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Abstract 16 

Octocoral species are globally distributed in all oceans and may form dense communities 17 

known as vulnerable marine ecosystems. Despite their importance as deep-water habitats , 18 

the underlying genetic structure and gene-flow patterns of most deep-water populations 19 

remains largely unknown. Here, we evaluated genetic connectivity of the primnoid 20 

octocoral Narella versluysi across the continental shelf of Bay of Biscay, spanning 360 km 21 

(95 samples from submarine canyons, ranging from 709–1247 m depths). We report 12 22 

novel microsatellite markers which were used to genotype 83 samples from six 23 

populations. Sixteen samples were sequenced for three mitochondrial DNA regions 24 

(Folmer region of COI with an adjacent intergenic region igr1, MT-ND2 gene, and mtMutS 25 

homolog 1 region). All sequence haplotypes and genetic clusters were found in multiple 26 

sites spanning more than 200 km. Overall, our analyses suggest there is high gene flow 27 

between colonies of N. versluysi among all study sites. There is no significant geographic 28 
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structure and no pattern of isolation by distance or depth. Connectivity is facilitated by the 29 

prevailing current which runs along the shelf break, and could be a mechanism to connect 30 

all of the sampled locations. The high connectivity over large geographic distance is a 31 

positive sign for a potentially vulnerable organism and may provide some resilience to 32 

disturbance. This information is crucial for a better understanding of how this fragile 33 

benthic fauna may respond to climatic and anthropogenic disturbances, which is a 34 

cornerstone for effective habitat management. 35 

 36 
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Introduction 41 

Members of the subclass Octocorallia are an important part of benthic ecosystems 42 

(Roberts et al. 2009), with over 3000 extant species of soft corals, gorgonians and sea 43 

pens (Cairns, 2007; Daly et al. 2007). They have a worldwide distribution and may occur in 44 

a significant portion of deep oceans (Yesson et al. 2012). In fact, around 74% of the 45 

octocoral global diversity is found at depths greater than 50 m (reviewed in Roberts and 46 

Cairns, 2014). In cold or deep water environments, they can create dense patches or fields 47 

of biological, conservation and socio-economic value (Foley and Armstrong, 2010; Braga-48 

Henriques, 2014) therefore recognized as (1) Vulnerable Marine Ecosystems (VMEs) 49 

under the Food and Agriculture Organization of the United Nations (FAO), (2) priority 50 

marine habitats through the Oslo and Paris Conventions (OSPAR), and (3) components of 51 

Ecologically or Biologically Significant Marine Areas (EBSAs) under the CBD scientific 52 

criteria. Hence, when taking into account their remoteness and our limited overall 53 

knowledge, it becomes greatly challenging to protect those ecosystems from increasing 54 

anthropogenic disturbances such as industrial fishing (Wheeler et al. 2005, Clark et al. 55 

2016), litter (van den Beld et al. 2017a), mining (Larsson et al. 2013), pollution (White et al. 56 

2012), ocean warming (Barnett et al. 2005) and acidification (Guinotte et al. 2006). 57 

Evidence of declines in deep-sea populations around fishing areas have prompted 58 
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international efforts to prioritise research on connectivity (Clark et al. 2012), including on 59 

corals that are slow-growing organisms with low recovery potential (Althaus et al. 2009). 60 

Besides increased risk of biomass loss, octocoral habitats are also particularly vulnerable 61 

to physical damage due to the three-dimensional or whip-like morphologies of most 62 

common foundation species (Braga-Henriques et al. 2013). A reduced resilience and low 63 

genetic diversity is thus highly expected in exploited grounds. Consequently, an improved 64 

understanding of population connectivity, and therefore potential dispersal and recovery, is 65 

imperative to guide and support further policy development on sustainable management 66 

and conservation of cold water octocoral habitats (Jones et al. 2007; Mengerink et al. 2014; 67 

Baco et al. 2016). 68 

While our knowledge of population genetics using microsatellites in reef-building 69 

scleractinians has increased considerably over the last decade, both in tropical (e.g. 70 

Acropora: Baums et al 2005, Wang et al. 2009) and deep, cold-water environments (e.g. 71 

Lophelia pertusa: Morrison et al. 2008, Dahl et al. 2012; Becheler et al. 2017; Solenosmilia 72 

variabilis and Desmophyllum dianthus: Miller & Gunasekera, 2017), less attention has 73 

been given to the use of these markers in octocorals inhabiting deep waters. This is partly 74 

due to the logistic constraints of sampling non-reef-building corals at depth. Many of those 75 

species are seldom found in numbers conducive to sampling for population genetics 76 

studies, and alternative approaches have been used to examine, for example, the 77 

connectivity of wide-ranging species over regional or global scales using traditional 78 

sequencing (Baco and Cairns, 2012; Herrera et al. 2012). However, a few relatively small 79 

scale genetic studies of octocorals have been reported using microsatellite markers. For 80 

instance, five microsatellite markers were developed for four populations and 128 samples 81 

of the Mediterranean gorgonian Eunicella singularis (Alcyonacea: Gorgoniidae) from 82 

depths of 15–35m to examine the profile of host and symbiont populations in relation to 83 

thermal tolerances (Pey et al. 2013). Six loci were used on 104 colonies and 385 larvae of 84 

the gorgonian Paramuricea clavata (Alcyonacea: Plexauridae) from southern France to 85 

investigate reproductive success in a shallow (20m) population (Mokhtar-Jamaï et al. 86 

2013). Also, four populations of the tall sea pen Funiculina quadrangularis (Pennatulacea: 87 

Funiculinidae) were genetically profiled using 10 microsatellite markers for 176 specimens 88 

in Scottish sea lochs at depths of 18–35m (Wright et al. 2014). Finally, ten loci were used 89 

to examine connectivity for the gorgonian Callogorgia delta (Alcyonacea: Primnoidae) in 90 

the Gulf of Mexico (Quattrini et al. 2015). 91 
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In recent years, an increased sampling effort across the continental shelf of the Bay of 92 

Biscay has revealed a hidden coral diversity and abundance at the submarine canyon 93 

areas, including octocoral taxa such as Narella spp. (van den Beld et al. 2017b). The latter 94 

is the most species-rich genus within the “quintessential” deep-water octocoral family 95 

Primnoidae (Cairns and Bayer, 2009). It comprises 46 species distributed globally at 96 

depths ranging from 129 m down to a deepest observation at 4594 m (Cairns and Bayer, 97 

2003; Taylor and Rogers, 2017). As recently as 2007, five new species were reported from 98 

deep seamounts in the Gulf of Alaska, and it is predicted there are more species yet to be 99 

discovered in this group (Cairns and Baco, 2007). Indeed, the systematic account of 100 

Narella species continues to increase with new descriptions from a variety of ocean basins, 101 

i.e. 14 new species in eleven years: six from Hawaiian Islands and adjacent seamounts 102 

(Cairns and Bayer, 2008), five from New Zealand (Cairns, 2012), and three from SW 103 

Indian ocean ridge (Taylor and Rogers, 2017). Two species have been so far reported to 104 

the NE Atlantic, N. bellissima (Kükenthal, 1915) and N. versluysi (Hickson, 1909), both 105 

having amphi-Atlantic distributions. Despite our growing knowledge of distributional ranges 106 

(spatial and in deep) and habitat preferences (Braga-Henriques et al. 2011, 2013; van den 107 

Beld et al. 2017b), baseline information such as dispersal strategy (e.g. type of larvae, 108 

larval lifespan, dispersal distance), reproductive mode (broadcast spawner or brooder) and 109 

population genetics, is still lacking for those species. Nonetheless, genetic research using 110 

barcoding regions of the mitochondrial genome has been employed at the generic level, 111 

revealing significant variation in populations from the Eastern Pacific (Baco and Cairns, 112 

2012). 113 

N. versluysi is found across the central North Atlantic including obseravations from 114 

Bermuda, straits of Florida, Azores, W Ireland and Bay of Biscay at depths of 550-3100m 115 

(Cairns and Bayer, 2003). It is an unbranching Narella species, reaching heights up to 116 

78cm (Cairns and Bayer, 2003), and is associated with Lophelia/Madrepora reefs and 117 

mixed coral habitats in Bay of Biscay (van den Beld et al. 2017b), and associated with 118 

Pheronema carpenteri sponges in Azores (Braga-Henriques 2014). It is reported in Bay of 119 

Biscay at depths of 678-1734m where it is the most abundant gorgonian cold water coral 120 

(van den Beld et al. 2017b), making it suitable for population genetic studies. Here we 121 

assess genetic diversity and connectivity patterns among populations of N. versluysiat the 122 

spatial scale of the Bay of Biscay, covering depths of 700–1250 m and spanning more 123 

than 360 km. Combined analysis of mitochondrial and nuclear DNA data was carried out to 124 



5 

infer population structure and dispersal capacity. Novel microsatellite markers for the 125 

studied species are herein reported. 126 

 127 

Methods 128 

Study sites and sampling 129 

The Bay of Biscay is home to a series of submarine canyons that connect the continental 130 

shelf and rise (Bourillet et al. 2003). Significant stands of cold-water coral reefs formed by 131 

L. pertusa and Madrepora oculata are typically found occurring on those areas at depths 132 

between 600–900m (Arnaud-Haond et al. 2017). The BobEco cruise aboard the IFREMER 133 

research vessel “Pourquois Pas?” (September 09 to October 11, 2011) surveyed eight of 134 

those canyons located on the edge of the continental shelf of the Bay of Biscay with the 135 

remotely operated vehicle (ROV) Victor 6000 (IFREMER, France). Ninety-five colonies of 136 

Narella from six locations, in the bathymetric range of 709–1247 m, were collected with the 137 

manipulator arm of the ROV and placed into a series of labelled boxes for transport to the 138 

surface (see Becheler et al. 2017 for details of sampling equipment). Once on deck, 139 

specimens were photographed, labelled, sub-sampled for taxonomic identification and 140 

genetic analysis and preserved in ethanol (70% and 100%, respectively). The remainder of 141 

each sample was frozen at - 80°C for long term storage and reference. Species-level 142 

identification was obtained to all samples by ABH using morphological distinctive 143 

characters, which includes polyp size, number of pairs of adaxial buccal scales, number of 144 

polyps per whorl, nature of adaxial buccal scales, among others (Grasshoff, 1982; Cairns 145 

and Bayer, 2003). Of the 95 collected samples, 83 were haphazardly selected to perform 146 

the genetic analysis (Fig.1, Table 1). CITES (the Convention on International Trade in 147 

Endangered Species of Wild Fauna and Flora) does not apply to octocorals. 148 

 149 

Molecular Analysis 150 

Total genomic DNA extraction was performed on 1 cm sections of sample using the 151 

DNeasy Tissue kit (QIAGEN Ltd. West Sussex, UK), following the manufacturer's 152 

instructions and adapted for a digestion time of 1–2 days. Fifteen samples covering all 153 

study sites were selected for microsatellite development. Microsatellite markers (from the 154 

nuclear genome) are typically more variable than sequence regions of mitochondrial DNA 155 



6 

(mtDNA) and thus can offer resolution to the population level. This approach was only 156 

possible due to the large sample size as a result of a greater sampling effort and research 157 

investment (FP7/EU CoralFISH). Samples were sent to Ecogenics GmbH 158 

(http://www.ecogenics.ch; Zurich, Switzerland) for enriched genomic library construction 159 

and microsatellite primer development. Twelve primer pair combinations were developed 160 

producing variable fragment lengths. Eighty-three samples were genotyped for these 161 

regions by Ecogenics. Results from sequencing were examined using the software 162 

GENEMAPPER v 4.1 (Applied Biosystems Inc.). Chromatogram peaks were automatically 163 

scored based on fragment size and verified by manual inspection. A matrix of sample and 164 

allele pairs was produced for each locus. 165 

In order to estimate genetic connectivity and population genetic differentiation, a subset of 166 

samples (N=16) were selected for mitochondrial DNA (mtDNA) sequencing. These 167 

markers were used to avoid cryptic variation, confounding effects of phenotypic variation, 168 

and convergent evolution of morphological characters. Three mtDNA regions were 169 

amplified: (1) Folmer region of COI with an adjacent intergenic region igr1, (2) subunit of 170 

NADH dehydrogenase MT-ND2 gene, and (3) mtMutS homolog 1 region (aka msh1). 171 

PCRs were performed on successful extractions using 15µl reaction volumes consisting of: 172 

10µl PCR mastermix (Qiagen ltd), 1µl forward and reverse primers (0.2 pm concentration), 173 

1-2µl whole genomic DNA, 1-2µl H2O. Primer sets used in the amplification were 174 

ND42599F/MUT3458R for mtMutS (McFadden et al. 2011), COII8068xF/COIOCTR for the 175 

Folmer region of COI with an adjacent intergenic region igr1 (McFadden et al. 2011), and 176 

16S647F/ND21418R for the ND2 (McFadden et al. 2004). Thermal cycling conditions 177 

follow the original recommendations (McFadden et al. 2004; McFadden et al. 2011). PCR 178 

products were resolved on a 1–1.5% agarose gel stained with ethidium bromide (10 179 

mg/mL). Successful amplifications were sent to Macrogen Inc (Seoul, South Korea 180 

http://dna.macrogen.com) for purification and sequencing. Forward and reverse reads 181 

were aligned into contigs with manual inspection of all base calls. All sequences were 182 

aligned and missing data for PCR products were completed with consensus sequences. 183 

Resulting sequences were deposited in GenBank accession numbers MH660458-184 

MH660522.  185 

 186 
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Statistical analysis of microsatellite data 188 

A test of linkage disequilibrium was performed between all pairs of loci over all sites using 189 

FSTAT 2.9.3.2 (Goudet 2001). Observed and expected heterozygosity levels were 190 

calculated using the R package adegenet (Jombart and Ahmed, 2011) and tested for 191 

signifcant deviation from Hardy Weinberg equilibrium using the hw.test function in the R 192 

package pegas (Paradis, 2010). Between population Fst values were calculated with the 193 

function pairwise.neifst and significance was tested using 1000 bootstrap replicates with 194 

the function boot.ppfst in the R package hierfstat (Goudet and Jombart, 2015). Geographic 195 

and genetic (Fst) distances between sites were compared using a mantel randomisation 196 

test using the mantel.randtest function in the R package adegenet (Jombart and Ahmed, 197 

2011). A k-means clustering procedure was performed based on a principal components 198 

analysis of microsatellite data (Jombart et al. 2010). This process divides samples into a 199 

small number of groups with similar genetic profiles. The genetic structure of biological 200 

populations was investigated using a discriminant analysis of principal components (DAPC) 201 

process (Jombart et al. 2010). 202 

An analysis was performed to test the power of datasets of similar size to produce 203 

significant results. Effective population size (Ne) was estimated using NeEstimator V2 (Do 204 

et al. 2014). The program PowSim (Ryman and Palm, 2006) was used with population size 205 

(Ne=20), 100 simulations and 25 generations of drift. PowSim checks for significant Fst 206 

results based on simulated datasets (of a given size, i.e. equal to the observed). If 207 

simulations produce significant results then we can assume that datasets of equivalent 208 

size are sufficient to produce significant results (Ryman and Palm, 2006). 209 

All statistical assessment of population connectivity was performed on the microsatellite 210 

data. DNA sequence data were examined purely descriptively and no formal statistical 211 

tests were performed on this dataset.  212 

 213 

Results 214 

Mitochondrial DNA sequences were obtained for 16 samples (genbank accession 215 

numbers MH660458-MH660522). Sequence variation was very low between samples, with 216 

only the MutS region showing any variability. The COI sequences were 785 base pairs (bp) 217 

with 0 variable sites, the ND2 region was 788 bp with 0 variable sites, the MutS region was 218 
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866 bp with 1 variable site creating 2 haplotypes (note only 15 samples were sequenced 219 

for the MutS region and the combined analysis was performed with missing data for the 220 

one sample without a sequence). These haplotypes were spread over the study area with 221 

both haplotypes seen in 3 of 6 sites, geographically spanning >200 km (Fig. 2). Both 222 

haplotypes span the full depth range from ca. 700-1200 m (Fig. 3). 223 

 224 

Canyon Longitude Latitude Depth (m) Samples Genotyped Sequenced 

Croisic 46° 22.90'N 4° 40.71'W 837-848 6 4 3 

Crozon 47° 22.67'N 6° 37.53'W 1136-1247 21 20 4 

Guilvinec 46° 56.10'N 5° 21.65'W 811-849 9 7 3 

Lampaul 47° 37.73'N 7° 32.06'W 729-1138 21 19 2 

Morgat-Douarnenez 47° 19.45'N 6° 21.06'W 709-823 22 17 3 

Petite Sole 48° 07.34'N 8° 48.84'W 919-931 16 16 1 

Total   709-1247 95 83 16 

Table 1 Number and location of samples collected in this study 

 

Analysis of the microsatellite data provides evidence that populations of N. versluysi are 225 

not genetically differentiated at the study area (Fig. 2, 4), i.e. across the six canyons of the 226 

Bay of Biscay spanning a distance of hundreds of kilometres (>360 km). Twelve 227 

microsatellite loci were genotyped for this species (see Table 2 for details) and the majority 228 

of these were significantly linked (linkage test, p<0.05). The four unlinked markers yielding 229 

the most complete dataset selected for analysis (Narver_02442, Narver_03299, 230 

Narver_04747, Narver_17311). This created a dataset of 45 alleles for 4 markers, and all 231 

subsequent analysis will be based on these markers. There were 66 unique genotypes 232 

across 83 samples with the most populus genotype shared by 7 samples.  The majority of 233 

markers showed significant deviation from Hardy Weinburg equilibrium (Table 3), although 234 

all markers fitting Hardy Weinburg are in the unlinked set of markers. The power analysis 235 

indicates that these four markers are sufficient to detect significant population structure in 236 

datasets of this size (all replication runs produced significant results at p<0.05). 237 

There is no observable geographic pattern in the data (Table 4). Genetic distances (Fst) 238 

between populations are all close to zero (Table 4). There is no pattern of isolation by 239 

distance (p=0.41) or depth (p=0.73). 240 

 241 
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 242 

 243 

Locus Forward Primer (5'-3') Reverse Primer (5'-3') Motif Alleles Size bp 

Narver_01031 GCTGCCGTATATTCGTAGCG AAGAAGGCATTGTGGTTGCC (CA) 20 122-165 

Narver_02199 TTTGTATTTACACAGGCAGGC TCCCAGTTGGTTTGAAGTTGC (AGAC) 19 142-223 

Narver_02442 GTGCTTACAGACACACACGC GCCAGGAGGTCATGTTTGC (CA) 10 64-87 

Narver_03299 CACTGCTGAGGGGGTAATAAG TGTCTGTCTGTCCAGTGGTG (CAC) 24 192-310 

Narver_03969 GCCCATTTACTCACTCGTCC GTGCTTGGGTGGATGGATAG (CATT) 14 179-287 

Narver_04747 TAAGGGCAACCTATCCCACG GTTGCGATATTAGCGATCCCG (ATTG) 6 110-130 

Narver_07831 GTTGGTGCTGGTGGTGATTG CAACGACGAGGAGAACATGC (GTT) 11 179-235 

Narver_10479 ATGTGGATCTCTGAGTAGCAG TCAAACATCGCCGAGTAACG (AC) 8 183-196 

Narver_11984 GGAATGACAGGGAGGCAAAC AGGGAATAAGACACACAACAATGAG (GACA) 24 110-210 

Narver_12411 TTGTTGTCCTTGCGGTTGTC TCAGCAGCTTGCTCGAATAC (TGT) 12 94-134 

Narver_14768 CGTTGGTCTCCGTTTAGCTG TGAACGGCAATTACCACAGG (ATC) 14 151-201 

Narver_17311 TGGTGGTGGATTTGGACGAG CTTAAGATGGCGGCGTACC (GGA) 5 103-119 

Table 2 Microsatellite markers developed for Narella versluysi with reference to primer 

sequences, motifs, number of alleles and fragment size range. 
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 All regions Guilvinec Croisic Petite Sole  Lampaul  Crozon Morgat-Dourarnenez 

Loci N(a) Ho He N(a) Ho He N(a) Ho He N(a) Ho He N(a) Ho He N(a) Ho He N(a) Ho He 

Narver_01031 20 0.890* 0.902 8 0.714 0.847 5 0.750 0.750 10 1.000** 0.787 12 0.944* 0.870 14 0.850* 0.896 13 0.882 0.894 

Narver_02199 19 0.143*** 0.917 4 0.000** 0.667 5 0.250** 0.781 6 0.154*** 0.592 10 0.231*** 0.802 11 0.071*** 0.895 12 0.154*** 0.899 

Narver_02442 10 0.476 0.549 5 0.714 0.551 2 0.000 0.375 5 0.813 0.586 5 0.389* 0.623 5 0.450 0.420 6 0.294** 0.481 

Narver_03299 24 0.783** 0.864 6 0.429** 0.776 6 1.000 0.813 8 1.000** 0.770 10 0.737** 0.832 16 0.800 0.890 14 0.706 0.848 

Narver_03969 14 0.831*** 0.797 5 0.857 0.714 4 1.000 0.719 4 0.750 0.527 8 0.737*** 0.814 7 0.850 0.753 10 0.941 0.853 

Narver_04747 6 0.329 0.386 2 0.429 0.337 2 0.000 0.375 4 0.250 0.229 3 0.263 0.234 5 0.450 0.440 4 0.375 0.580 

Narver_07831 11 0.667*** 0.836 7 1.000 0.833 3 0.333 0.611 5 0.688* 0.703 7 0.588** 0.815 9 0.650* 0.839 9 0.688 0.848 

Narver_10479 8 0.474*** 0.777 4 0.429 0.724 3 0.750 0.656 5 0.786** 0.732 6 0.375*** 0.738 6 0.350** 0.635 6 0.412** 0.775 

Narver_11984 24 0.904*** 0.941 9 1.000* 0.867 6 1.000 0.781 13 1.000*** 0.871 14 0.789*** 0.910 16 0.900 0.914 16 0.882 0.915 

Narver_12411 12 0.976* 0.893 7 1.000 0.827 7 1.000 0.844 10 1.000*** 0.842 10 1.000* 0.874 10 1.000 0.863 11 0.882 0.869 

Narver_14768 14 0.854*** 0.859 7 0.857 0.796 5 0.750 0.688 8 0.875*** 0.838 11 0.944* 0.864 7 0.750 0.796 9 0.882 0.822 

Narver_17311 5 0.366 0.364 3 0.571 0.439 2 0.000 0.375 3 0.438 0.354 2 0.222 0.198 3 0.400 0.471 2 0.412 0.327 

Table 3 Heterozygosity statistics for all microsatellite markers over all stations. N(a) = 

Number of alleles, Ho = Observed heterozygosity and He = Expected heterozygosity. 

Asterisks indicate significance levels (* p<0.05, ** p<0.01, *** p<0.001). 

 

 244 

Site Croisic Petite Sole Lampaul Crozon Morgat-Douarnenez 

Guilvinec -0.083 0.010 -0.010 -0.015 -0.022 

Croisic  -0.019 -0.038 -0.063 -0.070 

Petite Sole    0.024 0.040 0.037 

Lampaul     0.046 0.027 

Crozon     -0.004 

Table 4 Pairwise genetic distance (Fst) values using 𝜃 estimator for all sites (after 10000 

permutations). Slightly negative numbers should be treated as not difference from zero. No 

significant Fst values were found (p>>0.05). 

  245 
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Discussion  246 

There is strong connectivity between populations of the primnoid gorgonian N. versluysi in 247 

the Bay of Biscay, which suggests potential genetic cohesion over this region. The 248 

population structure shows no geographic patterning, and every sequence haplotype and 249 

microsatellite cluster is seen in at least four sites spanning more than 200 km.  250 

These findings agree with the lack of genetic structure found across the same locations for 251 

the scleractinian L. pertusa (Becheler et al 2017). Considering that both species are 252 

affected by the same currents and hydrographic regime, and were surveyed under 253 

randomly sampling schemes, it is therefore feasible to assume that similar reproductive or 254 

dispersal strategies are underlying the observed connectivity pattern on this scale. 255 

However, these hypotheses are difficult to ascertain as little is known about reproductive 256 

biology and early life-history stages of Narella species.  257 

The handful of studies to date about sexual reproductive processes in primnoid octocorals 258 

(less than 4.5% of the global diversity, see Kahng et al. 2011) indicate that they can either 259 

be broadcast spawners (Primnoa resedaeformis: Mercier and Hamel, 2011; Primnoa 260 

pacifica: Waller et al. 2014) or brooders with both internal and external fertilization (e.g. 261 

Thouarella spp: Brito et al. 1997; Fannyella spp.: Orejas et al. 2007) and that these 262 

possibly exhibit seasonal reproductive cycles. Although the broadcasting mode has been 263 

described for L. pertusa (Waller and Tyler, 2005), a precautionary approach is advocated 264 

when taking into account the contrasting patterns of connectivity between this species and 265 

M. oculata over the same area (Becheler et al. 2017), both keystone reef-builder 266 

scleractinians co-occurring in Bay of Biscay (Arnaud-Haond et al. 2017) and broadcast 267 

spawners (Waller and Taylor, 2005). While L. pertusa is panmictic at this regional scale, M. 268 

oculata shows significant genetic structure across a distance of ca. 500 km (Becheler et al. 269 

2017). Miller et al. (2010) found, however, no genetic differentiation in populations of M. 270 

oculata and Solenosmilia variabilis (also co-distributed reef-builder scleractinian species) 271 

across a large area from the southern Pacific Ocean (Miller et al. 2010). Conversely, a 272 

genetic structuring pattern was detected in taxonomically unrelated coral species (a 273 

solitary scleractinian and two antipatharians) at the same spatial scale (Miller et al. 2010), 274 

suggesting geographical barriers to dispersal. These add to the mounting evidence that 275 

unravelling connectivity and population structure in deep sea fauna, though crucial for a 276 

sustainable ocean, is a challenging exercise due to the lack of generalised connectivity 277 



12 

patterns (Hilário et al. 2015; Baco et al. 2016). 278 

Additionally, the role of asexual reproduction mechanisms such as fragmentation 279 

(Highsmith, 1982; Lasker, 1984), fission (Benayahu and Loya, 1985), polyp detachment 280 

(Rosen and Taylor, 1969; Sammarco, 1982) and clonal planulae produced via 281 

parthenogenesis (Brazeau and Lasker, 1989; Hartnoll, 1975; Yeoh and Dai, 2010) cannot 282 

be ruled out and this reproductive mode might also contribute to the observed connectivity 283 

pattern amongst populations of N. verslyusi. However, its effectiveness in the deep sea 284 

has been mostly assessed in scleractinian corals (e.g. Waller et al. 2002; Le Goff‐Vitry et 285 

al. 2004; Le Goff‐Vitry and Rogers, 2005; Dahl et al. 2012; Miller and Gunasekera, 2017).  286 

It is during the planktonic phase that dispersal occurs for most benthic invertebrate species 287 

and therefore the maintenance of connectivity between populations (e.g. Kinlan and 288 

Gaines 2003; Bradbury et al. 2008; Treml et al. 2008; Cowen and Sponaugle, 2009; 289 

Faurby and Barber, 2012), and habitat resilience to anthropogenic stressors (Jones et al. 290 

2009; Lett et al. 2010), greatly depend on intrinsic biological drivers (e.g. planktonic larval 291 

type and duration, swimming ability and other pre-settlement traits, recruit mortality, 292 

reproductive output) and how these interact with the surrounding environment (Ayata et al. 293 

2010; Etter et al. 2015; Cardona et al. 2016). The location of sites selected for this study 294 

aligns with the strong north-westward current that follows the contours of the shelf 295 

(Koutsikopoulos and Le Cann, 1996) and this physical process might indeed facilitate the 296 

transport of N. versluysi larvae and promote enhanced food supply to the new recruits 297 

throughout the study area (Thiem et al. 2006; Van Rooij et al. 2010; Soetaert et al. 2016). 298 

Furthermore, early post-settlement survivorship of these might be boosted by its 299 

attachment onto elevated and structurally complex habitats, i.e. L. pertusa and M. oculata 300 

reefs (van den Beld, 2017b), avoiding the accumulation of fine-grained sediments due to 301 

swifter currents (Genin, 1986; Lacharité and Metaxas, 2013). In adult colonies access to 302 

food and resilience to sediment exposure are likely enhanced by its morphology. This 303 

species, although flagelliform (apart from a few reports on poorly branched colonies), can 304 

attain heights of up to 1 m from the reefs exhibiting large and strongly calcified polyps 305 

(Cairns and Bayer, 2003 and ABH pers. observations). 306 

Moreover, we see no pattern of isolation by depth, as has been reported for the primnoid C. 307 

delta, in Gulf of Mexico, over a slightly shallower (400–914m) depth range (Quattrini et al. 308 

2015), and other Narella species in the Hawaiian archipelago (Baco and Cairns, 2012). 309 

The pattern for Hawaiian Narella was mixed, with depth related isolation reported for some 310 
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species (N. alaskensis) and not others (N. macrocalyx/arbuscula/sp. 2 Baco and Cairns, 311 

2012). Nevertheless, N. versluysi has a wider bathymetric distribution (600–3000 m depths) 312 

than sampled in this study (709–1247 m), so depth-related trends could be detected by 313 

sampling from deeper populations or at coarser scales (Zardus et al. 2006; Rex and Etter 314 

2010; Baco and Cairns, 2012). For example, genetic differentiation with depth has been 315 

detected in the solitary scleractinian Desmophyllum dianthus across large geographic 316 

scales and that was consistent with the stratification of water masses, which could be 317 

indicative of larval retention in certain layers (Miller et al. 2011). Patterns of genetic 318 

structuring along depth gradients have been also identified in the precious octocoral 319 

Corallium rubrum (Constantini et al. 2011) and stylasterids (Lindner et al. 2008). 320 

Our samples span a geographic distance of 300km, which fits a pattern of genetic 321 

connectivity in deep-water species over hundreds of kilometers (Taylor and Roterman, 322 

2017). However, N. versluysi is reported as far across the North Atlantic as the coast of 323 

Florida, almost 7,000km distant. It seems unlikely that the level of genetic cohesion 324 

reported in this study will be apparent over the full range. For example L. pertusa, which 325 

shows high connectivity in Bay of Biscay (Becheler et al. 2017), has significant 326 

differentiation between regions of the NE Atlantic, and strong differences on the 327 

transatlantic scale (Morrison et al. 2011). This fits with a pattern of basin-scale genetic 328 

variability for cold water corals, rather than local variation or differentiation with depth 329 

(Herrera et al. 2012). However, patterns of connectivity in the deep-sea vary between 330 

species, with some species reportedly maintaining genetic homogeneity over hundreds of 331 

kilometres (Miller et al. 2010).  332 

In this study we see relatively few haplotypes in the sequence data (2 haplotypes over 16 333 

samples), but there is only notable intra-specific variation for MutS region (0-0.1%). These 334 

are within the maximum infra-specific variations for Narella reported for the Eastern Pacific 335 

(Baco and Cairns, 2012, ND2: 0-0.13%; COI: 0-0.24%; MutS: 0-0.47%), and well within 336 

the maximum inter-specific variation values reported therein. Sequence identity is 337 

maintained over distances of more than 200 km, but it is difficult to comment on sequence 338 

diversity based on these data as some mitochondrial regions may not be sufficient to 339 

reveal generic level differences in Primnoidae (Baco and Cairns, 2012), for example 340 

maximum infra-specific variation reported in this study exceeds inter-genera variation of 341 

Narella and other Primnoids (Baco and Cairns, 2012; France and Hoover, 2002). 342 

 343 
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Future effort 344 

The large number of linked markers may be due to the high variability in these markers, in 345 

extremis we have 2 markers showing 24 alleles in 83 individuals. The Linkage 346 

Disequilibrium test is based on a contingency table comparing the presence/absence of 347 

single alleles, but this test may be less reliable in cases of low allele frequency (Delvin and 348 

Risch, 1995). When comparing two loci with high allele counts relative to the population 349 

sampled, it is highly likely that pairs of co-varying alleles can be found.  The markers found 350 

to be linked in this study should be tested on larger populations, where they may show 351 

independent variation. 352 

The congeneric species Narella bellissima was found in several locations alongside N. 353 

versluysi, but not in sufficient numbers to perform an analysis. The microsatellite markers 354 

developed in this study were tested on 5 samples of N. bellissima, all markers worked and 355 

showed variation, and it is hoped that these markers may be applied to other Narella 356 

species in future studies. 357 

 358 

Conclusion 359 

This is the first study to report population genetics of primnoid populations in the Northeast 360 

Atlantic, and the first to date addressing N. verslyusi. The markers developed herein 361 

proved effective for assessing genetic population structure in this species and may be 362 

applicable to other members of the genus Narella. There is high connectivity between 363 

populations over large geographic distances, and no evidence for isolation by distance or 364 

depth. The connectivity patterns observed may be facilitated by the predominant 365 

northwesterly current that follows the steep shelf-edge topography of the Bay of Biscay. 366 

High gene flow between populations indicates a large dispersal potential, suggesting that 367 

N. versluysi is likely to recover after low to moderate disturbance. This information is vital 368 

in establishing baseline data and assess the impacts of potential anthropogenic 369 

disturbances in this important habitat forming group from deep-water ecosystems, whose 370 

diversity and distributional range is commonly updated after new seabed surveys. 371 

 372 
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 385 

Figure Captions 386 

Fig. 1 Specimen of Narella versluysi being collected during the BobEco cruise (© 

IFREMER 2011). Inset shows the full specimen on deck (right – rightmost specimen) and 

a close up of downward orientation in polyp whorls (left). 

Fig. 2 Geographic distribution of N. versluysi samples (crosses). Pies below crosses show 

genetic clusters based on microsatellite data (see Fig. 4).  Pies above crosses show 

sequence haplotypes (MutS data). Pies are sized proportional to sample numbers, with 

segments representing individual genetic clusters and haplotypes.  Arrows show relative 

speed of seabed currents. 

Fig. 3 Beanplots showing depth profiles of each sequence haplotype (left) and genetic 

cluster (right). Widths are based on sample density. Thin horizontal lines show individual 

samples, thick line shows group mean. Dashed line = overall mean.  

Fig. 4 Plot of first two principal components based on the discriminant analysis of principal 

components (DAPC) analysis of microsatellite data. Ellipses show 75% CI around each 

genetic cluster.  
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