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Abstract

We develop a cut finite element method (CutFEM) for the convection problem
in a so called fractured domain which is a union of manifolds of different dimensions
such that a d dimensional component always resides on the boundary of a d + 1
dimensional component. This type of domain can for instance be used to model
porous media with embedded fractures that may intersect. The convection prob-
lem is formulated in a compact form suitable for analysis using natural abstract
directional derivative and divergence operators. The cut finite element method is
posed on a fixed background mesh that covers the domain and the manifolds are
allowed to cut through a fixed background mesh in an arbitrary way. We consider
a simple method based on continuous piecewise linear elements together with weak
enforcement of the coupling conditions and stabilization. We prove a priori error
estimates and present illustrating numerical examples.

1 Introduction

Fractured Domains. Transport phenomena in media with complicated microstruc-
ture occur in several applications for instance transport in porous media and composite
materials. The properties of the microstructure may have different characteristics rang-
ing from stochastic to highly structured or a combination of these. In this work we focus
on problems where the microstructure consists of embedded surfaces and their intersec-
tions. The surfaces can be used to model fractures or thin embedded sheets with different
transport properties. We refer to such domains as fractured domains, see examples in
Figure 1.

New Contributions. A fractured domain in Rn is a disjoint union of smooth manifolds
of dimension d = 0, . . . , n, constructed in such a way that a d dimensional component

Figure 1: Two example fractured domains in 2D.
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always reside on the boundary of a d+1 dimensional component. These domains are also
called mixed-dimensional or stratified domains. See the recent work [4] where a similar
description is used to study the pressure problem. On such a domain we consider a first
order system of hyperbolic equations which models transport in fractured media.

Introducing convenient multi-dimensional directional derivative and divergence oper-
ators the problem may be formulated in an abstract form similar to the standard one
field transport problem on a domain in Rn.

We develop a cut finite element method, see [6] for an introduction, which is based
on embedding the composite domain into a fixed background mesh and then for each of
the components we define the active mesh as the set of all elements that intersect the
component. Note that in this way we obtain one active mesh for each component of
the domain and thus certain elements will appear in several meshes. The active meshes
are each equipped with a continuous finite element space and the finite element method
is obtained by stabilizing the variational formulation using certain stabilization terms.
Other methods, for instance the discontinuous Galerkin method, may be used as well but
here we stay in the simplest framework of continuous finite element spaces and Galerkin
least-squares stabilization.

Using the abstract framework the formulation of the method is straightforward and
the basic coercivity result also follows. Combining coercivity with the consistency of the
finite element method and applying interpolation error estimates for cut finite element
methods on embedded manifolds [10], we obtain a priori error estimates that are optimal
in the sense typical for stabilized finite element methods applied to the transport equation.

Earlier Work. The computation of flows in fractured media has received increasing
attention lately. For modelling of the equations of flow and transport in porous media we
refer to [1,27] and in particular the mixed dimensional models presented in [28], and [4].

Finite volume approaches have been proposed [5, 17, 34] and virtual elements in [18].
For stochastic methods we refer to [2, 3]. Various model reduction techniques have been
proposed such as [17,19]. Other work considers meshed fractures [20] or particle methods
[26].

Compared to meshed methods cut finite element methods have the advantage that we
do not need to construct a mesh that fits a possibly complex arrangement of fractures.
For surface surface partial differential equations this approach, also called trace finite
elements, was first introduced in [30] and has then been developed in different directions
including stabilization [7] higher order approximations in [33], discontinuous Galerkin
methods [11], transport problems [13,32], embedded membranes [16], coupled bulk-surface
problems [14] and [22], minimal surface problems [15], and time dependent problems on
evolving surfaces [24, 29, 31], and [35]. We also refer to the overview article [6] and the
references therein. For the present work we also draw on experiences from the paper [10],
where CutFEMs on on embedded manifolds of arbitrary codimensions was considered
and [23] for the design of CutFEMs on composite surfaces.

Outline. In Section 2 we introduce the notion of fractured domains, the abstract dif-
ferential operators on these domains, and formulate an integration by parts formula, and
formulate the model problem both in componentwise and abstract form. In Section 3
we formulate the finite element method. In Section 4 we derive a priori error estimates.
In Section 5 we present numerical results. In Section 6 we draw some conclusions and
mention directions for future work.
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Figure 2: Illustration of notation used for components of different dimen-
sion in a fractured domain in Rn, n = 2, where a d < n dimensional compo-
nent always resides on the boundary of a d+ 1 dimensional component.

2 The Model Problem

2.1 The Domain and Function Spaces

We here introduce the notation needed to describe a fractured domain and define the
appropriate function spaces on such a domain.

Composite Domain. Let Ω be a domain in Rn such that

• There is a partition O = {Ωd}nd=0,

Ω = ∪nd=0Ωd (2.1)

• For each Ωd ∈ O there is a partition Od = {Ωd,i}nd
i=1,

Ωd = ∪nd
i=1Ωd,i (2.2)

where each Ωd,i is a smooth d-dimensional manifold with boundary ∂Ωd,i.

• The partition satisfies

∂Ωd,i ⊂ ∪d−1
l=1 Ωl i = 1, . . . , nd, d = 0, . . . , n (2.3)

• We define the boundary operators

∂dOd =

nd⊔
i=1

∂Ωd,i ∂O =
n⊔
d=0

∂Od (2.4)

where t denotes the disjoint union.

The notation introduced here for partitions in O is illustrated in Figure 2.
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Function Spaces on O and ∂O.

• Let Hs(Ωd,i) be the Sobolev space on the manifold Ωd,i ∈ O of order s with scalar
product (v, w)Hs(Ωd,i), and define

Hs(Od) =

nd⊕
i=1

Hs(Ωd,i), Hs(O) =
n⊕
d=0

Hs(Ωd) (2.5)

with scalar products

(vd, wd)Hs(Od) =

nd∑
i=1

(v, w)Hs(Ωd,i), (v, w)Hs(O) =
n∑
d=0

(vd, wd)Hs(Ωd) (2.6)

and inner product norms ‖vd‖Hs(Od) and ‖v‖Hs(O). For d = 0, Hs(Ω0,i) = R and is
equipped with the usual absolute value ‖v‖2

Hs(Ω0,i)
= v2.

• In the case s = 0 we use the notation L2(Od) = H0(Od) and L2(O) = H0(O) with
scalar products (vd, wd)Od

and (v, w)O and norms ‖v‖Od
and ‖v‖O

• On ∂O we define L2(∂O) =
⊕n

d=1

⊕nd

i=1 L
2(∂Ωd,i) and we equip the components in ∂Od

with the natural d− 1 dimensional measure and thus all components of dimension less
or equal to d− 2 has measure zero which means that

(v, w)∂Od
=

nd∑
i=1

(v, w)∂Ωd,i
=

nd∑
i=1

(v, w)∂Ωd,i∩Ωd−1
(2.7)

Tangential and Normal Vector Fields.

• We say that a = ⊕nd=0ad is a tangential vector field on O if ad = ⊕nd
i=1ad,i and each ad,i

is a tangential vector field on the manifold Ωd,i ∈ Od.

• We define the unit exterior normal vector field ν on ∂O by ν|∂Ωd,i
= νd,i, where νd,i

is the unit tangential vector field on Ωd,i which is orthogonal to ∂Ωd,i and exterior to
Ωd,i, see Figure 3.

• The pointwise dot product a ·b of two tangential vector fields a and b on O is the scalar
field (a · b)d = ad · bd on each Od, d = 0, . . . , n.

Tangential Gradient.

• For δ > 0 let Un
δ (Ωd,i) = ∪x∈Ωd,i

Bδ(x) ⊂ Rn, where Bδ(x) is the open ball of radius δ
withe center x, be an open neighborhood of Ωd,i. Then there is a continuous extension
operator E : v ∈ Hs(Ωd,i) → Hs(Un

δ (Ωd,i)), see [9] for the construction necessary to
handle the fact that Ωd,i has a boundary. We employ the shorthand notation Ev = ve

when necessary for clarity otherwise we simplify further and write v = ve.

• Let ∇d be the tangential gradient on Ωd and

∇v = ⊕nd=1∇dvd (2.8)

where for each x ∈ Ωd,i, (∇dv)|x = (Pd∇Rnve)|x and Pd|x : Rn → Tx(Ωd,i) is the
projection onto the tangent plane Tx(Ωd,i).
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(a) Fractured domain (b) Exterior unit normal field

Figure 3: Illustration of the exterior unit normal vector field on a fractured
domain. (a) A fractured domain with n = 2, n0 = 8, n1 = 10, and n2 = 3.
(b) The exterior unit normal field for the domain in (a).

• Given a tangential vector field β let

Vβ = {v ∈ L2(O) : ‖β · ∇v‖O . 1} (2.9)

In other words we for v ∈ Vβ in each component Ωd,i ∈ O have that v|Ωd,i
∈ L2(Ωd,i)

and v|Ωd,i
∈ H1(ω) where ω is any d− 1 dimensional manifold ω tangential to β|Ωd,i

.

2.2 Abstract Differential Operators

In this section we introduce jump operators used for coupling between different subdo-
mains and also differential operators that enable formulation of the convection problem
in a compact form.

Jump Operators. To express the coupling between subdomains we use the following
operators:

• The jump operator J·Kd : L2(∂Od+1) → L2(Od) is defined by J·Kn = 0 and for d =
0, . . . , n− 1,

Jvd+1Kd|Ωd,i
=

nd+1∑
j=1

vd+1,j|∂Ωd+1∩Ωd,i
(2.10)

We then have the identity

(vd+1, wd)∂Od+1
= (Jvd+1Kd, wd)Od

wd ∈ L2(Od) (2.11)

and we also note that

Jvd+1wdKd = Jvd+1Kdwd wd ∈ L2(Od) (2.12)

• The jump operator [·]d : L2(Od−1)×L2(∂Od)→ L2(∂Od) is defined by [v]0 = 0 and for
d = 1, . . . , n,

[v]d,i|∂Ωd,i
= vd,i|∂Ωd,i

−
nd−1∑
j=1

vd−1,j|∂Ωd,i∩Ωd−1,j
(2.13)
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Note that the jump operators provide the coupling between the different subdomains and
that only neighboring subdomains with difference in dimension equal to one couple to
each other.

The Directional Derivative and Divergence Operators. Let β be a smooth tan-
gential vector field on O, i.e. (β)d,i is a smooth tangential vector field on each Ωd,i ∈ O,
and let ν be the unit exterior normal vector field on ∂O defined in Section 2.1.

• Let the derivative Dβ in the direction β be defined by

(Dβv)n = βn · ∇nvn, (Dβv)0 =

n1∑
i=1

ν1,i · β1,i(v0 − v1,i) (2.14)

and for d = 1, . . . , n− 1, let

(Dβv)d = βd · ∇dvd +

nd+1∑
i=1

νd+1,i · βd+1,i(vd − vd+1,i) (2.15)

or equivalently in terms of the jump operators

(Dβv)d = βd · ∇dvd − Jνd+1 · βd+1[v]d+1Kd (2.16)

• Let the divergence Div β be defined by

(Div β)d = ∇d · βd −
nd+1∑
i=1

νd+1,i · βd+1,i (2.17)

or equivalently in terms of the jump operators

(Div β)d = ∇d · βd − Jνd+1 · βd+1Kd (2.18)

In order to formulate a partial integration formula for Dβ we introduce the notation

∂OB = ∂O ∩ ∂Ω = ti,d(∂Ωi,d ∩ ∂Ω), ∂OI = ∂O \ ∂Ω = ti,d(∂Ωi,d \ ∂Ω) (2.19)

to denote the components in ∂O which belong to the boundary and the interior respec-
tively. We end this section by stating a lemma from [8].

Lemma 2.1. (Partial Integration) For a smooth tangential vector field β on O and
v ∈ Vβ,

Div(βv) = Dβv + (Div β)v (2.20)

and for v, w ∈ Vβ,

(Dβv, w)O = −(v,Dβw)O − ((Div β)v, w)O + (ν · β[v], [w])∂OI
+ (ν · βv, w)∂OB

(2.21)

where ν is the exterior unit normal vector field on ∂O.

2.3 The Model Problem

In this section we introduce our model convection problem on a fractured domain.
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Componentwise Formulation. Find ud,i : Ωd,i → R such that

∇d,i · (βd,iud,i) + αd,iud,i − Jνd+1 · βd+1ud+1Kd,i = fd,i in Ωd,i (2.22)

(νd,i · βd,i)−[u]d,i = 0 on ∂Ωd,i \ ∂Ω (2.23)

(νd,i · βd,i)−(ud,i − gd,i) = 0 on ∂Ωd,i ∩ ∂Ω (2.24)

where (v)− = min(v, 0) denotes the negative part of v.

Abstract Formulation. We note that using the definition (2.17) of the divergence we
may rewrite (2.22) as follows

∇d,i · (βd,iud,i) + αd,iud,i − Jνd+1 · βd+1ud+1Kd,i
= βd,i · ∇d,iud,i + (∇d,i · βd,i)ud,i + αd,iud,i (2.25)

− Jνd+1 · βd+1(ud+1 − ud)Kd,i − Jνd+1 · βd+1udKd,i
= βd,i · ∇d,iud,i − Jνd+1 · βd+1[u]d+1Kd,i (2.26)

+ (∇d,i · βd,i)ud,i − Jνd+1 · βd+1Kd,iud + αd,iud,i

= (Dβu+ Div β + α)d,i (2.27)

where we essentially added and subtracted Jνd+1 ·βd+1udK and rearranged the terms. Thus
in terms of the abstract operators (2.22) takes the form

Dβu+ (α + Div β)u = f (2.28)

Thus we obtain the problem: find u ∈ V such that

Dβu+ γu = f in O (2.29)

(ν · β)−[u] = 0 on ∂OI (2.30)

(ν · β)−(u− g) = 0 on ∂OB (2.31)

where γ = α + Div β or in component form

γd = αd +∇d · βd − Jνd+1 · βd+1Kd (2.32)

Weak Formulation. Find u ∈ Vβ such that

a(u, v) = l(v) ∀v ∈ Vβ (2.33)

where the forms are defined by

a(v, w) = (Dβv, w)O + (γv, w)O + (|ν · β|−[v], [w])∂OI
+ (|ν · β|−v, w)∂OB

(2.34)

l(w) = (f, w)O + (|ν · β|−g, w)∂OB
(2.35)

and we used the simplified notation |v|− = |(v)−|, for the absolute value of the negative
part. Using Lemma 2.1 we may derive the following stability result.

Lemma 2.2. (Coercivity) If there is a constant c0 > 0 such that

c0 ≤ ‖2α + Div β‖L∞(Γ) (2.36)

then
‖v‖2

O + ‖[v]‖2
|ν·β|,∂OI

+ ‖v‖2
|ν·β|,∂OB

. a(v, v) ∀v ∈ Vβ (2.37)

where we introduced the norms

‖w‖2
|ν·β|,∂OJ

=
∥∥(|ν · β|−)1/2w

∥∥2

∂OJ
, J ∈ {I, B} (2.38)
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(a) d = 2 (b) d = 1 (c) d = 0

Figure 4: Meshes for an example geometry in 2D consisting of three bulk
domains (d = 2), three cracks (d = 1), and one bifurcation point (d = 0).
The colored parts are the active meshes {Th,d,i}.

3 The Cut Finite Element Method

3.1 The Mesh and Finite Element Spaces

• Let Ω0 ∈ Rn be a polygonal domain such that Ω ⊂ Ω0 and let {Th,0, h ∈ (0, h0]} for
some constant h0 > 0 be a family of quasi-uniform meshes with mesh parameter h of
Ω0 om shape regular elements T .

• Let Vh,0 be a finite element space of continuous piecewise polynomial functions on Th,0.
We consider low order elements with linear polynomials or tensor product polynomials.
Adaption to higher order elements is outlined in the next section.

• For each Ωd,i ∈ O let the active mesh be defined by

Th,d,i = {T ∈ Th,0 : T ∩ Ωd,i 6= ∅} (3.1)

and define the associated finite element space Vh,d,i = Vh,0|Ωd,i
, see Figure 4. Note that

in most cases it is not necessary to introduce active meshes on components without
a source term that constitute part of the boundary. This is due to the solution in
those parts being directly given by either the boundary condition or the coupling to a
higher dimensional component. For simplicity, we therefore from this point on assume
all components Ωd,i ∈ O satisfy Ωd,i ∩ ∂OB = ∅.

• Define the finite element space on O as the direct sum

Vh =
n⊕
d=0

Vh,d, Vh,d =

nd⊕
i=1

Vh,d,i (3.2)

8



3.2 The Method

We consider a finite element method based on the weak formulation (2.33) which takes
care of the coupling between the different domains. Using a conforming finite element
space we will need to stabilize the convection term and furthermore since we are using
a cut finite element method we need to stabilize in order to control the variation of the
solution orthogonal to Ωd,i. For simplicity, we will consider piecewise linear elements and
use standard Galerkin Least Squares (GLS) method together with so called full gradient
stabilization for the cut elements developed in [12]. The full gradient stabilization adds
control of the variation of the finite element solution in the direction orthogonal to the
manifold Ωd,i and also provides control of the resulting condition number of the linear
system of equations. The full gradient stabilization is not consistent and we scale it in such
a way that we do not lose order of convergence. Essentially, for linear elements we obtain
an artificial tangent diffusion of order h3/2. In the case of higher order elements we may
use a weaker full gradient stabilization or preferably a more refined stabilization which is
consistent (on exact geometry) such as the recently developed normal stabilization, [10]
and [21], or the combined normal-face stabilization [25].

Galerkin Least Squares (GLS). Find uh ∈ Vh such that

ah(uh, v) = lh(v) ∀v ∈ Vh (3.3)

where

ah(v, w) =
n∑
d=0

nd∑
i=1

ah,d,i(vd,i, wd,i) + (|ν · β|−[v], [w])∂OI
+ (|ν · β|−v, w)∂OB

(3.4)

lh(v) =
n∑
d=0

nd∑
i=1

lh,d,i(vd,i) (3.5)

The forms ah,d,i and ld,h,i are linear forms on Vh,d,i defined by

ah,d,i(v, w) = (Ldv, w)Ωd,i
+ (τ1hLdv, Ldw)Ωd,i

+ sh,d,i(v, w) (3.6)

lh,d,i(v) = (fd,i, vd,i)Ωd,i
+ (τ1hfd,i, Ldv)Ωd,i

+ (|ν · β|−g, v)∂Ωd,i
(3.7)

where τ1 > 0 is a parameter

Ld,iv = (Dβv + γv)|d,i (3.8)

= βd,i · ∇d,ivd,i + ((∇d,i · (βd,i) + αd,i)vd,i − Jνd+1 · βd+1vd+1Kd,i (3.9)

and sh,d,i is the stabilization form

sh,d,i(v, w) = τ2h
3−(n−d)(∇Rnv,∇Rnw)Th,d,i (3.10)

where τ2 is a parameter and ∇Rn denotes the gradient in Rn. We also note that n− d is
the codimension of Ωd,i and thus the scaling factor h−(n−d) compensates for the fact that
we integrate over the n dimensional set Th,d,i. We will see that the additional h3 scaling
ensures that we do not lose order of convergence when adding sh.
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4 Error Estimates

We prove a basic error estimate in the natural energy norm associated with the GLS
method. We assume that the geometry is represented exactly and that all integrals are
computed exactly. In this situation the proof is done using the standard techniques
combined with an interpolation error estimate for manifolds of arbitrary codimension.
Estimates of the geometric error can be done using a generalization of the approach
developed in [10].

4.1 Coercivity and Continuity

Let
V e = {ve = Ev : v ∈ Vβ} , W = V e + Vh (4.1)

where E is the extension operator defined in Section 2.1 when introducing the tangential
gradient. Define the energy norm

|||v|||2h = ‖v‖2
O + h‖Lv‖2

O + ‖v‖2
sh

+ ‖[v]‖2
|ν·β|,∂OI

+ ‖v‖2
|ν·β|,∂OB

, v ∈ W (4.2)

and the norm
|||v|||2h,∗ = h−1‖v‖2

O + |||v|||2h, v ∈ W (4.3)

which we will need in the statement of continuity.

Lemma 4.1. The form ah is continuous

ah(v, w) . |||v|||h,∗|||w|||h, v, w ∈ W (4.4)

and if (2.36) holds coercive

|||v|||2h . ah(v, v) v, w ∈ W (4.5)

Proof. The continuity (4.4) follows by first applying the Cauchy-Schwarz inequality in
all the symmetric terms of ah,

ah(v, w) . (Dβv, w)O + |||v|||h|||w|||h (4.6)

Using the integration by parts formula in the first term of the right hand side yields

(Dβv, w)O = −((Div β)v, w)O − (v,Dβw)O + (ν · β[v], [w])∂OI
+ (ν · βv, w)∂OB

(4.7)

≤ (v,Dβw)O + C|||v|||h|||w|||h (4.8)

≤ h−1/2‖v‖Oh1/2‖Lw‖O + C|||v|||h|||w|||h (4.9)

. |||v|||h,∗|||w|||h (4.10)

where we used the uniform bound ‖Div β‖L∞(O) . 1 and the definition of the norm |||·|||h,∗
in the last step.

The coercivity (4.5) follows by observing that

ah(v, w) = a(v, w) + (τ1hLv, Lw)O + sh(v, w) (4.11)

and thus

ah(v, v) = a(v, v) + τ1h‖Lv‖2
O + ‖v‖2

sh
(4.12)

& ‖v‖2
O + ‖[v]‖2

|ν·β|,∂OI
+ ‖v‖2

|ν·β|,∂OB
+ τ1h‖Lv‖2

O + ‖v‖2
sh

(4.13)

= |||v|||2h (4.14)

where we used Lemma 2.2. �
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4.2 Interpolation Error Estimates

There is an interpolation operator πh : L2(Ωd,i)→ Vh,d,i such that the following interpo-
lation error estimate holds

|||v − πhv|||2∗ . h3‖v‖2
Hk+1(O) (4.15)

We define πh by
πhv = πh,Clv

e (4.16)

where πh,Cl : L2(Th,d,i) → Vh,d,i is the usual Clement interpolator. We refer to [10] for
further details including a proof of the basic interpolation estimate

‖u− πhu‖2
Ωd,i

+ h2‖∇d(u− πhu)‖2
Ωd,i
. h4‖u‖2

H2(Ωd,i)
(4.17)

which is the used to derive (4.15).

4.3 Error Estimates

Theorem 4.1. If u is the solution to (2.33) satisfies u ∈ H2(O) and uh is the finite
element approximation defined by (3.3), then

|||u− uh|||2h . h3‖u‖2
H2(O) (4.18)

Proof. Using coercivity

|||u− uh|||2h . ah(u− uh, u− uh) (4.19)

. ah(u− uh, u− πhu) + ah(u− uh, πhu− uh) (4.20)

. |||u− uh|||h‖u− πhu|||h,∗ + ah(u, πhu− uh)− lh(πhu− uh) (4.21)

. δ|||u− uh|||2h + δ−1|||u− πhu|||2h,∗ + sh(u
e, πhu− uh) (4.22)

for δ > 0. Next

sh(u, πhu− uh) = sh(u, πhu− u) + sh(u, u− uh) (4.23)

≤ ‖u‖sh‖πhu− u‖sh + ‖u‖sh‖u− uh‖sh (4.24)

≤ ‖u‖2
sh

+ ‖πhu− u‖2
sh︸ ︷︷ ︸

≤|||u−πhu|||2h,∗

+δ−1‖u‖2
sh

+ δ‖u− uh‖2
sh

(4.25)

Using kick back and taking δ > 0 small enough we arrive at

|||u− uh|||2h . ‖u− πhu|||2h,∗ + ‖u‖2
sh
. h3‖u‖2

H2(O) + h3‖u‖2
H1(O) (4.26)

where we used the interpolation error bound (4.15) for the first term and the second was
estimated as follows

‖u‖2
sh

=
n∑
d=0

nd∑
i=1

τ2h
3−(n−d)‖∇Rnue‖2

Th,d,i .
n∑
d=0

nd∑
i=1

h3‖∇du‖2
Ωd,i

(4.27)

where we used the estimate

‖∇Rnue‖2
Th,d,i . ‖∇du‖2

Th,d,i . hn−d‖∇du‖2
Ωd,i

(4.28)

which completes the proof. �
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5 Numerical Examples

Implementation. To generate numerical examples we implemented the method (3.3)
in 2D, i.e. n = 2, which means that in our examples the fractured domains may consist of
bulk domains (d = 2), cracks (d = 1), and bifurcation points (d = 0). We first generate a
background triangle mesh Th,0 embedding the complete geometry and from this mesh we
extract an active mesh for each bulk domain, crack domain and bifurcations point, see
Figure 4. On each active mesh we then define a finite element space consisting of linear
elements. Note that, while we do generate an active mesh and corresponding linear finite
element space for each bifurcation point, this is actually not required as the solution there
will only be a point value making it redundant to define a finite element.

Parameters and Meshes. In all our examples below we use the Galerkin least squares
parameter τ1 = 10−2, stabilization parameter τ2 = 10−3 and αd,i = 0. Also, in all
examples the background mesh Th,0 is a triangulation of the unit square Ω0 = [0, 1]2 with
mesh parameter h = 0.1. The resulting active meshes for Example 1–3 are presented in
Figure 5 while the active meshes for Example 4, which also includes a bifurcation point,
are presented in Figure 9.

Example 1: Crack with in-flow. This simple example is outlined in Figure 6 where
a crack divides the unit square in half. Here the vector fields {β2,i} in the bulk domains
only goes into the crack resulting in the solution on the crack being effected by the bulk
solutions but not the other way around. For this example we can actually derive an exact
solution where u = 1 in the bulk domains and u = 2y on the crack. As this solution lies
in Vh our numerical approximation coincides with the exact solution.

Example 2: Crack with out-flow. In this example presented in Figure 7 we revert
the bulk vector fields in Example 1, yielding a crack with only out-flow to the bulk. As
expected the solution in the bulk is affected by the solution on the crack but not the
other way around. Also in this case we can derive the exact solution, u = e−2y, which is
well approximated by our numerical solution.

Example 3: Flow crossing a crack. In Figure 8 we consider the same geometry as in
previous examples but with diagonal bulk vector fields passing through the crack. First,
in Figure 8b we consider the case where the vector field in the crack is zero which results
in there being no transport in the crack. The presence of the crack in this case actually
doesn’t effect the solution at all which gives some modeling possibilities as the presence
of a crack also allow for discontinuous solutions. Increasing the crack vector field, we
note in Figures 8c–8d, that the solution is transported along the crack when passing to
the other side.

Example 4: Cracks with a bifurcation point. This example is presented in Fig-
ure 10a and the active meshes used are presented in Figure 9. In contrast to previous
examples we here also include a bifurcation point where the crack splits. From the top
and bottom bulk domains we have flow into the crack while we from the third bulk domain
have flow out of the crack. First, in Figure 10b, we consider the case where the vector
fields on the cracks all are unit vectors in the tangential direction. We note that the
solution flowing into the bifurcation point is then evenly divided between the two cracks

12



(a) d = 2 (b) d = 1

Figure 5: Active meshes (h = 0.1) used for Examples 1–3 where a single
crack divides the unit square into two equal parts.

flowing out of the bifurcation point. In Figure 10c we change the relation of the vector
fields between the top and bottom cracks, i.e. the cracks flowing out of the bifurcation
point, yielding a slightly different distribution. This change also effects the in-flow from
the bulk regions which is clear by inspecting the crack solutions further away from the
bifurcations point.

Example 5: System of cracks. As a final example we in Figure 11 consider a system
of cracks affected by in-flow from bulk domains. In this case the vector fields on the
cracks are again unit vectors in the tangential direction. Thus, at each bifurcation point
the sum of the crack solutions flowing into a bifurcation point will equal the sum of the
crack solutions flowing out of the bifurcation point.

6 Conclusions

We develop a cut finite element method for a convection problem on a fractured domain.
The upshot of the method is that the mesh does not need to conform to the embedded
manifolds, which in practice is very convenient. The cut elements are handled using
certain stabilization terms which leads to a stable method with optimal order convergence
properties. Different methods may be used to discretize the PDE, and we have here
chosen to study a least squares stabilized formulation which is convenient to implement
and analyze. Some directions for future work include existence and uniqueness results for
convection problems on fractured domains, extensions to convection diffusion problems,
higher order methods, time dependent problems, and coupled problems with both flow
equations and transport.
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1 1

0

β2,1 β2,2

β1,1

(a) Set-up (b) Numerical solution

Figure 6: Crack with in-flow (Example 1). (a) The set-up for this example
is β2,1 = [1, 0], β2,2 = −β2,1 and in the crack β1,1 = [0, 1]. (b) The numerical
solution corresponds well to the exact solution which is u = 1 in the two
bulk domains and u = 2y on the crack.

1

β2,1 β2,2

β1,1

(a) Set-up (b) Numerical solution

Figure 7: Crack with out-flow (Example 2). (a) The set-up for this example
is β2,1 = [−1, 0], β2,2 = −β2,1 and in the crack β1,1 = [0, 1]. (b) The numerical
solution corresponds well to the exact solution which is u = e−2y in all
domains.

β2,1

β2,2

β1,1

(1− 2x)(1− y) 0 0

(a) Set-up (b) β1,1 = [0, 0] (c) β1,1 = [0, 0.1] (d) β1,1 = [0, 0.2]

Figure 8: Flow crossing a crack (Example 3). (a) The set-up for this
example is β2,1 = β2,2 = [1, 1] and with β1,1 in the crack varying in the
numerical solutions (b)–(d) as specified by their captions. Note that in case
(b) the solution is not affected by the presence of a crack.
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(a) d = 2 (b) d = 1 (c) d = 0

Figure 9: Active meshes used in Example 4 (h = 0.1). (a) Meshes for the
bulk domains. (b) Meshes for the cracks. (c) Mesh for the bifurcation point.

1

1

1 β2,1

β2,2

β2,3

β1,1 β1,3

β1,2

(a) Set-up (b) β1,2 = β1,3 = t (c) β1,2 = 0.25t, β1,3 = 1.75t

Figure 10: Cracks with a bifurcation point (Example 4). (a) Here β2,1 =
[1, 0], β2,2 = [0, 1], β2,3 = [0.1, 0], β1,1 = [1, 0] while β1,2 and β1,3 changes
between the examples. (b)–(c) Numerical solutions using values of β1,2, β1,3

specified in the captions where t is the unit tangent in the cracks.

1

(a) Set-up (b) Numerical solution

Figure 11: System of cracks with in-flow (Example 5). (a) Starting in
the lower left corner and traversing the bulk domains clockwise β2,i is [1, 1],
[1, 0], [1,−1], [0,−1], [−1,−1] and [−1, 1]. In the cracks β1,i is 1 in the
tangent direction according to the figure. All boundary values are 1. (b)
In the numerical solution (h = 0.1) we note that the crack solutions at
each bifurcation point divide the in-flow solution equally among the out-flow
solutions.
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