the data before calculating the derivative. A Savitzky-Golay filtering
technique is often the smoothing technique of choice for Raman spectroscopic analysis, this technique
fits a nth order polynomial to k input samples iteratively smoothing the spectral data set [40].

2. Noise

Noise is an inherent disturbance of any sensor, generally for Raman spectroscopy this noise can
be a result of thermal noise, instrument read out noise or even as a result of cosmic rays. In Raman
spectroscopy the noise is usually characterised by its high frequency. To minimise its effect, the noise
can be reduced or eliminated through the application of a filtering or smoothing technique.

3. Cosmic Peaks

Sharp, intense peaks are often the result of random high energy particles (i.e., cosmic rays) hitting
the detector. Although these artifacts are a rare occurrence they are generally easy to detect and obvious
through visual inspection of the spectra. It is necessary to remove these peaks as they may interfere with
spectral analysis particularly during data smoothing or scaling. To remove these peaks, a de-spiking
function can be applied. The de-spiking function applied in this work is detailed in Mori et al. [23]
with its application demonstrated in Figure A1. The method calculates the average angle of every
peak along the spectra and determines if any of the peaks are abnormal large (i.e., a cosmic peak).
This abnormal peak is identified and subsequently removed and replaced through data interpolation.
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Figure A1. Raman spectra of calibration samples highlighting glucose, API and sapphire (background
spectra) spectrographs, with (A) highlighting the raw spectra and (B) highlighting the baseline
corrected spectra.
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Figure A2. Example of spectra containing a cosmic ray with (A) highlighting the outlier peaks
identified by the de-spiking function and (B) highlighting the final spectra with the cosmic ray removed.
The cosmic ray located at 560 cm−1 is correctly identified as an outlier, however this function also
wrongly identified the strong sapphire peak located at 410 cm−1 as an outlier. This demonstrates the
importance of viewing each of the identified outliers before they are blindly removed.
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