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It has been shown experimentally that dynamic roughness elements—small bumps
embedded within a boundary layer, oscillating at a fixed frequency—are able to increase
the angle of attack at which a laminar boundary layer will separate from the leading
edge of an airfoil (Grager et al. 2012). In this paper, we attempt to verify that such an
increase is possible by considering a two dimensional dynamic roughness element in the
context of marginal separation theory, and suggest the mechanisms through which any
increase may come about. We will show that a dynamic roughness element can increase
the value of Γc as compared to the clean airfoil case; Γc representing, mathematically, the
critical value of the parameter Γ below which a solution exists in the governing equations
and, physically, the maximum angle of attack possible below which a laminar boundary
layer will remain predominantly attached to the surface. Furthermore, we find that the
dynamic roughness element impacts on the perturbation pressure gradient in two possible
ways: either by decreasing the magnitude of the adverse pressure peak or increasing the
streamwise extent in which favourable pressure perturbations exist. Finally, we discover
that the marginal separation bubble does not necessarily have to exist at Γ = Γc in the
time-averaged flow and that full breakaway separation can therefore occur as a result of
the bursting of transient bubbles existing within the length scale of marginal separation
theory.
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1. Introduction
Increasing the angle of attack at which a laminar boundary layer will separate from the

surface of an airfoil is of great importance in aerodynamics: the use of two dimensional
dynamic roughness elements, defined later, to delay such separation is the focus of this
work. The maintenance of laminar flow is possible for devices that operate at chord
Reynolds numbers between 104 and 106: these include the wings of drones, the rotors
of helicopters and the blades of wind turbines, amongst other propellers (Lissaman
1983). Although these laminar boundary layers have a lower skin friction drag then
their turbulent counterparts, they are more susceptible to separation. This, in turn,
leads to considerable increases in drag, due to the generation of pressure (or form) drag,
and dramatic decreases in lift, due to a lower suction pressure on the upper surface of
the airfoil. The desire to avoid these adverse consequences has led to the development
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of various separation control techniques, ably reviewed by Gad el Hak (2000): any
successful technique must be able to operate reliably within as wide a range of realistic
flow parameters as possible; be practical to implement (both in terms of expense and
complexity of equipment); and cannot introduce more drag or energy requirements than
it saves by favourably altering the boundary layer flow.

Past experimental and numerical work has suggested that the use of dynamic rough-
ness elements has the potential to be another effective mechanism for suppressing the
separation of a laminar boundary layer near the leading edge of an airfoil, or increasing
the angle of attack at which it occurs (Grager et al. 2012; Huebsch 2006; Huebsch et al.
2012; Rothmayer & Huebsch 2011). This is particularly relevant for thinner airfoils—for
which the relative thickness (defined as the maximum thickness of the airfoil divided by
the chord length) is of a magnitude less than O(Re−1/16)—since in this case, separation
first occurs at the airfoil leading edge as the angle of attack is gradually increased from
zero (Cheng & Smith 1982). These dynamic roughness elements consist of small bumps
within the boundary layer, forced to oscillate at some fixed frequency, dropping either
flush to the surface within one cycle of oscillation or vibrating about some mean height.
Past construction of such elements has been through the use of a pressure plenum within
the leading edge region of a wing, with holes drilled into its upper surface and covered
over with a thin elastic sheet of latex rubber. Imposed oscillatory changes in pressure
within the plenum then result in the formation and oscillation of roughness elements
(Grager et al. 2012). However, the continued development of microelectromechanical
systems gives rise to the possibility of more sophisticated implementation methods, while
dialectric electro-active polymers have been proposed as a means of creating dimples in
a surface for skin friction drag reduction in the turbulent regime (Dearing et al. 2010;
Gouder et al. 2013).

The aim of this study is to begin to construct a mathematical model of flow over a
two dimensional dynamic roughness element placed near the leading edge of an airfoil,
with the goal of firstly determining whether an increase in the angle of attack at which
separation occurs is indeed possible; and, secondly, gaining some understanding of how
the impact of the roughness element on the skin friction and pressure gradient could
be linked to any change in this critical angle of attack. To this end, we make use here
of the theory of marginal separation, first developed independently by Ruban (1981)
and Stewartson et al. (1982): if the skin friction first goes to zero when some parameter
governing the flow takes on a critical value, then marginal separation theory is able to
describe the flow near the position of vanishing skin friction when said parameter is close
to its critical value. Since its formulation, the theory has been applied to flow over airfoils
(Ruban 1982) and smooth backward-facing steps (Schlichting & Gersten 2000), channel
flows with suction (Hsiao & Pauley 1994) and viscous wall jets that are made to deflect
(Zametaev 1986), where the parameter governing the flow was, respectively, the angle of
attack, the slope of the step, the suction velocity and the deflection angle of the plate
along which the jet travels. Although three dimensional effects in more realistic flow
configurations can cause the streamline to separate from the surface at finite, non-zero
values of the skin friction (Sychev et al. 1998), this study sheds some initial light on the
phenomena present, with a view to a later extension in three dimensions.

For flow over an airfoil at low angles of attack, where the angle of attack (which we
denote by k) is less than its critical value kc, the solution to Prandtl’s boundary layer
equations gives fully attached flow, with the skin friction on the suction side of the wing
remaining positive. For values of k > kc, Goldstein’s square root singularity (Goldstein
1948) is present in Prandtl’s boundary layer equations at the position of vanishing skin
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friction: Stewartson (1970) showed that this singularity cannot, in general, be removed
via a triple deck structure with Prandtl’s equations again valid downstream (although
Smith & Daniels (1981) give an example of a flow scenario in which it can). However, at
the critical value k = kc, the weaker marginal separation singularity appears instead of
Goldstein’s singularity: here, the skin friction goes to zero linearly before recovering in
a linear manner once more (Stewartson et al. 1982), giving rise to a discontinuity in the
derivative of the wall skin friction with respect to the streamwise coordinate. If we focus
on angles of attack such that k − kc is of the order Re−2/5, as in the present paper, an
interaction structure around the position of vanishing skin friction, described in section
2, allows us to smooth out the singularities and describe any localised boundary layer
separation that takes place.

This approach, involving an asymptotic treatment of the governing non-dimensional
Navier–Stokes equations, results in a governing equation for the boundary layer dis-
placement function, equation (2.14a), in which there appears also the parameter Γ ,
representing the increment in angle of attack above kc. Two distinct solutions to equation
(2.14a) exist only for Γ strictly less than some critical value, denoted by Γc, with both
upper and lower branch solutions indicating the presence of a small separation bubble,
typically around 1% of the chord length, which has negligible impact on the lift and
drag coefficients (Sychev et al. 1998). At Γ = Γc, the upper and lower branches collapse
to a unique solution; while for Γ > Γc, no solutions exist, with the small separation
bubble considered to have “burst” to form a larger region of separated flow—with its
attendant adverse effects on lift and drag—which cannot be accommodated by marginal
separation theory. The passage of Γ through Γc to larger values, and the search for a
link between the small bubble of marginal separation theory and larger separated flows,
where boundary layer separation is described through triple deck theory, remains an open
problem, despite recent advances (Braun & Scheichl 2014; Kluwick et al. 2008).

Our aim, however, is to determine whether the presence of a dynamic roughness element
can result in an increase in the value of Γc compared to the case where the roughness is
absent. Past work of Braun & Kluwick (2004) indicates that this is possible for a static
roughness element, given an appropriate choice of roughness position, width and height.
Although not described in their paper, the increase in Γc may be due to a combination of
an increase in the initially favourable pressure perturbation gradient, a downstream shift
in the position of the peak in the adverse pressure perturbation gradient and an ability
of the local interaction to support a larger adverse peak. This increase in the angle of
attack at which the boundary layer can remain marginally separated is possible only for
small roughness heights: as height increases, two adverse peaks in the pressure gradient
develop and Γc begins to decrease with increasing height, eventually resulting in a static
roughness element having an unfavourable effect on separation control, as is generally
accepted (Huebsch & Rothmayer 2002).

The introduction of unsteadiness into the theory of marginal separation was first
carried out by Smith (1982) in the context of dynamic stall and here we adapt his
work and extend that of Braun & Kluwick (2004) to incorporate a dynamic roughness
element within the interaction structure of marginal separation. Although the latter
paper, which focused on the limit Γ → Γc, did consider unsteady roughness elements,
the time-dependent oscillations appeared at second order, with the hump remaining
steady at leading order: unsteadiness was then used to gain some insight into the bubble-
bursting phenomenon. In our case, the time dependence remains at leading order, with the
roughness element dropping flush to the surface before increasing again to its maximum
amplitude, and we thereby introduce a fixed frequency forcing into the problem.

We then pose the following questions: firstly, can a dynamic roughness element increase
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the value of Γc below which marginal separation theory is able to describe the flow
development? (Or, in other words, can a small separation bubble, with its negligible
impact on the lift and drag coefficients, exist at higher angles of attack in the presence of
a dynamic roughness element than in the clean airfoil case?) Secondly, does a separation
bubble always exist in the time-averaged flow at Γ = Γc or can it remain fully attached
for all Γ < Γc along the upper branch, with any separation bubble appearing and
disappearing during a period of oscillation? And, finally, what impact does the dynamic
roughness element have on the interaction pressure gradient and how might this be linked
to any increases (or decreases) in Γc?

In order to attempt to answer these questions, we describe, in §2, the model and
derive the governing equation, with the numerical technique used to solve it presented
in §3; results showing the impact of the roughness parameters (position, width, height
and oscillation frequency) on the value of Γc will be shown in §4, accompanied by a
discussion of the impact of a roughness element on the boundary layer displacement
function and perturbation pressure gradient; conclusions, along with a comparison with
the experimental results of Grager et al. (2012), will close in §5.

2. The model
We consider planar, incompressible flow throughout and the boundary layer is taken

to be laminar. All variables are non-dimensionalised with respect to reference values, so
we introduce the orthogonal coordinate system L(x, y)—where x is in the streamwise
direction and y in the normal direction—velocity U∞(u, v), time Lt/U∞ and pressure
ρU2
∞p, with L the chord length, U∞ the speed of the oncoming flow and ρ the fluid density.

The Reynolds number is large, allowing for an asymptotic approach to be taken, and is
based on the dimensional radius (κ−1) of the airfoil leading edge: therefore Re = U∞/νκ,
where ν is the kinematic viscosity.

The shape of the airfoil is important in determining the critical angle of attack kc
above which Goldstein’s singularity appears in the solution to Prandtl’s boundary layer
equations; however, we will focus solely on a small region around the position of vanishing
skin friction near the leading edge of the airfoil, which can be approximated by a parabola
(Sychev et al. 1998). We do, nonetheless, require that its relative thickness is at most
O(Re−1/16) and therefore small, with its angle of inclination to the oncoming flow (α)
being of the same order of magnitude. As mentioned in the introduction, this ensures
that separation first occurs at the airfoil leading edge, rather than the trailing edge. In
particular, we write α = εk, ε = o(Re−1/16) and k = O(1). Then, from the boundary
layer equations, the Goldstein singularity appears at the position of vanishing skin friction
(x = x0) when k > kc: a solution to Prandtl’s governing equations cannot be continued
beyond this point (Goldstein 1948), nor can the singularity be removed (Stewartson
1970).

At k = kc, on the other hand, the marginal separation singularity appears instead of
Goldstein’s singularity, with the wall skin friction behaving as

τwall ∼ |x− x0| (2.1)

as x0 is approached from both the upstream and downstream directions (see, for example,
Sychev et al. (1998)). If we consider values of k such that

k = kc + Re−
2
5 k1, k1 ∼ 1, (2.2)

the interaction structure depicted in figure 1 allows us to smooth out both the marginal



The impact of dynamic roughness elements on marginally separated boundary layers 5
y

x

Outer inviscid flow

Re−
1

5

Re−
7

10

Bu

Au

Bd

Ad

Main deck

Upper deck

Lower deck
Re−

11

20

Re−
1

5

Re−
1

2

Figure 1: Schematic of the triple deck interaction structure around the point x = x0. The
stream function in the upstream and downstream regions Au, d, Bu, d is found by solving
the boundary layer equations; while the solution in the lower, main and upper decks—
with a smooth dynamic roughness element of height scale O(Re−7/10) placed within the
lower deck region—is presented in the main text.

separation and (weak) Goldstein singularities: the stream functions upstream and down-
stream of the triple deck region (regions Au, d and Bu, d) give rise to the skin friction
behaviour of equation (2.1) above; while a description of the flow in the lower, main and
upper decks, which have a streamwise length scale of O(Re−1/5) around x = x0, is the
focus of the remainder of this section.

The dynamic roughness element is placed within the lower deck of the interaction
structure and has the general form

y = Re−
7
10F (X,T ) , (2.3)

where F is a function, of order unity, that represents the roughness element and is
sufficiently smooth (see equations (2.14a), (3.2a) and (3.2b)), X = Re1/5(x − x0) is the
O(1) streamwise coordinate in the interaction region and T = Re−1/20t ∼ 1 is the scaled
time. Note that if time is of order Re1/20, then the oscillation frequency of the roughness
element is O(Re−1/20): a comparison between the non-dimensional scaled frequency used
in the mathematical analysis and the dimensional frequencies tested experimentally in
Grager et al. (2012) appears in §5. The height (Braun & Kluwick 2002) and frequency
(Smith 1982) scalings are chosen so that both the roughness shape and time dependence
appear in the eventual governing equation for the boundary layer displacement function.
The presence of the dynamic roughness gives rise to a kinematic boundary condition at
the surface, which can be converted to the conventional no-slip condition through the
use of the Prandtl transposition.

Within the classical, O(Re−1/2), boundary layer, in which the lower and main decks
are found, the pressure is independent of the normal coordinate and its gradient is given
by the asymptotic expansion

∂p

∂x
= µ0 + Re−

1
5µ1X + Re−

3
10
∂p1
∂X

+ · · · . (2.4)
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The first two terms on the right-hand side are due to a Taylor expansion of the pressure
gradient about X = 0 (x = x0), with µ0 > 0 representing the leading order adverse
pressure gradient; and the third term represents the perturbation pressure gradient, which
acts at order Re−1/2 in the upper deck and arises from the interaction between the lower
deck’s viscous flow and the outer inviscid flow. The governing equations are then obtained
from the non-dimensionalised Navier–Stokes equations, rewritten in the coordinates of
each deck, to be solved subject to the imposition of matching with the flow upstream,
downstream and between each layer, along with the no-slip boundary condition at the
surface.

In the lower deck, the normal coordinate is z = Re11/20(y + Re−7/10F ), z ∼ 1 and,
following substitution into the Navier–Stokes equations, the stream function is given by

ψ̄ (X, z, T ) =Re−
13
20

1

6
µ0z

3 + Re−
4
5

1

2
µ0z

2A (X,T )

+ Re−
17
20

(
1

6
µ1Xz

3 +
2

7!
µ0µ1z

7

)
+ ψ̄3 (X, z, T ) + · · · . (2.5)

The function A(X,T ) is the (negative) boundary layer displacement function and, given
the stream function expansion (2.5), is also proportional to the leading order term in the
wall skin friction: hence we refer to it as such in figures 6–9. Due to the requirement that
the stream function in the interaction region match with the upstream and downstream
flow—in particular, that the stream function in the lower deck matches with the solution
in the regions Ad and Au as X tends towards plus and minus infinity respectively—A
must also satisfy

A (X,T )→ 2µ−10

(
a0 |X|+ a1k1 |X|−1

)
as X → ±∞. (2.6)

The first equation relating the displacement function and pressure perturbation p1 is
determined from a solvability condition on the equation for ψ̄3,

∂3ψ̄3

∂z3
− 1

2
µ0z

2 ∂
2ψ̄3

∂X∂z
+ µ0z

∂ψ̄3

∂X
= µ0z

∂A

∂T
+

1

2
µ2
0z

2A
∂A

∂X
+
∂p1
∂X

, (2.7)

following a similar procedure to that outlined by Ruban (1982) and Smith (1982),
amongst others. This results in the relation

A2 −
(

2
a0
µ0

)2

X2 − 8
a0a1
µ2
0

k1

=− σ1
∫ X

−∞
(X − s)−

1
4
∂A

∂T
ds− σ2

∫ X

−∞
(X − s)−

1
2
∂p1
∂s

ds, (2.8)

with the constants

σ1 = 2
9
4π−1Γ

(
3

4

)
µ
− 3

4
0 , σ2 = 2π−1Γ 2

(
3

4

)
µ
− 3

2
0

and Γ (·) representing the Gamma function (not to be confused with the constant Γ ,
introduced later). In obtaining equation (2.8), the upstream matching condition (2.6) on
A has already been applied.

A second relation between the pressure perturbation p1 and the boundary layer
displacement function A is now required to complete the system. This is obtained by
considering the flow in the upper deck but, firstly, the stream function in the inviscid,
rotational main deck, which serves to transmit the perturbations occurring in the flow
within the viscous lower deck to the inviscid upper deck flow, must be solved for. With the
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same streamwise coordinate X defined previously but now with the normal coordinate
y = Re−1/2Y + Re−7/10F , Y ∼ 1, in which the Prandtl transposition has again been
applied, the governing Navier–Stokes equations lead to the stream function

ψ = Re−
1
2ψ0(Y ) + Re−

7
10ψ′0(Y )

[
A (X,T ) +X

∫ Y

0

ψ′′′0 (s)− µ0

[ψ′0(s)]
2 ds

]
+ · · · , (2.9)

where a prime denotes differentiation with respect to Y ; and the function ψ0, obtained
from the upstream and downstream solution, is dependent only on Y and satisfies ψ0 →
Ue as Y →∞, with Ue the external slip velocity.

The behaviour of the solution (2.9) as Y → ∞ then forms the matching condition
between the main and upper decks. In the latter, the height scale equals the streamwise
length scale and thus the normal coordinate y = Re−1/5ŷ, ŷ ∼ 1, is introduced. Working
with the velocity components in the upper deck, û and v̂ in the X and ŷ directions
respectively, the matching condition—recalling that a Prandtl transposition was applied
to the solution in equation (2.9)—is

û→ Ue − Re−
1
5
µ0

Ue
X + · · · and v̂ → Re−

1
2

[
µ0

Ue
Y − Ue

∂

∂X
(A− F )

]
+ · · · , (2.10)

leading to the suggested expansions

û = Ue + · · ·+ Re−
1
2 û1 (X, ŷ, T ) + · · · (2.11a)

and

v̂ = Re−
1
5
µ0

Ue
ŷ + · · ·+ Re−

1
2 v̂1 (X, ŷ, T ) + · · · . (2.11b)

Substitution of this expansion and the upper deck coordinates into the Navier–Stokes
equations leads to a set of Cauchy–Riemann equations relating v̂1 and p1, and the use also
of condition (2.10) on v̂ results in the second relation between the pressure perturbation
and boundary layer displacement function:

p1 (X,T ) =
U2
e

π
−
∫

(X − s)−1 ∂

∂s
(A− F ) ds, (2.12)

where the dashed integral indicates the principal Cauchy integral.
Combining equation (2.8) and (2.12) gives rise to the final integro-partial differential

equation for the displacement function A,

A2 −
(

2
a0
µ0

)2

X2 − 8
a0a1
µ2
0

k1

=σ2U
2
e

∫ ∞
X

(s−X)
− 1

2
∂2

∂s2
(A− F ) ds− σ1

∫ X

−∞
(X − s)−

1
4
∂A

∂T
ds, (2.13a)

subject to the upstream and downstream matching condition

A2 →
(

2
a0
µ0

)2

X2 + 8
a0a1
µ2
0

k1 + · · · as |X| → ∞. (2.13b)
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The affine transformation

A = σ
2
5
2 U

4
5
e

(
2
a0
µ0

) 3
5

Ā, F = σ
2
5
2 U

4
5
e

(
2
a0
µ0

) 3
5

F̄

X = σ
2
5
2 U

4
5
e

(
2
a0
µ0

)− 2
5

X̄, T = σ1σ
− 1

10
2 U

− 1
5

e

(
2
a0
µ0

)− 9
10

T̄

then converts the system (2.13) into the simpler form, neglecting the overbar,

A2 −X2 + Γ =

∫ ∞
X

(s−X)
− 1

2
∂2

∂s2
(A− F ) ds−

∫ X

−∞
(X − s)−

1
4
∂A

∂T
ds (2.14a)

A→
(
X2 − Γ

) 1
2 as X → ±∞, (2.14b)

where all remaining constants have been combined into the parameter Γ ,

Γ = − 4a1k1

(2a0µ4
0σ

4
2U

8
e )

1
5

. (2.14c)

Note that equation (2.14a) is a correction to the corresponding equation presented by
Braun & Kluwick (2004), although the interesting results that follow in their original
paper and subsequent publications—in which the vibrations of a steady hump were
introduced at second order and served to stabilise the bubble-bursting phenomenon—
remain correct.†

As first shown by Ruban (1982) and Stewartson et al. (1982), a solution to the
governing system (2.14) in the no-roughness, steady case can be obtained for values of
Γ up to some critical value Γc and allows for the presence of a small laminar separation
bubble, stretching from the X-station where A first becomes negative to that where
it recovers to positive values once more. Since Γ is proportional to k1, it represents
the increment in angle of attack above kc (note that a1 < 0); and Γc can therefore be
interpreted as the maximum increase to the angle of attack possible for which marginally
separated flow exists (i.e. the boundary layer remains predominantly attached, with only a
small separation bubble present). At values of Γ > Γc, the system (2.14) fails to converge
and this is interpreted as corresponding to a ‘bursting’ of the laminar separation bubble
into larger regions of separated flow or fully detached flow, which cannot be described
by the theory of marginal separation. This discussion is encapsulated in figure 2, which
plots the displacement function at various values of Γ 6 Γc ' 2.764, using the numerical
technique described in the following section. Note that the solution for Γ < Γc is non-
unique, with both an upper and lower branch existing, characterised by shorter and
longer separation bubbles respectively: only the upper branch solution is shown, and the
solution at Γc, plotted in the following section, is unique for any particular roughness
configuration.

3. Method of solution
The governing system (2.14) for the boundary layer displacement function A is known

to be ill-posed and leads to finite time blow-up at some streamwise position, even for
Γ < Γc, if it is solved by standard time marching (Smith 1982). Physically, this is viewed
as corresponding to the abrupt thickening of the boundary layer and the shedding of
vortices; mathematically, for Γ < Γc, finite amplitude disturbances grow exponentially

† Private communication with the authors.



The impact of dynamic roughness elements on marginally separated boundary layers 9

-3 -2 -1 1 2 3

1

2

3

4

Figure 2: The solution, A, to the system (2.14) in the absence of a roughness element
(either dynamic or static) at different values of Γ . These represent: angles of attack less
than the critical angle of attack as predicted by classical boundary layer theory, where
fully attached flow should be present (Γ = −1, solid line); angles of attack equal to the
critical angle of attack, where the skin friction, as predicted by classical boundary layer
theory, should vanish and the marginal separation singularity appear (Γ = 0, dashed
line); the value of Γ where the skin friction first equals zero, as predicted by marginal
separation theory (Γ ' 2.369, dot–dashed line); and the value of Γ above which no
solution to the system (2.14) exists (Γc ' 2.764, dotted line).

and lead to a breakdown of the solution (Braun & Kluwick 2004). However, the fixed
frequency forcing in the current problem, due to the imposed oscillations of the dynamic
roughness element, suggests dealing with the time dependence by writing the solution to
A (and hence the pressure perturbation p1) as a sum of Fourier modes,

A (X,T ) =

M∑
k=−M

Ak (X) exp (2iωkT ) , (3.1)

in a manner similar to that carried out in Servini et al. (2017).
The dynamic roughness function itself can be written as

F (X,T ) = f (X) [exp (2iωT ) + exp (−2iωT ) + 2] , (3.2a)

where the argument ±2iωT in the exponential function ensures that the roughness
element remains non-negative throughout a cycle of oscillation and f(X) represents the
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shape of the roughness. The results presented in §4 will have

f (X) = a (X −XL)
6

(X −XR)
6 (3.2b)

for X ∈ [XL, XR] and zero elsewhere, which is sufficiently continuous for the numerical
scheme at the left (XL) and right (XR) endpoints of the roughness element (in particular,
it must have continuous second-order derivatives). The maximum height a is rescaled to
ensure that a choice of a = 1 corresponds to a maximum height of unity.

Substitution of equations (3.1) and (3.2a) into the system (2.14) leads to a governing
equation for each Fourier mode

M∑
k=−M

AkAm−k + δ0m
(
−X2 + Γ

)
=

∫ ∞
X

(s−X)
− 1

2 A′′m ds− δ2m
∫ ∞
X

(s−X)
− 1

2 f ′′ ds

− 2δ0m

∫ ∞
X

(s−X)
− 1

2 f ′′ ds− 2imω

∫ X

−∞
(X − s)−

1
4 Am ds, (3.3a)

(3.3b)

subject to

Am → δ0m
(
X2 − Γ

) 1
2 as X → ±∞. (3.3c)

Here, the δij is the usual delta function, equal to 1 when i = j and zero otherwise;
and a prime denotes differentiation with respect to the streamwise coordinate. The
system was solved using Newton’s method, with all integrals evaluated using trape-
zoidal integration and the derivatives approximated by a second-order accurate centred
difference. Numerous checks were performed on the mesh step size (∆), the left and
right hand edges of the domain and the number of modes (M) included in the sum
(3.1). Good agreement was found throughout, for various roughness sizes and oscillation
frequencies (ω): the graphs shown in §4 all use M = 5 (note that this is equivalent to
finding all coefficients of exp(ikωT ) up to k = 10, with odd Fourier modes being zero)
and either ∆ = 0.025 and endpoints at ±15 or ∆ = 0.05 and endpoints at ±10. The
latter grid was used for all graphs from figure 5 onwards, which were produced following
simultaneous sweeps in oscillation frequency and amplitude space: the difference in the
value of Γc when computed using the former grid was of the order of 10−3 and there
is no noticeable difference in the graphs of the displacement function A or perturbation
pressure gradient. The large amount of computational time required to perform these
sweeps meant that using finer meshes and larger domains was unfeasible. Note that the
upstream and downstream condition (3.3c) was used to analytically compute the integrals
in the intervals (−∞, X1) and (XN ,∞), where X1 and XN denote the left and right hand
endpoints of the discretised domain respectively.

In order to find the critical value of Γ above which no convergent solution to the
system (3.3) exists (Γc), Γ was first set to some negative value and the form (3.3c) used
as the initial guess to the solution. Convergence was then said to have been obtained
when the L2 norm of the error at each mesh point (for each mode) was less than 10−4.
If convergence was obtained, the value of Γ was increased by 1 and the solution at Γ − 1
used as the initial guess. This process continued until either the solution diverged (the
L2 norm, as defined above, was greater than some large positive value) or had failed to
converge within a set number of iterations: the scheme returned then to the last value of
Γ at which a solution had been obtained and used it as an initial guess to the iterative
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scheme for Γ + 0.1. The above procedure was repeated until there was no convergence,
but then increases to Γ were of 0.01 and then 0.001, allowing one to find the value of
Γc (defined as the largest value of Γ at which a convergent solution was found) correct
to within O(10−4). We note that all solutions to the displacement function A obtained
are upper branch solutions, although as Γc is approached, the upper and lower branch
solutions tend towards each other.

The impact of the dynamic roughness on this value Γc is our concern in the following
section. This is along with the impact on the boundary layer displacement function and
perturbation pressure gradient (p1) at Γ = Γc. The former will allow us to determine
whether a dynamic roughness element can increase the angle of attack at which large
scale separation occurs, while the latter will allow us to describe the mechanism through
which this may be possible.

4. Results
The impact of varying the position of the dynamic roughness element on the value of

Γc is shown in figure 3 for a roughness of width 4, maximum amplitude 1 and oscillation
frequency 1, and indicates the potential for an increase in the critical value of Γ as
compared to the clean airfoil case (Γc ' 2.764), provided that the element is positioned
such that its centre lies within the region in which the separation bubble exists in the
clean airfoil case, denoted by the dashed vertical lines in figure 3 (refer back also to
figure 2). For a roughness centred either upstream or downstream of the clean case
separation bubble, Γc can decrease considerably, although, due to a lessening impact on
the interaction region, it tends to its clean airfoil value of 2.764 when the roughness is
far up- or downstream.

For the roughness parameters of figure 3, the impact of a dynamic roughness element is
less beneficial than that of an equivalent static roughness; however, figure 4, which shows
the effect on Γc of changing the width of an element centred at XM = 0.5, of height
1 and, in the case of the dynamic element, oscillation frequency ω = 1, indicates that
greater values of Γc can be obtained for a dynamic roughness element at larger widths.
Although for a static roughness element, the value of Γc peaks at a width between 5.4
and 5.7, for a dynamic roughness element, Γc continues to increase with width for all
widths tested. One would expect the critical value of Γ to eventually reach a maximum
in the dynamic case—and figure 4 suggests that it is saturating—since as the width gets
very large, the slope of the roughness will tend to zero, ensuring that the solution should
approach that of the clean case. However, the size of the width was limited by the size
of the computational domain.

Given the above, we analyse the impact of the height (a) and oscillation frequency (ω)
of the dynamic roughness on the value of Γc by making use of a roughness element of
width 10, centred at XM = 0.8, corresponding to the maximum in figure 3. A contour
plot of the increase (red) or decrease (blue) of Γc as compared to the clean case value
against a and ω is shown in figure 5 and indicates that regions of significant increase are
possible: it is on these that we will focus. These increases seem to be due to two distinct
behaviours in the solution to the time-averaged displacement function (equivalently, the
coefficient of the steady Fourier mode, A0, or the time-averaged skin friction) and, more
pertinently, the interaction pressure gradient.

The first of these behaviours occurs at lower roughness amplitudes. The graphs of
both the displacement function and pressure gradient, at a = 1, Γ = Γc and varying ω,
are shown in figure 6 (in these graphs, and the subsequent figures 7 and 8, the solution
in the no-roughness case at its critical value of Γc ' 2.764 is shown as the black dot–
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Figure 3: Impact of varying the midpoint (XM ) of a dynamic (solid) or static (dashed)
roughness element, both of width 4 and height 1 and, in the dynamic case, oscillation
frequency 1, on the value of Γc. The horizontal dotted line indicates the clean airfoil
value of Γc ' 2.764 and the vertical lines indicate the streamwise extent of the separation
bubble at Γ = Γc in the clean case.

dashed line, allowing us to identify the impact of the dynamic roughness on the boundary
layer displacement function and perturbation pressure gradient). Regarding first the skin
friction, as ω increases, the size of the bubble that forms at Γc increases, with separation
occurring farther upstream and reattachment farther downstream, although we note that
the value of Γc has also increased with ω. Along with this, the minimum in the skin friction
decreases, although, at all frequencies, it remains higher than in the no-roughness case,
despite the latter’s lower value of Γc. As might be expected, the effect of the front face of
the roughness element is that of slowing down the decrease in skin friction by speeding
up the flow and the minimum in A0 occurs at or just after the roughness peak.

Further insight into the mechanism at play comes from the behaviour of the pertur-
bation pressure gradient. Figure 6b shows that notwithstanding the fact that a larger
Γc than in the clean airfoil case is obtained, the adverse pressure gradient peak, despite
increasing with increasing ω, always remains lower than that of the no-roughness solution
at Γ = Γc. Its position also occurs downstream of that in the clean case, moving upstream
as ω increases; and one notes that a high frequency solution seems to be approached,
with little difference between the graphs at ω = 4 (green line) and ω = 10 (light blue
line).

This decrease in the peak of the adverse pressure gradient is not seen at the larger
roughness height of a = 2. At all frequencies studied, and those plotted in figure 7b, the
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Figure 4: Impact of varying the roughness width on Γc, for dynamic (solid) and static
(dashed) roughness elements centred at XM = 0.5, height 1 and, in the case of a
dynamic element, oscillation frequency 1. For widths between 0 and 1, the mesh step
size was decreased to 0.01 in an attempt to adequately represent the roughness shape.
The horizontal dotted line once more denotes the clean case value of Γc ' 2.764.

peak is higher than that of the clean airfoil case at Γ = Γc—although we recall that
the value of Γc is considerably greater (Γc ' 4.557 at ω = 10). Rather than it being a
diminution of the adverse pressure gradient peak that allows the flow to remain attached
at larger angles of attack, the mechanism here seems to be the considerable extension of
the region in which the pressure gradient is favourable. Indeed, for certain values of ω
and Γ , the pressure gradient becomes adverse downstream of the adverse pressure peak
in the clean airfoil case. This change in the behaviour of the pressure gradient for larger
roughness heights is perhaps to be expected due to the steeper slope of the front face of
the roughness, which introduces more favourable pressure perturbations; and then, also,
the corresponding steeper slope on the rear face, which slows down the flow and gives
rise to adverse pressure gradients.

The graph of the time-averaged skin friction at Γc, figure 7a, shows that, surprisingly,
no separation bubble exists in the time-averaged flow at the lower oscillation frequencies,
with A0 remaining positive throughout. The minimum in the skin friction is shifted
downstream compared to the clean case solution, as would be expected if the perturbation
pressure gradient remains favourable for a greater streamwise distance. Note, however,
that transient regions of reversed flow can occur due to the presence of higher order
modes in equation (3.1): passage from marginally separated to fully separated flow (or
the existence of a longer separation bubble that cannot be accounted for by marginal
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Figure 5: Impact of varying the roughness height (a) and oscillation frequency (ω) on
the value of Γc, for a dynamic roughness element centred at XM = 0.8 with width 10.
The numbers represent an increase (towards the red end of the spectrum) or decrease
(towards the blue end of the spectrum) on the critical value of Γ in the clean case, while
the black contour indicates a choice of height and frequency for which Γc remains the
same as in the clean case. The increment in both a and ω is of 0.1. Up to a height
of a = 2.9, only increases in Γ are seen across all frequencies; while at larger heights,
decreases become possible and can become quite significant at larger heights. An increase
in frequency, however, is seen to be highly favourable, with a doubling of the clean case
value of Γc possible.

separation theory) may then be due to the bursting of these transient bubbles present
in the interaction region. With increasing frequency (and hence Γc), the minimum in
A0 decreases until eventually a bubble is formed in the time-averaged flow, which grows
larger with ω.

At larger heights, as the oscillation frequency is increased from 0.1, figure 5 shows
the value of Γc begin to decrease, reach a minimum, and then increase again, with the
minimum potentially being much less than the Γc ' 2.764 of the clean airfoil case. The
behaviour when a = 4, for varying ω and at Γ = Γc, is shown in figure 8. Once more,
a steady separation bubble does not necessarily form and, when it does, it appears first
on the rear side of the roughness element, with ω = 6 (where Γc ' 5.558) showing
an additional small bubble on the front side. With regards to the perturbation pressure
gradient, figure 8b, in all cases, including those at which Γc is lower than 2.764, the adverse
peak is higher than that of the clean case, but it is shifted considerably downstream;
furthermore, at lower frequencies (ω = 2, red line), the downstream shift in the position
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Figure 6: The solution to (a) the time-averaged boundary layer displacement function
(equivalent to the skin friction), A0; and (b) the time-averaged perturbation pressure
gradient (∂p1/∂X) for a roughness of height 1, oscillating at various frequencies (ω) at
Γ = Γc, as given in the legend. The roughnesses were all centred at XM = 0.8 and had a
width of 10, thereby giving a left-hand edge, midpoint and right-hand edge as indicated
by the vertical dashed lines in the figure. The no-roughness solution at Γc ' 2.764 is
given by the black dot–dashed line.
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Figure 7: As per figure 6, but for a roughness of height 2 and oscillation frequencies (ω)
and Γc as shown in the legend.

at which the gradient becomes positive is small, while the favourable pressure gradients
seen at larger frequencies remain significant for an extended streamwise distance.

A decrease in the value of Γc compared to the clean case is seen when a = 4 for a
range of frequencies and the behaviour of the upper branch solution to the skin friction
and pressure gradient is shown in figure 9 for ω = 0.5, 1, 2 and 4 and Γ = 0, 1, 1.4 and
1.45, this last value being approximately equal to Γc at ω = 2. This choice of frequencies
corresponds, respectively, to Γc being: higher (' 3.122) than its clean case value; lower
(' 2.270) and still decreasing with increasing ω; the minimum (' 1.450) for a = 4;
and higher (' 4.724) than the clean case value. Concerning first the pressure gradient
(figures 9b, 9d, 9f, 9h), at all values of Γ , the adverse pressure peak is the largest for
ω = 2 (dot–dashed line) and increases quite dramatically, compared to the other solutions
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Figure 8: As per figure 6, but for a roughness of height 4 and oscillation frequencies (ω)
and Γc as shown in the legend.

shown, between Γ = 0 and 1. By Γ = 1.45, the solution for ω = 1 (dashed line), has
an adverse pressure peak similar in magnitude to that for ω = 4, but it does not benefit
from the latter’s downstream shift in the position where the pressure gradient becomes
adverse. Throughout, the solution for ω = 0.5 retains the smallest peak and the position
at which the gradient switches from favourable to adverse remains largely unchanged.
Similarly, the minimum in the skin friction (figures 9a, 9c, 9e, 9g), is lowest for ω = 2,
but remains positive. It remains unclear as to why the minimum cannot decrease further
until a steady separation bubble is formed: we suggest that either marginal separation
theory is only able to support a limited adverse perturbation pressure gradient before
breaking down; or it is the bursting of transient separation bubbles, existing due to the
solution to the higher modes of the wall skin friction, that limits the value of Γc.

The conclusion, therefore, is that a dynamic roughness element is able to increase the
angle of attack at which marginal separation theory remains valid with predominantly
attached flow existing over the leading edge of an airfoil, as shown in figure 5; and the
suggestion is that this increase is possible through one of two mechanisms. The first is a
decrease in the adverse pressure peak as compared to the clean airfoil case; and the second
is an extension of the streamwise region at which favourable pressure perturbations exist.

5. Conclusions and further discussion
With regard to the first of the three questions posed in the introduction, we find that

dynamic roughness elements are able to increase the angle of attack at which a small
separation bubble can exist within a predominantly attached laminar boundary layer near
the leading edge of an airfoil. The effect is, though, sensitive to the physical parameters
of the roughness—its position, width, height and oscillation frequency—and an incorrect
choice of any of these can lead to a decrease in the angle of attack possible. However,
given an appropriate choice, figure 5 indicates that the upper limit of Γ , representing
an increment on the critical angle of attack, for which the system (2.14) has a solution,
can almost double (note that at all fixed heights, the value of Γc is tending towards a
constant value at high frequencies). In agreement with past work on dynamic roughness
elements, we find that larger oscillation frequencies are more beneficial for separation
control (Huebsch et al. 2012). Although not presented here, negative dynamic roughness
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Figure 9: Solution to the time-averaged skin friction (a, c, e, g) and perturbation pressure
gradient (b, d, f, h) for a dynamic roughness element of height 4 and various oscillation
frequencies, as given in the legend. The upper branch solutions for different values of
Γ , indicated in the captions, are shown, up to Γ = 1.450, which corresponds to the
minimum, for a fixed height a = 4, in Γc as a function of ω, occurring at ω = 2. (The
figure is continued on the following page.)

elements, again given an appropriate choice of parameters, are also able to increase the
critical value of Γ .

The experimental work of Grager et al. (2012) consisted of roughness elements placed
near the leading edge of a NACA 0012 airfoil, each with a diameter of 3 mm, maximum
height 230 µm and frequencies between 30 Hz and 90 Hz. The Reynolds numbers tested
were of 405, 795, 1170 and 1560, converted from their paper to be based on the airfoil’s
leading edge radius, and corresponded to an incoming air speed of 2.7 m s−1, 5.3 m s−1,
7.3 m s−1 and 9.7 m s−1 respectively. The marginal separation theory used here makes
use of angles of attack of the order of (L/r)−1/2 ' 10◦, where L (= 0.15 m) is the chord
length and r (≈ 2.4 mm) is the leading edge radius, and we are thus considering angles
of attack similar to those of Grager et al. Given this, and the scalings introduced in
§2, our roughness element has a width in the order of 1 mm (Re−1/5r), a height in the
order of tens of micrometres (Re−7/10r) and a frequency of around 1 kHz (Re−1/20U/r):
which is a slightly smaller roughness element oscillating at much higher frequencies, but
giving increases in the angle of attack in the order of 3◦ per unit increase in Γ (Re−2/5
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Figure 9: (Figure continued from the previous page.)

radians). If, on the other hand, we consider the Reynolds number based on the airfoil
chord length, we obtain widths in the order of 1 cm, heights in the order of 100 µm and
frequencies that agree more closely with those of Grager et al., in the order of tens of
hertz. The increment in angle of attack is of the order of 0.5◦–1◦ per unit increase in the
value of Γ . We note, however, that this ignores the constants that were removed in the
affine transformation of §2.

There are further differences between the theoretical framework presented in this paper
and the experiments of Grager et al. and others (Huebsch 2006; Huebsch et al. 2012),
aside from the different frequency regime. Previous work has generally looked at an array
of roughness elements, spanning a significant fraction of the airfoil chord (between 1.07%
and 10.76% chord in the case of Grager et al.), a far larger length scale than the marginal
separation region presented here, and, due to practical limitations, the oscillations of
roughness elements have tended to be limited to small amplitude vibrations around a
steady roughness shape. We are wary, therefore, of making any further comparisons
between our results and those obtained by experimentalists, but the findings presented
here, just as in previous studies, point to the potentially beneficial role of dynamic
roughness elements in separation control. Of course, experimental work is also three
dimensional while the work presented here is strictly two dimensional: we believe an
extension to three dimensions to be a worthwhile and feasible, albeit numerically more
challenging, extension.
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Turning now to the question of the marginal separation bubble, our results indicate
that, in the presence of a dynamic roughness element, a bubble does not necessarily exist
in the time-averaged flow at the critical value of Γ above which breakaway boundary layer
separation is believed to occur, although transient bubbles are still present. It is unclear
whether this has any practical implications for aerodynamics, given the negligible impact
of a small laminar separation bubble on the lift and drag coefficients, although its absence
in the time-averaged flow may serve to stabilise the boundary layer. The potential lack
of a bubble at Γ = Γc, however, might suggest that transition to breakaway separation,
which cannot be described by the theory of marginal separation, could be due to the
bursting of transient laminar separation bubbles.

An analysis of the perturbation pressure gradient suggests that it may also have a role
in causing a breakdown of the theory and a failure of the system (2.14) to converge to
a solution. Solutions at Γc where the separation bubble is absent in the steady mode
A0 are characterised by a large adverse pressure gradient peak, along with a significant
downstream shift in the streamwise position at which the gradient becomes positive: the
former may trigger breakaway boundary layer separation at higher angles of attack; while
the latter could explain the elevated angles of attack at which marginal separation theory
holds, as compared to the clean airfoil case. A second behaviour in the pressure gradient
also seems to exist, whereby the adverse pressure peak remains at a similar position to
that of the clean case, but is diminished in magnitude—this behaviour is more prevalent
at lower roughness heights (where the more gradual roughness slope would be expected to
have a lesser impact on the pressure gradient) but it is unclear how the system switches
from one behaviour to the other in the roughness height/oscillation frequency parameter
space. Similar conclusions to those presented here for the case of leading edge separation
are expected to hold for the other flow scenarios mentioned in section 1: flow over smooth
backward-facing steps, channel flows with suction and jets along deflecting plates.

It is possible that further light could be shed on the mechanisms described above, and
the system’s choice of one or the other, by seeking out solutions at large height and/or
high frequency through the use of asymptotic expansions. Such an approach may also
point towards an analytical expression for Γc in the asymptotic regime considered, as
was achieved in past work by Timoshin (1988) for marginal separation in the presence
of oscillatory background flows. The extension to three dimensional roughness elements,
once more in the context of marginal separation, to determine whether similar phenomena
and conclusions hold in this, possibly more realistic, flow configuration is also deferred
to future work.

The work for this paper was sponsored by the Air Force Office of Scientific Research,
Air Force Material Command, USAF, under grant number FA9550-14-1-0240. The U.S.
Government is authorised to reproduce and distribute reprints for Governmental purposes
notwithstanding any copyright notation thereon.
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