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Abstract

The Bayesian approach to phylogenetic inference allows quanti�cation of all aspects of uncertainty us-

ing probability. Markov chain Monte Carlo (MCMC), a class of algorithms based on iterative simulation,

is often considered a gold standard for approximate Bayesian inference. However, MCMC is computa-

tionally intensive and there are many design decisions to be made when using it in practice. We discuss

few principles for designing simple and e�cient MCMC algorithms. In particular, we propose several

new proposal kernels for MCMC based on the idea of introducing negative correlations in the simula-

tion draws. In many cases, these kernels can lead to e�ciency >100%. Using practical examples, we

illustrate that a sequence of well-designed one-dimensional proposals can be more e�cient than a single

d-dimensional proposal, and that variable transformations can be used as a general strategy for designing

e�cient MCMC. Next, we turn to the problem of species tree inference in the Anopheles gambiae species

complex from whole-genome data. This is a challenging problem due to complex e�ects of recent and

rapid radiation, introgression, chromosome inversions and natural selection. We extract over 80,000 cod-

ing and noncoding loci from the genomes of six members of this species complex and perform Bayesian

inference using MCMC under the multispecies coalescent model, which takes into account genealogical

heterogeneity across the genome and uncertainty in the gene trees. We obtain a robust species tree estim-

ate, consistent with chromosome inversions. Using simulation informed by the real data, we conclude that

species trees from previous studies are erroneous as a result of methodological artefacts. We also found

evidence of gene �ow between certain pairs of species based on direct estimation of migration rates under

the isolation-with-migration model. The results highlight the importance of accommodating incomplete

lineage sorting and introgression in phylogenomic analyses of species that arose through recent radiative

speciation events.





Impact statement

The Bayesian approach to statistical data analysis is being used to answer a wide variety of problems in

science and engineering. It provides a convenient way of formulating complex models of the observed

data and comes with a natural way of quantifying uncertainty of quantities in the model using probab-

ility. However, computation remains a major limitation in practical applications. In the �rst part of this

thesis, we illustrate how several general principles can be used to design simple and e�cient simulation

algorithms for Bayesian inference. In many examples considered, an increase in e�ciency can be substan-

tial compared with commonly used algorithms and many state-of-the-art algorithms. Higher e�ciency

means shorter running time required to achieve a desired level of accuracy. Thus using more e�cient

algorithms can considerably speed up an analysis pipeline. This is particularly important in applications

involving large and complex models such as those in phylogenomics, where a single analysis can take

weeks or months to run.

In the second part of the thesis, we perform Bayesian analysis of the species phylogeny of the Anopheles

gambiae species complex, a group of mosquitoes that are principal vectors for human malaria in Africa.

Malaria remains a major public health issue in Africa, accounting for 90% of the malaria cases and 91% of

all malaria deaths worldwide in 2016 (World Health Organization, 2017). Here, we robustly infer the evol-

utionary history of this species complex, including species branching orders and divergent times as well

as introgression events between species. Unlike previous work, our approach takes into account gene-

alogical heterogeneity across the genome in a single probabilistic model. The knowledge of the species

phylogeny forms a foundation for studying the evolution and epidemiology of medically important traits

such as vectorial capacity and insecticide resistance. A better understanding of the ecological and evolu-

tionary processes underlying these traits will ultimately lead to development of more e�ective strategies

for malaria control and elimination.
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Chapter 1

Introduction to Bayesian data analysis and

Markov chain Monte Carlo methods

1.1 Bayesian approach to statistical data analysis

Bayesian data analysis provides a powerful statistical framework for addressing scienti�c questions of

interest by combining data with the scienti�c knowledge about the problem. All the unknowns and the

observed data are expressed in terms of probability distributions, which naturally provide a measure of

uncertainty. Bayesian data analysis is an iterative process consisting of following three steps (Box, 1980;

Gelman et al., 2014).

1. Model building. First, a probabilistic model is constructed to provide a mechanism for generat-

ing the observed data based on the scienti�c knowledge. This is a probability distribution p(y |θ )

of the observed data y conditioned on the parameters θ in the generative process we wish to learn

about from the data, called the likelihood or data model. The parameters are also given a probability

distribution p(θ ), called the prior distribution. These two components give the joint probability dis-

tribution p(y, θ ) = p(y |θ )p(θ ), which we simply refer to as the model. Using probability distributions

to describe parameters allow direct uncertainty quanti�cation of quantities of interest in all aspects.

2. Posterior inference. Second, computation is performed to produce a probability distribution of

the model parameters given the observed data, p(θ |y), called the posterior distribution, using the

relationship

p(θ |y) =
p(y |θ )p(θ )

p(y)
. (1.1)

We elaborate on inference computation in more detail in Section 1.2.

3. Model checking. Third, the �tted model is evaluated and improved. Assessing and criticising

the validity of the model assumptions are important parts of scienti�c investigations, with direct
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implications on the conclusions drawn from the inference. For instance, sensitivity to the prior

speci�cation and other modelling assumptions can be used to assess the robustness of inferred pos-

terior quantities. In posterior predictive checking, similarity of summary statistics of data simulated

from the �tted model and the real data is used to indicate how well the model �ts the data (Gelman

et al., 1996a).

This three-step iterative process allows systematic improvements of the model. For example, parts of the

model may be revised or extended to address any inadequacies identi�ed, making it more realistic. New

data may be added to the model. The model may also be simpli�ed to ease the computation. This process is

in line with the scienti�c method where hypotheses can be re�ned or falsi�ed based on new observations

and knowledge (Gelman and Shalizi, 2013).

As an example, in Chapter 4, we are interested in inferring a species tree that represents the evolutionary

history of a group of mosquito species using whole genome sequences. The �rst step in Bayesian analysis

is to build a joint model of the sequence data and species tree using our knowledge about how genomic

sequences evolve. Second, the posterior distribution of the species tree is computed using a numerical

algorithm. Last, two main approaches of model checking are employed: (1) the robustness of the species

tree estimate is assessed by repeating the inference using a di�erent prior speci�cation or a di�erent data

preprocessing pipeline, and (2) how well the model �ts the data is assessed by performing simulation

studies using parameter values from the �tted model.

One major challenge of Bayesian data analysis is the computation of posterior quantities of interest, par-

ticularly for complex models and/or large datasets, as we shall see in Chapter 4. In fact, Chapter 3 is

devoted to improving e�ciency of the posterior computation.

1.2 Inference computation

Inference computation in Bayesian statistics is largely concerned with the following quantities: (1) pos-

terior distribution p(θ |y), as well as its moments and marginal distributions, (2) prior predictive distribution

p(y) =
∫
p(y, θ )dθ (also called marginal likelihood), which is useful for comparing di�erent data models,

(3) posterior predictive distribution p(ỹ |y) =
∫
p(ỹ |θ ,y)p(θ |y)dθ =

∫
p(ỹ |θ )p(θ |y)dθ . Except for simple

models, these quantities are computationally intractable and have to be approximated.

In this thesis, we primarily focus on computing posterior quantities such as mean and variance, which are

integrals with respect to the posterior distribution, and not on estimating the entire posterior distribution.

It is important to note that this integral estimation problem is typically an easier problem than estimating

the entire distribution, also known as the density estimation problem.

Numerical integration methods can be used to approximate posterior integrals. Deterministic approxim-

ations such as quadrature rules work well only for low-dimensional integrals, with assumptions on the
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smoothness of the integrand. For high-dimensional integrals, a class of randomised algorithms known as

Monte Carlo algorithms is often used. This is the topic of the next section.

1.3 Monte Carlo algorithms

1.3.1 Monte Carlo integration

We review how an integral with respect to a probability distribution of interest, such as its mean and

variance, can be estimated using only samples generated from this distribution, which will be referred to

as the target distribution, or simply the target. We start with an estimator that uses independent samples

from the target distribution, referred to as a simple Monte Carlo estimator. Let π be the target distribution

with support X ⊂ Rd . In Bayesian inference, π will often be the posterior distribution. Let f : X → R be

an absolutely integrable function and let

π (f ) B Eπ f (x) =
∫
X
π (x)f (x)dx (1.2)

denote the expected value of f with respect to π . Given samples x1:N from π , Monte Carlo integration

gives an unbiased approximation of π (f ) by

π̂N (f ) B
1
N

N∑
n=1

f (xn). (1.3)

Provided π (f ) < ∞, the estimator π̂N (f ) converges almost surely to π (f ) as N → ∞ by the Strong Law

of Large Numbers. This estimator is unbiased since Eπ̂N (f ) = Eπ (f ), with variance

Var(π̂N (f )) =
1
N
Vf , (1.4)

whereVf B Varπ (f (x)) = Eπ (f (x)−Eπ f (x))2 is the variance of f under π , provided f is square integrable,

i.e. π (f 2) < ∞. Thus the root mean square error (RMSE)1 of π̂N (f ) is simply its standard deviation√
Vf /N = ON→∞(N

−1/2). This means that an extra digit of accuracy in the estimate requires about 100

times more samples. Moreover, when π (f 2) < ∞ holds, we know from the Central Limit Theorem (CLT)

that the Monte Carlo error π̂N (f )−π (f ) converges in distribution to the normal distribution N (0,
√
Vf /N ).

When d = 1 (univariate target), this leads to an approximate 100(1 − α)% two-sided con�dence interval

π̂N (f ) ± Φ−1(1 − α/2)
√

V̂f
N , where α ∈ (0, 1) and V̂f is an estimate of Vf such as V̂f = 1

N−1
∑N

n=1(f (xn) −

π̂N (f ))
2, and Φ is the distribution function of the standard normal distribution N (0, 1). In this case, the

1Also called the root mean quadratic error, it is given by
√
E |π̂N (f ) − π (f ) |2, with

E |π̂N (f ) − π (f ) |2 = |Eπ̂N (f ) − π (f ) |2 + Var(π̂N (f )),

where the �rst term on the right hand side is the bias squared and the second term is the variance of π̂N (f ), and the expectations
are taken with respect to π .
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standard error of the Monte Carlo estimate, which is the standard deviation of the asymptotic distribution

of the Monte Carlo error, coincides with the RMSE. Compared with numerical quadrature methods such

as trapezoid rule or Simpson rule, this Monte Carlo standard errorON→∞(N
−1/2) decays at a much slower

rate2. But unlike those quadrature rules, Monte Carlo error does not get worse as the target dimension

d increases. In addition, numerical quadrature methods often require certain smoothness assumptions

on f , whereas Monte Carlo integration does not. Hence Monte Carlo integration can be competitive as

a generic method for estimating integrals, particularly for high-dimensional ones, which are common in

modern applications.

1.3.2 Sampling methods

But how do we obtain samples x1:N from the target distribution π to use in the Monte Carlo estimator

π̂N (f ) (1.3)? There are recipes for sampling from a wide range of standard distributions and processes, see

e.g. Devroye (1986). In principle, any scalar random variate on the reals R can be generated from uniform

random variates by inverting its distribution function. This method is referred to as inverse transform

sampling (Algorithm 1.1). The idea also works for multivariate and discrete distributions.

Algorithm 1.1 Inverse transform sampling
Suppose x has distribution function F with inverse F−1(u) B inf{x ∈ R : F (x) ≥ u} for u ∈ (0, 1).
Return: a random variate x with distribution function F

1. draw u ∼ U (0, 1)

2. set x ← F−1(u)

In practice, however, the transformation used in the inverse transform sampling is not always available.

An alternative approach is to sample from another distribution q and transform the samples into those

from the desired distribution π . In rejection sampling (von Neumann, 1951), points are generated uniformly

under a curve proportional to q and are accepted if they fall under a curve proportional to π . The accepted

points are samples from π . A good sampling distributionq should be proportional to π to keep the rejection

rate small. It is used in many algorithms for generating non-uniform random variates, particularly from

truncated distributions.

Instead of rejecting samples, importance sampling (Hammersley and Morton, 1954; Rosenbluth and Rosen-

bluth, 1955) gives a weight to each sample, and all weighted samples are used to compute the Monte Carlo

estimate of (1.2), based on the identity
∫
X π (x)f (x)dx =

∫
X

π (x )
q(x )q(x)f (x)dx . To obtain independent draws

from π , resampling can be performed on the weighted samples (xi ,wi ) where xi ∼ q and wi B
π (xi )
q(xi )

.

Importance sampling has many uses in Bayesian computation such as improving an analytic posterior

approximation, providing starting points for iterative simulation (Section 1.3.3), estimating out-of-sample

2O (N −3) for trapezoid rule and O (N −4) for Simpson rule as N →∞.
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prediction accuracy via leave-one-out cross-validation as well as forming a basis for a large class of Monte

Carlo algorithms called sequential Monte Carlo (SMC).

The main drawback of both rejection sampling and importance sampling is that they do not scale well

to high-dimensional targets. In rejection sampling, the rejection rate can become impractically high. In

importance sampling, although all samples are used, they can be unreliable, and the variance of the estim-

ator can become arbitrary large or even in�nite. One way to improve the estimator is to generate samples

sequentially and learn from the past samples. This idea leads to the use of Markov chain simulation to

explore the target distribution π , where the location of the next sample depends on the current sample.

1.3.3 Markov chain Monte Carlo (MCMC)

1.3.3.1 Markov chains

Markov chain Monte Carlo (MCMC) is a class of iterative simulation algorithms that provides a generic

construction of a Markov chain whose stationary distribution matches the target distribution of interest,

and generates approximate3 samples that can be used for density estimation and Monte Carlo integration.

An introduction to MCMC methods can be found in Andrieu et al. (2003); Craiu and Rosenthal (2014).

Roberts and Rosenthal (2004) and Diaconis (2009) provide more analytical backgrounds. Book-length

treatments are in Robert and Casella (2004); Liu (2008); Brooks et al. (2011). Robert and Casella (2011) give

a historical perspective on the development of MCMC.

To simulate a Markov chain4 (xt )t ≥0 with stationary distribution π on X , we �rst initialise the chain

x0 ∼ ν from an initial distribution ν . Then for t ≥ 1, xt is generated from a transition kernel P : x 7→

Px , which gives a probability distribution on X conditioned on the previous sample xt−1, denoted Pxt−1 ,

with probability density p(xt |xt−1). For correctness of the simulation, we require that P is stationary (or

invariant) with respect to π , meaning that global balance condition πP = π is satis�ed, where πP B∫
X Px dπ (x), or in terms of density,

∫
X
p(y |x)π (x)dx = π (y). (1.5)

This condition says that the conditional distribution Px at any point x is, on average, the stationary distri-

bution π . In practice, simulating from a transition kernel is done via an appropriate deterministic function

ϕ : X ×U → X such that xt = ϕ(xt−1,ut ), where ut is a collection of uniform random variates providing a

source of randomness. Next, we introduce the notion of a reverse transition kernel and reversibility of a

Markov chain. For each transition kernel P : x → Px , we can de�ne a reverse transition kernel R : y 7→ Ry ,
3Except for when exact sampling is possible (see e.g. Huber (2016)), �nite samples from a Markov chain are only approximately

from the target distribution, and exact samples are only achieved at the in�nite sample size limit, which is not practical.
4We focus exclusively on �rst-order discrete-time homogeneous Markov chains on X ⊂ Rd , which are the most commonly used

class of Markov chains for MCMC. The use of continuous-time Markov chains in MCMC is possible, see e.g. Bierkens et al. (2016);
Bouchard-Côté et al. (2018).
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with density r (·|y), such that the detailed balance (or local balance) condition dPx (y)dπ (x) = dRy (x)dπ (y)

is satis�ed. In terms of density, this is

p(y |x)π (x) = r (x |y)π (y). (1.6)

In the special case when P and R are equivalent, the chain is said to be reversible. This is a strictly stronger

notion than stationarity, but is easier to verify since it only involves a pair of states instead of the entire

state space.

We now move on to convergence of Markov chains, which implies the asymptotic correctness of the sim-

ulation. For a Markov chain to converge to a speci�ed target distribution π , (1) it must have a unique

stationary distribution and (2) this distribution must be π . First, for a Markov chain with transition kernel

P to converge to a unique stationary distribution ν , P must satisfy certain conditions5 which almost always

hold in practical applications. Note that if ν is a stationary distribution, then it satis�es the global balance

condition (1.5). Second, to ensure that this stationary distribution ν matches the desired target distribu-

tion π , many recipes are available. Popular constructions include Metropolis–Hastings (MH) algorithm

(Metropolis et al., 1953; Hastings, 1970) and Gibbs sampler (Geman and Geman, 1984). The MH algorithm

is generic and the resulting Markov chain is reversible, and is thus stationary. The Gibbs sampler requires

simulation from full conditional distributions, and the resulting Markov chain needs not be reversible,

depending on the sampling order of the target variables.

Example 1.1 (MH algorithm). The Metropolis–Hastings (MH) algorithm is a popular MCMC algorithm

that also forms a basis for many advanced MCMC samplers. Given the chain is currently at a state x , a

potential next state x ′ is generated from a proposal kernel Q on X , with density q(x ′ |x). The chain then

moves to x ′ with probability

α(x, x ′) B min
(
1,
π (x ′)

π (x)

q(x |x ′)

q(x ′ |x)

)
. (1.7)

Otherwise it stays at x . The resulting Markov chain has the transition kernel P with density

p(x ′ |x) =


q(x ′ |x)α(x, x ′) if x ′ , x,

1 −
∫
X q(x ′ |x)α(x, x ′)dx if x ′ = x .

By construction, this Markov chain is reversible with respect to π , with π (x)p(x ′ |x) = π (x ′)p(x |x ′) for

almost every x, x ′ ∈ X . If the proposal kernel Q is irreducible and aperiodic, the transition kernel P

will also be irreducible, aperiodic and is π -invariant. Notice that the target density appears as a ratio in

the acceptance probability α(x, x ′). This makes the algorithm applicable when π is only known up to a
5Speci�cally, P must be irreducible (meaning that the chain can move from any state to any other in a �nite number of steps) and
aperiodic (meaning that there are no regions of the state space that can only be visited at a regular time interval; this is to avoid
deterministically repeating a sequence of states as cycles of length greater than one); see e.g. Theorem 1 in Tierney (1994) or
Theorem 4 in Roberts and Rosenthal (2004).
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Algorithm 1.2 Metropolis-Hastings (MH) algorithm
Inputs: number of samples N , number of burn-in iterations N0, initial distribution ν0, proposal kernel Q
Returns: samples x1:N approximately from π

1. initialise x0 ∼ ν0

2. for n = 1, . . . ,N0 + N

a) draw x ′ ∼ Qxn−1

b) compute acceptance ratio a =
π (x ′)q(xn−1 |x ′)
π (xn−1)q(x ′ |xn−1)

c) if a > 1 or u < a where u ∼ U (0, 1), then set xn = x ′

otherwise set xn = xn−1

d) if n > N0, record xn

Note: Step 2c sets xn = x ′ with probability min(1,a(xn−1, x ′))

normalising constant, which is usually the case for posterior distributions (1.1).

Several proposal kernels can be combined in two main ways to form a new kernel (Tierney, 1994). A

mixture of kernels can be used to combine proposals with di�erent features to improve the mixing property

of the chain (Guan and Krone, 2007), and is particularly popular when the target is a mixture distribution

(Holden et al., 2009; Bai et al., 2011) or consists of components with di�erent dimensions (called trans-

dimensional problems) (Green, 1995). A cycle of kernels applies a sequence of kernels in turn. A special

case is when each kernel only samples a subset of variables of a multivariate target. This strategy is

useful, for instance, when a multivariate state can be grouped into blocks of variables, and each block

is sampled separately. Grouping highly correlated variables into the same block can improve mixing

and convergence properties of the algorithm (Roberts and Sahu, 1997). An example of using cycle of

kernels is Gibbs sampling, where each kernel is a conditional distribution. In Section 3.2, we empirically

demonstrate that for a multivariate target, applying a cycle of low-dimensional random walk kernels can

be more e�cient than using a single multivariate kernel.

Example 1.2 (Gibbs sampler). For a multivariate target, Gibbs sampler alternately draws samples from

conditional distributions of a subset of the components given the rest of the variables. The sampling order

can be deterministic or randomised. For a certain class of models such as directed acyclic graphs (DAGs),

which include hierarchical regression models, the conditional distributions often have a standard form, so

sampling can be done exactly. When direct sampling from the conditional is not possible, any MH kernel

may be used.

Although there is no tuning parameter in the Gibbs kernels as in the random walk MH (Section 1.3.4.1),

parameterisation of the model can greatly a�ect the e�ciency. Various reparameterisation schemes can

be applied to improve e�ciency by reducing correlations among the components (Papaspiliopoulos et al.,

2007; Yu and Meng, 2011; Xu et al., 2013).
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1.3.3.2 Monte Carlo estimator using Markov chain samples

A simulated path of the Markov chain can be used to estimate an expectation under π (1.2) using a Monte

Carlo estimator similar to (1.3). However, since the samples are only approximately from the target dis-

tribution π , the estimator is no longer unbiased. In practice, we discard samples from early iterations to

reduce the bias. The estimator is thus

π̂N (f ) B
1
N

N0+N∑
n=N0+1

f (xn),

where N0 is the waiting time for the process to ‘get close’ to the target distribution π , and N is the number

of samples used to construct the estimator. The initial N0 iterations are referred to as the burn-in, also

known as the warm-up or initial transient phase of the simulation. The bias is expected to decrease as

the burn-in time N0 increases. This estimator is consistent in the sense that it converges to π (f ) almost

surely as N → ∞ (see e.g. Theorem 3 in Tierney (1994)). The variance of this estimator is more complex

than that of the simple Monte Carlo estimator (1.4) due to autocorrelations in the Markov chain samples.

Under certain ergodicity assumptions, the univariate Central Limit Theorem (CLT) holds for
√
N π̂ (f ) (see

e.g. Theorems 4 and 5 in Tierney (1994), or Jones (2004)):

√
N (π̂N (f ) − π (f ))

d
→ N (0,v) (1.8)

as N →∞, where
d
→ denotes convergence in distribution, with

v B lim
N→∞

NVar(π̂ (f )) = Vf τ , (1.9)

where Vf B Varπ (f (x)) is the variance of f (x) under π , ρk B Cor(f (xn), f (xn+k )) is the lag-k auto-

correlation and τ B 1 + 2
∑∞

k=1 ρk is called the integrated autocorrelation time. This CLT result provides

an asymptotic approximation of the variance of π̂N (f ) as v
N =

Vf τ
N . Thus increasing the number of post-

burn-in iterations N reduces the variance of π̂N (f ). When the computer storage is limited and the running

time is not an issue, it is common to ‘thin’ the chain by only recording one sample in every k iterations.

This will reduce autocorrelations in the recorded samples but may increase the variance of the estimator.

Finally, while some authors advocate the use of long burn-in such as N0 = N (Gelman et al., 2014), we

prefer N0 � N to put more emphasis on the precision of the estimate since unbiasedness seems a less

important property in practical applications.

1.3.3.3 E�ciency measures of the estimator

The presence of autocorrelations in the Markov chain samples makes the ‘e�ective’ sample size (ESS),

denoted Ne , appear larger or smaller than what would be expected if the samples were uncorrelated.
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Speci�cally, Ne is such that

Var(π̂N (f )) =
Vf

Ne
,

where the left hand side is asymptotically Vf τ
N based on (1.9), and the right hand side is the variance of

the estimator using Ne uncorrelated samples (1.4). Thus

Ne =
Vf

Vf τ/N
=

N

τ
.

So we see that if the samples are uncorrelated, τ = 1 and Ne = N , while positive autocorrelations tend to

make τ > 1 and Ne < N , and negative autocorrelations tend to make τ < 1 and Ne > N . The ratio of the

variance of π̂ (f ) for uncorrelated samples to the variance for MCMC samples of the same size, i.e.

E B
Vf /N

v/N
=
Vf

v
=

1
τ
, (1.10)

can be used as a measure of statistical e�ciency of the estimator π̂N (f ) (e.g. Gelman et al. (1996b)). From

this expression, we see that E = 1 when there are no correlations, E < 1 when the samples are posit-

ively correlated and E > 1 when the samples are negatively correlated. This observation is exploited in

Chapter 3 where we construct a ‘super-e�cient’ estimator by directly injecting negative correlations into

the Markov chain samples. In fact, the use of negative correlations is a common theme in reducing Monte

Carlo error, known as antithetic coupling or antithetic variates (Hammersley and Morton, 1956).

In practice, the calculation of Ne and E involves the term
∑∞

k=1 ρk in τ , which needs to be approxim-

ated. Geyer (1992) provides several estimators for reversible Markov chains such as those from the MH

algorithm. In this thesis, we use the so-called initial positive sequence estimator from Geyer (1992): given

a simulation sequence x1:N from MCMC,
∑∞

k=1 ρk is estimated by
∑K

k=1 ρ̂k where ρ̂k is a sample-based

estimate of the lag-k autocorrelation and K is the largest positive integer for which ρ̂K + ρ̂K+1 < 0. Our

experience (see Chapter 3) suggests that small sample sizes (say, N < 105) do not give reliable estimation,

especially when E is small, which makes it harder to estimate. We typically use N = 107 to 108 after

burn-in.

An alternative approach to estimate E is to use a closed form expression ofv on a �nite state space (Kemeny

and Snell, 1960; Peskun, 1973):

v = f >B(2Z − I −A)f ,

where Z B (I − P + A)−1, P is the transition probability matrix, A B (π (y))x ,y∈X (each row is π ), and

f = (f1, . . . , f |X |)
> with fx B f (x) for x ∈ X . To apply this formula to a continuous state space X ⊂ R,

we truncate X to a �nite interval [xL, xU ] for some pre-speci�ed values of xL and xU , which is then

divided into K bins of width ∆ = xU −xL
K . For each bin k = 1, . . . ,K , we use the midpoint xk B xL +

(k − 1/2)∆ as its representative. Then we compute the required matrices in the above expression on the
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discretised space. Note that this method requires an analytic expression of the proposal density q(x ′ |x)

to compute P , whereas the positive sequence estimator described earlier only requires the proposal ratio
q(x |x ′)
q(x ′ |x ) appearing in the MH acceptance probability (1.7). More details are described in Gelman et al. (1996b)

and Yang and Rodríguez (2013).

Another commonly used e�ciency measure is the expected square jump distance (ESJD), also called �rst-

order e�ciency, de�ned as

E2π B E(f (x) − f (x ′))2 = 2(1 − ρ1)Varπ (f (x)),

where x and x ′ are consecutive elements of a stationary chain. Thus maximising E2π is equivalent to min-

imising the �rst-order autocorrelation ρ1. Both E2π and ρ1 can be directly estimated from the simulation

draws. Note that E2π depends on the target variance while ρ1 does not, thus ρ1 may be preferred as an

e�ciency measure.

While we will be focusing on the mixing of Markov chains at stationarity, as measured by E or ρ1, we

will also consider two measures of the convergence rate of Markov chains, namely the absolute value

of the second largest eigenvalue of P , denoted |λ |2, and the largest total variation distance to the target

distribution after n steps among all possible starting points, denoted δn . These measures can be estimated

by discretising the state space. Speci�cally, given the stationary distribution π = (π1, . . . , πK ) and the

probability transition matrix P = (pi j )1≤i , j≤K on the discretised (i, j) state space, we calculate |λ |2 =

maxi=2, ...,K |λi |, where λ1 ≥ λ2 ≥ . . . ≥ λK are eigenvalues of P , and δn = maxi=1, ...,K
∑K

j=1 |p
n
i j − πj |,

where pni j denotes the entry (i, j) of the matrix Pn . We used n = 8 in this thesis. From our experience

(Figure 3.4), these convergence rate-based measures appear to be less useful for the purpose of constructing

e�cient Monte Carlo estimators (as oppose to density estimation); see also Yang and Rodríguez (2013).

1.3.4 Design decisions in the MH algorithm

1.3.4.1 Choice of the proposal kernel

For the MH algorithm (Example 1.1), we know that given a proposal kernelQ , the choice of the acceptance

probability α in (1.7) is optimal in terms of minimising the asymptotic variance (1.9) of the estimator π̂ (f );

see Peskun (1973) for discrete state spaces and Tierney (1998) for continuous state spaces. However, what

features the proposal kernel Q should have to minimise the asymptotic variance is not clear. The most

common choice of Q is x ′ = x + σu where u has a Gaussian or uniform distribution with unit variance.

This is referred to as the (additive) random walk MH algorithm, with a step-size parameter σ > 0 chosen

by the user. Another commonly used proposal is the Langevin proposal x ′ = x + σ 2

2 ∇x logπ (x) + σu

with u ∼ N (0, I ), which makes use of the target’s gradient information to bias the proposal towards a
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Figure 1.1: E�ciency as a function of the step-size parameter (σ ) and the expected acceptance probability
(Pjump) in the MH algorithm for the N (0, 1) target using �ve di�erent proposal kernels.

local mode of the target. The MH algorithm using the Langevin proposal is referred to as Metropolis-

adjusted Langevin algorithm (MALA). Although the Langevin kernel, as well as its related Hamiltonian

Monte Carlo (HMC) kernel (Neal, 2011), is provably more e�cient than the random-walk MH in terms of

the asymptotic variance of the estimator when the step-size is chosen optimally (Figure 1.2, middle plot;

Roberts and Rosenthal (1998)), its e�ciency is considerably more sensitive to the choice of σ (Figure 1.1a).

As a result, it is harder to tune σ to achieve good performance in practice. Moreover, the Langevin and

HMC kernels also requires gradient computation, which may be not available analytically for complex

models, or computationally intractable for large datasets.

It is well known that a poor choice of σ can adversely a�ect the mixing and convergence properties of the

MH algorithm. Determining the optimal choice of the step-size parameter σ is an active area of research,

known as optimal scaling. Gelman et al. (1996b) estimated an optimal σ that minimises v (1.9) for the

Gaussian random walk MH kernel q(x ′ |x) = N (x ′ |x,σ 2) for estimating the mean of the N (0, 1) target to

be about 2.38, with the corresponding expected acceptance probability

Pjump B

∫
X

∫
X
π (x)α(x, x ′)q(x ′ |x)dx ′dx (1.11)

to be about 0.44. When the target distribution π isd-dimensional with identically distributed components,

Roberts et al. (1997) show that for the Gaussian kernel q(x ′ |x) = N (x ′ |x,σ 2Id ), the optimal step-size that

minimisesv is the one that leads to Pjump ≈ 0.234 asd →∞ (Figure 1.2). Recent work covers more complex

algorithms such as Multiple-try Metropolis (Bédard et al., 2012), delayed rejection MH (Bédard et al., 2014),

HMC (Beskos et al., 2013), as well as the MH and Metropolis-adjusted Langevin algorithm (MALA) in the

in�nite-dimensional setting (Beskos et al., 2009; Pillai et al., 2012). However, even for the simple random

walk MH algorithms, optimal scaling analysis has beed limited to the Gaussian random walk. A few

exceptions are the Langevin proposal (Roberts and Rosenthal, 1998) and the Cauchy distribution (Neal

and Roberts, 2011). Beyond this small collection of proposal kernels, there is no general theory available.
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Figure 1.2: Optimal step-size σ ∗ and the corresponding e�ciency E∗ and expected acceptance probability
P∗jump for Gaussian and Langevin kernels as the dimension of the Nd (0, I ) target increases. The
values were calculated using 107 MCMC samples, compared with the asymptotic values as
d →∞ from theoretical analysis (Roberts et al., 1997; Roberts and Rosenthal, 1998).

1.3.4.2 Choice of the step-size parameter

Ideally, the proposal step-size σ should be set to give the optimal e�ciency E if accuracy of the estimate is

of interest. A computationally intensive approach is to run the algorithm for a range ofσ values and choose

the one that gives the highest e�ciency, referred to as grid evaluation; see Figure 1.1a for an example.

This is expensive and may not be practical in real applications. In practice, we employ an approach called

automatic scale adjustment (Yang and Rodríguez, 2013), where we monitor Pjump and use it to adjust σ for

a one-dimensional proposal. The optimal Pjump appears to be around 0.4 for unimodal kernels (such as

Gaussian and uniform kernels) and 0.3 for bimodal kernels (such as the Bactrian-type kernels of Yang and

Rodríguez (2013) and new kernels introduced in Chapter 3), based on a monotone decreasing relationship

between σ and Pjump (Figure 1.1c), and the maximum e�ciency is achieved at some intermediate σ (Figure

1.1a) and Pjump (Figure 1.1b). Speci�cally, we use the relationship Pjump(σ ) =
2
π tan−1(2/σ ) for the N (0, 1)

target and x ′ |x ∼ N (x,σ 2) kernel (Gelman et al., 1996b), to obtain the update formula

σ ∗ = σ
tan( π2 Pjump)

tan( π2 P
∗
jump)

, (1.12)

where σ is the current step-size, Pjump is the observed acceptance proportion, while σ ∗ and P∗jump are the

optimal ones. P∗jump is speci�ed by the user. We update σ several times during the burn-in.

1.3.4.3 Assessing convergence of simulation

In theory, the simulation must be run for long enough to achieve approximate convergence. In prac-

tice, it is often e�ective to perform simulation of multiple independent Markov chain sequences starting

from di�erent points and compare the estimates of posterior quantities of interest. If the estimates from

independent runs do not agree at a desired level of accuracy, a longer run maybe required.
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1.3.5 Summarising posterior inference from simulation draws

For continuous scalar variables, there are several choices of 100(1 − α)% posterior intervals for α ∈ (0, 1).

The central interval (also called equal-tailed interval) lies between α/2 and 1−α/2 quantiles which can be

straightforwardly estimated from simulation by calculating appropriate quantiles. The highest posterior

density (HPD) region contains 100(1 − α)% of the highest posterior mass so that any point in this region

has probability density at least as high as those outside. This is the shortest interval of the speci�ed

probability coverage and always contains the mode of the distribution. The HPD region can be estimated

from simulation by calculating the empirical shortest probability intervals (Chen and Shao, 1999). Liu et al.

(2015b) describe an algorithm that gives more stable estimates of the shortest probability intervals. For

unimodal and symmetric distributions, the HPD region coincides with the central interval. For asymmetric

distributions, such as those with a mode located at a boundary of the distribution support, the HPD region

appears to be more representative as an inferential summary of the distribution.

For a tree structure, the maximum a posteriori (MAP) tree is the tree with the highest posterior probability

(Rannala and Yang, 1996). However, this summary is not useful when the MAP tree has a low posterior

probability. Alternatively, a 100(1−α)% credibility set (or posterior set) contains trees with highest posterior

probabilities such that the total probability of trees in this set is at least 1−α (Rannala and Yang, 1996; Mau

and Newton, 1997). This is a discrete version of the HPD region, and is more useful when it contains only

one or a few trees. Other common summaries of trees are a majority-rule consensus (MRC) tree, which

contains clades that appear in at least half of the tree samples, and a maximum clade credibility (MCC)

tree, which is the tree with the largest product or sum of the posterior clade probabilities. Many more tree

summaries are discussed in Heled and Bouckaert (2013).





Chapter 2

Introduction to species tree inference using

multispecies coalescent model

2.1 Phylogenetics using genome-scale sequence data

A wide variety of genome sequencing methods is now available for generating di�erent types of genome-

wide sequence data that can be used for phylogenetic inference. In this thesis, we will be focusing on

using whole genome sequences. An advantage of using whole genomes is that di�erent types of genomic

regions (or loci) can be extracted to suit the phylogenetic questions of interest. Examples include coding

regions and various kinds of noncoding regions such as introns, ultraconserved elements (UCEs) (McCor-

mack et al., 2012) and conserved nonexonic elements (CNEEs) (Edwards et al., 2017). The main limitation,

however, is that it is still costly and time-consuming to obtain genomes sequenced at high-coverage that

are well assembled and well annotated. Consequently, only a small fraction of organisms have whole gen-

omes available. More cost-e�ective methods for generating phylogenetic data involve sequencing only

speci�c parts of the genome, known as targeted sequencing or genomic partitioning, reviewed in Lem-

mon and Lemmon (2013). These methods include transcriptome sequencing, restriction-site-associated

DNA (RAD) sequencing and sequence capture. In contrast to whole genome sequencing, these methods

require selection of genomic regions prior to sequencing experiment, and the amount of sequence data is

usually much smaller. Non-sequence data can also be used to infer species trees, for instance, gene order,

gene copy number and large-scale chromosomal features such as duplications and inversions.

Besides the choice of genomic regions, various other data processing steps can be performed prior to

the actual species tree inference. These include subsampling of loci to �lter out less informative positions

(Molloy and Warnow, 2018), and assessing alignment quality and homology (Lemmon and Lemmon, 2013).

However, the e�ect of these data processing steps on the downstream inference is still subject to debate,

see e.g. Lanier et al. (2014); Sayyari et al. (2017); Molloy and Warnow (2018). Moreover, the genome

assembly pipeline can also a�ect the sequence data quality. For example, in assembling diploid genomes,
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it is common to ‘haploidify’ the sequences to ease the assembly process, particularly in polymorphic

genomes, including the mosquito genomes analysed in Chapter 4 (Neafsey et al., 2015; Fontaine et al.,

2015). However, the resulting consensus sequences may not represent any real haplotypes and could

potentially increase the systematic error in the species tree inference. The use of phased diploid sequences

should be preferred when available. Eriksson et al. (2018) illustrate the importance of using phased alleles

for species tree inference in the context of understanding polyploid origins in plants. More studies are

needed to quantify the e�ect of using haploidi�ed consensus genomes and genome phasing on species

tree inference.

2.2 Species tree inference from multilocus data

The increasing availability of genome-scale data provides an unprecedented opportunity to resolve con-

tentious phylogenetic hypotheses. However, modelling and inference with the genome-wide data are

fraught with di�culties due to complex interactions of various evolutionary processes operating at dif-

ferent levels. Here, we assume that the data consist of di�erent genomic regions (or loci), referred to

as multilocus data. Each locus consists of multiple sequences from di�erent species. Each species may

have more than one sequence. For diploid species, we may get either two sequences from a phased gen-

ome or one sequence from a consensus genome (Section 2.1) which is more commonly seen in assembled

genomes. Finally, we assume that sequences in each locus are orthologous and are correctly aligned.

In practice, misidenti�cation of orthologues and misalignment can be problematic. Checking orthology

and alignment quality should be performed whenever possible to reduce systematic error in species tree

inference (Lemmon and Lemmon, 2013).

Given multilocus data, a traditional approach in phylogenetics is to either concatenate all loci into a single

alignment and infer a single tree (called a supermatrix or concatenation approach), or to infer a gene tree

for each locus and combine all trees into a single tree (called a supertree approach). However, there are

problems with these methods when applied to genome-wide data. First, both concatenation and supertree

approaches ignore the variation in the gene tree structures across genomic loci. Moreover, it has been

shown via theoretical analysis and simulation studies that concatenation can lead to inconsistent estimates

of the species tree with high support (Kubatko and Degnan, 2007; Liu and Edwards, 2009; Roch and Steel,

2015), and apparent substitution rate variation and biased branch length estimates (Mendes and Hahn,

2016), particularly when the species tree has short internal branches due to rapid successive speciation

events. The supertree methods are heuristic and do not properly account for uncertainty in the gene trees.

Szöllősi et al. (2015) review gene-centric approaches for modelling species trees taking into account po-

tentially di�erent evolutionary histories at di�erent loci across the genome. The variation in locus-wise

genealogical histories, also called gene trees, can be attributed to several factors (Maddison, 1997; Nich-
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ols, 2001; Degnan and Rosenberg, 2009). The variation can be due to random factors such as di�erential

�xation of polymorphic alleles in di�erent lineages, known as incomplete lineage sorting (ILS), or non-

random factors such as selection, gene �ow between species, gene duplications and losses, as well as large

structural features of the chromosomes such as inversions and heterochromatin regions which tend to

reduce recombination. In Szöllősi et al. (2015), a three-level hierarchical model is suggested as a working

model for species evolution: (1) a species tree at the top level for genome evolution, (2) a ‘locus’ tree at the

middle level for gene family evolution and (3) a gene tree at the innermost level for sequence evolution.

Generative models for each of these levels exist, but methods that fully capture all three levels in a single

probabilistic model are currently lacking. While it might be easy to come up with such a model, inference

computation is likely to be a major challenge in practice.

For single-copy loci, the concept of locus tree or gene family does not apply and can be omitted. This

simpli�es the modelling task. We will assume in this thesis that loci in the sequence alignments are

single-copy orthologues. Consequently, gene duplications and losses can be eliminated as a mechanism

for gene tree heterogeneity. With this assumption, the multispecies coalescent (MSC) framework (Rannala

and Yang, 2003, 2017) provides a natural way to model the species tree and gene tree levels, capturing

the heterogeneity in the evolutionary history of individual loci while being computationally tractable.

We note that there are supertree methods that combine inferred gene trees according to the MSC model,

treating estimated gene trees as input data. However, these methods, which we refer to as approximate or

summary coalescent methods, tend to have identi�ability and inconsistency issues, primarily due to loss of

information in using gene tree estimates as inputs instead of sequence data as well as poor gene tree estim-

ates when sequence data from individual loci have little phylogenetic information (Xu and Yang, 2016; Shi

and Yang, 2018). There is increasing evidence favouring the MSC model as opposed to concatenation or

summary coalescent methods (Ogilvie et al., 2016, 2017). We describe the MSC model in detail in the next

section. An alternative approach to account for ILS is to directly model polymorphisms in the sequence

data using a continuous-time Markov process for populations on tree, where the states represent allele

frequencies and the transitions between states re�ect mutations and random genetic drift. This class of

models is referred to as polymorphism-aware phylogenetic models (PoMo) (De Maio et al., 2013, 2015; Schr-

empf et al., 2016). The number of states depends on the population size, which is constant throughout

the species tree, and is �xed at a small value for computational tractability in practice. This population

size parameter can be viewed as a discretisation approximation of the actual allele frequencies in the large

population limit.

2.2.1 The multispecies coalescent (MSC) model

We �rst introduce notation before describing the model. A species tree (S,Θ) consists of a rooted binary

tree structure S and scalar parameters Θ = {θ, τ } for population sizes (θ ) and divergence times (τ ). For
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Figure 2.1: An example of a realisation of a gene tree from the MSC model for a given species tree ((A,B),C)
of three species, with two sequences from A, one sequence from B and two sequences from
C . The species tree has two divergence times τAB, τABC and �ve population size parameters
θA, θB, θC , θAB, θABC corresponding to �ve branches of the species tree.

diploid species, the population size parameter is θ = 4N µ where N is the e�ective population size and µ is

the mutation rate per site per generation. Assuming that the mutation rate µ is constant throughout the

species tree, both θ and τ can be measured in the units of mutations per site per generation. Each edge i

of the species tree is associated with a population with size θi and the divergence time τi of the younger

node. All extant populations have a zero divergence time. Thus for a tree with K leaves, there are 2K − 1

θs (number of edges, including one for the root population) and K − 1 τ s (number of internal nodes).

We now describe a generative process under the MSC model, followed by the calculation of the probability

density. Given a species tree (S,Θ), a gene tree (G, t) with a binary tree structure G and coalescent times t

is generated bottom-up via a coalescent process that sequentially merges a pair of lineages at a rate that

depends on the population size θ , starting from extant populations at the terminal edges of the species

tree. For each population i = (u,v) (an edge on the species tree), where u is the parent node of v in the

species tree S , let nv and nu be the numbers of lineages at times τv and τu , respectively. For example,

for extant populations, nv will be the number of sequences in the data. The coalescent process in this

population starts at time τv with nv lineages. Then given at time t ∈ (τv , τu ) with nt remaining lineages,

a waiting time Ti ,nt for the next coalescent event is drawn from the exponential distribution Exp(
(nt
2
) 2
θi
).

This is the time since the last coalescent event or since τv , which ever is more recent, looking backwards

in time. If Ti ,nt < τu , the next coalescent event occurs, in which case, a pair of the remaining lineages is

chosen uniformly at random to coalesce, and the process of sampling the next waiting time is repeated.

Otherwise, no more coalescent event occurs until τu . The process terminates at the root population after

all lineages have merged. An example of a realisation from this process is given in Figure 2.1.

The probability density of a given gene tree (G, t) under this process can be calculated independently on
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each branch of the species tree as

p(G, t |S,Θ) =
∏
i

p(Gi , ti |S,Θ), (2.1)

where the product is over 2K − 1 branches of the species tree. For each branch i of the species tree, there

are two types of events. The �rst type is a coalescent event where a random pair of the remaining lineages

merge into a single lineage. Suppose there are nt remaining lineages, the next coalescent event occurs at

time Ti ,nt ∼ Exp(
(nt
2
) 2
θi
), with probability

1(nt
2
) × 2

θi

(
nt
2

)
e
− 2
θi
(nt2 )Ti ,nt =

2
θi
e
− 2
θi
(nt2 )Ti ,nt .

Note that there are nv − nu coalescent events in branch i . The second type of events occurs in the �nal

time period where no more coalescence occurs until τu . This happens with probability e
−(nu2 )

2
θi

∆T where

∆T B τu − τv −
∑nu+1

j=nv Ti , j is the remaining time before τu since the last coalescent event. Combining all

the ingredients gives

p(Gi , ti |S,Θ) =

(
nu+1∏
j=nv

2
θi
e
−(j2)

2
θi
Ti , j

)
e
−(nu2 )

2
θi

(
τu−τv−

∑nu+1
j=nv Ti , j

)

=

(
2
θi

)nv−nu ©«
nu+1∏
j=ni ,v

e
−
j (j−1)
θi

Ti , j ª®¬ e−
nu (nu−1)

θi

(
τu−τv−

∑nu+1
j=nv Ti , j

)
. (2.2)

The coalescent times ti (since the beginning of the process) are given by ti , j = τv +
∑j

k=nv
Ti ,k for j =

nv ,nv − 1, . . . ,nu + 1. As an example, for the gene tree in Figure 2.1, we have

p(G, t |S,Θ) = e
− 2
θA

τAB
(population A)

×
2
θC

e
− 2
θC

TC ,2
(population C)

×
2
θAB

e
−3 2

θAB
TAB ,3

× e
− 2
θAB
(τABC−TAB ,3)

(population AB)

×
2

θABC
e
−3 2

θABC
TABC ,3

×
2

θABC
e
− 2
θABC

TABC ,2 . (population ABC)

Another example of gene tree density calculation is given at the end of Section 2.3.1 for the case of three

species and three sequences.

This general formulation of the MSC model for any number of species and any number of sequences at

each locus together with an MCMC algorithm for Bayesian inference was described in Rannala and Yang

(2003). Earlier work recognising the distinction between gene divergence times and species divergence

times appeared in Gillespie and Langley (1979); Hudson (1983); Tajima (1983); Takahata and Nei (1985). The

case of three species and any number of sequences was studied by Pamilo and Nei (1988); Takahata (1989).

Maximum likelihood inference of model parameters for three species and one sequence per species was



40 2.2. Species tree inference from multilocus data

S,Θ

G`, t` Ψ

y`

1

2

` = 1 : L

Figure 2.2: Model for species tree estimation. The shaded nodesy` indicates observed data. Other variables
are parameters to be inferred. 1 = MSC model, 2 = sequence evolution model, L = number of
loci.

implemented in Takahata et al. (1995), using the in�nite sites model for sequence evolution. Yang (2002)

extended Takahata et al. (1995) to use the JC model (Jukes and Cantor, 1969) and performed Bayesian

inference using MCMC.

2.2.2 Species tree estimation

We now describe a generative model for multilocus sequence data y = y1:L , where L is the number of

loci, using the MSC model from the previous section, illustrated in Figure 2.2. The species tree (S,Θ)

is generated from a probability distribution p(S,Θ) = p(S)p(Θ) (described below). Then to generate a

sequence alignment y` at each locus ` = 1, . . . , L, we �rst generate a gene tree (G`, t`) according to

the MSC model (Section 2.2.1). Next, the sequence alignment y` is generated from a continuous-time

Markov process along the branches of the gene tree (G`, t`) from root to leaves. This process may have

additional parameters for the rate matrix of the Markov process, denoted Ψ. Assuming each locus evolves

independently, we have the data model

p(y |Ψ, S,Θ) =
L∏̀
=1

p(y` |Ψ, S,Θ),

with

p(y` |Ψ, S,Θ) =
∑
G`

∫
p(y` |G`, t`,Ψ)p(G`, t` |S,Θ)dt`, (2.3)

where p(y` |G`, t`,Ψ) is from the Markov process of sequence evolution (2 in Figure 2.2) and p(G`, t` |S,Θ)

is from the MSC model (2.1) (1 in Figure 2.2). This data model assumes that the sequence data y` at each

locus and the species tree (S,Θ) are conditionally independent given the gene tree (G`, t`) at that locus.

The posterior distribution of the species tree is

p(S,Θ,Ψ|y) ∝ p(S)p(Θ)p(Ψ)
L∏̀
=1

p(y` |Ψ, S,Θ).
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However, marginalising out all the gene trees (G`, t`)
L
`=1 and the Ψ parameters in (2.3) is only possible in

the simplest cases of two or three species. In practice, we perform inference on the full joint posterior

p(S,Θ, (G`, t`)
L
`=1,Ψ|y) ∝ p(S)p(Θ)p(Ψ)

L∏̀
=1

p(y` |G`, t`,Ψ)p(G`, t` |S,Θ). (2.4)

We describe the prior speci�cation next. For each population i , we use an inverse Gamma prior θi ∼

InvG(aθ ,bθ ), which has mean bθ
aθ−1 . The root divergence time is given τ0 ∼ InvG(aτ ,bτ ). The diver-

gence times τ1, . . . , τK−2 for non-root nodes, where K is the number of species in the data, are uni-

form on the interval (0, τ0) and sum to τ0. These are generated using the symmetric Dirichlet(1), so that

p(τ1, . . . , τK−2) =
(K−3)!
τ K−20

. Using the inverse Gamma priors allows analytic marginalisation of the θ para-

meter, which improves mixing and convergence properties of MCMC sampling (Rannala and Yang, 2017).

The species tree prior p(S) is the uniform distribution over rooted binary trees (Yang and Rannala, 2014).

More complex models of species trees such as a birth-and-death process can also be used, with an extra

computation cost.

There are two main implementations for posterior inference under the model (2.4): bpp (Yang, 2015; Ran-

nala and Yang, 2017) and StarBEAST2 (Ogilvie et al., 2017). In Chapter 4, we will be using bpp to infer

mosquito species trees. In particular, we will assume the JC model (Jukes and Cantor, 1969) for nucleotide

evolution on the gene trees, so there are no parameters Ψ.

2.2.3 Modelling assumptions and limitations

In the full model (2.4) for species tree inference, we assume that (1) the gene trees are conditionally inde-

pendent given the species tree, implying free recombination among loci, and (2) all alignment sites within

each locus share the same gene tree, implying no recombination within each locus. These assumptions

are mainly for computational convenience. Thus, ideally, loci should be short and far apart. Preprocessing

of whole-genome data can be performed so that these requirements approximately hold. The sequence

evolution model p(y` |G`, t`,Ψ) can be any Markov process on tree, possibly with mutation rate variation

across loci and across branches of the species tree or gene tree. Using branch-speci�c rates on the species

tree can improve the accuracy of species tree estimation compared with using a constant rate, but at a

considerable computation cost (Ogilvie et al., 2017).

We now discuss some of the assumptions made by the MSC model for individual loci: (1) loci are evolving

neutrally, (2) ILS is the only factor that can make gene trees di�er from the species tree, (3) the population

size is constant within each population, and (4) the mutation rate is constant throughout the gene tree. The

�rst assumption may be dealt with by selecting non-coding regions of the genome since they are less likely

to be under selection compared with the coding regions. Nonetheless, when the species are closely related,

the coding regions also appear to be useful for estimating the species tree structure since they tend to



42 2.3. Inferring gene �ow

experience similar negative selection, which primarily reduces the neutral mutation rate without a�ecting

much on the gene tree structure; see Shi and Yang (2018) and Chapter 4. The second assumption can be

unrealistic for many datasets since other factors may also cause gene trees to disagree with the species tree,

for example, gene �ow and ancestral population structure (such as subdivided ancestral populations). The

last two assumptions have a similar e�ect as selection, i.e. they are likely to mostly a�ect the coalescent

times. More studies are needed to quantify the impact of each of these factors and their interactions on

the accuracy and bias of the species tree estimates.

Various studies have assessed the robustness of the species tree estimates when the model assumptions

are violated, reviewed in Liu et al. (2015a); Edwards et al. (2016). In particular, species tree estimation

is shown to be robust to within-locus recombination via simulation studies (Lanier and Knowles, 2012).

Shi and Yang (2018) discuss the impacts of several modelling assumptions made by the MSC model in the

context of species tree inference among closely related species, in comparison with the concatenation and

summary coalescent methods. Gruenstaeudl et al. (2016) demonstrate using posterior predictive checking

(see Section 1.1) that the MSC model poorly �ts data simulated with migration. The next section reviews

how gene �ow can be incorporated into the MSC framework.

2.3 Inferring gene �ow

So far, the MSC model (Section 2.2.1) does not allow gene �ow between populations. However, empirical

evidence for gene �ow in natural populations is plentiful (Mallet et al., 2016; Nieto Feliner et al., 2017).

A wide range of methods is available for inferring gene �ow from genomic data. Payseur and Riese-

berg (2016) survey methods for inferring gene �ow between diverging lineages from genome data as well

as recent empirical genomic studies of hybridisation, reproductive isolation and speciation. They also

identify important factors that need to be accounted for in current methods, which include variation of

the migration rates across genome, over time and over geographical ranges, and the e�ect of selection on

introgressed loci. More discussion on the modelling and inference aspect of speciation with gene �ow,

accounting for selection and recombination is given in Sousa and Hey (2013). Harrison and Larson (2014)

review genomic studies of gene �ow in hybrid zones. Tigano and Friesen (2016) discuss the interplay

between natural selection and gene �ow, and mechanisms that lead to adaptive introgression. Folk et al.

(2018) review the current progress in genomic studies of hybridisation and introgression, emphasising the

importance of factors such as polyploidy, climate and geographical distribution in addition to incomplete

lineage sorting. Ignoring gene �ow can lead to inconsistent estimates of species trees (Solís-Lemus et al.,

2016; Long and Kubatko, 2018) or bias in the estimates of divergence times and population sizes (Leaché

et al., 2014).

The MSC model can be extended to allow migration between lineages by adding migration events to the
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coalescent process. But unlike coalescent events, migration simultaneously a�ects multiple populations

that exist in the same period of time. Thus contemporary branches of the species tree that share the

same time period are no longer independent. There is a need to keep track of the population in which

each sequence resides, and the state of the coalescent process involves all contemporary populations.

Consequently, the number of possible states of the coalescent process becomes combinatorially large in

both the number of species and the number of sequences per species. Although the probability density of

a gene tree can be derived based on a sample path of the process with coalescent and migration events,

the expression is complex even for the simplest case of two species with two sequences, and requires

numerical approximations to integrate out the migration history (Beerli and Felsenstein, 1999; Wang and

Hey, 2010). It is much simpler to compute the gene tree probability density directly from the probability

transition matrix of the coalescent process using the standard theory of continuous-time Markov process

(Hobolth et al., 2011). The price to pay is the need to evaluate the entire transition matrix. Although

there is a technique for reducing the size of the state space (Andersen et al., 2014), the approach remains

impractical when the number of populations or the number of sequences is large (Andersen et al., 2014,

Table 1). This type of models for migration between populations that are related through a tree structure

falls under the banner of isolation-with-migration (IM) models. They are most studied in the case of two

populations and two sequences (Hey and Nielsen, 2004; Wilkinson-Herbots, 2008). Only a few studies

look at the case of more than two populations related through a tree structure (Hey, 2010; Andersen et al.,

2014).

In the population genetics literature, models of migration between populations date back to at least Wright

(1931, 1943). Early studies such as Li (1976) and Strobeck (1987) characterised the distribution of a pair-

wise nucleotide di�erence under various models of population structure, such as the in�nite island model

(Wright, 1931), the �nite island model (Maruyama, 1970) and the stepping-stone model (Kimura and Weiss,

1964). The coalescent process with migration under these population structure models was studied by

Takahata (1988), Notohara (1990), Nath and Gri�ths (1993) and Wilkinson-Herbots (1998), and was re-

ferred to as the structured coalescent. However, this type of models assumes that the population structure

is constant through time, ignoring the evolutionary relationships among the populations. Wakeley (1996)

considered the structured coalescent of two populations that diverged from a common ancestral popula-

tion at some time in the past. This is a two-population IM model, which can be considered an extension of

the multispecies coalescent model of Takahata and Nei (1985) (Section 2.2.1). This model allows estima-

tion of the population sizes, species divergence time and migration rates from sequence data (Nielsen and

Wakeley, 2001; Hey and Nielsen, 2004). Their estimation procedure was subsequently developed into the

IMa program (Hey and Nielsen, 2007) and its variants (Hey, 2010; Sethuraman and Hey, 2016).

Inference computation in the IM model is demanding since the calculation of gene tree density is consid-

erably more involved compared with that for the MSC model. In practice, a trade-o� between the number
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of sequences and the number of loci must be made. The approach of Hey and Nielsen (2004, 2007); Hey

(2010) is applicable for many sequences, but only for a small number of loci. Other methods that are based

on explicit likelihood calculations work for genome-scale data, but are limited to only two or three species.

In this case, di�erent methods exist for likelihood calculation. For instance, Wang and Hey (2010) expli-

citly integrate out the migration history in the coalescent model for gene trees. Hobolth et al. (2011) and

Andersen et al. (2014) use the transition probability matrix of the coalescent model which provides sim-

pler and closed form expressions for gene trees, assuming constant migration rate over time. Lohse et al.

(2011) and Lohse et al. (2016) use generating functions for gene trees, assuming the in�nite-sites model

for mutations. In Chapter 4, we will be considering the IM model for three species and three sequences,

implemented in the program 3s (Zhu and Yang, 2012; Dalquen et al., 2017).

Finally, we note that there is an alternative approach that uses a phylogenetic network to model hybrid-

isation or gene �ow as a single event in time. By contrast, the IM-type models allow migration to occur

continually over a period of time. We believe this is a more realistic approach to model gene �ow between

closely related species. In addition, Bayesian inference of phylogenetic networks with multispecies co-

alescent using MCMC is highly computationally intensive. Existing implementations only work for a few

species (<10) and a small number of loci (~100) (Zhang et al., 2018; Wen and Nakhleh, 2018).

2.3.1 The isolation-with-migration (IM) model for three species and three

sequences

We consider the IM model for three species (denoted 1, 2 and 3), assuming a �xed species tree ((1, 2), 3),

and three sequences (denoted a, b and c) where gene �ow is only allowed between the sister species 1 and

2. The program 3s (Zhu and Yang, 2012; Dalquen et al., 2017) implements maximum likelihood inference

under this model. The species tree has two divergence times (τ0, τ1), �ve population size parameters

(θ1, . . . , θ5) and two migration rates (M12 and M21, for gene �ow from and to population 1, respectively)

(Figure 2.3). As for the MSC model, both τ s and θs are in the units of the number of mutations per site.

The migration rate Mi j = Njmi j is the number of individuals in population j that come from population

i . The two divergence times τ0, τ1 partition the time into three periods: (0, τ1), (τ1, τ0) and (τ0,∞). There

are eighteen possible gene tree structures since there are six possible unlabelled tree structures that di�er

by the time periods in which the two coalescent events occur, and each tree can be labelled at the tips in

three di�erent ways (Figure 2.3). Given three sequences a,b and c at a locus, we use the notation Gk j for

the gene tree, with k = 1, . . . , 6 and j = a,b, c , where Gkc : ((a,b), c), Gka : ((b, c),a) and Gkb : ((c,a),b).

For example, both G5c and G6c represent the tree ((a,b), c), but G5c has τ1 < t1 < τ0 and t0 > τ0, whereas

G6c has t1, t0 > τ0.

Given multilocus data y1:L , where each locus has three sequences and each sequence can come from any
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Figure 2.3: Species tree with three species S : ((1, 2), 3) and six possible gene tree structuresG1, . . . ,G6. The
species tree S has two divergence times τ1 and τ0, �ve population size parameters θ1, . . . , θ5, and
two migration rates M12,M21 between species 1 and 2. Each gene tree has two coalescent times
t0 and t1. Given three sequences a,b, c at each locus, there are three possible gene trees for each
gene tree structure that di�er by tip label: Gkc : ((a,b), c), Gka : ((b, c),a) and Gkb : ((c,a),b)
for k = 1, . . . , 6. Adapted from Figure 1 in Dalquen et al. (2017).

of the three species, the joint model of the sequence data and the gene trees (G`, t`)
L
`=1 is

p(y1:L, (G`, t`)
L
`=1 |Θ) =

L∏̀
=1

p(y`,G`, t` |Θ) =
L∏̀
=1

p(y` |G`, t`)p(G`, t` |Θ),

where p(y` |G`, t`) is the standard phylogenetic likelihood on the gene tree (see Figure 2.2), but now

p(G`, t` |Θ) comes from the IM model (described below) and Θ = {τ0, τ1, θ1, . . . , θ5,M12,M21}. The like-

lihood to be maximised is then given by marginalising out the gene tree, i.e.

p(y` |Θ) =
∑
k

∫
p(y`,G`,k , t` |Θ)dt` .

For three species and three sequences, the integral over the two coalescent times is two-dimensional and

can be calculated using a deterministic numerical quadrature method such as Gaussian quadrature, and

the summation involves at most eighteen terms (Dalquen et al., 2017). The number of possible gene trees

varies depending on the number of sequences from each species. For example, when there is one sequence

from each species, denoted 1a2b3c , or simply 123, and gene �ow is only allowed between species 1 and 2,

there are �ve possible gene trees: G3c ,G5c ,G6a ,G6b andG6c since the second coalescent event must occur

after τ0 and must involve species 3.

When one of the sequences is from species 3 (the other two are from either species 1 or 2) and migration

is restricted to the two sister species during the time period (0, τ1), the model reduces to the case of two

species and two sequences. For any sequence data of the form 112, 123 and 223, the coalescent process

has the state space {113, 123, 223, 13|23}, where 13|23 denotes the state where the two sequences have

coalesced in either species 1 or 2 (and the other sequence is in species 3), with the transition rate matrix

Q given by
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113 123 223 13|23

113 −2m1 −
2
θ1

2m1 0 2
θ1

123 m2 −m2 −m1 m1 0

223 0 2m2 −2m2 −
2
θ2

2
θ2

13|23 0 0 0 0

where m1 B
m21
µ =

m21
θ1/4N1

=
4M21
θ1

and m2 B
4M12
θ2

are migration rates per unit of time. Let P(t) = eQt

be the corresponding transition probability matrix at time t > 0. Let s ∈ {113, 123, 223} denote the initial

state from the data. The probability density for a gene tree with tree structure Gk and coalescent times

t1, t0 (for the �rst and second coalescent events, respectively) is given by

p(G3c , t0, t1 |Θ) =

(
Ps ,113(t1)

2
θ1
+ Ps ,223(t1)

2
θ2

)
2
θ4
e
− 2
θ4
(t0−τ0), t1 ∈ (0, τ1), t0 ∈ (τ0,∞),

p(G5c , t0, t1 |Θ) =
(
Ps ,113(τ1) + Ps ,123(τ1) + Ps ,223(τ1)

) 2
θ5
e
− 2
θ5
(t1−τ1) 2

θ4
e
− 2
θ4
(t0−τ0), t1 ∈ (τ1, τ0), t0 ∈ (τ0,∞),

and for j = a, c,b,

p(G6j , t0, t1 |Θ) =
(
Ps ,113(τ1) + Ps ,123(τ1) + Ps ,223(τ1)

)
e
− 2
θ5
(τ0−τ1) 2

θ4
e
−(32)

2
θ4
(t1−τ0) 2

θ4
e
− 2
θ4
(t0−t1),

t1 ∈ (τ0,∞), t0 ∈ (t1,∞).

Integrating out t0 and Gk gives the marginal density for t1 as

p(t1 |Θ) =



2
θ1
Ps ,113(t1) +

2
θ2
Ps ,223(t1) if t1 < τ1,(

1 − Ps ,13 |23(τ1)
) 2
θ5
e
− 2
θ5
(t1−τ1) if τ1 < t1 < τ0,

3
(
1 − Ps ,13 |23(τ1)

)
e
− 2
θ5
(τ0−τ1) 2

θ4
e
− 6
θ4
(t1−τ0) if t1 > τ0.

(2.5)

Similarly, integrating out t1 and Gk gives the marginal density for t0 as

p(t0 |Θ) = Ps ,13 |23(τ1)
2
θ4
e
− 2
θ4
(t0−τ0) +

(
1 − Ps ,13 |23(τ1)

) 2
θ4
e
− 2
θ4
(t0−τ0)

(
1 − e−

2
θ5
(τ0−τ1)

)
(2.6)

+ 3
(
1 − Ps ,13 |23(τ1)

)
e
− 2
θ5
(τ0−τ1) 1

2

(
2
θ4
e
− 2
θ4
(t0−τ0) −

2
θ4
e
−3 2

θ4
(t0−τ0)

)
, t0 ∈ (τ0,∞).

Finally, the marginal distribution of the gene tree structure is given by

p(G3c |Θ) = Ps ,13 |23(τ1)

p(G5c |Θ) =
(
1 − Ps ,13 |23(τ1)

) (
1 − e−

2
θ5
(τ0−τ1)

)
(2.7)

p(G6j |Θ) =
1
3

(
1 − Ps ,13 |23(τ1)

)
e
− 2
θ5
(τ0−τ1) for j = a,b, c .
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Figure 2.4: Probability density of the �rst coalescent time (t1, top row), p(t1 |Θ) (2.5), and the second co-
alescent time (t0, bottom row), p(t0 |Θ) (2.6), for two sequence con�gurations: 123 (left column)
and 113 (right column). Parameters are τ1 = 0.005, τ0 = 0.007, θ1 = θ2 = θ4 = θ5 = 0.005 and
M12 = M21 C M , with M = 0.01, 0.1, 1, 10.

A complete description of the gene tree density p(Gk , t0, t1 |Θ) for every sequence con�guration is given

in Dalquen et al. (2017) in terms of waiting times since the previous coalescent event instead of coalescent

times.

In the special case when there is no gene �ow, thus M12 = M21 = 0, the transition probability matrix P(t)

during the time period (0, τ1) has a simple form1

113 123 223 13|23

113 e
− 2
θ1
t 0 0 1 − e−

2
θ1
t

123 0 1 0 0

223 0 0 e
− 2
θ2
t 1 − e−

2
θ2
t

13|23 0 0 0 1

1The rate matrix Q can be diagonalised as Q = SΛS−1 with

Q =
©«
− 2
θ1

0 0 2
θ1

0 0 0 0
0 0 − 2

θ2
2
θ2

0 0 0 0

ª®®¬ , S =
( 1 0 0 1
0 1 0 0
1 0 1 0
1 0 0 0

)
, Λ = diag

(
0, 0, −

2
θ2

, −
2
θ1

)
,

which gives P (t ) = eQt = SeΛt S−1 where eΛt = diag(1, 1, e−
2
θ2
t
, e
− 2
θ1
t
).
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which gives the following the probability density for gene trees. For the 113 data, we have

p(G3c , t0, t1) =
2
θ1
e
− 2
θ1
t1 2
θ4
e
− 2
θ4
(t0−τ0), t1 ∈ (0, τ1), t0 ∈ (τ0,∞),

p(G5c , t0, t1) = e
− 2
θ1
τ1 2
θ5
e
− 2
θ5
(t1−τ1) 2

θ4
e
− 2
θ4
(t0−τ0), t1 ∈ (τ1, τ0), t0 ∈ (τ0,∞),

p(G6j , t0, t1) = e
− 2
θ1
τ1e
− 2
θ5
(τ0−τ1) 2

θ4
e
−(32)

2
θ4
(t1−τ0) 2

θ4
e
− 2
θ4
(t0−t1), t1 ∈ (τ0,∞), t0 ∈ (t1,∞), j = a,b, c .

The same expressions hold for the 223 data, but with θ1 replaced by θ2. For the 123 data, we have

p(G5c , t0, t1) =
2
θ5
e
− 2
θ5
(t1−τ1) 2

θ4
e
− 2
θ4
(t0−τ0), t1 ∈ (τ1, τ0), t0 ∈ (τ0,∞),

p(G6j , t0, t1) = e
− 2
θ5
(τ0−τ1) 2

θ4
e
−(32)

2
θ4
(t1−τ0) 2

θ4
e
− 2
θ4
(t0−t1), t1 ∈ (τ0,∞), t0 ∈ (t1,∞),

This case was considered in Takahata et al. (1995); Yang (2002). All these expressions can also be derived

from the MSC model (Section 2.2.1) using (2.2), where each population can be considered independently.

Example 2.1. We give an example of the IM model with divergence times τ1 = 0.005, τ0 = 0.007, popu-

lation sizes θ1 = θ2 = θ4 = θ5 = 0.005 and a symmetric migration rate M12 = M21 C M . The probability

densities of the two coalescent times are shown in Figure 2.4 for two sequence con�gurations: 123 and 113.

We see that for the 123 data, when the migration rate is low, the �rst coalescence (between the sequences

in species 1 and 2) is more likely to occur after τ1 (looking backwards in time), either in the common

ancestral population of species 1 and 2, or in the root population (Figure 2.4a). Higher migration rates

make the �rst coalescence more likely to occur before τ1, i.e. in either species 1 or 2. As a result, the gene

tree G5c in Figure 2.3 is more likely when the migration rate is low, while G3c becomes more likely as the

migration rate increases (Figure 2.5a). The 113 data has the opposite trend, i.e. when the migration rate is

low, the coalescence between the two sequences in species 1 is more likely to occur before τ1. This case

is also reminiscent of a single-population coalescent model where the coalescent time follows an expo-

nential distribution. As the migration rate increases, there is more chance that one of the two sequences

in species 1 will migrate to species 2. This makes the coalescence become increasing more likely to occur

after τ1 (Figure 2.4b). Also unlike the 123 data, the gene treeG3c remains the most likely tree (Figure 2.5b).

The e�ect of the migration rate on the second coalescence is much less pronounced (Figure 2.4c-d). The

e�ect is larger if the �rst coalescence is more likely to occur after τ0 due to the requirement that t0 > t1.

2.3.2 Modelling assumptions and limitations

The IM model shares the same assumptions with the MSC model (Section 2.2.3) while allowing for gene

�ow between populations. However, gene �ow may interact with other non-random factors such as re-

combination rate variation across the genome, and could be confounded with selection at linked sites
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Figure 2.5: Gene tree probabilities p(Gk |Θ) (2.7) for two sequence data con�gurations: 123 and 113. Para-
meters are the same as in Figure 2.4. See Figure 2.3 for description of gene trees.

(Nachman and Payseur, 2012). The e�ect of such interactions on the estimates from the IM model re-

quires further investigation. Furthermore, the constant migration rates over time and across the genome

can be unrealistic for some datasets. In particular, two important cases are not captured by the IM model,

namely, sympatric speciation with gene �ow decreasing over time as reproductive or geographical bar-

riers are forming, and gene �ow during secondary contact of allopatric populations. Ignoring temporal

variation in the gene �ow rate can lead to biased estimates of model parameters (Innan and Watanabe,

2006; Becquet and Przeworski, 2009). Innan and Watanabe (2006) used time-dependent migration rates,

but the resulting process is no longer time-homogeneous, and the calculation of transition probabilit-

ies becomes more complex or the likelihood must be approximated. One practical approach is to use

piecewise-constant migration rates, in which case, the time can be split into intervals of constant migra-

tion rate. An example of this types of models is the isolation-with-initial-migration (IIM) where migration

is only allowed during an initial period after divergence (Wilkinson-Herbots, 2012; Costa and Wilkinson-

Herbots, 2017). Other violation of model assumptions can also produce biased estimates. These include

ancestral population structure, population size dynamics, selection, gene �ow between populations that

are not part of the species tree, and the model of sequence evolution (Becquet and Przeworski, 2009;

Strasburg and Rieseberg, 2010).

For species tree estimation, the joint model would be similar to (2.4), except that p(G`, t` |S,Θ) comes from

the IM model. However, calculation of this gene tree density is a major computational di�culty due to the

state space of the coalescent process being combinatorially large for arbitrary numbers of sequences and

populations involved in migration (Andersen et al., 2014). Dalquen et al. (2017) suggest a workaround by

reducing the problem to three species and at most three sequences per locus. For the case of three species,

the 3s program can be used to infer the species tree indirectly by performing separate analysis for each

of the three possible trees ((1, 2), 3), ((1, 3), 2) and ((2, 3), 1). The most probable species tree is expected to

have the highest likelihood value among the three trees.





Chapter 3

Designing simple and e�cient MCMC

proposal kernels

In this chapter, we address the problem of designing e�cient proposal kernels for the Metropolis–Hastings

(MH) algorithm (Section 1.3.3), with each kernel implemented at an approximately optimal scale with

respect to the asymptotic variance of the estimator (Section 1.3.4).

Yang and Rodríguez (2013) empirically demonstrated that using the so-called Bactrian kernels can substan-

tially improve the asymptotic e�ciency of the mean estimator for a range of univariate target distributions,

compared with the uniform random walk, which is in turn more e�cient than the Gaussian random walk.

Here, we extend this work by proposing new proposal kernels and evaluate their statistical e�ciency at

the optimal step-size. We �rst present two classes of new one-dimensional proposal kernels for the MH

algorithm (Section 3.1). In Section 3.1.1, we introduce three new bimodal kernels called Box, Airplane and

StrawHat, and �nd that they have similar performance to the earlier Bactrian kernels, suggesting that the

general shape of the proposal matters, but not the speci�c distributional form. We then propose a new

class of kernels called the Mirror kernels in Section 3.1.2. This class of kernels directly introduces negative

correlations in the Markov chain by generating new values around the ‘mirror image’ of the current value

on ‘the other side’ of the target distribution, and in many cases achieves e�ciency >100%.

For general multidimensional targets, we illustrate using several examples how a sequence of one-dimensional

kernels and variable transformation can be used to improve the e�ciency of the estimator (Section 3.2).

We end the chapter with discussion about limitations of our work and connections with previous work

(Section 3.3). We also give few examples of how variable transformation might be used as a general

strategy for designing e�cient MCMC kernels.
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−2 −1 0 1 2

a = 0.5

a = 0.2

(a) Box

−2 −1 0 1 2

a = 1

a = 0.5

(b) Airplane

−2 −1 0 1 2

a = 1

a = 0.5

(c) StrawHat

Figure 3.1: Box, Airplane and StrawHat proposals. Each proposal is a one-parameter family of distribu-
tions with parameter a.

3.1 New one-dimensional proposals

These proposals attempt to reduce autocorrelations in the Markov chain, thereby improving the precision

of the resulting MCMC estimates (see Section 1.3.3.3). One simple approach is to use a bimodal distribution

with two modes on both sides of the current position. We describe three such proposals, called Box,

Airplane and StrawHat (Figure 3.1). They have a bimodal shape similar to the Bactrian-type kernels given

in Yang and Rodríguez (2013), and are symmetric, with q(x ′ |x) = q(x |x ′). Another approach is to use

non-symmetric kernels that directly induces negative correlations in the Markov chain, called the Mirror

kernel (Figure 3.2).

For each of the proposal kernels described below, we �rst introduce a standard distribution version with

zero mean and unit variance. Then given a current point x of the Markov chain, we give the proposal

density with mean x and variance σ 2.

3.1.1 Bimodal kernels

3.1.1.1 Box

Given x , we generate x ′ uniformly from two intervals, one on each side of x (Figure 3.1a). The standard

box distribution is p(y;a) B 1
2(b−a) , a ≤ |y | ≤ b, where b B 1

2 (
√
12 − 3a2 − a), and a is a parameter

taking values in the interval [0, 1). When a = 0, this is U (−
√
3,
√
3), which is the uniform kernel. In the

proposal, we set x ′ B x + σy, where y has the standard box distribution, with density q(x ′ |x) = 1
2σ (b−a) ,

σa ≤ |x ′ − x | ≤ σb. To sample from q(x ′ |x), draw y ∼ U (a,b) and u ∼ U (0, 1). If u < 1
2 , set y ← −y. Then

set x ′← x + σy.

3.1.1.2 Airplane

The standard Airplane distribution p(y;a) is 1
2b−a if a ≤ |y | ≤ b and 1

2b−a if |y | < a, where b is the root

of 4b3 − 12b + 6a − a3 = 0 with b > a, and a ∈ [0,
√
2) is a parameter (Figure 3.1b). The proposal density

with mean x and variance σ 2 is q(x ′ |x) = 1
σ (2b−a) if σa ≤ |x ′ − x | ≤ σb and q(x ′ |x) = 1

σa(2b−a) |x
′ − x | if
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−2 0 2 4
µ *x x

*

N(0,1) target
U(x*

− 3  σ, x
*
+ 3  σ) proposal

(a) MirrorU

−2 0 2 4
µ *x x

*

N(0,1) target N(x*
, σ

2) proposal

(b) MirrorN

Figure 3.2: Examples of the proposal distribution for the two Mirror kernels when the current point is
x = −1 and the estimated “centre” of the target distribution is µ∗ = 0.1. The proposal is centred
at the mirror point x∗ = 2µ∗ − x .

|x ′−x | < σa. To sample from q(x ′ |x), draw u1,u2,u3 ∼ U (0, 1) independently. Ifu1 < a
2b−a , set y ← a

√
u2,

otherwise draw y ∼ U (a,b). If u3 < 1
2 , set y ← −y. Then set x ′← x + σy.

3.1.1.3 StrawHat

The standard StrawHat distribution p(y;a) is 3
2(3b−2a) if a ≤ |y | ≤ b and 3

2a2(3b−2a)y
2 if |y | < a, where b is

the root of 5b3 − 15b + 10a− 2a3 with b > a, and a ∈ [0,
√
5/3) is a parameter. The proposal density q(x ′ |x)

can be derived similarly as for the Airplane kernel. To sample from q(x ′ |x), draw u1,u2,u3 ∼ U (0, 1)

independently. If u1 < a
3b−2a , set y ← au1/32 , otherwise draw y ∼ U (a,b). If u3 < 1

2 , set y ← −y. Then set

x ′← x + σy.

For any of these three kernels (Box, Airplane, StrawHat), when a = 0, the kernel reduces to the uniform

kernel. We note that if a is too close to its upper limit, the e�ciency tends to drop o� quickly as σ becomes

too large (Figure 3.6). In practice, we suggest using a = 0.5 (b = 1.43) for Box, a = 1 (b = 1.47) for Airplane

and a = 1 (b = 1.35) for StrawHat. Each kernel then has a step-size (σ ) which can be adjusted to achieve

good mixing.

3.1.2 Mirror kernels

In the Mirror kernel, we generate values around a point on ‘the other side’ of the target distribution that

is the ‘mirror image’ of the current point x . Speci�cally, let µ∗ be an estimate of the location of the target

such as the mean or median. The proposal kernel is centred at x∗ B 2µ∗ − x , the point with the same

distance from µ∗ as the current point x (Figure 3.2). We consider two variants, using either the uniform

or Gaussian distribution. In the MirrorU kernel, we have

x ′ |x ∼ U (2µ∗ − x −
√
3σ , 2µ∗ − x +

√
3σ ), (3.1)

and in the MirrorN kernel, we have

x ′ |x ∼ N (2µ∗ − x,σ 2). (3.2)
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−3 0 3

a

−3 0 3

b

−3 0 3

c

0 3 6

d

−3 0 3

e

Figure 3.3: Five target distributions: (a) standard normal N (0, 1), (b) mixture of two normals 1
4N (−1,

1
4 ) +3

4N (1,
1
4 ), (c) mixture of two t4 distributions 3

4t4(−
3
4 , s

2) + 1
4t4(

3
4 , s

2), (d) gamma G(4, 2) and (e)
uniform U (−

√
3,
√
3).

Both have mean 2µ∗ − x and variance σ 2.

For example, consider the N (0, 1) target. If µ∗ is the true mean (µ) of the target, the optimal asymptotic

e�ciency (for estimating µ) is achieved by having σ = 0, in which case E = ∞ with Pjump = 1. However,

in that case, the chain does not sample from the target, and E for estimating other functions may be 0. In

general, if µ∗ is close to the true mean, one would prefer a small σ to achieve a high e�ciency (E), but

a small σ may lead to slow convergence to the target distribution. On balance, we suggest two choices

of the step-size: σ = ŝ or σ = 1
2 ŝ , where ŝ is the estimated target standard deviation. Both µ∗ and ŝ are

initialised to some values at the beginning, and samples from the burn-in are used to estimate µ∗ and ŝ .

If the target support is not the whole real line, the proposed value may lie outside the target support. While

one could reject such values, rejection is not workable if all possible proposed values are outside the target

support (i.e. when the proposal and target supports do not overlap). Re�ection is another possibility but

there are two problems. First, re�ection would defeat the purpose of moving to the other side of the target.

Second, with a small step-size, the reverse move x ′ → x of the MirrorU move with re�ection may not be

possible, thus breaking the detailed balance condition (1.6). As an example, consider a target with support

[0,∞). For MirrorU (3.1) with µ∗ = 1.5 and step-size σ = 1, suppose the current value is x = 5. Then

x∗ = 2µ∗ − x = −2 and x ′ ∼ U (−3.73,−0.27). Suppose the proposed value is x ′ = −0.2, which is re�ected

to x ′ = 0.2. Now it is not possible to reach x = 5 from x ′ = 0.2 in the reverse direction because from

x ′ = 0.2, we have (x ′)∗ = 2.8 and the proposal is x ∼ U (1.07, 4.53).

Instead of rejection or re�ection, we transform the target support X onto the real line R before applying

the Mirror move. For instance, if X = [a,∞), we apply the Mirror move on the transformed variable

y B log(x − a), with the proposal ratio q(x |x ′)
q(x ′ |x ) =

x ′−a
x−a . For X = [a,b], we use y B log x−a

b−x , with
q(x |x ′)
q(x ′ |x ) =

(b−x ′)(x ′−a)
(b−x )(x−a) . With these log transformations, the original variable in the X space is multiplied by

a random factor, and the Mirror proposal is referred to as Mirror Multiplier.

3.1.3 Experiments

We considered the following �ve target distributions (Figure 3.3): (a) standard normal distribution N (0, 1),

with mean 0; (b) mixture of two normal distributions 1
4N (−1,

1
4 ) +

3
4N (1,

1
4 ), with mean 1

2 ; (c) mixture of

two t4 distributions 3
4t4(−

3
4 , s

2)+ 1
4t4(

3
4 , s

2), where s = 1
8

√
37
2 , with mean− 3

8 ; (d) gamma distributionG(4, 2),
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Figure 3.5: E�ciency (E) of the mirror multiplier kernels for estimating the mean of the gamma and uni-
form target distributions. For gamma target (mean 2), we used µ∗ = 1.5, i.e. we applied the
mirror kernel to logx , with mean 0.563 and log µ∗ = 0.405. For uniform target (mean 0), we
used µ∗ = 0.1, i.e. we applied the mirror kernel to log x−a

b−x , with mean 0 and log µ∗−a
b−µ∗ = 0.116.

with mean 2; (e) uniform distribution U (−
√
3,
√
3), with mean 0. Each of the �ve targets has variance 1.

Note that even though the density in (b) has two modes, we focus here on simple targets with a single

mode; we do not expect the proposals discussed here to work well when the target has multiple peaks

separated by deep valleys.

Note that the targets (d) and (e) have a constrained support. Sampling from targets with constrained sup-

port is often dealt with using rejection or truncated proposals (or truncated full conditionals in the context

of Gibbs sampling) (Gelfand et al., 1992; Browne, 2006). We note that rejection can be very ine�cient if

a large proportion of proposed values are discarded, while the truncated variables can be expensive to

simulate, often based on the inverse transform method (Algorithm 1.1); see e.g. Devroye (1986, p. 38).

It is simpler and typically more e�cient (in terms of the amount of computation involved as well as the

asymptotic variance of the estimator) to use re�ection (e.g. Yang and Rodríguez (2013)). For example, if

x has support on the interval [a,∞) and if the kernel is symmetric with q(x ′ |x) = q(x |x ′), we generate

x ′ ∼ q(x ′ |x), and set x ′← 2a − x ′ if x ′ < a. The proposal ratio is 1.

We evaluated �ve new proposals (Box, Airplane, StrawHat, MirrorU and MirrorN; Figures 3.1 and 3.2)

described in Section 3.1, together with the uniform, Gaussian and BactrianTriangle proposals from Yang

and Rodríguez (2013). We used 5× 107 iterations after a burn-in of 104 iterations. Figures 3.4 and 3.5 show

the performance of eight proposal kernels applied to �ve targets plotted against the proposal step-size

σ . We observed large variations in e�ciency as σ changes, emphasising the importance of choosing σ

to achieve high e�ciency. We also note that for the uniform and Gaussian kernels, the optimal σ for the

convergence rate (measured by δ8 and |λ |2) was larger than that for mixing, while the opposite was true

for the bimodal kernels.

The Box, Airplane and StrawHat kernels had similar e�ciency to the Bactrian-type kernels from Yang and

Rodríguez (2013), with Box and StrawHat generally performing slightly better than the BactrianTriangle
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Table 3.1: E�ciency and convergence rate measures of proposal kernels for estimating the mean of the
�ve one-dimensional target distributions (all have variance 1).

Kernel optimal σ Pjump E E2π ρ1 δ8 |λ |2

Target N (0, 1)
Uniform 2.2 0.405 0.276 0.879 0.560 0.230 0.671
Gaussian 2.5 0.426 0.228 0.744 0.628 0.286 0.657
BactrianTriangle (m = 0.95) 2.3 0.304 0.377 1.131 0.434 0.442 0.829
Box (a = 0.5) 2.3 0.290 0.394 1.150 0.410 0.608 0.857
Airplane (a = 1) 2.2 0.334 0.360 1.096 0.452 0.296 0.789
StrawHat (a = 1) 2.2 0.308 0.395 1.188 0.406 0.488 0.838
MirrorU (µ∗ = 0.1) 0.5 0.821 1.823 2.815 −0.408 1.828 0.865
MirrorN (µ∗ = 0.1) 0.5 0.828 1.824 2.884 −0.442 1.840 0.880

Target 1
4N (−1,

1
4 ) +

3
4N (1,

1
4 )

Uniform 1.9 0.385 0.227 0.771 0.614 0.454 0.746
Gaussian 2.2 0.388 0.171 0.608 0.696 0.501 0.750
BactrianTriangle (m = 0.95) 2.2 0.271 0.303 1.010 0.495 0.705 0.880
Box (a = 0.5) 2.2 0.261 0.308 1.057 0.472 0.806 0.894
Airplane (a = 1) 2.2 0.283 0.304 1.004 0.498 0.603 0.863
StrawHat (a = 1) 2.2 0.269 0.339 1.114 0.443 0.693 0.878
MirrorU (µ∗ = 0.1) 0.35 0.525 1.045 2.503 −0.252 1.983 0.884
MirrorN (µ∗ = 0.1) 0.35 0.525 1.058 2.534 −0.267 1.980 0.893

Target 3
4t4(−

3
4 , s

2) + 1
4t4(

3
4 , s

2)

Uniform 2.2 0.366 0.218 0.760 0.620 1.276 0.794
Gaussian 2.6 0.377 0.192 0.659 0.670 1.157 0.791
BactrianTriangle (m = 0.95) 2.3 0.276 0.289 0.986 0.507 1.054 0.881
Box (a = 0.5) 2.3 0.254 0.296 1.025 0.488 1.014 0.894
Airplane (a = 1) 2.2 0.295 0.277 0.954 0.523 1.147 0.852
StrawHat (a = 1) 2.2 0.272 0.300 1.041 0.480 1.086 0.884
MirrorU (µ∗ = 0.1) 1.0 0.550 0.769 1.922 0.039 1.964 0.925
MirrorN (µ∗ = 0.1) 1.0 0.542 0.710 1.964 0.018 1.960 0.931

Target G(4, 2)
Uniform 3.2 0.464 0.297 0.998 0.501 0.388 0.652
Gaussian 3.5 0.463 0.249 0.856 0.572 0.450 0.674
BactrianTriangle (m = 0.95) 3.5 0.403 0.378 1.241 0.379 0.213 0.665
Box (a = 0.5) 3.5 0.398 0.392 1.284 0.358 0.200 0.702
Airplane (a = 1) 3.5 0.412 0.371 1.209 0.395 0.224 0.654
StrawHat (a = 1) 3.5 0.414 0.388 1.302 0.349 0.206 0.717

Target U (−
√
3,
√
3)

Uniform 2.8 1 1.537 2.425 −0.212 0.000 0.216
Gaussian ∞ 1 1.000 2.000 0.000 0.000 0.000
BactrianTriangle (m = 0.95) 3.2 1 3.875 3.190 −0.595 0.022 0.604
Box (a = 0.5) 3.2 1 4.916 3.346 −0.673 0.060 0.682
Airplane (a = 1) 3.2 1 3.439 3.107 −0.554 0.013 0.562
StrawHat (a = 1) 3.2 1 5.801 3.421 −0.710 0.091 0.719

Note.—Parameter µ∗ for the Mirror kernels was chosen arbitrarily to be 0.1 and not optimised;
see text.
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Figure 3.6: E�ect of the parameter a for Box, Airplane and StrawHat kernels on the e�ciency for estim-
ating the mean of N (0, 1).

kernel (Table 3.1). In addition, all these bimodal kernels were better than the unimodal Gaussian and

uniform kernels. Thus the detail of the distributional form appeared to be less important. Among these

bimodal kernels, we prefer the StrawHat as it tends to achieve high e�ciency without being too sensitive

to the choice of step-size (Figure 3.6).

For the MirrorU and MirrorN kernels, we �xed µ∗ to 0.1 for all targets in this Section, except the gamma

target, where we used µ∗ = 1.5. Using a �xed µ∗ allowed us to optimise the step length σ and obtain

smooth e�ciency curves (Figure 3.4) without averaging over many simulation replicates. The two Mirror

kernels generally achieved several-fold improvements in e�ciency, and are ‘super-e�cient’, with E > 1, in

most cases (Table 3.1). In practical applications, we suggest setting µ∗ = µ̂ and σ = ŝ or σ = 1
2 ŝ , with both

the target mean µ and standard deviation s estimated during the burn-in (Section 3.1.2). If the estimated
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Figure 3.7: E�ciency (E) of �ve proposal kernels for estimating a tail probability of the normal distribution
N (0, 1): (a) P(x > 2.3263) = 0.01, and (b) P(x > 1.2815) = 0.1. For MirrorU and MirrorN
kernels, µ∗ was �xed to 0.1.

mean is closer to the true mean than the �xed µ∗ used in our experiments, performance will be better as

well. For the N (0, 1) target, the e�ciency, averaged over 10 replicates, is 1.290 for σ = ŝ , and 2.815 for

σ = 1
2 ŝ for MirrorN, compared with E = 1.824 when µ∗ = 0.1 is �xed and σ is optimised in Table 3.1.

We note that the ranking of the proposal kernels was largely the same across these �ve targets (Table 3.1),

suggesting that this pattern may hold for fairly arbitrary targets. For the Box, Airplane and StrawHat ker-

nels, the optimal P∗jump was reasonably stable across the targets evaluated. We suggest using the automatic

scale adjustment (1.12) for setting the proposal step-size σ , with P∗jump = 0.3.

Finally, to assess whether the e�ciency ordering of the kernels depends on the speci�c function estimated,

we considered estimating a tail probability of the normal target N (0, 1). For estimating the probability

P(x > 2.3263) = 0.01, we obtained the same ordering of the kernels as for estimation of the target mean

(Figure 3.7a). The highest e�ciency was E ≈ 0.4, achieved by the two Mirror kernels. Similar results were

obtained for estimating the probability P(x > 1.2815) = 0.1 (Figure 3.7b), but with a generally narrower

range of σ achieving the maximum e�ciency. The MirrorU kernel was the most e�cient, with E ≈ 0.5.

For both cases, the e�ciency and optimal σ are generally comparable with those for the mean estimation

(Table 3.1), except for the two Mirror kernels where the highest e�ciency drops signi�cantly from E ≈ 1.8

(Table 3.1), and the optimal σ increases to about 1.3-1.5. This reduced e�ciency improvement could be

due to the fact that the Mirror kernels are designed to be e�cient for estimating location statistics such

as mean or mode of the target distribution. The e�ect of ‘moving to the other side’ of the target should be

less bene�cial for estimating other properties of the target such as a tail probability. The sensitivity of the

Mirror kernels to di�erent estimation quantities as well as its tuning parameter µ∗ remains to be explored.
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3.2 Multidimensional target distributions

3.2.1 Two-dimensional Gaussian targets

We considered two bivariate Gaussian targets N2(0, I ) and N2(0, Σ) with Σ =
(
1 ρ
ρ 1

)
with ρ = 0.9. For the

N2(0, I ) target, we compared several proposal kernels that were either a two-dimensional distribution, or a

cycle of two one-dimensional distributions. For the N2(0, Σ) target, we also used a variable transformation

to deal with the correlation between target components.

The proposal kernels considered are as follows. Let x = (x1, x2) be the current value and x ′ = (x ′1, x
′
2) be

the proposed value from q(x ′1, x
′
2 |x1, x2).

• Two-dimensional proposals on R2:

– K1. Gaussian:

q(x ′1, x
′
2 |x1, x2) = N (x ′1, x

′
2 |(x1, x2),σ

2I2).

This is a symmetric kernel, with q(x ′1, x
′
2 |x1, x2) = q(x1, x2 |x

′
1, x
′
2). The proposal ratio is 1.

– K2. Square:

q(x ′1, x
′
2 |x1, x2) =

1
12σ 2 1S (x1, x2)

where S B {(u,v) ∈ R2 : x1 −
√
3σ ≤ u ≤ x1 +

√
3σ , x2 −

√
3σ ≤ v ≤ x2 +

√
3σ } is

the square of side length 2
√
3σ , centred at (x1, x2), and 1S (x1, x2) := 1 if (x1, x2) ∈ S , and 0

otherwise; this has mean (x1, x2) and covariance I2. To generate (x ′1, x
′
2) from this kernel, draw

x ′i ∼ U (xi −
√
3σ , xi +

√
3σ ) independently for i = 1, 2. The proposal ratio is 1.

– K3. Disc:

q(x ′1, x
′
2 |x1, x2) =

1
4πσ 2 1S (x1, x2)

where S B {(u,v) ∈ R2 : (x1 − u)2 + (x2 − v)2 ≤ 4σ 2} is the disc of radius 2σ , centred at

(x1, x2); this has mean (x1, x2) and covariance I2. To generate (x ′1, x
′
2) from this kernel, �rst

draw r ∼ U (0, 1) and θ ∼ U (0, 2π ), then set x ′1 B x1 + 2σ
√
r cosθ and x ′2 B x2 + 2σ

√
r sinθ .

The proposal ratio is 1.

• Two one-dimensional proposals (one for each coordinate):

– K4. Two 1D uniform proposals:

1. First, drawu ∼ U (x1−
√
3σ , x1+

√
3σ ) and set (x ′1, x2) = (u, x2)with probabilitymin

(
1, π (u ,x2)π (x1,x2)

)
,

otherwise set (x ′1, x2) = (x1, x2). The proposal ratio is 1.

2. Then, drawv ∼ U (x2−
√
3σ , x2+

√
3σ ) and set (x ′1, x

′
2) = (x

′
1,v)with probabilitymin

(
1, π (x

′
1,v)

π (x ′1,x2)

)
,

otherwise set (x ′1, x
′
2) = (x

′
1, x2). The proposal ratio is 1.
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Figure 3.8: E�ciency of proposal kernels for the N2(0, Σ) target, with Σ =
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)
.

– K5. Two 1D Gaussian proposals. This is similar to the uniform one (K4), but with u ∼ N (x,σ 2)

and v ∼ N (y,σ 2) instead.

For the N2(0, Σ) target, we considered four additional proposal kernels, based on the whitening transform-

ation

y = Σ−1/2x (3.3)

to remove the correlation between the two components and rescale all the components to have variance

1.

• K6. 2D Gaussian with transformation. To propose a new point, generate y ′ ∼ N (y,σ 2I ) and set

x ′ = Σ1/2y ′. The proposal ratio is 1.

• K7. Two 1D Uniform with transformation. This is similar to K4, but for the transformed variable y.

• K8. Two 1D Gaussian with transformation. This is similar to K7, but with Gaussian proposal instead

of uniform.

• K9. Two 1D MirrorU with transformation. This is similar to K7, but with MirrorU proposal instead

of uniform, with µ∗ = 0.1 for both components.

For the N2(0, I ) target, the two two-dimensional versions of the uniform kernel, Square2D (K2) and Disc2D

(K3), were more e�cient than Gaussian2D (K1) as expected (Table 3.2). The e�ciency was almost doubled

when two one-dimensional proposals were used instead of a single two-dimensional move (compare

Two1DUniform (K4) with Square2D and Disc2D, and Two1DGaussian (K5) with Gaussian2D in Table

3.2). The optimal σ and e�ciency for these kernels agreed with those for the N (0, 1) target in Table 3.1 as
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expected. Note, however, that this improvement in statistical e�ciency comes with an extra cost in com-

puting time that scales with the target’s dimensionality. If the target is d-dimensional, it would require d

evaluations of target density and d MH acceptance steps instead of just one.

For the N2(0, Σ) target, applying kernels K1-K5 directly gave poor results, with e�ciency of only 2 − 6%,

compared with over 10% e�ciency for the N2(0, I ) target (Table 3.2 and Figure 3.8). This ine�ciency was

because these proposals failed to account for the high correlation (ρ = 0.9) between the variables in the tar-

get. When the correlation was removed via whitening transformation (3.3) in TransfGaussian2D (K6), we

recovered the same e�ciency of 0.134 as achieved by Gaussian2D (K1) on theN2(0, I ) target. The same was

true when combining one-dimensional moves with the transformation (3.3); compare Two1DTransfUnif

(K7) with Two1DUnif (K4) on N2(0, I ) (E = 0.276), and Two1DTransfGaussian (K8) with Two1DGaussian

(K5) on N2(0, I ) (E = 0.228). Note that simply using one-dimensional proposals without transformation

can yield worse performance than the corresponding two-dimensional moves as correlations make it more

di�cult to make a large move along the axis-aligned directions. Finally, the Two1DTransfMirrorU (K9)

kernel was several times more e�cient than all other kernels considered.

3.2.2 Multivariate Gaussian target using multidimensional uniform and

Mirror kernels

We extended the one-dimensional uniform and MirrorN kernels to multiple dimensions for the Nd (0, I )

target, obtaining optimal scaling, optimal e�ciency and Pjump (Table 3.3). For the uniform kernel, we

considered the Cube and Sphere extensions in multi-dimensions. For MirrorN, we considered two variants,

MirrorN1 with x ′ |x ∼ N (x∗, Σ̂) and MirrorN 1
2 with x ′ |x ∼ N (x∗, 14 Σ̂), where x∗ = 2µ∗ − x , with µ∗ and

Σ̂ being the estimated target mean and variance. The e�ciency was calculated by averaging over 10

replicates.

We found that the Cube and Sphere kernels were more e�cient than the Gaussian kernel for d = 1, 2, 3, 4,

but both were similar to the Gaussian for d > 4. The MirrorN1 and MirrorN 1
2 kernels were several

times more e�cient than the Gaussian, Cube and Sphere kernels for d ≤ 10, with MirrorN 1
2 being

over twice more e�cient than MirrorN1. Note that these MirrorN moves evaluated in Table 3.3 are d-

dimensional moves. In comparison, the e�ciency of one-dimensional MirrorU and MirrorN is higher

than 100% whatever the dimension of the target is (Table 3.1).

3.2.3 Hundred-dimensional Gaussian target

To demonstrate the scalability of our approach to high dimensions, we considered the N100(0, Σ) target

where Σ−1 was generated from a Wishart distribution with identity scale matrix and 100 degrees of free-

dom. The target distribution used had many strong correlations, with 1627 out of 4950 pairs of variables
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Table 3.4: E�ciency for estimating the mean of the �rst component of the target N100(0, Σ).

Kernel Proposal σ Pjump E ρ1

1DTransfGaussian (true Σ) Automatic 0.392 0.225 0.631
1DTransfGaussian (estimated Σ) Automatic 0.401 0.228 0.624
1DTransfMirrorU1 (true Σ) σ = s 0.674 1.072 −0.034
1DTransfMirrorU1 (estimated Σ) σ = ŝ 0.675 1.031 −0.016
1DTransfMirrorU 1

2 (true Σ) σ = 1
2s 0.830 2.433 −0.423

1DTransfMirrorU 1
2 (estimated Σ) σ = 1

2 ŝ 0.821 2.319 −0.397
HMC (Stan) Automatic 0.894 0.00682 0.983

having correlations with magnitude greater than 0.99.

We compared the one-dimensional Gaussian and MirrorU kernels. For the MirrorU, the parameter µ∗ was

set to the target mean estimated during the burn-in, and the component-speci�c proposal step-size σ was

set to either ŝ or 1
2 ŝ , where ŝ is the estimated standard deviation of the component in the target. These two

proposals are referred to as MirrorU1 and MirrorU 1
2 , respectively. We used the whitening transformation

(3.3) to remove correlations among the components and rescale all the components to have variance 1.

This transformation requires the target’s covariance matrix Σ, which was estimated during the burn-in.

For comparison, we also included the popular Stan algorithm (version 2.15.1) (Carpenter et al., 2017),

which implements HMC with automatic tuning.

We used 105 iterations of burn-in and 107 iterations of the main chain. If estimation of Σ was required,

we initialised Σ to the identity matrix and updated it every 104 iterations (thus ten rounds of update in

total). The �nal covariance matrix used by the sampler was based on the last 104 burn-in samples. For the

Gaussian kernel, we used automatic tuning of proposal step-size (1.12) with optimal Pjump = 0.4.

For this problem, the MirrorU1 and MirrorU 1
2 kernels gave about four-fold and ten-fold increase in e�-

ciency, respectively, compared with the Gaussian kernel (Table 3.4). E�ciency was similar whether the

true or estimated variances were used, illustrating that the approach of estimating the variance is prac-

tical. The Stan algorithm did not perform well and took about 100 times longer than the Gaussian and

MirrorU kernels.

3.2.4 Bayesian logistic regression

Next, we applied the MirrorU kernel to a Bayesian logistic regression analysis of the German credit dataset.

The same dataset was used by Girolami and Calderhead (2011) to demonstrate several state-of-the-art

MCMC algorithms, namely MALA, HMC and their Riemannian manifold versions. We also included

the Stan algorithm (Carpenter et al., 2017) for comparison. Note that MALA and HMC require the �rst

derivatives, while their manifold versions additionally require the Fisher information matrix as well as its
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derivatives. The target distribution is

p(θ |x,y) ∝ p(θ )
N∏
n=1

p(yn |xn, θ )

∝ exp

(
−

1
2α
θ>θ +

N∑
n=1

yn(θ
>xn) −

N∑
n=1

log(1 + eθ
>xn )

)
,

where θ is a vector of an intercept term and 24 regression coe�cients, xn is a vector of 24 normalised

predictors (with zero mean and unit variance), yn ∈ {0, 1} is an indicator for a good credit risk, and

N = 1000. We gave each component of θ an independent Gaussian prior N (0,α) with α = 100, following

Girolami and Calderhead (2011). Each chain was run for 107 iterations after 104 burn-in iterations. For

MALA, MCMC and the manifold versions, we used the Matlab implementation of Girolami and Calderhead

(2011) and ran for 106 iterations.

From Table 3.5, the multidimensional MALA and HMC proposals were worse than the simple one-dimensional

1DUniform and were comparable to the 1DGaussian kernel. The manifold versions of MALA and HMC

were much better than all those four, and Stan performed the best. The MirrorU 1
2 kernel had comparable

e�ciency to manifold HMC and Stan, achieving super-e�ciency (E > 1) for most of the 25 parameters,

while taking less time. We note that the Mirror kernel requires estimation of the target mean and variance,

but is otherwise very simple to implement, and does not require any �ne-tuning. MALA and HMC require

estimation of the target variance, and the manifold versions in addition need higher derivatives or Fisher

information. In complex models where analytic expressions of the required derivatives are not available,

automatic di�erentiation may be used to evaluate derivatives at machine precision. However, this comes

at the cost of increased running time, especially for higher derivatives, as well as making the implement-

ation considerably more complex as a specialised library is required. In addition, MALA, HMC and their

manifold versions all have at least one parameter that requires tuning. The Mirror kernel appeared to

strike a good balance between e�ciency and simplicity. However, manifold MALA, HMC and manifold

HMC gave consistent e�ciency across dimensions, while for the Mirror kernel, some components had

much lower e�ciency than the rest (Table 3.5).

3.2.5 Molecular clock dating in phylogenetics

We applied the proposal kernels studied above to a Bayesian inference problem of estimating species

divergence time and evolutionary rate using molecular sequence data from two species. The dataset was

the 12S rRNA gene from the mitochondrial genome of human and orangutan from Horai et al. (1995),

summarised as x = 90 di�erences out of n = 948 sites.
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Figure 3.9: Prior p(t, r ) (a) and posterior p(t, r |x) (b) distributions for the molecular clock dating problem.
The dashed curve in the posterior (b) indicates the values of (t, r ) for which 2tr = θ̂ = 0.1015
(see text). (c) and (d) are di�erent transformations of (b). All plots are based on the same ranges
of values of t and r .

3.2.5.1 Model

The evolutionary process at each site is modelled as a continuous-time Markov process on the four nuc-

leotides (T, C, A, and G) with the transition rate matrix Q = {qi j }, with qi j = λ for any i , j (Jukes and

Cantor, 1969). The substitution rate for each nucleotide is thus r = 3λ per time unit, which is one million

years here. The transition probability matrix is Pt = {Pt (i, j)}, with

Pt (i, j) =


1
4 +

3
4e
− 4

3 tr if i = j,

1
4 −

1
4e
− 4

3 tr if i , j .

Given the data of x di�erences at n sites, the likelihood is

p(x |t, r ) =

(
1
16
+

3
16

e−
8
3 tr

)n−x (
1
16
−

1
16

e−
8
3 tr

)x
.

This is a function of the genetic distance θ B 2tr , but not of t and r individually. From our data, the

maximum likelihood estimate of θ was θ̂ = 3
4 log(

3n
3n−4x ) = 0.1015, with the 95% likelihood interval
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(0.0817, 0.1245).

We assigned gamma priors t ∼ G(40, 40/15), with mean 15 Myrs and 95% interval (10.7, 20.0), and r ∼

G(4, 800), with mean 0.005 substitutions per million years, and 95% interval (0.0014, 0.0110) (Figure 3.9a).

The posterior distribution is

p(t, r |x) ∝ p(y |t, r )p(t)p(r )

∝

(
1
16
+

3
16

e−
8
3 tr

)n−x (
1
16
−

1
16

e−
8
3 tr

)x
t39e−(40/15)tr 3e−800r . (3.4)

We sampled from this posterior p(t, r |x) (Figure 3.9b) using MCMC algorithms with di�erent proposal

schemes, and compared their e�ciencies for estimating the posterior means of t and r .

3.2.5.2 MCMC algorithms for posterior inference

Since the uniform proposal is generally more e�cient than the Gaussian proposal, we considered seven

proposal kernels (A1-7) based on the uniform and MirrorU kernels and �ve state-of-the-art MCMC al-

gorithms: MALA, HMC, HMC (Stan), manifold MALA, manifold HMC (A8-A12), which are based on a

multivariate Gaussian proposal. The derivatives and Fisher information matrices required by algorithms

A8-A12 were derived using the unnormalised posterior (3.4); these quantities were analytically tractable

but tedious to derive. We used variable transformations to deal with correlations and/or scale di�erences of

the target variables (Figure 3.9b). Depending on the transformation used, each algorithm has component-

speci�c scaling parameters. Speci�cally, σt and σr are standard deviations of proposals on t and r ; σw and

σz are for w B log t and z B log r (Figure 3.9c); σx and σy are for x B log(tr ) and y B log(t/r ) (Figure

3.9d). The details for tuning these step-size parameters are summarised in Table 3.6.

Algorithm A1 1D Uniform on t, r . The algorithm consists of two MH steps.

1. Draw t ′ |t ∼ U (t − σt
√
3, t + σt

√
3). If t ′ < 0, set t ′← −t ′. The proposal ratio is 1.

2. Draw r ′ |r ∼ U (t − σr
√
3, t + σr

√
3). If r ′ < 0, set r ′← −r ′. The proposal ratio is 1.

The step-size parameters σt and σr were automatically tuned to achieve Pjump = 0.4 (see Section 1.3.4.2).

Algorithm A2 1D Uniform on w, z. The algorithm consists of two MH steps.

1. Draw u ∼ U (−
√
3,
√
3) and set t ′← teσwu . The proposal ratio is t ′

t .

2. Draw v ∼ U (−
√
3,
√
3) and set r ′← reσzv . The proposal ratio is r ′

r .

The step-size parameters σw and σz were automatically tuned to achieve Pjump = 0.4.

Algorithm A3 2D Uniform on w, z. The algorithm uses a single two-dimensional proposal.

1. First, draw u ∼ U (−
√
3,
√
3) and set t ′ ← teσwu . Then draw v ∼ U (−

√
3,
√
3) and set r ′ ← reσzv .

The proposal ratio is t ′r ′
tr .
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It is hard to adjust two step-sizes σw and σz in one proposal. We used σw = sw × 2.2 × 1.7
2.4 and σz =

sz × 2.2× 1.7
2.4 , where sw and sz are the standard deviations ofw = log t and z = log r , estimated during the

burn-in. Here, 2.4 and 1.7 are optimal scales in 1D and 2D for the Gaussian kernel (Table 3.3), while 2.2 is

the optimal scale for the uniform kernel in 1D (Tables 3.1 and 3.2).

Algorithm A4 1D Uniform on w, z with whitening transformation (3.3). Let w B log t and z B log r .

Let Σ̂ denote the estimated covariance matrix of (w, z) during burn-in. The algorithm consists of two MH

steps.

1. Set (wz ) ←
(
log t
log r

)
and

( w̃
z̃
)
← Σ̂−1/2 (wz ). Draw u ∼ U (−

√
3,
√
3) and set w̃ ′← w̃ +σwu and z̃ ′← z̃.

Then set
( w ′
z′

)
← Σ̂1/2 ( w̃ ′

z̃′
)

and
( t
r
)
←

( ew
ez

)
. The proposal ratio is t ′r ′

tr .

2. Set (wz ) ←
(
log t
log r

)
and

( w̃
z̃
)
← Σ̂−1/2 (wz ). Draw v ∼ U (−

√
3,
√
3) and set w̃ ′← w̃ and z̃ ′← z̃ +σzv .

Then set
( w ′
z′

)
← Σ̂1/2 ( w̃ ′

z̃′
)

and
( t
r
)
←

( ew
ez

)
. The proposal ratio is t ′r ′

tr .

The step-size parameters σw and σz were automatically tuned to achieve Pjump = 0.4.

Algorithm A5 1D Uniform on x,y. The algorithm consists of two one-dimensional MH steps on x and y.

1. Set x ← log(tr ) and y ← log(t/r ). Draw u ∼ U (−
√
3,
√
3) and set x ′ ← x + σxu and y ′ ← y. Then

set t ′← e
x ′+y′

2 and r ′← e
x ′−y′

2 . The proposal ratio is t ′r ′
tr .

2. Set x ← log(tr ) and y ← log(t/r ). Draw v ∼ U (−
√
3,
√
3) and set x ′ ← x and y ′ ← y + σyv . Then

set t ′← e
x ′+y′

2 and r ′← e
x ′−y′

2 . The proposal ratio is t ′r ′
tr = 1.

The step-size parameters σx and σy were automatically tuned to achieve Pjump = 0.4.

Algorithm A6 1D MirrorU on x,y. A6a 1D MirrorU1 on x,y. A6b 1D MirrorU 1
2 on x,y. The algorithm

consists of two one-dimensional MH steps on x and y.

1. Set x ← log(tr ) and y ← log(t/r ). Draw x ′ |x ∼ U (2µ∗x − x − σx
√
3, 2µ∗x − x + σx

√
3) and set y ′← y.

Then set t ′← e
x ′+y′

2 and r ′← e
x ′−y′

2 . The proposal ratio is t ′r ′
tr .

2. Set x ← log(tr ) and y ← log(t/r ). Draw y ′ |y ∼ U (2µ∗y −y − σy
√
3, 2µ∗y −y + σy

√
3) and set x ′← x .

Then set t ′← e
x ′+y′

2 and r ′← e
x ′−y′

2 . The proposal ratio is t ′r ′
tr = 1.

Here, µ∗x , µ∗y were set to the estimated means µ̂x , µ̂y of x and y, respectively, and σx ,σy were set to either

ŝx , ŝy (A6a) or 1
2 ŝx ,

1
2 ŝy (A6b), where ŝx and ŝy are the estimated standard deviations of x and y from the

burn-in.

Algorithm A7 1D MirrorU on w, z with whitening transformation (3.3). Let Σ̂ denote the estimated

covariance matrix of (w, z) during burn-in. The algorithm consists of two MH steps.

1. Set (wz ) ←
(
log t
log r

)
and

( w̃
z̃
)
← Σ̂−1/2

(
(wz ) −

(
µ̂w
µ̂z

))
. Draw u ∼ U (−

√
3,
√
3) and set w̃ ′← −w̃ +σwu

and z̃ ′← z̃. Then set
( w ′
z′

)
← Σ̂1/2 ( w̃ ′

z̃′
)
+

(
µ̂w
µ̂z

)
and

( t
r
)
←

( ew
ez

)
. The proposal ratio is t ′r ′

tr .
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2. Set (wz ) ←
(
log t
log r

)
and

( w̃
z̃
)
← Σ̂−1/2

(
(wz ) −

(
µ̂w
µ̂z

))
. Draw v ∼ U (−

√
3,
√
3) and set w̃ ′ ← w̃ and

z̃ ′← −z̃ + σzv . Then set
( w ′
z′

)
← Σ̂1/2 ( w̃ ′

z̃′
)
+

(
µ̂w
µ̂z

)
and

( t
r
)
←

( ew
ez

)
. The proposal ratio is t ′r ′

tr .

The step-size parameters σw and σz were set to 1
2 .

Algorithm A8 MALA with preconditioning on w, z. The algorithm uses a single two-dimensional pro-

posal.

1. Set (w, z) ← (log t, log r ). Draw (w ′, z ′) ∼ N (m(w, z), ε2A) where

m(w, z) B (w, z) +
ε

2
A∇ logp(w, z |x).

Set (t ′, r ′) ← (ew ′, ez′). The proposal ratio is N ((w ,z) |(w ′,z′)+ ε
2
2 A∇ logp(w

′,z′ |x ),ε2A)

N ((w ′,z′) |(w ,z)+ ε
2
2 A∇ logp(w ,z |x ),ε2A)

t ′r ′
tr .

The scalar step-size parameter ε was tuned manually to achieve the highest e�ciency. The matrix A was

set to 1
(det Σ̂)1/2

Σ̂, where Σ̂ denotes an estimate of the target covariance from the burn-in, following Marshall

and Roberts (2012). The proposal step-size is σw ,z = εdiag(A1/2) = ε
(det Σ̂)1/4

diag(Σ̂1/2).

Algorithm A9 HMC on w, z. Let Lmax be the upper bound on the number of leapfrog steps and let ε be

the leapfrog step-size. Let Σ̂ denote the estimated covariance matrix of (w, z) during burn-in.

1. Set (w, z) ← (log t, log r ). Draw an auxiliary variable ϕ ∼ N (0, Σ̂). Set (w ′, z ′) ← (w, z) and ϕ ′← ϕ.

Draw L ∼ U {1, . . . , Lmax}. For ` = 1, . . . , L, (a) set ϕ ′ ← ϕ ′ + ε
2∇ logp(w

′, z ′), (b) set (w ′, z ′) ←

(w ′, z ′) + ε Σ̂−1ϕ ′, and (c) set ϕ ′ ← ϕ ′ + ε
2∇ logp(w

′, z ′). Then set (t ′, r ′) ← (ew ′, ez′). The proposal

ratio is N (ϕ′ |0,Σ̂)
N (ϕ |0,Σ̂)

t ′r ′
tr .

The parameters Lmax and ε were tuned manually to achieve the highest e�ciency.

Algorithm A10 HMC (Stan) on w, z. NUTS algorithm. See Ho�man and Gelman (2014) for description.

Algorithm A11 Manifold MALA on w, z. This algorithm uses a single two-dimensional proposal.

1. Set (w, z) ← (log t, log r ). Draw (w ′, z ′) ∼ N (m(w, z), ε2G−1) where

m(w, z) B (w, z) + ε2
(
1
2
G−1(w, z)∇ logp(w, z |x) + Ω(w, z)

)
,

G(w, z) B −Ep(x |w ,z)∇
2
(w ,z) logp(x |w, z) − ∇

2
(w ,z) logp(w, z)

(the Fisher information matrix for the likelihood plus the negative Hessian of the log prior density),

and

Ω(w, z) B
1
2
G−1

©«
tr

(
G−1∂wG

)
tr

(
G−1∂zG

) ª®®¬ −
∑
j=w ,z

(G−1∂jG)G
−1
·, j .

Set (t ′, r ′) ← (ew ′, ez′). The proposal ratio is N ((w ,z) |m(w ′,z′),ε2G−1(w ′,z′))
N ((w ′,z′) |m(w ,z),ε2G−1(w ,z))

t ′r ′
tr .

The step-size parameter ε was tuned manually to achieve the highest e�ciency.
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AlgorithmA12 Manifold HMC onw, z. Let Lmax be the upper bound on the number of leapfrog steps and

let ε be the leapfrog step-size. Let M be the number of �xed point iterations for the generalised leapfrog

integrator from Girolami and Calderhead (2011). This algorithm uses a single two-dimensional proposal.

1. Set (w, z) ← (log t, log r ). Draw an auxiliary variable ϕ ∼ N (0,G). Set (w ′, z ′) ← (w, z) and ϕ ′← ϕ.

Draw L ∼ U {1, . . . , Lmax}. For ` = 1, . . . , L,

a) Set ϕ̃ ← ϕ ′. Form = 1, . . . ,M , set

ϕ̃ ← ϕ ′ +
ε

2

(
∇ logp(w ′, z ′ |x) −

1
2

tr(G−1∇G) +
1
2
ϕ̃>G−1(∇G)G−1ϕ̃

)
.

Then set ϕ ′← ϕ̃.

b) Set (w̃, z̃) ← (w ′, z ′). Form = 1, . . . ,M , set

(w̃, z̃) ← (w ′, z ′) +
ε

2
(
G−1(w ′, z ′) +G−1(w̃, z̃)

)
ϕ ′.

Then set (w ′, z ′) ← (w̃, z̃).

c) Set

ϕ ′← ϕ ′ +
ε

2

(
∇ logp(w ′, z ′ |x) −

1
2

tr(G−1∇G) +
1
2
ϕ ′>G−1(∇G)G−1ϕ ′

)
.

Set (t ′, r ′) ← (ew ′, ez′). The proposal ratio is N (ϕ′ |0,G(w ′,z′))
N (ϕ |0,G(w ,z))

t ′r ′
tr .

Parameters Lmax and ε were tuned manually to achieve the highest e�ciency, and M was �xed to 3.

Note that the parameters of the model are t and r , as are the state of the Markov chain. The transformed

variables w and z or x and y are used to design e�cient moves in the t-r space. Also note that A4 and

A7 use generic logarithm and whitening transformations to deal with correlations and scale di�erences,

while A5 and A6 use certain features of the model (namely the fact that the likelihood depends on tr only)

to design e�cient transformations or search direction.

3.2.5.3 Results

For each kernel, we simulated a Markov chain for 5 × 107 iterations, after a burn-in of 8 × 104 iterations.

The estimates of the two marginal posterior means (and the 2.5th and 97.5th percentiles) were identical

for all algorithms: 14.58 (10.5, 19.4) for t and 0.00361 (0.0025, 0.0051) for r , while the e�ciency of the

algorithms varied by nearly 40 folds (Table 3.6).

When the target’s covariance structure was not taken into account, the e�ciency achieved was less than

10%. The one-dimensional uniform proposals on t and r and on log t and log r (A1 and A2, respectively)

were very ine�cient, with E ≈ 5%, even less e�cient than the two-dimensional uniform kernel (A3). This



3.2. Multidimensional target distributions 73

Ta
bl

e
3.

6:
E�

ci
en

cy
of

tw
el

ve
ke

rn
el

sf
or

th
e

m
ol

ec
ul

ar
cl

oc
k

da
tin

g
pr

ob
le

m
.T

he
sc

al
in

g
fa

ct
or

c
=
σ
/s

is
th

e
ra

tio
of

th
e

pr
op

os
al

st
an

da
rd

de
vi

at
io

n
σ

ov
er

th
e

ta
rg

et
st

an
da

rd
de

vi
at

io
n
s.

Ke
rn

el
Pr

op
os

al
st

ep
-s

iz
e

(σ
)

Ru
nn

in
g

tim
e

(s
)

Ti
m

e
(t

)
Ra

te
(r

)

c
P

ju
m

p
E

c
P

ju
m

p
E

A
1

1D
U

ni
fo

rm
on

t,
r

A
ut

om
at

ic
26

1.
29

0.
39

6
0.

05
4

1.
24

0.
40

5
0.

05
2

A
2

1D
U

ni
fo

rm
on

w
,z

A
ut

om
at

ic
28

1.
46

0.
40

3
0.

05
5

1.
33

0.
38

8
0.

05
4

A
3

2D
U

ni
fo

rm
on

w
,z

σ
w
←
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Figure 3.10: E�ciency (E) for estimating t (left column) and r (right column) over 100 replicate runs of
the algorithm A6b (1D MirrorU 1

2 on x,y) in the phylogenetic example, plotted as a function
of µ∗x , µ∗y , ŝx and ŝy estimates obtained from the burn-in. The means (µx , µy ) and standard
deviations (sx , sy ) were estimated using four rounds during the burn-in of 8 × 104 iterations,
with each round consisting of 2 × 104 iterations. The estimates were then used to construct
the Mirror move.

was not surprising as both pairs (t, r ) and (log t, log r ) were highly correlated (correlation about −0.8),

as expected from the fact that the likelihood depends on the product tr only. Removing the correlation

and adjusting for the scale di�erences between the target variables via the whitening transformation (3.3)

(A4) improved the e�ciency signi�cantly. An alternative and computationally cheaper way to reduce the

correlation is to use the transformation x = log(tr ) and y = log(t/r ) (A5), based on our knowledge of the

model. This reduced the correlation to −0.28, and yielded a similar e�ciency boost as A4.

The MirrorU kernels A6 and A7 had a superior performance to the uniform kernel using the same trans-

formation (A4 and A5) with no extra computational cost. However, the e�ciency for these Mirror kernels

depended on the estimated means and variances of the target from the burn-in. Independent simulations

with di�erent estimates of the target mean and variance suggested that the e�ciency estimates were

stable, with mean e�ciency 1.165 for t and 0.497 for r , which were comparable to those in Table 3.6 (Fig-

ure 3.10). Note that for these Mirror kernels (A6 and A7), the e�ciency for estimating the mean of t was

always considerably higher than that of r . Moreover, from the replicated runs in Figure 3.10, the e�ciency

appeared to depend on the values of µ∗y and ŝy . In particular, a decreasing trend in the e�ciency as µ∗y

becomes larger was observed. Further investigation will be required to better understand these e�ects.

Both MALA (A8) and manifold MALA (A11) performed better than the uniform kernel (A4) (E ≈ 60%), but

did not beat the MirrorU kernel. HMC (A9) and manifold HMC (A12) also gave super-e�cient estimates,

but at considerably greater computational and implementation cost. Stan (A10) did not perform as well as
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Figure 3.11: Sample path from a few steps of four algorithms for sampling from N2(0, Σ), with Σ =
( 1 9
9 100

)
:

(a) standard Gibbs sampler, (b) overrelaxed Gibbs sampler (α = −0.98), (c) MH using 1D
TransfMirrorN 1

2 kernel, and (d) MH using 2D MirrorN 1
2 kernel. The �rst three (a-c) consist of

a sequence of two one-dimensional moves, while the last one (d) is a single two-dimensional
move. The 1D TransfMirrorN 1

2 kernel applies the MirrorN kernel y ′i |yi ∼ N (2(Σ̂−1/2µ∗)i −
yi ,

1
4 ), i = 1, 2, on y = Σ̂−1/2x , where x = (x1, x2) is the target variable, and µ∗ and Σ̂ are

estimated mean and covariance matrix of the target from the burn-in as described in Section
3.2.3. The 2D MirrorN 1

2 kernel proposes x ′ |x ∼ N (2µ∗ − x, 14 Σ̂). Triangle = starting point
(−1, 4); �lled circle = state of the Markov chain; empty circle = intermediate step (for the
one-dimensional moves). Two ellipses enclose the 50% and 90% probability mass of the target.

other variants of HMC (A9, A12). In terms of e�ciency per second, all variants of the MirrorU kernel out-

performed manifold MALA, manifold HMC and Stan by a substantial margin (Table 3.6). Finally, although

well-tuned MALA and HMC also gave good e�ciency-per-time results, the need for high-order deriv-

atives and manual tuning of the step-size parameters make them challenging to implement for general

targets.

3.3 Discussion

3.3.1 Measures of performance

We have compared the mixing e�ciency of di�erent MH proposals as measured by the asymptotic vari-

ance for estimating a function of the target distribution (such as the mean or tail probability). Since the

e�ciency of the kernel may depend on the function or target (Mira, 2001), we have included several tar-

gets in our evaluation. We note that the ranking of the proposal kernels stays largely the same across all

targets we evaluated, suggesting the existence of some general principles that may apply to fairly arbitrary

targets.

Besides the mixing e�ciency, another useful measure is the rate of convergence of Markov chains to the

stationary distribution, such as δ8 and |λ |2 in Table 3.1. The convergence rate should a�ect the desired

length of the burn-in. We consider the convergence rate to be less important than the mixing e�ciency

because the burn-in is typically a small fraction of the MCMC run, and because a kernel e�cient for mixing

tends to also be good for convergence. For example, the uniform kernel converges faster and mixes more

e�ciently than the Gaussian kernel (Table 3.1). It is also cheaper to simulate than the Gaussian kernel.



76 3.3. Discussion

For the Mirror kernel, a small step-size gives estimates with lower asymptotic variance, but with slower

convergence. It is thus preferable to use large steps during the burn-in for fast convergence, and small

steps afterwards for fast mixing.

In practical MCMC applications, the computational and implementational costs are of major concern.

We note that the computational cost may depend on hardware and software implementation details, as

well as the speci�c inference problem. For example, certain one-dimensional moves may not change the

likelihood and are thus more computationally e�cient, such as the change to y = t/r when x = tr is

�xed in the molecular clocking dating example. Our analyses of the logistic regression and the molecular

clock dating examples suggest that the Mirror moves are simpler to implement and run faster than the

manifold MALA and HMC kernels. We leave it to the algorithm developer to assess the computational

cost of di�erent proposals in their speci�c applications.

3.3.2 Comparison with other MCMC algorithms

Several MCMC algorithms have been proposed to improve mixing by suppressing the di�usive behaviour

of the random walk MH proposals in which every iteration tends to take a small step in a random direction.

We discuss a few that are related to our work.

The idea of proposing values on the other side of the distribution has appeared in the literature before.

For instance, the overrelaxation method (Adler, 1981; Barone and Frigessi, 1990) is a Gibbs sampler for

Gaussian conditionals that makes a move to the other side of each component’s full conditional. The

update for the component i is

x ′i = µi |−i + α(xi − µi |−i ) +
√
σ 2
i |−i (1 − α

2)z, z ∼ N (0, 1),

where µi |−i andσ 2
i |−i are conditional mean and variance of xi given all other variables x−i , andα ∈ (−1, 1) is

a user-speci�ed parameter. Choosing α ∈ (−1, 0)will make a move to the other side of the full conditional

distribution of xi . The Markov chain does not move to the other side of the target in one step, but instead

moves along the density contour (Figure 3.11b), with higher-order autocorrelations oscillating between

positive and negative signs (Figure 3.12). This results in cancellations of autocorrelations in (1.9), yielding

a lower asymptotic variance than the standard Gibbs sampler in certain cases. By contrast, the Mirror

kernel is a general MH proposal kernel that moves to the other side of the target in one step, giving a

negative �rst-order autocorrelation (Figure 3.12). In addition, its implementation does not require the

knowledge of the full conditionals. The mirror re�ection of the current state through a centre point as an

MH proposal kernel to induce negative correlations has been suggested by Tierney (1994, Section 4.3.3),

who referred to it as an antithetic variate method, but theoretical analysis and empirical comparisons have

been lacking.
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Figure 3.12: Autocorrelation function for the four proposal kernels of Figure 3.11, calculated using 106
iterations after a burn-in of 8,000 iterations. The e�ciency for the four kernels is 0.104, 11.127,
2.784 and 2.122.

In the antithetic coupling method (Hammersley and Morton, 1956; Frigessi et al., 2000), two Markov chains

are constructed with one to be the mirror re�ection of the other. Combining the two chains yields a low-

variance estimate. By contrast, the Mirror kernel introduces negative correlations within a chain rather

than between chains.

HMC is another method that aims to propose a value away from the current position, in the direction of

the peak of the target. A proposal is generated by simulating a trajectory of the so-called Hamiltonian

dynamics. It requires computation of the �rst derivative of the log target density, and its parameters are

di�cult to tune to achieve good mixing. Automatic parameter tuning in HMC is currently a topic of

research (Neal, 2011; Wang et al., 2013; Ho�man and Gelman, 2014). MALA is an MH algorithm that uses

the Langevin proposal and can be viewed as a special case of HMC (Section 1.3.4.1). For the N (µ, s2) target,

choosing the step-size σ = 2s gives the MALA update x ′ |x ∼ N (2µ − x, 4s2), which is equivalent to the

MirrorN kernel using a �xed scaling factor of 2.

3.3.3 Parametrisation, variable transformation and e�ciency for estimating

di�erent functions

Parametrisation of the target distribution or variable transformation is a useful approach for designing

e�cient MCMC samplers. We have illustrated this with several transformations that deal with correlations

and/or scales of the target variables. We note that using di�erent functions f in the Monte Carlo estimator

(1.3) to evaluate MCMC mixing e�ciency for the same target π is equivalent to using di�erent target

densities but the same function (such as the mean). Given that the ranking of kernels does not appear to

be sensitive to the target used or the function to be estimated, a useful approach is to transform the target

distribution into one for which e�cient proposal kernels are known, and design proposals for the target

variables accordingly.

To �nd a good proposal q(x ′ |x) for the target πX (x), we may use a one-to-one transformation y = T (x) so
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Table 3.7: E�ciency for estimating the mean of three distributions. The step-size σx was adjusted to
achieve P∗jump = 0.4. The transformation y = e−x was used for Exp(1) and folded Gaussian,
and y = Φ(x) was used for N (0, 1), with σy �xed at the optimal value for the U (0, 1) target
(Table 3.1 and Yang and Rodríguez (2013, Table S1)).

Kernel Pjump E E2π ρ1

Exp(1) target, Exp(1)-CDF transform
Uniform (σx = 2.5) 0.408 0.161 0.589 0.705
TransfUniform (σy = 2.8) 1.000 1.298 2.283 −0.142
TransfBactrianTriangle (m = 0.95,σy = 3.2) 1.000 2.014 2.820 −0.410
TransfStrawHat (a = 1,σy = 3.2) 1.000 2.026 2.950 −0.474

folded Gaussian N+(0, 1) target, Exp(1)-CDF transform
Uniform (σx = 2.3) 0.392 0.213 0.259 0.643
TransfUniform (σy = 2.8) 0.839 1.075 0.755 −0.039
TransfBactrianTriangle (m = 0.95,σy = 3.2) 0.834 1.919 0.961 −0.322
TransfStrawHat (a = 1,σy = 3.2) 0.847 2.224 1.013 −0.394

N (0, 1) target, t2-CDF transform
Uniform (σx = 2.2) 0.405 0.275 0.879 0.561
TransfUniform (σy = 2.8) 0.832 0.959 1.961 0.020
TransfBactrianTriangle (m = 0.95,σy = 3.2) 0.836 1.592 2.471 −0.236
TransfStrawHat (a = 1,σy = 3.2) 0.846 1.680 2.548 −0.274

N (0, 1) target, logistic-CDF transform
TransfUniform (σy = 2.8) 0.739 0.875 1.880 0.060
TransfBactrianTriangle (m = 0.95,σy = 3.2) 0.710 1.292 2.268 −0.134
TransfStrawHat (a = 1,σy = 3.2) 0.752 1.459 2.382 −0.191

that the resulting density πY (y) resembles a simple density for which an e�cient proposalq(y ′ |y) is known.

The X - and Y -chains are then coupled in the sense that if the initial states are the same with y0 = T (x0)

and if the same sequence of random numbers is used to run the two chains, then yn = T (xn) for all

n ≥ 1. Estimating EπX (f (x)) using theX -chain samples x1:N is then the same as estimating EπY (f (T
−1(y)))

using the Y -chain samples y1:N . Thus �nding an e�cient proposal kernel for a given target is equivalent

to �nding a good variable transformation or parametrisation. It is then pro�table to study the mixing

e�ciency for estimating various functions for simple targets such as the uniform distribution, where

several highly e�cient kernels are available (Table 3.1). Viewed in this light, our early observation that

di�erent proposal kernels with the same general shape have similar performances is equivalent to the

observation that the ranking of proposals is insensitive to the target or function used.

As an example, consider the target x ∼ Exp(1/µ) with mean µ. Then y = e−x/µ ∼ U (0, 1). From Table

3.1, the uniform kernel1 y ′ |y ∼ U (y − σ
2 ,y +

σ
2 ) with re�ection and with σ = 2.8 achieves E = 1.537 for

estimating E(y). Transformed onto the original variable x , the move is as follows. Set y = e−x/µ , sample

y ′ |y ∼ U (y − σ
2 ,y +

σ
2 ) and re�ect so that y ′ ∈ (0, 1). Then set x ′ = −µ logy ′. The acceptance probability

1U (0, 1) has standard deviation s = 1
2
√
3

, so the kernel is y′ = y + σ
s u where u ∼ U (−

√
3,
√
3), which is equivalent to y′ ∼

U (y − σ
2
√
3

√
3, y + σ

2
√
3

√
3) ≡ U (y − σ

2 , y +
σ
2 ).
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is

α(x, x ′) = min
(
1, e(x

′−x )/µ ×
π (x ′)

π (x)

)
, (3.5)

which equals 1. This algorithm gives E = 1.298 for estimating E(x) = E(−µ logy) (Table 3.7). This is good

performance sincew was optimised for estimating E(y) instead of E(x). Even higher e�ciency is achieved

by using bimodal kernels such as BactrianTriangle or the new StrawHat on y (Table 3.7).

Next, we use the same transformationy = e−x/µ to sample from the folded Gaussianπ (x) ∝ exp(− 1
2x

2), x >

0, to estimate E(x) = 0.7979. The acceptance probability is given by (3.5) although this does not equal 1.

The uniform kernel on y gives E = 1.075 (Table 3.7). This is good because Exp(1) has only a passing

resemblance to the folded Gaussian. Again bimodal kernels such as BactrianTriangle and StrawHat give

even higher e�ciency (Table 3.7).

Lastly, we consider two generic transformations for targets with support on the real line. We sample

from x ∼ N (0, 1) using uniform, BactrianTriangle or StrawHat kernel on y = h((x − µ̂)/ŝ) where h is

the cumulative distribution function (CDF) of the t2 or logistic distribution, and µ̂ and ŝ are empirical

estimates of the target’s mean and standard deviation from the burn-in. For both transformations, the

uniform kernel gives E close to 1 for estimating E(x) = 0, whereas the BactrianTriangle and StrawHat

kernels give E > 1 (Table 3.7).





Chapter 4

Species tree inference in the Anopheles

gambiae mosquito species complex

Deep coalescence and introgression make it challenging to infer phylogenetic relationships among closely

related species that arose through radiative speciation events. Despite numerous phylogenetic analyses

and the availability of whole genomes, the phylogeny in the Anopheles gambiae species complex has not

been con�dently resolved. In this chapter, we performed Bayesian inference of the species tree under the

multispecies coalescent (MSC) model (reviewed in Section 2.2), using over 80,000 coding and noncoding

short segments (loci) extracted from the whole genome data of six members of this species complex from

recent studies (Neafsey et al., 2015; Fontaine et al., 2015). The MSC model takes into account genealogical

heterogeneity across the genome as well as uncertainty in the locus-speci�c gene trees. We obtained a

robust estimate of the species tree that provides a more parsimonious interpretation of inversion and in-

trogression events than the previously suggested species tree from Fontaine et al. (2015) (Sections 4.3.1

and 4.3.7). The concatenation approach used by Fontaine et al. (2015) was shown to produce artefactual

species trees (Section 4.3.2). These �ndings were con�rmed by simulation informed by the real data (Sec-

tion 4.3.3). To infer gene �ow between pairs of species, we analysed various data subsets of species triplets

using the MSC model together with the fact that introgression reduces the species divergence times (Sec-

tion 4.3.5). We also explicitly estimated the gene �ow rates for di�erent chromosomal regions under the

isolation-with-migration (IM) model (reviewed in Section 2.3). Our results highlight the importance of

accommodating incomplete lineage sorting and introgression in phylogenomic analyses of species that

arose through recent radiative speciation events.

4.1 Introduction

The Anopheles gambiae species complex is a group of sub-Saharan African mosquito species that is com-

prised of at least eight recognised species and includes major malaria vectors in Africa. These species
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are morphologically nearly indistinguishable but are genetically distinct, and have di�erent ecological

traits and reproductive behaviours such as range, habitats, resting and feeding preferences and vectorial

capacity (Coluzzi et al., 1979; White et al., 2011). Three members, A. gambiae, A. coluzzii and A. arabien-

sis, are ecologically most similar, with large overlapping geographical ranges across sub-Saharan Africa

and are principal vectors of the Plasmodium parasites (Wiebe et al., 2017). A. gambiae and A. coluzzii

are closely related sibling species that are highly anthropophilic and are responsible for the majority of

malaria transmission in Africa, while A. arabiensis is a less dominant vector (Takken and Verhulst, 2013).

Other species in the complex have much more restricted geographical distributions (Sinka et al., 2012;

Wiebe et al., 2017). A. melas and A. merus are salt-tolerant species that breed in brackish coastal waters of

eastern and western Africa, respectively. They have similar ecological and morphological characteristics

and are minor vectors (Coluzzi et al., 1979). A. quadriannulatus is zoophilic and plays no role in malaria

transmission despite its vector competence for Plasmodium falciparum (Takken et al., 1999).

Inference of the evolutionary relationships among the members of the A. gambiae species complex is a

fundamental step towards identifying genomic changes associated with epidemiologically important traits

and developing e�ective malaria control strategies. However, this task has been extremely challenging.

First, rapid succession of speciation events in the species complex combined with large population sizes of

ancestral species has caused widespread genealogical heterogeneity, or incomplete lineage sorting (ILS),

across the genome (Ayala and Coluzzi, 2005; Fontaine et al., 2015). Second, introgression is prevalent in

autosomal regions of the genome, particularly among the three major vector speciesA. gambiae, A. coluzzii

and A. arabiensis (Besansky et al., 2003; Wang-Sattler et al., 2007; O’Loughlin et al., 2014). Third, di�erent

genomic regions, such as the X chromosome, the autosomes and inversion regions on chromosomes 2L

and 3L, show systematically di�erent phylogenetic relationships, possibly due to complex e�ects of chro-

mosomal inversion, introgression and natural selection (Slotman et al., 2005; Ayala et al., 2017). Inversions,

both �xed and polymorphic, are prevalent across the genome (Coluzzi et al., 2002) and are shown to be

associated with adaptation in di�erent ecological habitats (Ayala et al., 2017). As a result of those com-

plicating factors, di�erent types of molecular data support di�erent species phylogenies. For instance, the

close relationship between A. arabiensis and A. gambiae+A. coluzzii is supported by sequence data in the

autosomal regions, the Y chromosome (Hall et al., 2016) and the mitochondrial genome (Fontaine et al.,

2015), but not by chromosomal inversions (Coluzzi et al., 1979, 2002) or the X chromosome (Fontaine et al.,

2015). Similarly ecology and morphology group A. merus with A. melas, but this sister relationship is not

supported by genomic sequences and chromosomal inversions (Coluzzi et al., 1979, 2002).

Fontaine et al. (2015) provided the �rst phylogenomic analysis of the species complex using complete nuc-

lear and mitochondrial genomes of six members: A. gambiae, A. coluzzii, A. arabiensis, A. merus, A. melas

andA. quadriannulatus. The maximum likelihood (ML) phylogenies from 50-kb non-overlapping windows

sliding along the genome showed widespread heterogeneity in the genealogical history across the genome.
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In particular, the X chromosome and autosomes produced drastically di�erent phylogenies. The authors

provided evidence that the majority tree for the X chromosome represents the true species branching or-

der, while extensive introgressions have altered the autosomal phylogeny. However, their sliding-window

approach �ts one tree to all sites in the large window and ignores the ILS. We also refer to this approach

as concatenation. For closely related species formed through radiative speciations, concatenation is well-

known to be unreliable (Edwards et al., 2016): it may be inconsistent and converge to a wrong species tree

when the amount of data increases (Kubatko and Degnan, 2007; Roch and Steel, 2015). The same genomic

data were analysed using a phylogenetic network model with coalescent that captures both ILS and gene

�ow between species (Wen et al., 2016a,b), producing di�erent phylogenies. Nevertheless, those analyses

treated inferred gene trees as input data and ignore information in gene-tree branch lengths. As a result,

they may lack power and fail to account for uncertainty in the gene trees due to limited phylogenetic

information at each locus (Xu and Yang, 2016).

Here, we compiled datasets consisting of loosely linked short genomic segments (100-1,000 bases in length,

at least 2kb apart), referred to as loci, from the genomes of the six members of the A. gambiae species

complex (Neafsey et al., 2015; Fontaine et al., 2015) and performed Bayesian species tree analysis using the

program bpp (Yang, 2015), which implements the multispecies coalescent (MSC) model (Rannala and Yang,

2003; Yang and Rannala, 2014; Rannala and Yang, 2017). Our approach explicitly accommodates gene-tree

heterogeneity across loci and makes full use of information in the sequence data, including information

about coalescent times or gene tree branch lengths, and fully accounts for uncertainty in the gene trees.

We compiled and analysed separate datasets for the coding and noncoding regions of the genome. We also

performed concatenation analysis using RAxML (Stamatakis, 2014) on these datasets as in Fontaine et al.

(2015). We used simulation to understand the di�erent estimates of the species tree from the coalescent

and concatenation analyses. Since bpp does not account for gene �ow between species, we used the ML

program 3s (Zhu and Yang, 2012; Dalquen et al., 2017) to test for migration between species and to explicitly

estimate the migration rates. The program implements ML inference under the isolation-with-migration

(IM) model (Hey and Nielsen, 2004; Hey, 2010), which extends the MSC model by allowing gene �ow

between the two ingroup species, with a third species used as an outgroup. However, 3s assumes a �xed

species tree and is currently limited to three sequences from at most three species. Unlike previous studies,

our analyses of genome-wide data lead to a robust conclusion about the species phylogeny of this species

complex, thus providing a framework for studying the evolution of ecological and epidemiological traits in

this medically relevant group of mosquitoes. As an example, we discuss an implication of our species tree

on the evolution of 2La inversion polymorphism, which is an important epidemiological trait associated

with susceptibility to Plasmodium infection in natural mosquito populations (Riehle et al., 2017).
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4.2 Methods

4.2.1 Datasets

We obtained the whole genome alignment from Fontaine et al. (2015) (doi:10.5061/dryad.f4114) for six

species in the A. gambiae species complex: A. gambiae (G), A. coluzzii (C), A. arabiensis (A), A. melas (L),

A. merus (R) and A. quadriannulatus (Q), as well as the A. gambiae PEST reference genome and two Pyre-

tophorus outgroup species (A. christyi and A. epiroticus). For each of the six ingroup species, there are two

genomes, one from a laboratory colony (reference genome) and another from �eld-collected individuals

(non-reference genome). We used twelve whole genomes for the six ingroup species, and A. christyi (O)

genome as an outgroup, excluding A. gambiae PEST and A. epiroticus genomes from our analysis. There

are thus 12 sequences per locus, or 13 if the outgroup is included. The original alignment was partitioned

into 2L, 2R, 3L, 3R and X chromosomal arms. We further separated out three main inversion regions 2La,

3La, Xag (in chromosomes 2L, 3L and X, respectively) using breakpoint coordinates from Table S11 in

Fontaine et al. (2015), resulting in ten chromosomal regions: 2L1, 2La (the inversion region on 2L with

coordinates 20.5-42.1 Mb), 2L2, 2R, 3L1, 3La (the inversion region on 3L with coordinates 14.5-35.6 Mb),

3L2, 3R, Xag (the inversion region about 14.8 Mb on the distal end of the X chromosome) and X2 (the

pericentromeric region of the X chromosome with coordinates 14.8-24 Mb) (Table 4.1). The distal end of

the X chromosome contains a small region of about 21 kb outside of the Xag inversion, which may not be

very informative about the species tree, and was combined into the Xag region here.

The MSC model implemented in bpp and 3s assumes free recombination among loci and no recombination

within a locus. Thus ideal loci for this kind of analysis are short genomic segments that are far apart so

that recombination within a locus can be ignored while recombination between loci is so common that

the di�erent loci have nearly independent histories (Burgess and Yang, 2008; Lohse et al., 2011).

We used the gene set annotation of A. gambiae PEST strain (AgamP3 assembly) from VectorBase to split

the alignment into coding and noncoding regions. For the noncoding regions, we split the alignment

for each chromosomal region into smaller segments, referred to as loci, using the ambiguous nucleotide

character (N) as breakpoints. Each locus was between 100 and 1,000 bases and had fewer than 50% gaps,

and two consecutive loci were at least 2 kb apart. In a preliminary analysis, we also compiled data with a

minimum gap of 10 kb between loci and the results were very similar. In addition, linkage disequilibrium

for populations of A. gambiae and A. coluzzii is estimated to decay to <5% within 1 kb (The Anopheles

gambiae 1000 Genomes Consortium, 2017). Thus we used 2 kb, which also preserved more loci. There

were 57,592 noncoding loci in total (Table 4.1). Manual inspection revealed a considerable number of mis-

aligned regions in the original whole genome alignment from Fontaine et al. (2015). We thus realigned

all loci using MAFFT (Katoh and Standley, 2013), using the iterative re�nement method (L-INS-i option).

This appeared to �x the alignment errors. After removing gaps, each locus had between 11 to 973 sites

doi:10.5061/dryad.f4114
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Table 4.1: Number of loci in each chromosome region in non-coding and coding datasets.

Dataset Chromosome region Total
2L1 2La 2L2 2R 3L1 3La 3L2 3R Xag X2

Non-coding 4134 6732 2330 17027 2496 6280 1823 14323 1825 622 57592
Coding 2223 2776 1362 6849 983 1998 764 4977 1179 394 23505

(median 195). The number of parsimony-informative sites ranged from 0 to 229 (median 15). For the

coding regions, we also required each locus, which is a part of an exon, to have length at least 100, and

contain fewer than 50% gaps. But unlike the noncoding loci, we did not constrain the maximum length of

each locus or the minimum distance between loci. There were 23,505 coding loci in total (Table 4.1). Each

locus ranged from 52 to 6,541 sites (median 210). The number of parsimony-informative sites ranged from

0 to 403 (median 6). All processing of the original genome alignment data was done using custom python

scripts.

4.2.2 Species tree estimation using bpp and concatenation

We inferred the species tree among the six ingroup species using two methods: (1) Bayesian MSC-based

method implemented in bpp v.4.0 (Rannala and Yang, 2003; Yang and Rannala, 2014; Yang, 2015; Rannala

and Yang, 2017) using the JC model (Jukes and Cantor, 1969) for sequence likelihood given the gene tree

(as this this is the only model currently implemented in bpp) and (2) concatenation and ML under the

GTR+Γ4 model using RAxML v.8.2 (Stamatakis, 2014). To reduce the computation cost and to explore

the heterogeneity in the species relationships across the genome, we partitioned the data into blocks of

100 loci in each chromosomal region, resulting in 582 blocks for the noncoding data, and 239 blocks for

the coding data. Each block was analysed separately, treated as 100 loci with independent genealogical

histories by bpp and as one super-sequence by RAxML (Figure 4.1).

The MSC model accommodates ancestral polymorphism and deep coalescence, and the likelihood imple-

mentation in bpp accounts for phylogenetic uncertainties at each locus (Section 2.2.1). The parameters

under the MSC include Θ = (τi , θi ), where τi is the species divergence time, θi is the population size

parameter. Inverse gamma priors were assigned on τ and θ parameters. For the noncoding data, we used

θ ∼ InvG(3, 0.04) for all populations, which has mean 0.02, and the root age τ0 ∼ InvG(3, 0.2), which has

mean 0.1. Given τ0, species divergence times for non-root nodes were given a uniform distribution on the

Figure 4.1: Diagram illustrating how the loci extracted from the whole-genome data were grouped into
blocks of 100. Each block was analysed separately, and one species tree was inferred for each
block.
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interval (0, τ0), generated from the symmetric Dirichlet distribution (Yang and Rannala, 2010). These θ

and τ parameters are in the units of the expected number of mutations per site. To convert these paramet-

ers to actual times (before present) and actual population sizes, we used the mutation rate estimates for

Drosophila: 2.8 × 10−9 (Keightley et al., 2014) and 5.5 × 10−9 (Schrider et al., 2013) mutations per site per

generation, with 11 generations per year (The Anopheles gambiae 1000 Genomes Consortium, 2017). Thus

the population sizes have prior mean of about 0.91 or 1.79 million individuals, and the root divergence

time has prior mean of about 1.65 or 3.25 million years. For the coding data, we used θi ∼ InvG(3, 0.008)

and τ0 ∼ InvG(3, 0.04), which have �ve times smaller means than for the noncoding data. The species tree

prior was the uniform distribution over rooted trees (Yang and Rannala, 2014). We initially estimated the

species tree with θ integrated out analytically as this improved the mixing property of the algorithm (A01

analysis in Yang (2015)). We then estimated the population size parameters and species divergence times

for each of the most likely species trees (A00 analysis in Yang (2015)).

For A01 analysis, MCMC was run for 2 × 106 iterations after 4 × 104 iterations of burn-in. Samples were

recorded every 20 iterations. For each block of loci, two independent runs were performed using di�erent

starting trees. Convergence was assessed mostly by checking for consistency between runs in posterior

probabilities for species trees. If the MAP trees from the two runs were the same, we required their

posterior probabilities to di�er by ≤ 0.3, while if the MAP trees were di�erent, we required the mean

absolute di�erence between the two posterior distributions of the species tree probabilities to be ≤ 0.3.

We then combined the samples from the two runs to produce a posterior summary. Otherwise, we repeated

the two runs until convergence was achieved.

For parameter estimation on a �xed species tree (A00 analysis), we also included the outgroup species

(A. christyi) in the data since the estimated parameters will be used later in simulation experiments. We

performed ten independent runs of MCMC, each with 106 iterations after a burn-in of 4 × 104 iterations.

For the concatenation analysis, we merged each block of 100 loci into a single alignment and then ran

RAxML. We also split each alignment into two subsets, containing only either reference genomes or gen-

omes from resequencing natural population samples. We used the GTR+Γ4 model and performed 100 in-

dependent runs with random starting trees (option -N 100) to infer the ML tree. The number of bootstrap

replicates was 100.

4.2.3 Generation and analysis of simulated datasets

Our bpp analysis suggested tree ii for the autosomes and tree xi for the Xag region of the X chromosome

(Figures 4.2 and 4.3, Table 4.2), while the sliding-window analysis of Fontaine et al. (2015) favoured trees i

and ix, respectively. To investigate those di�erences, we used theMCcoal program in bpp v.4.0 to simulate

two datasets using trees ii and xi, each with ten replicates. We performed bpp and concatenation/RAxML

analyses on the simulated datasets in the same way as for the real datasets. Note that our goal is to



4.2. Methods 87

understand the e�ect of ILS on the performance of the MSC and concatenation approaches, using the

MSC model to simulate data seemed appropriate. Although other types of models such as forward-time

frequency-based models may be used instead of the MSC model, we expect the choice of the simulator to

have a minor e�ect on the results as long as they can generate data with ancestral polymorphisms and

ILS.

For tree ii, we simulated 6,464 loci under the GTR+Γ4 model, each of length 200. We used the posterior

means of τ s and θs in the MSC model obtained from the real 6,464 loci from chromosome 2L, exclusive

of 2La region (Figure 4.9). The parameters of the GTR+Γ4 model for evolving sequences given the gene

tree were allowed to vary among loci. For each locus, the base frequencies π = (πT , πC , πA, πG ) were

generated from a Dirichlet distribution π ∼ Dirichlet(αT ,αC ,αA,αG ) with parameters (αT ,αC ,αA,αG ) =

(20.49, 21.22, 20.46, 20.97). These were the ML estimates obtained when the Dirichlet distribution was

�tted to the observed base frequencies. The exchangeability parameters q = (a,b, c,d, e, f ) for the GTR

model (Yang, 1994a) were also generated from a Dirichlet distribution q ∼ Dirichlet(αa,αb ,αc ,αd ,αe ,αf )

with parameters (αa,αb ,αc ,αd ,αe ,αf ) = (7.59, 3.23, 2.95, 2.93, 2.93, 7.57), estimated by �tting the Di-

richlet distribution to the RAxML estimates of q for the data at each locus. The overall rate for each

locus was generated from G(5, 5). The shape parameter α = 5 was based on �tting the gamma dis-

tribution G(α, β) to locus-wise estimates of the tree lengths from RAxML. The alignment of sequences

at each locus is not always informative enough to estimate the α parameter in the GTR+Γ4 model. In-

stead, we generated α for each locus from G(20, 4), with mean 5. Similarly for tree xi, we simulated

1,825 loci each of length 200, where the species-tree parameters (θs and τ s) were estimated using the

real 1,825 loci from the Xag region (Figure 4.9). We used π ∼ Dirichlet(20.49, 21.22, 20.46, 20.97) and

q ∼ Dirichlet(7.72, 3.16, 3.24, 3.18, 2.69, 7.45). Other parameters were the same as for tree ii.

4.2.4 Likelihood ratio test of gene �ow and ML estimation of migration rates

Since bpp currently does not allow gene �ow between species, we performed a separate analysis using

an isolation-with-migration (IM) model implemented in the maximum likelihood program 3s (Zhu and

Yang, 2012; Dalquen et al., 2017), reviewed in Section 2.3.1. The current implementation works with three

species (1, 2 and 3) assuming the species tree ((1, 2), 3), and only allows gene �ow between the two

ingroup species (1 and 2) with migration rates M12 and M21, while species 3 is used as an outgroup. Here,

Mi j = Njmi j is the expected number of individuals migrating from species i to j per generation. We

tested for gene �ow between A. gambiae and A. arabiensis, and between A. merus and A. quadriannulatus,

as suggested by con�icting species tree estimates from the bpp analysis. We used A. christyi (O) as the

outgroup (species 3). Thus we analysed two species triplets, GAO and RQO, with a �xed species tree

((GA)O) and ((RQ)O), respectively. As A. christyi is a very distant outgroup, we additionally analysed

GAL, GAR and RQL triplets, using A. melas or A. merus as the outgroup. The noncoding loci were used,
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and di�erent chromosomal arms and inversion regions were analysed separately, as well as the entire

chromosome arms and all autosomal regions as a whole. For each locus, we chose one of the following

three data con�gurations uniformly at random: 123, 113 and 223. Here, 123 means one sequence from

each of the three species, and 113 means two sequences from species 1 and one sequence from species

3, etc. When one sequence from a species was used, it was always from the reference genome. We

estimated parameters under two models, M0 (no gene �ow) and M2 (gene �ow), and compared them using

a likelihood ratio test (LRT). Model M0 is the MSC model (Section 2.2.1). It has two species divergence

times (τ0 for the root, and τ1 for the two ingroup species) and four e�ective population sizes: θ1, θ2, θ4, θ5

(for the two extant populations, 1 and 2, and for two ancestral populations, 4 for the root and 5 for the

ingroup species); see Figure 2.3. There is no population size parameter for the outgroup (θ3) since we

always used one outgroup sequence. Model M2 is the IM model and has two additional parameters M12

and M21. Integration over the two coalescent times in the gene trees in the likelihood calculation used

Gaussian quadrature with 32 points (Yang, 2002). We ran the program twice for each analysis, and the run

with a higher log-likelihood value was used.

4.3 Results

4.3.1 Species branching order varies systematically among di�erent parts of

the genome

We compiled 57,592 noncoding and 23,505 coding loci using the whole genome alignment from Fontaine

et al. (2015) for six species in the A. gambiae species complex: A. gambiae (G), A. coluzzii (C), A. arabiensis

(A), A. melas (L), A. merus (R) and A. quadriannulatus (Q). Our analysis assumed the molecular clock

so that rooted trees can be inferred without the outgroup but we also constructed datasets that include

A. christyi (O) as the outgroup. The genome was partitioned into ten chromosomal regions (Table 4.1).

For computational tractability of bpp and to explore the heterogeneity in the species relationships across

the genome, we split each dataset into blocks of 100 loci, so that there are 582 noncoding blocks and 238

coding blocks. Each block was analysed using bpp to calculate the posterior probabilities for species trees

(A01 analysis in Yang (2015)).

Systematically di�erent species trees were inferred from bpp for di�erent genomic regions, for the dataset

without the outgroup (Figure 4.2, Table 4.2) and with the outgroup (Figure 4.3). As in Fontaine et al. (2015),

we recognise four regions of the genome with distinct phylogenetic relationships: (1) the majority of the

autosomes and the pericentromeric region of the X chromosome, (2) the 2La inversion region, (3) the 3La

inversion region and (4) the Xag inversion region. In most parts of the autosomal genome (2L1, 2L2, 2R,

3L1, 3L2 and 3R), the maximum posterior probability (MAP) species tree was tree ii: (R(L(Q(A(GC))))),

and less commonly, tree iii: (L(R(Q(A(GC))))) (Figure 4.2). The results were highly consistent between the
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Figure 4.2: Posterior probabilities of species trees inferred using bpp for 100-locus blocks of (A) noncoding
and (B) coding loci. The y-axis scales from 0 to 1. The x-axis provides approximate chromo-
somal coordinates of blocks, where the position for each block was taken to be the average of
the starting positions in the AgamP3 coordinates over all loci within the block.

noncoding and coding data. Tree ii was also the autosomal tree obtained in studies using coalescent-based

methods (Wen et al., 2016a,b). By contrast, the most common ML tree on the autosomes in the sliding-

window analysis of Fontaine et al. (2015) was tree i, with the (RL) clade. This tree had near-zero posterior

for almost all blocks in our analysis (Figure 4.2). Note that species trees i, ii, and iii are three phylogenetic

resolutions for R, L and the clade (Q(A(GC))) around a very short branch at the root (Figure 4.9A&C). We

demonstrated in Section 4.3.3 that tree i, which is more balanced than tree ii, may be an artefact of the

sliding-window approach used in Fontaine et al. (2015).

For the Xag region, the MAP tree from bpp for the noncoding data was predominantly tree xi: (R((L(AQ))(GC))).

For the coding data, it was mostly tree x: ((L(AQ))(R(GC))), while tree xi was the MAP tree for only two

blocks (Figure 4.2 and Table 4.2). By contrast, previous studies (Fontaine et al., 2015; Wen et al., 2016a,b)

inferred tree ix: ((R(L(AQ)))(GC)) for the Xag region, with (GC) branching �rst. This tree was rarely sup-

ported in the bpp analysis of either noncoding or coding dataset, and we argued below that this was a

result of a bias in the sliding-window analysis. Note that trees ix, x and xi are three resolutions of the

clades R, (GC) and (L(AQ)) around a very short internal branch at the root of the species complex (Fig-

ure 4.9B&D). The noncoding loci are more divergent and more informative about the species phylogeny,

and are less a�ected by natural selection than the coding loci. Later, we reviewed other lines of evidence

supporting tree xi, instead of trees ix or x, as the true species tree (Section 4.3.4).
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Figure 4.3: Posterior probabilities of species trees inferred using bpp when the outgroup species A. christyi
was included. The outgroup is always the earliest branching species in the MAP trees and is
omitted in the tree diagrams. See legend to Figure 4.2.

The two major autosomal inversion regions, 2La and 3La, were dominated by slightly di�erent trees from

the rest of the autosomes. In the 2La region, tree xii: (R(L(Q(G(CA))))) was the MAP tree in almost all

blocks, and was almost exclusive to this part of the genome. The phylogeny of the 2La region is discussed

in Section 4.3.6. The 3La region was dominated by tree viii: (L((RQ)(A(GC)))), with the (A(GC)) clade as

in most parts of the autosomes, and the (RQ) clade, which suggests introgression between A. merus and

A. quadriannulatus.

4.3.2 Concatenation produces di�erent phylogenies from coalescent-based

methods

While the sliding-window analysis of Fontaine et al. (2015) inferred tree i for the autosomes and tree ix

for the Xag, our bpp analysis inferred trees ii and xi, respectively. Both the data and the analysis methods

di�er between the two studies. Instead of a 50-kb contiguous block in each sliding window of Fontaine

et al. (2015), we used 100 widely spaced loci in each block. Also we separated the noncoding and coding

loci and realigned the sequences at each locus. To identify the factors that account for the di�erent inferred

trees, we used RAxML to infer one ML tree for each block, with all 100 loci in the block concatenated into

a single alignment (of about 20 kb). A. christyi was used as the outgroup to root the tree.

For the autosomal noncoding data, the most common ML tree was tree i (with frequency 46%, vs. 23% for

tree ii) (Table 4.2 and Figure 4.4A). This was consistent with Fontaine et al. (2015) and di�erent from the
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Figure 4.4: ML concatenation trees inferred using RAxML from blocks of 100 loci. The reference gen-
omes were used for each ingroup species, and the results for the non-reference genomes were
virtually identical (not shown). Colours represent di�erent trees de�ned in Figure 4.2.

bpp analysis. For the autosomal coding data, the most common ML tree was tree ii (with frequency 48%)

although it had a tendency to infer tree i as well (frequency 19%) (Table 4.2). This was more consistent

with the bpp analysis. Whether the sequences were realigned or not did not impact the results (Figure

4.4).

For the noncoding data from the Xag region, the most common ML tree for the realigned data was tree x

(with frequency 53%, vs. 37% for tree xi) (Table 4.2, Figure 4.4A). For the coding Xag data, the most common

ML tree for the realigned data was tree xi (with frequency 71%, vs. 21% for tree ix). When the original

genome alignments were used, the most common ML trees were trees ix and x for the noncoding data, and

tree xi for the coding data (Figure 4.4C-D). The sliding-window analysis of the noncoding data in the Xag

region in Fontaine et al. (2015), which should be most similar to our concatenation analysis of the original

alignments, indeed favoured tree ix. The results suggest that the most important factor accounting for

the di�erent trees between the two studies is the method used: the bpp coalescent method on one hand

and the sliding-window/concatenation on the other. Concatenation �tted a single tree to all sites in the

alignment, ignoring the genealogical heterogeneity across the genome. Furthermore, alignment errors

appeared to a�ect the ML analysis of the Xag data in Fontaine et al. (2015).

4.3.3 Simulation suggests systematic errors in concatenation analysis

To understand the di�erences between the MSC approach using bpp and concatenation using RAxML, we

analysed two sets of data simulated under the MSC model (Rannala and Yang, 2003) and GTR+Γ4 (Yang,

1994a,b). The �rst set was generated using tree ii, the autosomal bpp tree, with parameters estimated from

the noncoding loci on 2L (2L1+2L2) under the MSC (A00 analysis in Yang (2015)) (Figure 4.9A). The second

set was generated using tree xi, the Xag bpp tree, with parameters estimated from the Xag noncoding loci
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Table 4.3: Proportions of inferred trees for simulated datasets analysed in blocks of 100 loci (with min-
imum, median and maximum support values for the inferred tree in parentheses), averaged
over 10 replicates.

Tree bpp RAxML (Subset 1) RAxML (Subset 2)

2L data (6,464 loci, 10 replicates)
i 0.0062 (0.43, 0.65, 1.00) 0.4308 (0.34, 0.76, 1.00) 0.4492 (0.33, 0.76, 1.00)

ii* 0.9877 (0.47, 0.99, 1.00) 0.5139 (0.29, 0.77, 1.00) 0.5062 (0.31, 0.78, 1.00)
iii 0.0062 (0.48, 0.53, 0.81) 0.0385 (0.51, 0.56, 0.59) 0.0354 (0.36, 0.59, 0.94)

Xag data (1,825 loci, 10 replicates)
ix 0.1000 (0.42, 0.52, 0.78) 0.1105 (0.36, 0.61, 0.99) 0.1316 (0.38, 0.57, 0.96)
x 0.0474 (0.41, 0.67, 1.00) 0.4790 (0.46, 0.83, 1.00) 0.4632 (0.36, 0.83, 1.00)

xi* 0.8526 (0.38, 0.84, 1.00) 0.4105 (0.33, 0.75, 1.00) 0.4053 (0.38, 0.74, 1.00)

Note.—For bpp the inferred tree is the MAP tree and the support value is the posterior probability, while
for RAxML the inferred tree is the ML tree and the support value is the minimum bootstrap support value
for clades. RAxML also inferred other trees in a small fraction (about 1%) of 2L datasets. Trees are given
in Figure 4.2. The correct tree (indicated by *) is tree ii for 2L data and tree xi for Xag data.

(Figure 4.9B). For each set, the same number of loci were simulated as in the real data, and were analysed

in blocks of 100 loci.

The MAP species tree from bpp matched the correct tree ii in about 99% of the replicate data blocks for the

2L data, and about 85% for the Xag data (Table 4.3). The posterior probability for the MAP tree was high

when the tree was correct (median 0.99 for 2La and 0.84 for Xag) and was low when the MAP tree was

wrong (median 0.65 for 2L and 0.67 for Xag). Even though bpp assumed the simple JC model (Jukes and

Cantor, 1969) while the data were simulated under the far more complex GTR+Γ4 model, bpp performed

well. Also 100 loci from the 2L region appeared to be enough for bpp to infer the species tree with high

con�dence and high accuracy, but not for the Xag region, apparently because the Xag tree has an extremely

short branch (Figure 4.9B).

Concatenation/ML performed far more poorly than bpp. For the 2L data, the ML tree was the true tree

ii about 51% of the time and the incorrect tree i about 44% of the time (Table 4.3). Note that tree i has a

more balanced shape, and concatenation is known to favour the incorrect, more balanced, tree when the

true species tree is unbalanced with very short internal branches Yang (2014, pp.333-335). Tree i was the

most common ML tree for the autosomes in the sliding-window analysis of Fontaine et al. (2015) and in

our concatenation analysis of the noncoding data (Figure 4.4A&C and Table 4.2). For the Xag data, the ML

tree was the correct tree xi about 41% of the time, and the incorrect tree x about 47% of the time (Table

4.3). Again tree x was the most common ML tree, as in the analysis of real Xag noncoding data (Figure

4.4A&C and Table 4.2). The bootstrap support values for the ML trees were mostly moderate, and did not

appear to depend on whether the ML tree was correct or not (Table 4.3). This was probably due to the

presence of con�icting phylogenetic signals from di�erent loci while the method attempted to �t one tree

to all loci. The simulation results closely mimicked the analysis of the real data, providing strong evidence

that sliding-window/concatenation is unreliable for inferring the species tree in the A. gambiae species

complex, and that tree i for the autosomes and tree ix for the Xag inferred in Fontaine et al. (2015) were
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methodological artefacts.

4.3.4 The X chromosome represents the true species phylogeny, with A. merus

diverging �rst

Fontaine et al. (2015) observed that the X chromosome (or more precisely, the Xag region) and the auto-

somes support drastically di�erent species trees and argued that the majority tree for Xag represents the

true species branching order while the autosome trees were a consequence of introgression between spe-

cies. Our analysis supports this assertion, consistent with the long-standing view that di�erentially �xed

inversions on the X chromosome act as a reproductive barrier between species while the autosomes may

be more easily mixed among the three species A. arabiensis, A. gambiae and A. coluzzii (Besansky et al.,

2003; Wang-Sattler et al., 2007; Neafsey et al., 2010; O’Loughlin et al., 2014; Crawford et al., 2015). Never-

theless, our bpp analysis inferred di�erent trees for both the autosomes and the Xag from those of Fontaine

et al. (2015). Here, we �rst summarise evidence in favour of the Xag trees as opposed to the autosomal

trees. We then discuss evidence supporting tree xi (the bpp Xag tree) in particular as the true species tree.

There are two major pieces of evidence that support of the Xag trees as the true species tree, rather

than the autosomal trees (tree ii from bpp or tree i from Fontaine et al. (2015)). First, the Xag trees are

compatible with evidence on cross-species introgression. Note that the major di�erence between the Xag

and autosomal trees concerns the relationships of A. arabiensis and A. gambiae+A. coluzzii. Introgression

of A. arabiensis into the common ancestor of A. gambiae+A. coluzzii in any of trees ix, x and xi (the

three alternative trees for the Xag region) yields tree ii, the most common bpp tree for the autosomes.

Introgression between A. arabiensis and A. gambiae+A. coluzzii has long been suggested (Besansky et al.,

1994; García et al., 1996). This introgression is analysed in Section 4.3.5 through its impact on divergence

times and through direct estimation of migration rates. By contrast, while tree x for the Xag could be

explained by introgression of A. merus into the common ancestor of A. gambiae+A. coluzzii in tree ii if

tree ii were the true species tree, evidence for such introgression has never been reported in the literature.

Second, chromosomal inversions support the Xag trees and contradict the autosomal trees i and ii (Kamali

et al., 2012; Fontaine et al., 2015). Ten �xed inversions have been identi�ed in the A. gambiae complex, of

which �ve are on the X chromosome. Comparison with outgroup species revealed that the chromosomal

orientations of A. gambiae and A. merus closely resemble the ancestral karyotype (Kamali et al., 2012;

Fontaine et al., 2015), suggesting early divergences of A. merus and A. gambiae+A. coluzzii, consistent

with the Xag trees. By contrast, A. arabiensis and A. gambiae+A. coluzzii di�er by at least �ve overlapping

inversions on the X chromosome, with an intermediate orientation (X+) found in A. melas and A. quadri-

annulatus (Coluzzi et al., 1979, 2002; Fontaine et al., 2015). Moreover, A. gambiae+A. coluzzii and A. merus

share the ancestral Xag orientation. As a result, explaining the data using tree ii would require a reversal

from the derived orientation X+ to the ancestral Xag in the lineage leading to A. gambiae+A. coluzzii. It
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is thus highly unlikely that A. arabiensis and A. gambiae+A. coluzzii form a clade as suggested by the

autosomal trees.

Consideration of the statistical properties of the methods suggests that tree ix for the Xag and tree i

for the autosomes inferred in Fontaine et al. (2015) are artifactual. Our simulation has highlighted the

systematic bias of the concatenated/ML method, which behaves similarly to the sliding-window approach

of Fontaine et al. (2015): when the true tree is ii or xi, concatenation/ML tends to infer trees i and ix (or

x), respectively (Table 4.3). Consistent with this, we note that the neighbour-joining method applied to

the average sequence divergences for the Xag region inferred tree xi, even though ML inferred tree ix

(Fontaine et al., 2015, Fig. 1D). While ML applied to concatenated data may be inconsistent, the average

coalescent times or sequence divergences track species divergences, so that neighbour-joining (or UPGMA

in the case where the molecular clock holds) is a coalescent-aware and statistically consistent method (Liu

and Edwards, 2009). Here we summarise further evidence against tree ix for the Xag and tree i for the

autosomes.

First, tree i for the autosomes cannot be explained by introgression fromA. arabiensis toA. gambiae+A. coluzzii

alone, whereas such introgression in any of the three alternative trees for the Xag (ix, x and xi) leads to tree

ii, the bpp tree for the autosomes. Second, while chromosomal inversions favour the Xag trees over the

autosomal trees, as discussed above, they support tree xi (the bpp Xag tree) far more strongly than tree ix

or tree x (Kamali et al., 2012, Fig. 8C). Indeed the most parsimonious tree for the �xed inversion data (Fon-

taine et al., 2015, Fig. S27A) has the relationship (((QA)G)R), which is consistent with tree xi and requires

no independent �xations of the same inversions in di�erent lineages. By contrast, the inversion phylo-

geny that is consistent with tree ix, (((QA)R)G), is not parsimonious and requires independent �xations in

two lineages and introgression of 2La from A. gambiae to A. arabiensis, as well as ancient polymorphisms

of the 2La and 2Ro inversions that likely predate speciation in the species complex (Fontaine et al., 2015,

Fig. S27B). Note that A. merus is the only species in the complex that has an ancestral 2Ro inversion and a

derived 2Rp inversion on chromosome 2R, while the other species in the complex are �xed for the derived

2R+o and ancestral 2R+p orientations (Kamali et al., 2012). As a result, tree xi requires only one �xation

event for each of those two inversions, whereas the other two trees (ix and x) require two independent

�xations of 2R+o in two lineages, one leading to (GC) and another leading to (L(AQ)). The phylogeny for

the 2La region is discussed in Section 4.3.6. Our suggested species tree, tree xi, provides a much simpler

interpretation of the chromosomal inversion data, compared with tree ix as suggested by Fontaine et al.

(2015).
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Figure 4.5: Bpp analysis of GAL and RQL triplets. Left panel: posterior probabilities of species trees. Middle
and right panels: posterior means of the two divergence times in the MAP species tree across
di�erent regions of the genome.

4.3.5 Divergence times and migration rates suggest A-to-G introgression in

autosomes and R-to-Q introgression in chromosome 3L

Our analysis of introgression has two components. First, following Fontaine et al. (2015), we used bpp to

estimate the species divergence times as introgression has the e�ect of reducing divergence times between

species (Figure 4.5). Second we used the program 3s to explicitly estimate the migration rates between

pairs of species under the MSC model with migration (Table 4.4).

Since the autosomes and X chromosome support di�erent trees for A. gambiae, A. arabiensis and A. melas

(Figure 4.2), we analysed the GAL triplet data using bpp. The most common MAP tree was (L(GA)) for

τ∗1

τ1

τ0

τ∗1

τ∗0
τ∗0

G A LG A L G A L

G to A A to G

Figure 4.6: Introgression changes species relationships and reduces divergence times (Fontaine et al., 2015,
Fig. S16). For the GAL triplet, A-to-G introgression leads to the tree ((GA)L), with divergence
times τ ∗0 = τ1 < τ0 and τ ∗1 < τ1, while G-to-A introgression leads to the tree ((GA)L), with
τ ∗0 = τ0 and τ ∗1 < τ1.
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the autosomes and (G(LA)) for Xag (Figure 4.5A), consistent with the bpp analysis of the full data of six

species (Figure 4.2 and Table 4.2). Fontaine et al. (2015) �tted ML trees to 10-kb non-overlapping windows

across the autosomes, and found that the divergence times in the tree (G(LA)) were greater than those in

(L(GA)), suggesting that the reduced divergence is a consequence of autosomal introgression, and that the

Xag tree represents the true species relationship, but the direction of the introgression was inconclusive

(Fontaine et al., 2015, Fig. 3). The same pattern was observed here. In the Xag tree (G(LA)), the two node

ages were nearly identical, with τ0 ≈ τ1, while in the autosomal tree (L(GA)), the root age τ0 was close

to the root age in the Xag tree, but τ1 was much smaller (Figure 4.5B-C). This was so even if we took

into consideration the mutation rate variation among genomic regions (Table 4.5). This provides strong

evidence that the Xag region is not a�ected by introgression and represents the true species relationship,

while there is gene �ow between A. arabiensis and A. gambiae+A. coluzzii for the autosomes (Figure 4.6).

The A→GC introgression should lead to a reduction of both τ0 and τ1 while the GC→A introgression

should reduce τ1 only (Figure 4.6). However, there may be little power to use this prediction to infer the

direction of introgression because (1) the gene trees are a mixture generated from the original species tree

as well as the introgressed species tree, (2) the original species tree is star-like (Figure 4.9) with τ0 ≈ τ1

(Figure 4.6) so that the two hypotheses make nearly identical predictions, and (3) the mutation rate varies

among genomic regions (Table 4.5), complicating the comparison of τ estimates. Similarly the sliding-

window analysis and the D statistic used in Fontaine et al. (2015) are uninformative about the direction of

migration.

To explicitly estimate the migration rates between A. arabiensis and A. gambiae, we used the 3s program

to analyse GAO, GAR and GAL triplets, using A. christyi (O), A. merus (R) and A. melas (L) as the out-

group, respectively. For the GAO triplet, the estimates suggest G→A introgression, but the evidence is

not signi�cant except for 2L and 3L (Table 4.4). No gene �ow was detected in the opposite direction, nor

on the X chromosome. However, since A. christyi is a very distant outgroup (Figure 4.9), our data in e�ect

consisted of species pairs and may not be informative (Dalquen et al., 2017). We thus further analysed

the GAL and GAR triplets (Table 4.4). While A. melas is not a correct outgroup, both the correct species

tree (G(LA)) and the incorrect tree (L(GA)) are close to the star tree (Figure 4.9), so that estimates from the

wrong tree (L(GA)) may still be informative. Indeed the results for the GAL and GAR triplets were highly

similar, suggesting strong evidence of introgression from A. arabiensis to A. gambiae a�ecting the auto-

somes but not the X chromosome. We found no evidence for gene �ow from A. gambiae to A. arabiensis.

The migration rate estimates varied considerably among chromosomal regions, which may re�ect di�er-

ent strengths of natural selection removing immigrants, besides random sampling errors. The estimates

from the GAR triplet may be the most reliable. The average rate for the autosomes from A. arabiensis to

A. gambiae was Nm = 0.22 immigrants per generation (Table 4.4). For any plausible value of N , the mi-

gration proportionm must be orders of magnitude smaller than the recorded frequencies of hybridisation
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Table 4.4: MLEs (×10−2) from 3s analysis of triplet data under models M0 (no gene �ow) and M2 (with
gene �ow).

Chr Model τ1 τ0 θ4 θ5 θ1 θ2 M12 M21 2∆`

GAO, species tree ((GA)O)

2L12 M0 0.47 7.28 11.38 0.93 2.93 0.99
M2 0.50 7.27 11.38 0.92 2.63 0.98 0.00 11.13 3.70

2La M0 0.50 8.28 10.53 1.17 49.41 1.04
M2 0.50 8.28 10.53 1.17 52.04 1.03 0.00 20.69 2.21

2L M0 0.47 7.69 11.12 1.07 6.24 1.01
M2 0.56 7.69 11.12 1.04 4.16 0.98 0.00 60.12 43.10

2R M0 0.42 7.55 11.29 0.86 3.67 1.50
M2 0.42 7.55 11.29 0.86 3.67 1.50 0.00 0.00 0.00

3L12 M0 0.37 7.82 10.44 0.90 1.79 1.14
M2 0.40 7.82 10.44 0.88 1.58 1.13 0.00 12.14 3.79

3La M0 0.47 8.12 9.51 0.82 10.18 1.80
M2 0.47 8.12 9.51 0.82 9.49 1.79 0.00 12.63 0.21

3L M0 0.42 7.97 9.95 0.87 3.40 1.44
M2 0.46 7.97 9.96 0.84 2.73 1.39 0.00 29.39 13.56

3R M0 0.47 7.39 10.81 0.98 3.34 1.67
M2 0.47 7.39 10.81 0.98 3.34 1.67 0.00 0.00 0.00

auto M0 0.43 7.51 11.00 0.92 3.17 1.42
M2 0.44 7.51 11.00 0.92 3.12 1.42 0.00 2.08 1.10

Xag M0 1.08 7.44 13.62 1.74 0.71 0.34
M2 1.12 7.44 13.63 1.70 0.71 0.33 0.17 0.00 1.39

X2 M0 0.75 9.32 10.97 0.95 0.35 0.38
M2 0.75 9.32 10.97 0.95 0.35 0.38 0.00 0.00 0.00

GAR, species tree ((GA)R)

2L12 M0 0.64 1.21 1.49 0.62 2.97 1.11
M2 0.74 1.20 1.51 0.51 2.36 1.07 0.00 17.07 30.13

2La M0 0.64 1.37 1.50 0.88 32.18 1.11
M2 1.28 1.34 1.56 0.10 12.76 1.01 0.00 365.67 197.87

2L M0 0.62 1.28 1.51 0.77 6.30 1.11
M2 0.85 1.26 1.54 0.52 3.76 1.05 0.00 60.43 146.54

2R M0 0.59 1.22 1.53 0.55 3.92 1.58
M2 0.61 1.21 1.54 0.53 3.55 1.55 0.00 11.68 9.20

3L12 M0 0.46 1.12 1.55 0.73 2.12 1.06
M2 0.61 1.11 1.58 0.56 1.49 1.03 0.00 25.85 26.47

3La M0 0.60 1.25 1.40 0.60 13.39 1.91
M2 0.67 1.25 1.41 0.54 8.55 1.80 0.00 90.19 9.95

3L M0 0.54 1.19 1.46 0.66 4.23 1.51
M2 0.72 1.18 1.49 0.47 2.57 1.39 0.00 53.68 78.85

3R M0 0.70 1.12 1.55 0.50 3.78 1.81
M2 0.81 1.11 1.57 0.36 2.89 1.72 0.00 24.74 59.11

auto M0 0.61 1.17 1.54 0.58 3.43 1.49
M2 0.69 1.16 1.56 0.49 2.70 1.43 0.00 21.93 124.48

Xag M0 1.37 1.37 1.92 0.01 0.77 0.37
M2 1.37 1.37 1.91 0.01 0.77 0.37 0.00 0.05 0.90

X2 M0 0.81 1.19 1.50 0.58 0.37 0.36
M2 0.81 1.19 1.50 0.58 0.37 0.36 0.00 0.00 0.00

Note.—Chr, chromosomal regions: 2L12 = 2L1 + 2L2 = 2L without 2La, 3L12 = 3L1 + 3L2 = 3L without
3La, and auto = 2L12 + 2R + 3L12 + 3R (autosomes without 2La and 3La). The likelihood ratio test statistic
(2∆`) for testing models M0 (no gene �ow) against M2 (gene �ow) is compared with the critical values
4.61 at 10% level, 5.99 at 5% level, and 9.21 at 1% level.
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Table 4.4: Continued.

Chr Model τ1 τ0 θ4 θ5 θ1 θ2 M12 M21 2∆`

GAL, species tree ((GA)L)

2L12 M0 0.59 1.16 1.40 0.66 3.49 1.17
M2 0.74 1.15 1.43 0.48 2.48 1.11 0.00 25.80 40.54

2La M0 0.65 1.31 1.38 0.91 44.09 1.08
M2 1.29 1.29 1.42 0.00 16.42 1.00 0.00 467.54 175.21

2L M0 0.60 1.22 1.41 0.81 7.70 1.13
M2 0.89 1.21 1.45 0.45 4.03 1.06 0.00 80.37 154.76

2R M0 0.60 1.15 1.38 0.54 3.94 1.58
M2 0.64 1.15 1.38 0.49 3.35 1.53 0.00 18.46 19.36

3L12 M0 0.50 1.13 1.52 0.65 2.10 1.25
M2 0.77 1.10 1.58 0.33 1.29 1.11 2.27 30.75 61.61

3La M0 0.59 1.36 1.63 0.62 11.80 2.12
M2 0.65 1.36 1.64 0.57 7.63 1.97 0.00 99.92 14.16

3L M0 0.57 1.23 1.62 0.61 3.78 1.63
M2 0.75 1.21 1.66 0.42 2.26 1.46 0.00 52.54 107.60

3R M0 0.70 1.14 1.43 0.50 3.85 1.89
M2 0.75 1.13 1.45 0.42 3.21 1.82 0.00 18.53 29.59

auto M0 0.62 1.15 1.41 0.57 3.57 1.57
M2 0.70 1.14 1.43 0.47 2.77 1.50 0.00 24.38 138.59

Xag M0 1.13 1.14 1.80 1.87 0.72 0.37
M2 1.13 1.14 1.80 21.74 0.72 0.37 0.00 0.00 0.09

X2 M0 0.96 1.10 1.31 0.27 0.35 0.44
M2 1.06 1.09 1.32 0.06 0.34 0.43 0.00 0.25 4.20

RQO, species tree ((RQ)O)

2L12 M0 1.13 7.38 11.49 1.35 0.61 1.09
M2 1.14 7.38 11.49 1.34 0.60 1.09 0.00 0.09 0.56

2La M0 1.30 8.35 10.60 1.28 0.76 1.22
M2 1.30 8.35 10.60 1.28 0.76 1.22 0.00 0.00 0.00

2L M0 1.20 7.78 11.21 1.32 0.68 1.15
M2 1.21 7.78 11.21 1.32 0.68 1.15 0.00 0.06 0.48

2R M0 1.12 7.63 11.47 1.39 0.60 1.24
M2 1.13 7.63 11.48 1.39 0.60 1.23 0.11 0.00 0.88

3L12 M0 1.02 7.88 10.61 1.50 0.63 0.87
M2 1.06 7.88 10.61 1.47 0.61 0.87 0.00 0.44 4.20

3La M0 1.07 8.22 9.64 0.97 0.94 1.83
M2 1.08 8.22 9.64 0.96 0.94 1.81 0.45 0.00 1.53

3L M0 1.04 8.05 10.11 1.21 0.79 1.30
M2 1.07 8.05 10.11 1.20 0.79 1.28 0.59 0.00 5.67

3R M0 1.02 7.46 10.94 1.29 0.70 1.45
M2 1.03 7.46 10.94 1.28 0.70 1.44 0.17 0.00 0.64

auto M0 1.08 7.58 11.15 1.36 0.64 1.24
M2 1.09 7.58 11.15 1.36 0.64 1.23 0.18 0.00 3.79

Xag M0 1.15 7.47 13.78 2.01 0.48 0.53
M2 1.38 7.46 13.81 1.77 0.46 0.54 0.00 0.67 14.48

X2 M0 1.07 9.25 11.47 1.51 0.20 0.26
M2 1.08 9.25 11.47 1.51 0.20 0.26 0.00 0.00 0.00
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Table 4.4: Continued.

Chr Model τ1 τ0 θ4 θ5 θ1 θ2 M12 M21 2∆`

RQL, species tree ((RQ)L)

2L12 M0 1.30 1.30 1.57 0.01 0.62 1.20
M2 1.30 1.30 1.57 0.01 0.62 1.20 0.00 0.00 0.00

2La M0 1.38 1.38 1.49 0.03 0.76 1.40
M2 1.38 1.38 1.49 0.03 0.76 1.40 0.00 0.00 0.00

2L M0 1.34 1.34 1.54 0.02 0.69 1.29
M2 1.34 1.34 1.54 0.02 0.69 1.29 0.00 0.06 0.00

2R M0 1.29 1.29 1.62 0.02 0.62 1.32
M2 1.29 1.29 1.62 0.02 0.62 1.32 0.00 0.00 0.00

3L12 M0 1.22 1.22 1.61 0.01 0.63 0.92
M2 1.22 1.22 1.61 0.01 0.63 0.92 0.00 0.00 0.00

3La M0 1.52 1.52 1.64 0.00 1.01 1.87
M2 1.51 1.51 1.79 0.00 1.02 1.79 0.67 0.00 44.40

3L M0 1.37 1.37 1.76 0.00 0.84 1.40
M2 1.38 1.38 1.75 0.00 0.84 1.38 0.12 0.00 2.59

3R M0 1.24 1.25 1.62 0.01 0.73 1.55
M2 1.24 1.25 1.62 0.01 0.73 1.55 0.00 0.00 0.00

auto M0 1.27 1.27 1.61 0.01 0.66 1.32
M2 1.27 1.27 1.61 0.01 0.66 1.32 0.00 0.00 0.00

Xag M0 1.15 1.15 2.01 1.53 0.52 0.64
M2 1.15 1.15 2.01 56.82 0.52 0.64 0.00 0.00 0.32

X2 M0 1.18 1.18 1.50 1.01 0.20 0.28
M2 1.18 1.18 1.50 17.05 0.20 0.28 0.00 0.00 0.01

(which is < 0.1% but perhaps not much lower) (Coluzzi et al., 2002). The migration rate Nm represents

the expected number of ‘successful’ migrants, which are those that have contributed DNA in the recipient

population after natural selection has removed un�t introgressed alleles. With migration, the estimates

of τ1 in model M2 (gene �ow) were greater than those under M0 (no gene �ow). Thus ignoring migration

underestimates the species divergence time τ1, as also seen in the bpp analysis above (Figure 4.5). Strong

positive correlations between the migration rate M and τ1 are thus expected. The estimates of τ0 (the

age of the A. gambiae complex) were very similar between the two models (M0 and M2) and were also

consistent with the estimates from bpp (discussed later in Section 4.3.7), in the range 0.012-0.014.

We also analysed the RQL triplet since there was evidence for R-Q introgression in chromosome 3L (Fig-

ure 4.2). As expected, the MAP species tree was predominantly (R(LQ)) throughout the genome and in

particular in the Xag region, but was (L(RQ)) in most of 3L and in large parts 3R (Figure 4.5D). On aver-

age, (R(LQ)) had older divergence times than the other two trees in most regions on the genome (Figure

4.5E-F).

The likelihood ratio test (LRT) applied to the RQO triplet data detected evidence for gene �ow from R

to Q in the autosomes, particularly in chromosome 3L, but the evidence was not signi�cant (Table 4.4).

The estimates of τ0 ranged between 0.0738 and 0.0925, comparable to those from the GAO triplet. The
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Figure 4.7: Species trees A (top) and B (bottom) for the 2La region (Fontaine et al., 2015, Fig. S27A-B), based
on the assumed species tree xi and ix, respectively. The inversion orientations in the extant
and ancestral species are given as ‘a’: �xed for the 2La orientation, ‘+’: �xed for the 2L+a

orientation, and ‘a/+’: polymorphic for both orientations.

estimates of τ1 were in the range 0.0102−0.0138, consistent with the bpp estimates on tree xi (0.0156 for

Xag and 0.0138 for 2L) (Figure 4.9). Since the LRT su�ered from a lack of power due to the use of the

distant outgroup, we also analysed the triplet RQL, treating L as the outgroup. Given that the species tree

is star-like (Figure 4.9), we expect the estimates to be similar to those if the correct species tree were used.

The result suggested gene �ow from A. merus to A. quadriannulatus a�ecting the 3La region exclusively

(Table 4.4). This conclusion was consistent with the previous work based on the D statistic using the tree

(((L,Q),R),O) (Fontaine et al., 2015), while our analysis additionally provided the direction of introgression.

4.3.6 The evolutionary history of the 2La inversion region

The 2La inversion is a trans-species paracentric chromosomal inversion in Anopheles mosquitoes. It is

polymorphic in A. gambiae and A. coluzzii, �xed for the ancestral 2La orientation in A. arabiensis and

A. merus, and �xed for the derived 2L+a orientation in A. quadriannulatus and A. melas (Coluzzi et al.,

2002; Sharakhov et al., 2006). This inversion region has been shown to be associated with malaria vectorial

e�ciency, adaptation to ecological habitats (in particular, aridity) (Coulibaly et al., 2016; Ayala et al., 2017)

and susceptibility to Plasmodium infection (Riehle et al., 2017). Sequence divergences in the 2La region are

known to be greater between the karyotypes in A. gambiae and A. coluzzii (2La/2La, 2La/2L+a, 2L+a/2L+a)

than between species (Neafsey et al., 2010; O’Loughlin et al., 2014; Weetman et al., 2014; Fontaine et al.,
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Figure 4.8: (A and B) Nucleotide diversity and (C and D) pairwise FST statistic between A. arabiensis (A)
and di�erent 2La karyotypes of A. gambiae (G) and A. coluzzii (C) calculated from the genome-
wide SNP data of natural populations from Fontaine et al. (2015). The 2La region is shaded.
Sample sizes are n = 23 for A. gambiae (35% 2L+a/2L+a, 22% 2L+a/2La, 43% 2La/2La), n = 11
for A. coluzzii (73% 2L+a/2L+a, 27% 2La/2La, no 2L+a/2La) and n = 12 for A. arabiensis.

2015; Riehle et al., 2017).

The species tree ix implies an evolutionary history for the 2La region, referred to as tree B here (Figure

4.7B). This was suggested by Fontaine et al. (2015, Figs. 5A & S27B) and posits the existence of ancestral

polymorphism of the two orientations prior to the radiation of the species complex, two independent losses

of the 2L+a orientation (inA. merus andA. gambiae), one loss of 2La, as well as GC→A introgression of the

2La orientation and complete replacement of the 2L+a orientation inA. arabiensis. Our likelihood ratio test

detected no such introgression, but the same data provided overwhelming evidence for introgression in the

opposite direction (Table 4.4). Similarly, a model of GC→A introgression was found to be incompatible

with the data in a simulation-based analysis of site-frequency spectrum data (He and Knowles, 2016).

Moreover, crossing experiments found evidence of introgression of 2La region from A. arabiensis into

A. gambiae but not in the opposite direction (della Torre et al., 1997; Slotman et al., 2005).

Our proposed species tree (tree xi) suggests an alternative history for the 2La region, referred to as tree A

(Figure 4.7A), which is more parsimonious (Fontaine et al., 2015, Fig. S27A). This posits the origin of the

derived 2L+a form after A. merus branched o� and A→GC introgression. This introgression may predict

less polymorphic 2La orientation than 2L+a in A. gambiae and A. coluzzii. Indeed, a reduced nucleotide

diversity in the 2La region in the 2La/2La karyotype of A. gambiae and A. coluzzii was observed, but not

in 2La/2L+a and 2L+a/2L+a (Figure 4.8A-B). Such di�erences in nucleotide diversity among the di�erent

karyotypes may not be predicted by tree B since all three karyotypes in A. gambiae and A. coluzzii are old

under tree B. Also there was no clear reduction in the nucleotide diversity in the 2La region inA. arabiensis,

as may be predicted by tree B. Genetic di�erentiation measured by FST was reduced between A. arabiensis
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and the 2La/2La karyotype of A. gambiae and A. coluzzii, but not for the other pairs, relative to the rest

of chromosome 2L (Figure 4.8C-D), although this pattern is predicted by both trees as a consequence of

2La introgression. Moreover, the frequency of the 2La orientation in A. gambiae is higher in geographical

ranges where A. gambiae overlaps with A. arabiensis (He and Knowles, 2016), consistent with tree A, but

not expected under tree B.

We consider two variations of tree A: A1 and A2. Tree A1 requires one inversion of 2La into 2L+a after

A. merus branched o� and one reversal of 2L+a to 2La in the lineage leading to A. arabiensis, with the

polymorphism of 2La region in A. gambiae+A. coluzzii explained by the A→GC introgression. Since

the reversal to 2La occurred in a homogeneous background in A. arabiensis, the breakpoints of 2La in

A. arabiensis are expected to di�er from those in A. gambiae+A. coluzzii and A. merus. However, the

organisation of genes and noncoding elements around the 2La breakpoints in those species appear to be

identical (Sharakhov et al., 2006), suggesting that the multiple origins scenario of the 2La orientation in

this species complex is highly unlikely.

Tree A2 assumes an extensive period of ancestral polymorphism of both orientations, and independent

losses of the 2La orientation in A. melas and A. quadriannulatus, and a loss of the 2L+a orientation in

A. arabiensis. This allows A→GC introgression of the 2La orientation but does not require it. The in-

trogression in a polymorphic background should result in two distinct haplotypes of the 2La orientation

in A. gambiae and A. coluzzii (the original and introgressed). However, no such heterogeneity has been

found in the 2La heterozygotes in analysis of genome-wide SNP data from hundreds of �eld-caught mos-

quitoes of A. gambiae and A. coluzzii, apart from clustering by geographical origins (Riehle et al., 2017;

The Anopheles gambiae 1000 Genomes Consortium, 2017), which supports the scenario of no A→GC in-

trogression of 2La. A variant of tree A2 is to allow an additional loss of the 2La orientation in the A. gam-

biae+A. coluzzii ancestor followed by introgression of 2La from A. arabiensis. Note that all losses occur

in the shared polymorphic background, thus preserving the breakpoint structure. This is consistent with

the single origin scenario of the 2La orientation.

These hypotheses make di�erent predictions about sequence divergences between species and between

the di�erent karyotypes of A. gambiae and A. coluzzii, which may be useful to distinguish between them.

However, the whole-genome data of Fontaine et al. (2015) are in the form of haploid consensus sequences

generated from the diploid samples and may not have such resolution.

4.3.7 Estimation of species divergence parameters

The bpp estimates of τ were proportional between the coding and noncoding data, with the regression

coe�cient of 0.524 (with r 2 = 0.998) for tree ii for the 2L region, and 0.323 (r 2 = 0.994) for tree xi

for the Xag (Figure 4.10A-B). The role of purifying selection in removing nonsynonymous mutations is
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Figure 4.9: Trees ii and xi with the posterior estimates of population sizes (θs, numbers on the branches)
and species divergence times (τ s, the bottom horizontal axis; bars represent 95% HPD intervals)
from bpp. Parameters for tree ii were estimated from all loci in chromosome 2L excluding
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region.

Table 4.5: Relative mutation rates for noncoding loci in di�erent chromosomal regions

chr τ1 (LRO) θ5 (LRO) dJC (RL)

2L12 1.055 0.977 1.018
2La 1.113 0.983 1.071
2R 1.025 1.019 1.040
3L12 0.966 0.987 0.966
3La 1.116 1.077 1.130
3R 0.964 0.978 0.992
auto 1 1 1
Xag 1.015 1.260 1.149
X2 0.873 1.161 0.937

Note.—The relative rates were calculated using the MLEs of τ1 or θ5 in the 3s analysis of the LRO triplet
data or using the JC distance (Figure 4.11) between A. merus (R) and A. melas (L), rescaled relative to the
autosomes (auto). Whileθs for modern species may be used, the data from Fontaine et al. (2015) are haploid
consensus sequences generated from diploid samples, so that information concerning nucleotide diversity
may be partially lost. Estimates based on the ancestral θ5 may be a�ected by di�erent population sizes for
the autosomes and the X chromosome, while the JC distance between species may be similarly a�ected
since it consists of one component after the species split and another component from the coalescent
time in the ancestral species. Thus among the di�erent relative-rate estimates, those based on τ1 may be
preferable.
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Figure 4.12: Estimated species phylogeny with introgression for the A. gambiae species complex. Diver-
gence times are based on the divergence time estimates (τ s) from the Xag data (Figure 4.9B).
Arrows indicate that introgression occurred between species pairs only, without timing in-
formation. The 95% HPD intervals are in parentheses, also shown as vertical bars.

predominantly the reduction of neutral mutation rate in the coding regions, highlighting the utility of

coding loci in MSC-based analysis (Shi and Yang, 2018).

The estimates of τ s were also largely proportional between tree ii for the 2L and tree xi for the Xag (after

the GC clade was removed to make the two trees equivalent). The slope was 1.060 for the noncoding loci

(r 2 = 0.989 using four pairs of τ ) (Figure 4.10C), suggesting that the X chromosome has a slightly higher

mutation rate than those on the autosomes (Table 4.5). For the coding loci, the τ estimates were also nearly

proportional but the slope was 0.674 (with r 2 = 0.997) (Figure 4.10D), indicating that the coding regions

in the Xag region are more conserved than those in the autosomes.

To translate the estimates of τ s and θs into geological times and population sizes, a mutation rate has to

be assumed. Since no mutation rate estimates were available for the Anopheles, we used the Drosophila

rate of 2.8 × 10−9 mutations per site per generation (Keightley et al., 2014) and 11 generations per year

(The Anopheles gambiae 1000 Genomes Consortium, 2017). This placed the root of the A. gambiae species

complex at 0.526 (0.514, 0.537) Ma (with the 95% HPD interval), the divergence of the GC clade from the

(L(AQ)) clade at 0.509 (0.496, 0.520) Ma, and the divergence of A. gambiae and A. coluzzii at 0.061 (0.057,

0.064) Ma (Figure 4.12). The G-C divergence time is expected to be a serious underestimate because bpp

analysis ignored the gene �ow between A. gambiae and A. coluzzii, which should cause those sister species

to be preferentially grouped together and their divergence time to be underestimated (Leaché et al., 2014).

If we instead used the mutation rate of 5.5×10−9 (Schrider et al., 2013), the ages would be younger by about

a half. Our age estimates were much younger than those reported in Fontaine et al. (2015), where the age

of the clade was estimated to be 1.85 (0.93, 2.77) Ma (with ±1.96 standard deviation). Using the mutation

rate of 1.1 × 10−9 and 10 generations per year as in Fontaine et al. (2015) would increase our estimate for
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the age of the clade to 1.472 (1.440, 1.503) Ma, which was still 20% younger than their date. One reason

for this di�erence could be attributed to the method: the concatenation analysis misinterprets sequence

divergence as species divergence by ignoring the distinction between gene trees and species trees, and

may thus be expected to overestimate node ages. Furthermore, concatenation produces systematically

biased estimates of species divergence times and population sizes because it incorrectly attributed the

genealogical heterogeneity across the genome as variation in the evolutionary rate among sites (Ogilvie

et al., 2017). However, other factors could also a�ect the estimates in geological times. For instance, the

mutation rate of Anopheles could di�er from that of Drosophila. The e�ect of population size dynamics

was also ignored in our analysis.

4.4 Discussion

4.4.1 The species phylogeny provides a framework for studying the evolution

of ecological and epidemiological characters

While we support the major conclusion of Fontaine et al. (2015) that the Xag region of the X chromosome

represents the species branching order, and the con�icting autosome phylogenies are a result of extensive

introgression, the inferred species trees are di�erent: Fontaine et al. (2015) inferred tree ix (de�ned in

Figure 4.2) for the Xag, while we inferred tree xi, with A. merus diverging �rst. We simulated data of

10,000 loci using tree xi for the Xag as well as the parameter estimates on tree xi, but with migration

from A. arabiensis to the common ancestor of A. gambiae and A. coluzzii at the rate of 0.22 migrants

per generation. We then analysed the data using bpp and concatenation/ML. Both methods generated

tree ii as the best estimate in every block of 100 loci. This result suggests that the level of introgression

estimated from the autosomes is indeed su�cient to mislead phylogenetic and species-tree methods to

infer an incorrect phylogeny, as discussed in Mallet et al. (2016).

The knowledge of the species tree (Figure 4.12) provides a necessary foundation for studying the evolution

of ecologically and epidemiologically important traits in this group of species. For instance, physiological

adaptations to saltwater breeding inA.merus andA.melas must have evolved independently, as postulated

earlier based on the pattern of chromosomal inversions (Coluzzi and Sabatini, 1969; Coluzzi et al., 1979;

Kamali et al., 2012). Another example, discussed in Section 4.3.6, is the evolution of 2La region, which has

been shown to be associated with susceptibility to Plasmodium infection in natural populations (Riehle

et al., 2017). In this case, our species tree provided a simpler and more parsimonious interpretation of

chromosome inversions than the species tree from Fontaine et al. (2015), although more data and analysis

will be required in order to reach a de�nitive conclusion, for examples, breakpoint analysis of high-quality

fully-phased whole genomes from natural populations.
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4.4.2 Implications for the evolution of vectorial capacity

Species in the A. gambiae complex exhibit di�erent levels of vector status for human malaria. Among the

six species considered here, all but A. quadriannulatus are considered dominant vectors, with A. arabien-

sis and A. gambiae+A. coluzzii being major vectors (Sinka et al., 2010). We say that vector species have

vectorial capacity for malaria, while nonvectors do not. Here, vectorial capacity refers to the ability of

a mosquito to serve as a disease vector by supporting parasite development and reproduction as well as

transmitting the disease among the human host. This epidemiologically important trait is likely to be a

product of complex interactions of many physiological and ecological factors such as host preference, feed-

ing behaviour, longevity, population density, susceptibility to parasite infection and vector competence

(Cohuet et al., 2010; White et al., 2011), mediated by environmental factors such as ambient temperature,

humidity and mosquito microbiome (Lefèvre et al., 2013) as well as parasite genetic factors. E�ects of

these individual factors and their interactions on vectorial capacity, particularly on malaria transmission,

are largely unknown (Lefèvre et al., 2018).

Based on the inferred species tree (Figure 4.12), it is possible that the acquisition of malaria vectorial ca-

pacity could have occurred once in the common ancestor of the species complex and then lost in A. quad-

riannulatus. We note, however, that phylogenetic reconstruction of single complex characters such as

vectorial capacity may involve high uncertainties. Identifying speci�c genes or gene families and amino

acid changes in protein-coding sequences associated with di�erences in vectorial capacity as well as es-

timating the timing of speciation and introgression events (e.g. by obtaining more relevant mutation rate

estimates for these species) may lead to a more de�nitive conclusion about the origin and evolution of

this epidemiologically important trait. Furthermore, analysing genomes of other dominant malaria vec-

tors outside of the A. gambiae complex in Africa as well as other parts of the world will likely to shed

more light on the evolution of vectorial capacity (Neafsey et al., 2015).

Given high degrees of anthropophily in A. gambiae and A. coluzzii, it is possible that their evolution has

become tightly linked with human evolution. Their divergence time was estimated to be about 61 ka

(thousand years ago), with 95% HPD interval (57 ka, 64 ka) (Figure 4.12). This broadly agrees with a

recent estimate of the divergence time between the human Plasmodium falciparum and the gorilla P. prae-

falciparum at about 50 ka (Otto et al., 2018), with 95% con�dence interval (40 ka, 60 ka)1. This date range is

considerably more recent than the presence of �rst modern humans in sub-Saharan Africa >100 ka (Schle-

busch et al., 2012), but does overlap with several major migration events in Africa such as the migration

of click-language-speaking hunter-gatherers and the out-of-Africa dispersal (reviewed in Nielsen et al.

(2017)).

It has been speculated that speciation and geographical expansions of A. gambiae and A. coluzzii could

1This date estimate was based on �tting an approximate IM model implemented in the G-PhoCS (Gronau et al., 2011) program to
noncoding regions without untranslated (UTR) sequences.
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be associated with the onset of the so-called Bantu expansion. This refers a series of human population

expansions in Central and South Africa driven by the development of agriculture, which would facilitate

the lifestyle of A. gambiae and A. coluzzii as we observe today (e.g. The Anopheles gambiae 1000 Genomes

Consortium (2017)). However, the Bantu expansion only occurred around 5.6 ka (Li et al., 2014). This

recent date suggests that the breeding habitats of the mosquitoes associated with human agriculture, and

possibly the ability to e�ectively transmit human malaria, might be a relatively recent traits in the species

complex (Coluzzi et al., 2002; Ayala and Coluzzi, 2005). Alternatively, the Anopheles mutation rate would

have to be at least an order of magnitude higher to make the divergence time between A. gambiae and

A. coluzzii more recent.

4.4.3 The importance of coalescent-based methods to inferring challenging

species trees resulting from radiative speciations

While theoretical studies have suggested that concatenation may be unreliable and even inconsistent when

the species tree contains short internal branches and large ancestral populations (Kubatko and Degnan,

2007; Roch and Steel, 2015), real data examples are relatively rare (Giarla and Esselstyn, 2015; Shi and Yang,

2018). The A. gambiae species complex appears to be such a case and serves to illustrate the importance

of properly accounting for ILS in such analysis and the power of full-likelihood coalescent-based methods

in resolving such di�cult species phylogenies. Our analysis of both the real and simulated data suggests

that the JC mutation model assumed in 3s and bpp is adequate for capturing multiple substitutions and

recovers the true species tree even in datasets simulated under a more complex GTR+Γ4 model. Note that

sequence divergence between the species in the complex is within 5% (Figure 4.11). The molecular clock

assumption also approximately holds as the species are closely related. The impacts of various factors in

the inference of shallow species trees, including sequence divergence, model assumptions, recombination

and noncoding versus coding data partitioning have been discussed in detail in (Shi and Yang, 2018).

Accommodating the gene tree/species tree con�icts and the impact of introgression in a proper statistical

framework was found to have the greatest impact on the analysis. While Fontaine et al. (2015) emphasised

incomplete lineage sorting, their methods ignored it. We expect such methodological di�erences to be

important in other similar challenging species tree problems.

The data we analysed, which consist of widely separated loci from the genome, constitute only a small

fraction of the genome (21.6 Mb / 278 Mb = 7.8%). However, with so many loci, the species trees can be

resolved with high con�dence and accuracy. The sliding-window analysis of Fontaine et al. (2015) used

more data in terms of base pairs, but it ignored the gene-tree heterogeneity across the genome and may

be misled by ILS.

The agreement of our inferred species tree, tree xi based on the genomic sequences from the Xag region

of the X chromosome, with the chromosomal inversion phylogeny of Kamali et al. (2012) highlights the
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utility of both chromosomal rearrangements and genomic sequence data in resolving the challenging

phylogeny of the A. gambiae complex. As pointed out before (White et al., 2011; Kamali et al., 2012),

sequence data tend to have weak phylogenetic information when the species are closely related and the

sequences are highly similar. However the number of characters is huge. Chromosomal rearrangements

represent rare or even unique events, which make each character highly informative. However they may

often be compatible with multiple interpretations. It is common to assume that species sharing inversions

form a clade or are sister taxa (White et al., 2011; Kamali et al., 2012), but such inference is not safe when

the original and derived states of the inversion are unknown and the inferred tree is unrooted. For a long

time A. quadriannulatus was considered the closest to the ancestral lineage because it has a large number

of hosts, feeds on animal blood, tolerates temperate climates and possesses a ‘standard’ karyotype (Coluzzi

et al., 1979, 2002). However, this was based on misinterpretations of the unrooted phylogeny.





Chapter 5

Summary

In this thesis, we address two aspects of Bayesian data analysis, namely, inference computation (Chapter 3)

and real data analysis under complex phylogenetic models (Chapter 4), with relevant background reviewed

in Chapters 1 and 2, respectively.

In Chapter 3, we illustrated three design principles for boosting e�ciency of the MH algorithm, a popular

MCMC algorithm for posterior inference. High e�ciency translates to a reduction in the running time

required to achieve a speci�ed level of accuracy of the posterior quantities of interest. First, we proposed

several new proposal kernels for the MH algorithm based on the idea of reducing autocorrelations. In par-

ticular, the Mirror kernels (Section 3.1.2) directly inject negative autocorrelations into the Markov chain.

A similar idea of introducing negative correlations to improve the e�ciency of an estimator is known as

antithetics in the statistics literature, but its application to Markov chain kernels has not been explored

until now. The Mirror kernels provide a �rst example where the antithetic principle is directly applied to

the Markov chain samples. Moreover, we empirically demonstrated that the Mirror kernels can achieve

e�ciency >100% in many cases. This is a relatively rare example of MCMC algorithms that give super-

e�cient estimators. Second, our examples showed that a sequence of well-designed one-dimensional

proposals can be more e�cient than a single d-dimensional proposal. Third, we suggest variable trans-

formations such as whitening (3.3) and CDF-based transformations (Section 3.3.3) as a generic tool for

boosting e�ciency of MCMC. Compared with many state-of-the art MCMC algorithms such as MALA

and HMC, our approach appears to be much simpler to implement and computationally less expensive.

However, our examples were mostly unimodal. The proposed design principles may not work well for

high dimensional targets with multiple modes or when the target variables have highly non-linear de-

pendencies and correlation structures.

In Chapter 4, we performed Bayesian inference of the species tree of the Anopheles gambiae mosquito

species complex using whole-genome sequence data. Unlike previous studies, our approach is based on a

proper probabilistic data model of genomic sequences and a coalescent-based model that explicitly cap-

tures gene-tree heterogeneity across genomic loci. Our analyses of real and simulated data lead to a ro-
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bust conclusion about the species phylogeny and introgression events that are more consistent with other

sources of evidence such as chromosome inversions than previous work, providing a basis for studying

the evolution of ecological and epidemiological traits. Of particular interest are traits associated with

the mosquito’s ability to support and transmit malaria parasites, and traits associated with insecticide

resistance. For instance, our species tree suggests several hypotheses about the evolutionary history of

the 2La region, where inversion polymorphism in natural populations has been shown to be associated

with di�erential susceptibility to Plasmodium infection (Sections 4.3.6 and 4.4.2). However, di�erentiating

among these scenarios would require more complete population genomic data that are representative of

diverse natural mosquito populations across geographical distributions as well as further analyses such

as functional annotations, gene synteny, chromosome evolution (including �ne-scale characterisation of

inversion breakpoint structures) and adaptive evolution of introgressed loci. Ultimately, to fully appreci-

ate the evolution of vectorial capacity in these vector species, the species tree of the A. gambiae complex

obtained here should be put into a wider phylogeographic context that includes other Anopheles species

outside of this species complex, some of which are also major human malaria vectors in Africa or other

regions of the world, and the evolution of mosquito vectors should be understood in the context of co-

evolution with both the Plasmodium parasites and the human host.
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