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SUMMARY 24 

1. Cities support unique and valuable ecological communities, but understanding urban 25 

wildlife is limited due to the difficulties of assessing biodiversity. Ecoacoustic 26 

surveying is a useful way of assessing habitats, where biotic sound measured from 27 

audio recordings is used as a proxy for biodiversity. However, existing algorithms for 28 

measuring biotic sound have been shown to be biased by non-biotic sounds in 29 

recordings, typical of urban environments. 30 

2. We develop CityNet, a deep learning system using convolutional neural networks 31 

(CNNs), to measure audible biotic (CityBioNet) and anthropogenic (CityAnthroNet) 32 

acoustic activity in cities. The CNNs were trained on a large dataset of annotated 33 

audio recordings collected across Greater London, UK. Using a held-out test dataset, 34 

we compare the precision and recall of CityBioNet and CityAnthroNet separately to 35 

the best available alternative algorithms: four acoustic indices (AIs): Acoustic 36 

Complexity Index, Acoustic Diversity Index, Bioacoustic Index, and Normalised 37 

Difference Soundscape Index, and a state-of-the-art bird call detection CNN (bulbul). 38 

We also compare the effect of non-biotic sounds on the predictions of CityBioNet and 39 

bulbul. Finally we apply CityNet to describe acoustic patterns of the urban 40 

soundscape in two sites along an urbanisation gradient. 41 

3. CityBioNet was the best performing algorithm for measuring biotic activity in terms 42 

of precision and recall, followed by bulbul, while the AIs performed worst. 43 

CityAnthroNet outperformed the Normalised Difference Soundscape Index, but by a 44 

smaller margin than CityBioNet achieved against the competing algorithms.  The 45 

CityBioNet predictions were impacted by mechanical sounds, whereas air traffic and 46 

wind sounds influenced the bulbul predictions. Across an urbanisation gradient, we 47 
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show that CityNet produced realistic daily patterns of biotic and anthropogenic 48 

acoustic activity from real-world urban audio data. 49 

4. Using CityNet, it is possible to automatically measure biotic and anthropogenic 50 

acoustic activity in cities from audio recordings. If embedded within an autonomous 51 

sensing system, CityNet could produce environmental data for cites at large-scales 52 

and facilitate investigation of the impacts of anthropogenic activities on wildlife. The 53 

algorithms, code and pre-trained models are made freely available in combination 54 

with two expert-annotated urban audio datasets to facilitate automated environmental 55 

surveillance in cities.  56 

Keywords: Acoustic Indices, Anthropogenic, Biodiversity Assessment, Convolutional Neural 57 

Networks, Deep Learning, Ecoacoustics, London, Machine Learning, Soundscapes, Urban 58 

Ecology.  59 
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INTRODUCTION 60 

Over half of the world’s human population now live in cities (UN-DESA 2016) and urban 61 

biodiversity can provide people with a multitude of health and well-being benefits including 62 

improved physical and psychological health (Natural England 2016; Crouse et al. 2017). 63 

Cities can support high biodiversity including native endemic species (Aronson et al. 2014), 64 

and act as refuges for biodiversity that can no longer persist in intensely managed agricultural 65 

landscapes surrounding cities (Hall et al. 2016). However, our understanding of urban 66 

biodiversity remains limited (Faeth, Bang & Saari 2011; Beninde, Veith & Hochkirch 2015). 67 

One reason for this is the difficulties associated with biodiversity assessment, such as gaining 68 

repeated access to survey sites and the resource intensity of traditional methods (Farinha-69 

Marques et al. 2011). This inhibits our ability to conduct the large-scale assessment that is 70 

necessary for understanding urban ecosystems. 71 

Ecoacoustic surveying has emerged as a useful method of large-scale quantification of 72 

ecological communities and their habitats (Sueur & Farina 2015). Passive acoustic recording 73 

equipment facilitates the collection of audio data over long time periods and large spatial 74 

scales with fewer resources than traditional survey methods (Digby et al. 2013). A number of 75 

automated methods have been developed to measure biotic sound in the large volumes of 76 

acoustic data that are typically produced by ecoacoustic surveying (Sueur & Farina 2015). 77 

For example, Acoustic Indices (AIs) use the spectral and temporal characteristics of acoustic 78 

energy in sound recordings to produce whole community measures of biotic and 79 

anthropogenic sound (Sueur et al. 2014). However, several commonly used AIs have been 80 

shown to be biased by non-biotic sounds (Towsey et al. 2014; Fuller et al. 2015; Gasc et al. 81 

2015a), and are not suitable for use in the urban environment without the prior removal of 82 

certain non-biotic sounds from recordings (Fairbrass et al. 2017).  83 
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Machine learning (ML) is being increasingly applied to biodiversity assessment and 84 

monitoring because it facilitates the detection and classification of ecoacoustic signals in 85 

audio data (Acevedo et al. 2009; Walters et al. 2012; Stowell & Plumbley 2014). Using 86 

annotated audio datasets of soniferous species, a ML model can be trained to recognise biotic 87 

sounds based on multiple acoustic characteristics, or features, and to associate these features 88 

with taxonomic classifications, and can then assign a probabilistic classification to sounds 89 

within recordings. AIs only use a limited number of acoustic features in their calculations, 90 

such as spectral entropy within defined frequency bands (Boelman et al. 2007; Villanueva-91 

Rivera et al. 2011; Kasten et al. 2012) or entropy changes over time (Pieretti, Farina & Morri 92 

2011). Additionally, the relationship between the features and the algorithm outputs are 93 

chosen by a human, rather than learned automatically from an annotated dataset. In contrast, 94 

ML algorithms can utilise many more features in their calculations, and the relationship 95 

between inputs and outputs is determined automatically based on the annotated training data 96 

provided. Convolutional Neural Networks, CNNs (or Deep learning) (LeCun, Bengio & 97 

Hinton 2015) can even choose, based on the annotations in the training dataset, the features 98 

that best discriminate different classes in datasets without being specified a priori, and can 99 

take advantage of large quantities of training data where their ability to outperform human 100 

defined algorithms increases as more labelled data become available.  101 

Species-specific ML algorithms have been developed to automatically identify the sounds 102 

emitted by a range of soniferous organisms including birds (Stowell & Plumbley 2014), bats 103 

(Walters et al. 2012; Zamora‐Gutierrez et al. 2016), amphibians (Acevedo et al. 2009) and 104 

invertebrates (Chesmore & Ohya 2004). However, these algorithms are focussed on a small 105 

number of species limiting their usefulness for broad classification tasks across communities. 106 

More recently, algorithms that detect whole taxonomic groups are being developed, for 107 

example bird sounds in audio recordings from the UK and the Chernobyl Exclusion Zone 108 
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(Grill & Schlüter 2017), but these algorithms remain untested on noisy audio data from urban 109 

environments. There are currently no algorithms that produce whole community measures of 110 

biotic sound that are known to be suitable for use in acoustically complex urban 111 

environments.  112 

Here, we develop the CityNet acoustic analysis system, which uses two CNNs for measuring 113 

audible (0-12 kHz) biotic (CityBioNet) and anthropogenic (CityAnthroNet) acoustic activity 114 

in audio recordings from urban environments. We use this frequency range as it contains the  115 

majority of sounds emitted by audible soniferous species in the urban environment (Fairbrass 116 

et al. 2017). The CNNs were trained using CitySounds2017, an expert-annotated dataset of 117 

urban sounds collected across Greater London, UK that we develop here. We compared the 118 

performance of CityNet using a held-out dataset by comparing the algorithms’ precision and 119 

recall to four commonly used AIs: Acoustic Complexity Index (ACI) (Pieretti, Farina & 120 

Morri 2011), Acoustic Diversity Index (ADI) (Villanueva-Rivera et al. 2011), Bioacoustic 121 

Index (BI) (Boelman et al. 2007), Normalised Difference Soundscape Index (NDSI) (Kasten 122 

et al. 2012), and to bulbul, a state-of-the-art algorithm for detecting bird sounds in order to 123 

summarise avian acoustic activity (Grill & Schlüter 2017). As the main focus of the study 124 

was the development of algorithms for ecoacoustic assessment of biodiversity in cities, we 125 

conducted further analysis on the two best performing algorithms for measuring biotic sound, 126 

CityBioNet and bulbul, by investigating the effect of non-biotic sounds on the accuracy of the 127 

algorithms. Finally, we applied CityNet to investigate daily patterns of biotic and 128 

anthropogenic sound in the urban soundscape.  129 
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MATERIALS AND METHODS 130 

We developed two CNN models, CityBioNet and CityAnthroNet within the CityNet system 131 

to generate measures of biotic and anthropogenic sound, respectively. The CityNet pipeline 132 

(Figure 1) consisted of 7 main steps as follows:  133 

(1) Record audio: Audible frequency (0-12 kHz) .wav audio recordings were made using a 134 

passive acoustic recorder. 135 

(2) Audio conversion to Mel spectrogram: Each audio file was automatically converted to a 136 

Mel spectrogram representation with 32 frequency bins, represented as rows in the 137 

spectrogram, using a temporal resolution of 21 columns per second of raw audio. Before use 138 

in the classifier, each spectrogram 𝑆 was converted to a log-scale representation, using the 139 

formula log(A + B * S). For biotic sound detection the parameters A = 0.001 and B = 10.0 140 

were used, while for anthropogenic sound detection the parameters A = 0.025 and B = 2.0 141 

were used. 142 

(3) Extract window from spectrogram: A single input to the CNN comprised a short 143 

spectrogram chunk Ws, 21 columns in width, representing 1 second of audio. 144 

(4) Apply different normalisation strategies: There are many different methods for pre-145 

processing spectrograms before they are used in ML; for example whitening (Lee et al. 2009) 146 

and subtraction of mean values along each frequency bin (Aide et al. 2013). CNNs are able to 147 

accept inputs with multiple channels of data, for example the red, green and blue channels of 148 

a colour image. We exploited the multiple input channel capability of our CNN by providing 149 

as input four spectrograms each pre-processed using a different normalisation strategy (see 150 

Supplementary Methods), which gave considerable improvements to network accuracy above 151 

any single normalisation scheme in isolation. After applying different normalisation 152 

strategies, the input to the network consisted of a 32 x 21 x 4 tensor. 153 
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(5) Apply CNN classifier: As described above, classification was performed with a CNN, 154 

whose parameters were learnt from training data. The CNN comprised a series of layers, each 155 

of which modified its input data with parameterised mathematical operations which were 156 

optimised to improve classification performance during training (see Supplementary Methods 157 

for details). The final layer produced the prediction of presence or absence of biotic or 158 

anthropogenic sound. 159 

(6) Make prediction for each moment in time: At test time, steps (3)-(5) were repeated every 160 

1 second throughout the audio file, to give a measure of biotic or anthropogenic activity 161 

throughout time. Predictions for each chunk of audio were made independently. 162 

(7) Summarise: Where appropriate, the chunk-level predictions were summarised to gain 163 

insights into trends over time and space. For example, predicted activity levels for each half-164 

hour window could be averaged to inspect the level of biotic and anthropogenic activity at 165 

different times of day.  166 

The ML pipeline was written in Python v.2.7.12 (Python Software Foundation 2016) using 167 

Theano v.0.9.0 (The Theano Development Team et al. 2016) and Lasagne v.0.2 (Dieleman et 168 

al. 2015) for ML and librosa v.0.4.2 (McFee et al. 2015) for audio processing. 169 

Acoustic Dataset 170 

We selected 63 green infrastructure (GI) sites in and around Greater London, UK to collect 171 

audio data to train and test the CityNet algorithms. These sites represent a range of GI in and 172 

around Greater London in terms of GI type, size and urban intensity. Each site was sampled 173 

for 7 consecutive days systematically across the months of May to October between 2013 and 174 

2015 (Figure 2, Table S1). At each location, a Song Meter SM2+ digital audio field sensor 175 

(Wildlife Acoustics, Inc., Concord, Massachusetts, USA) was deployed, recording sound 176 

between 0 and 12 kHz at a 24 kHz sample rate. The sensor was equipped with a single 177 
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omnidirectional microphone (frequency response: -35±4 dB) oriented horizontally at a height 178 

of 1m. Files were saved in .wav format onto a SD card. Audio was recorded in 179 

computationally manageable chunks of 29 minutes of every 30 mins (23.2 hours of recording 180 

per day), which were divided into 1-minute audio files using Slice Audio File Splitter (NCH 181 

Software Inc. 2014), leading to a total of 613,872 discrete minutes of audio recording (9,744 182 

minutes for each of the 63 sites). This constituted the CitySounds2017 dataset. 183 

Acoustic Training Dataset 184 

To create our training dataset (CitySounds2017train) we randomly selected twenty five 1-185 

minute recordings from 70% of the study sites (44 sites, 1100 recordings). A.F. manually 186 

annotated the spectrograms of each recording, computed as the log magnitude of a discrete 187 

Fourier transform (non-overlapping Hamming window size=720 samples=10 ms), using 188 

AudioTagger (available at https://github.com/groakat/AudioTagger). Spectrograms were 189 

annotated by localising the time and frequency bands of discrete sounds by drawing bounding 190 

boxes as tightly as visually possible within spectrograms displayed on a Dell UltraSharp 191 

61cm LED monitor. Types of sound, such as “invertebrate”, “rain”, and “road traffic”, were 192 

identified by looking for typical patterns in spectrograms (Figure S1), and by listening to the 193 

audio samples represented in the annotated parts of the spectrogram. Categories of sounds 194 

were then grouped into biotic, anthropogenic and geophonic classes following Pijanowski et 195 

al. (2011), where we define biotic as sounds generated by non-human biotic organisms, 196 

anthropogenic as sounds associated with human activities, and geophonic as non-biological 197 

ambient sounds e.g. wind and rain. 198 

Acoustic Testing Dataset and Evaluation 199 

To evaluate the performance of the CityNet algorithms, we created a testing dataset 200 

(CitySounds2017test) by strategically selecting 40 recordings from CitySounds2017 from the 201 
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remaining 30% of sites (19 sites) that contained a range of both biotic and anthropogenic 202 

acoustic activity. CitySounds2017test was sampled from different recording sites to 203 

CitySounds2017train to demonstrate that the CityNet algorithms generalise to sounds recorded 204 

at new site locations (Figure 2, Table S1). To optimise the quality of the annotations in 205 

CitySounds2017test, we selected five human labellers to separately annotate the sounds within 206 

the audio recordings (using the same methods as above) to create a single annotated test 207 

dataset. Conflicts were resolved using a majority rule, and in cases where there was no 208 

majority, we used our own judgement on the most suitable classification. Our 209 

CitySounds2017 annotated training and testing datasets are available at 210 

https://figshare.com/s/adab62c0591afaeafedd. 211 

Using the CitySounds2017test dataset, we separately assessed the performance of the two 212 

CityNet algorithms, CityBioNet and CityAnthroNet, using two measures: precision and 213 

recall. The CityBioNet and CityAnthroNet algorithms give a probabilistic estimate of the 214 

level of biotic or anthropogenic acoustic activity for each 1-second audio chunk as a number 215 

between 0 and 1. Different thresholds could be used to convert these probabilities into sound 216 

category assignments (e.g. ‘sound present’ or ‘sound absent’). At each threshold, a value of 217 

precision and recall was computed, where precision was the fraction of 1-second chunks 218 

correctly identified as containing the sound according to the annotations in 219 

CitySounds2017test, and recall was the fraction of 1-second chunks labelled as containing the 220 

sound which was retrieved by the algorithm under that threshold. As the threshold was swept 221 

between 0 and 1, the resulting values of precision and recall were plotted as a precision-recall 222 

curve. Summary statistics were computed for the average precision under all the threshold 223 

values and the recall when the threshold chosen gave a precision of 0.95. Using a threshold of 224 

0.5 on the predictions, confusion matrices were calculated showing how each moment of time 225 

was classified relative to the annotations. These analyses were conducted in Python v.2.7.12 226 

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/248708doi: bioRxiv preprint first posted online Jan. 16, 2018; 

http://dx.doi.org/10.1101/248708
http://creativecommons.org/licenses/by-nc-nd/4.0/


Deep Learning Urban Ecoacoustic Tools – Fairbrass Firman et al. 

12 

 

(Python Software Foundation 2016) using Scikit-learn v.0.18.1 (Pedregosa et al. 2011) and 227 

Matplotlib v.1.5.1 (Hunter 2007). 228 

Competing Algorithms 229 

We also compared the precision and recall of the CityNet algorithms to acoustic measures 230 

produced by four AIs: Acoustic Complexity Index (ACI) (Pieretti, Farina & Morri 2011), 231 

Acoustic Diversity Index (ADI) (Villanueva-Rivera et al. 2011), Bioacoustic Index (BI) 232 

(Boelman et al. 2007), and Normalised Difference Soundscape Index (NDSI) (Kasten et al. 233 

2012). The NDSI generates a measure of anthropogenic disturbance according to the formula  234 

𝑁𝐷𝑆𝐼 =
NDSI𝑏𝑖𝑜 – NDSI𝑎𝑛𝑡ℎ𝑟𝑜 

NDSI𝑏𝑖𝑜+ NDSI𝑎𝑛𝑡ℎ𝑟𝑜
 235 

where NDSIbio and NDSIanthro are the total biotic and anthropogenic acoustic activity in each 236 

recording, respectively. Rather than compare CityNet to the NDSI, we compared the biotic 237 

(NDSIbio) and anthropogenic (NDSIanthro) elements of the NDSI to the measures produced by 238 

CityBioNet and CityAnthroNet, respectively, as these were more comparable. As the AIs are 239 

all designed to give a summary of acoustic activity for an entire file, they were analysed on 240 

the CitySounds2017test dataset by treating each 1-second chunk of audio as a separate sound 241 

file to enable direct comparisons to CityNet. The AI measures do not have a natural threshold 242 

for classification into biotic/non-biotic sound, meaning we could not calculate confusion 243 

matrices. However, a threshold between their lowest value and their highest value was used 244 

in combination with the range of precision and recall values to form precision-recall curves. 245 

All AIs were calculated in R v.3.4.1 (R Core Team 2017) using the ‘seewave’ v.1.7.6 (Sueur, 246 

Aubin & Simonis 2008) and ‘soundecology’ v.1.2 (Villanueva-Rivera & Pijanowski 2014) 247 

packages. 248 

Equation 1   

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/248708doi: bioRxiv preprint first posted online Jan. 16, 2018; 

http://dx.doi.org/10.1101/248708
http://creativecommons.org/licenses/by-nc-nd/4.0/


Deep Learning Urban Ecoacoustic Tools – Fairbrass Firman et al. 

13 

 

The precision and recall of CityBioNet was also compared to bulbul (Grill & Schlüter 2017), 249 

an algorithm for detecting bird sounds in entire audio recordings in order to summarise avian 250 

acoustic activity which was the winning entry in the 2016-7 Bird Audio Detection challenge 251 

(Stowell et al. 2016). Like CityNet, bulbul is a CNN-based classifier which uses 252 

spectrograms as input. However, it does not use the same normalisation strategies as CityNet, 253 

and it was not trained on data from noisy, urban environments. Bulbul was applied to each 254 

second of audio data in CitySounds2017test, using the pre-trained model provided by the 255 

authors together with their code. 256 

Impact of Non-Biotic Sounds 257 

We conducted additional analysis on the non-biotic sounds that affect the predictions of 258 

CityBioNet and bulbul, as these were found to be the best performing algorithms for 259 

measuring biotic sound. To do this, we created subsets of the CitySounds2017test dataset 260 

comprising all the seconds that contained a range of non-biotic sounds, e.g. a road traffic data 261 

subset containing all of the seconds in CitySounds2017test where the sound of road traffic was 262 

present. We then used a Chi-squared test to identify significant differences in the proportion 263 

of seconds in which the presence/absence of biotic sound at threshold 0.5 was correctly 264 

predicted in the full and subset datasets by each algorithm, and the Cramer’s V statistic was 265 

used to assess the effect size of differences (Cohen 1992). These analyses were conducted in 266 

R v.3.4.1 (R Core Team 2017). 267 

Ecological Application  268 

We used CityNet to generate daily average patterns of biotic and anthropogenic acoustic 269 

activity for two study sites across an urbanisation gradient (sites E29RR and IG62XL with 270 

high and low urbanisation respectively, Table S1). To control for the date of recording; both 271 

sites were surveyed between May and June 2015. CityNet was run over the entire 7 days of 272 
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recordings from each site to predict the presence/absence of biotic and anthropogenic sound 273 

for every 1-second audio chunk using a 0.5 probability threshold. Measures of biotic and 274 

anthropogenic activity were created for each half hour window between midnight and 275 

midnight by averaging the predicted number of seconds containing biotic or anthropogenic 276 

sound within that window over the entire week.  277 

RESULTS 278 

Acoustic Performance  279 

CityBioNet had an average precision of 0.934 and recall of 0.710 at 0.95 precision, while 280 

CityAnthroNet had an average precision of 0.977 and recall of 0.858 at 0.95 precision (Table 281 

1, Figure 3). In comparison the ACI, ADI, BI and NDSIbio had a lower average precision 282 

(0.663, 0.439, 0.516, and 0.503, respectively) and lower recall at 0.95 (all less than 0.01). 283 

CityBioNet also outperformed bulbul which had an average precision of 0.872 and recall at 284 

0.95 of 0.398 (Table 1). In comparison to CityAnthroNet, the NDSIanthro had a lower average 285 

precision (0.975) and lower recall at 0.95 precision (0.815). When biotic sound was present in 286 

recordings, CityBioNet correctly predicted the presence of biotic sound (True Positives) in a 287 

greater proportion of audio data than bulbul (33.2% in comparison with 18.5%, for 288 

CityBioNet and bulbul respectively) (Figure 4). However, CityBioNet failed to correctly 289 

predict the presence of biotic sound (False Negatives) in 1.7% of recordings in comparison 290 

with 1.0% incorrect predictions by bulbul. When biotic sound was absent from recordings, 291 

CityBioNet correctly predicted the absence of biotic sound (True Negatives) in 51.6% of the 292 

audio data in comparison with 52.6% for bulbul, and CityBioNet failed to correctly predict 293 

the absence of biotic sound (False Positives) in 13.5% of audio data in comparison with 294 

20.0% incorrect predictions by bulbul (Figure 4).  295 
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Impacts of Non-Biotic Sounds 296 

CityBioNet was strongly (Cramer’s V effect size >0.5) negatively affected by mechanical 297 

sound (the presence/absence of biotic sound was correctly predicted in 28.60% less of the 298 

data when mechanical sounds were also present) (Table 2). Bulbul was moderately (Cramer’s 299 

V effect size 0.1-0.5) negatively affected by the sound of air traffic and wind (the 300 

presence/absence of biotic sound was correctly predicted in 5.34% and 6.93% less of the data 301 

when air traffic and wind sounds were also present in recordings, respectively).  302 

Ecological Application 303 

CityNet produced realistic patterns of biotic and anthropogenic acoustic activity in the urban 304 

soundscape at two study sites of low and high urban intensity (Figure 2B and C). At both 305 

sites, biotic acoustic activity peaked just after sunrise and declined rapidly after sunset. A 306 

second peak of biotic acoustic activity was recorded at sunset at the low urban intensity site 307 

but not at the high urban intensity site. At both sites anthropogenic acoustic activity rose 308 

sharply after sunrise, remained constant throughout the day and declined after sunset. 309 

DISCUSSION 310 

Both CityBioNet and CityAnthroNet outperformed the competing algorithms on the 311 

CitySound2017test dataset. CityBioNet performed better than bulbul on noisy recordings from 312 

the urban environment; it was robust to more non-biotic sounds, including road traffic, air 313 

traffic and rain. Being robust to the sound of road traffic supports the suitability of 314 

CityBioNet for use in cities, as the urban soundscape is dominated by the sound of road 315 

traffic (Fairbrass et al. 2017) which has been shown to bias several of the AIs tested here 316 

(Fuller et al. 2015; Fairbrass et al. 2017). The sound of rain has also been shown to bias 317 

several AIs (Depraetere et al. 2012; Gasc et al. 2015b; Fairbrass et al. 2017) and the 318 

development of a method that is robust to this sound is a considerable contribution to the field 319 
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of ecoacoustics. The urban biotic soundscape is dominated by the sounds emitted by birds 320 

(Fairbrass et al. 2017), and the good performance of bulbul, an algorithm for measuring 321 

exclusively bird sounds, on the CitySounds2017test dataset, confirms this. Birds are used as 322 

indicator species in existing urban biodiversity monitoring schemes (Kohsaka et al. 2013) 323 

using data collected from traditional forms of biodiversity survey. The algorithms developed 324 

here could be used to support such existing schemes by making it easier to collect data on 325 

these indicator taxa.  326 

CityNet is the only method currently available for measuring both biotic and anthropogenic 327 

acoustic activity using a single system in noisy audio data from urban environments. There is 328 

increasing evidence that anthropogenic noise affects wildlife in a variety of ways including 329 

altering communication behaviour (Gil & Brumm 2014) and habitat use (Deichmann et al. 330 

2017). However, these investigations are limited in scale by the use of resource intensive 331 

methods of measuring biotic and anthropogenic sound in the environment or from audio data. 332 

Others rely on AIs (Pieretti & Farina 2013) which have been shown to be unreliable in 333 

acoustically disturbed environments (Fairbrass et al. 2017). CityNet could facilitate the 334 

investigation of the impacts of anthropogenic activities on wildlife populations at scales not 335 

currently possible with traditional acoustic analysis methods. 336 

CityBioNet clearly outperformed all the AIs tested, but the difference in performance 337 

between CityAnthroNet and the competing algorithm for measuring anthropogenic acoustic 338 

activity (NDSIanthro) was much less marked.  These results suggest that the measurement of 339 

biotic sound in noisy audio data from urban environments requires more sophisticated 340 

algorithms than the measurement of anthropogenic sound. Possibly anthropogenic sounds are 341 

more easily separable from other sounds in frequency space, a theory which is the basis of a 342 

number of AIs (Boelman et al. 2007; Kasten et al. 2012), facilitating the use of human 343 

defined algorithms such as NDSIanthro. Whereas, because biotic sounds occur in a frequency 344 
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space shared with anthropogenic and geophonic sounds (Fairbrass et al. 2017), algorithms 345 

such as AIs which only use a small number of  features to discriminate sounds are not 346 

sufficient for use in cities. Therefore, ML algorithms which are able to utilise larger numbers 347 

of features to discriminate sounds, such as the CNNs implemented in the CityNet system, are 348 

better able to detect biotic sounds in recordings that also contain non-biotic sounds. A recent 349 

unsupervised method developed by Lin, Fang and Tsao (2017) to separate biological sounds 350 

from long recordings could be used as a pre-processing step to further improve CityNet’s 351 

performance. 352 

Low cost acoustic sensors and algorithms for the automatic measurement of biotic sound in 353 

audio data is facilitating the assessment and monitoring of biodiversity at large temporal and 354 

spatial scales (Sueur & Farina 2015), but to date this technology has only been deployed in 355 

non-urban environments (e.g. Aide et al. 2013). In cities, the availability of mains power and 356 

Wifi connections is supporting the development of the urban Internet of Things (IoT) using 357 

sensors integrated into existing infrastructure to monitor environmental factors including air 358 

pollution, noise levels, and energy use (Zanella et al. 2014). The CityNet system could be 359 

integrated into an IoT sensing network to facilitate large-scale urban environmental 360 

assessment. Large-scale deployment of algorithms such as CityNet requires low power usage 361 

and fast running times. One way to help to achieve this aim would be to combine the two 362 

networks (CityBioNet and CityAnthroNet) into one CNN which predicts both biotic and 363 

anthropogenic acoustic activity simultaneously. 364 

An expansion of CityNet to ultrasonic frequencies would increase the generality of the tool as 365 

it could be used to monitor species in cities that emit sounds at frequencies higher than 12 366 

kHz such as bats and some invertebrates. Bats are frequently used as ecological indicators 367 

because they are sensitive to environmental changes (Walters et al. 2013). Acoustic methods 368 

are commonly used to monitor bat populations using passive ultrasonic recorders meaning bat 369 
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researchers and conservationists are faced with the challenge of extracting meaningful 370 

information from large volumes of audio data. The development of automated methods for 371 

measuring bat calls in ultrasonic data has focused to date on the identification of bat species 372 

calls and many algorithms are proprietary (e.g., Szewczak 2010; Wildlife Acoustics 2017). 373 

The development of an open-source algorithm that produces community-level measures of 374 

bats would be a valuable addition to the toolbox of bat researchers and conservationists.  375 

Retraining CityNet with labelled audio data from other cities would make it possible to use 376 

the system to monitor urban biotic and anthropogenic acoustic activity more widely. 377 

However, as London is a large and heterogeneous city, CityNet has been trained using a 378 

dataset containing sounds that characterise a wide range of urban environments. Our data 379 

collection was restricted to a single week at each study site, which limits our ability to assess 380 

the ability of CityNet system to detect environmental changes. Future work should focus on 381 

the collection of longitudinal acoustic data to assess the sensitivity of the algorithms to detect 382 

environmental changes. Our use of human labellers would have introduced subjectivity and 383 

bias into our dataset. The task of annotating large audio datasets from acoustically complex 384 

urban environments is highly resource intensive, a problem which has been recently tackled 385 

with citizen scientists to create the UrbanSounds and UrbanSound8k datasets using audio 386 

data from New York city, USA (Salamon, Jacoby & Bello 2014). These comprise short 387 

snippets of 10 different urban sounds such as jackhammers, engines idling and gunshots. 388 

These datasets do not fully represent the characteristics of urban soundscapes for three 389 

reasons. Firstly, they assume only one class of sound is present at each time, while in fact 390 

multiple sound types can be present at one time (consider a bird singing while an aeroplane 391 

flies overhead). Secondly, they only include anthropogenic sounds, while CityNet measures 392 

both anthropogenic and biotic sounds. Finally, each file in these datasets has a sound present, 393 

while urban soundscapes contain many periods of silence or geophonic sounds, two 394 

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/248708doi: bioRxiv preprint first posted online Jan. 16, 2018; 

http://dx.doi.org/10.1101/248708
http://creativecommons.org/licenses/by-nc-nd/4.0/


Deep Learning Urban Ecoacoustic Tools – Fairbrass Firman et al. 

19 

 

important states which are not present in UrbanSounds and UrbanSounds8k. Due to these 395 

factors, these datasets are unsuitable for the purpose of this research project, although recent 396 

work has overcome a few of these shortcoming using synthesised soundscape data (Salamon 397 

et al. 2017). This highlights the need for an internationally coordinated effort to create a 398 

consistently labelled audio dataset from cities to support the development of automated urban 399 

environmental assessment systems with international application.  400 

Conclusions 401 

The CityNet system for measuring biotic and anthropogenic acoustic activity in noisy urban 402 

audio data outperformed the state-of-the-art algorithms for measuring biotic and 403 

anthropogenic sound in entire audio recordings. Integrated into an IoT network for recording 404 

and analysing audio data in cities it could facilitate urban environmental assessment at greater 405 

scales than has been possible to date using traditional methods of biodiversity assessment. 406 

We make our system available open source in combination with two expertly annotated urban 407 

soundscape datasets to facilitate future research development in this field.  408 
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TABLES 602 

Table 1. Average precision and recall results for CityNet and competing algorithms for each 603 

1-second audio chunk in the CitySounds2017test dataset. Recall results are presented at 0.95 604 

precision. Higher values are better for both metrics. The highest values in each section are 605 

shown in bold. ACI represents Acoustic Complexity Index, ADI Acoustic Diversity Index, BI 606 

Bioacoustic Index, and NDSIbio and NDSIanthro biotic and anthropogenic Normalised 607 

Difference Soundscape Index, respectively. 608 

Acoustic 

Measures 

Recall at 0.95 

precision 

Average 

precision 

Biotic   

CityBioNet 0.710 0.934 

Bulbul 0.398 0.872 

ACI 0.000 0.663 

ADI 0.001 0.439 

BI 0.002 0.516 

NDSIbiotic 0.000 0.503 

Anthropogenic 

  

CityAnthroNet 0.858 0.977 

NDSIanthro 0.815 0.975 

  609 
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Table 2. Impact of non-biotic sounds on the CityBioNet and bulbul predictions. Values 610 

represent differences in the proportion of 1-second audio chunks in the full CitySound2017test 611 

dataset (40 minutes) and the subset datasets (size in time indicated in left-hand column) in 612 

which the presence/absence of biotic sound was correctly predicted by both algorithms, (chi-613 

squared test statistic for difference in proportions of successes in each dataset, and Cramer’s 614 

V effect size measure). Effect sizes indicated as <0.1 (*), 0.1-0.3 (**) and >0.5 (***). 615 

Sound Type          CityBioNet Bulbul 

Anthropogenic   

Air traffic (9m 4s) -2.11 (30.35, 0.05)* -5.34 (162.73, 0.12)** 

Mechanical (11s) -28.60 (134.38, 

0.77)*** 

0.02 (0.01, 0.01)* 

Road traffic (29m 

15s) 

0.79 (10.15, 0.02)* 1.41 (27.67, 0.03)* 

Siren (1m 

21s)             

2.28 (5.73, 0.06)* 3.70 (12.95, 0.09)* 

Geophonic   

Rain (2m 

44s)              

-0.77 (1.29, 0.02)* -1.51 (4.17, 0.04)* 

Wind (53s)     0.76 (0.47, 0.02)* -6.93 (33.11, 0.17)** 

  616 
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FIGURES 617 

 618 

Figure 1. The CityNet analysis pipeline for measuring biotic and anthropogenic acoustic 619 

activity. Raw audio (1), recorded in the field, is converted to a spectrogram representation 620 
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(2). A sliding window is run across the time dimension, and a window of the spectrogram 621 

extracted at each step (3). This spectrogram window is pre-processed with four different 622 

normalisation strategies, and the results concatenated. This stack of spectrograms is passed 623 

through a CNN (5), which was trained on CitySounds2017train. The CNN gives, at each 1-624 

second time step, a prediction of the presence/absence of biotic or anthropogenic acoustic 625 

activity (6). Finally, these per-time-step measures can be aggregated to give summaries over 626 

time or space (7). 627 
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 628 

Figure 2. Location of study sites and average daily acoustic patterns at two sites along an 629 

urbanisation gradient. Points in (A) represent locations used for the training dataset, 630 

CitySounds2017train (black) and testing dataset, CitySounds2017test (red). Here CityNet was 631 

run across the entire 7 days of recording at two sites of high (B) and low (C) urban intensity 632 

to predict the presence/absence of biotic and anthropogenic sound at each second of the week 633 
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using a 0.5 probability threshold. The predicted number of seconds containing biotic and 634 

anthropogenic sound for each half-hour period was averaged over the week to produce 635 

average daily patterns of acoustic activity. Greater London boundary indicated with bold line. 636 

Boundary data from the UK Census (http://www.ons.gov.uk/, accessed 04/11/2014).  637 
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 638 

Figure 3. Precision-recall curves for CityNet and competing algorithms predicting A) biotic 639 

and B) anthropogenic acoustic activity for each 1-second audio chunk in the 640 

CitySounds2017test dataset. Dots indicate the precision and recall values at a threshold value 641 

of 0.5. ACI represents Acoustic Complexity Index, ADI Acoustic Diversity Index, BI 642 

Bioacoustic Index, and NDSIbio and NDSIanthro biotic and anthropogenic Normalised 643 

Difference Soundscape Index, respectively.  644 
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 645 

Figure 4. Confusion matrices comparing the predicted acoustic activity of A) CityBioNet, 646 

B), bulbul, and C) CityAnthroNet for each 1-second audio chunk in the CitySounds2017test 647 

dataset. Numbers in each cell report the number of 1-second audio clips in the 648 

CitySounds2017test dataset predicted either correctly (True Positives and True Negatives) or 649 

incorrectly (False Positives and False Negatives) as containing biotic (A and B) or 650 

anthropogenic (C) sound. To create the confusion matrices, the probabilistic predictions from 651 

the classifiers are converted to binary classifications using a threshold that gives a precision 652 

of 0.95.  653 
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SUPPORTING INFORMATION 654 

Section S1: Supplementary Methods 655 

Normalisation Methods 656 

The four normalisation methods used are as follows: 657 

1. The entire spectrogram 𝑆 was subtracted from each row in 𝑊𝑆. This helped to act as a 658 

noise-reducing normalisation strategy 659 

2. Each row of 𝑊𝑆 was whitened to have zero mean and unit variance. 660 

3. Each value in 𝑊𝑆 was whitened to have zero mean and unit variance. 661 

4. Each value in 𝑊𝑆 was divided by the maximum value in  𝑊𝑆. 662 

Prediction Process  663 

Both CityBioNet and CityAnthroNet have a convolutional layer with 32 filters, followed by a 664 

max pooling layer, then another 32-filter convolutional layer and finally two dense layers 665 

(with 128 units) before a binary class output - see Figure 1 for an overview of the network 666 

architecture. For nonlinearities very leaky rectifiers were used (Maas, Hannun & Ng 2013), 667 

and Dropout (Srivastava et al. 2014) was used to help to regularise the network and batch 668 

normalisation (Ioffe & Szegedy 2015) to increase the speed of convergence during training. 669 

The network was trained for 30 epochs using the Adam (Kingma & Ba 2015) update scheme 670 

with a learning rate of 0.0005. An ensemble of five such networks was trained using the same 671 

architecture and training data, but with different random initialisations. The final predictions 672 

are made by averaging together the predictions of each member in the ensemble.  673 
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Table S1. Details of acoustic recording sites across Greater London, UK. Sites separated into 674 

two groups illustrating whether recordings from sites were included in the 675 

CitySounds2017train or CitySounds2017test datasets. Urban intensity categories defined based 676 

on the predominant land cover surrounding sites within a 500m radius: (i) high (contiguous 677 

multi-storey buildings); (ii) medium (detached and semi-detached housing); and (iii) low 678 

(fields and/or woodland). DD denotes decimal degrees. In terms of site type, C denotes 679 

church or churchyard, CG denoted community garden, GR denotes green roof, GW denotes 680 

green wall, and NR denotes nature reserve. 681 

Site Code Site Type Survey 

Start Date 

Survey 

End Date 

Latitude 

(DD) 

Longitude 

(DD) 

Urban 

Intensity 

CitySounds2017train 

RM14 3YB C 11/06/2013 19/06/2013 51.55121 0.266853 Low 

W8 4LA C 21/06/2013 28/06/2013 51.50223 -0.19147 High 

SW15 4LA C 02/07/2013 07/07/2013 51.44914 -0.23697 Medium 

NW1 C 24/06/2013 01/07/2013 51.5105 -0.20574 High 

SW11 2PN C 16/08/2013 23/08/2013 51.47057 -0.16973 High 

E4 7EN C 06/10/2013 13/10/2013 51.63101 0.001266 High 

SE1 2RT 7 GR 19/05/2014 27/05/2014 51.30.16N 0.4.53W High 

SE1 2RT 10 GR 19/05/2014 27/05/2014 51.30.16N 0.4.50W High 

SW1W 0QP GW 30/05/2014 06/06/2014 51.49627 -0.14489 High 

SW1E 6BN GR 30/05/2014 06/06/2014 51.4981 -0.14138 High 

SE11 6DN GR 11/06/2014 20/06/2014 51.49313 -0.11199 High 

SE4 1SA GR 20/06/2014 30/06/2014 51.45817 -0.02751 Medium 

WC2N 6RH GR 01/07/2014 10/07/2014 51.50706 -0.12388 High 
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CR0 1SG C 02/07/2014 09/07/2014 51.3722 -0.10604 High 

CR0 C 02/07/2014 09/07/2014 51.33934 -0.01266 Medium 

RM2 5EL C 10/07/2014 17/07/2014 51.58773 0.201817 Medium 

RM4 1LD C 10/07/2014 17/07/2014 51.62349 0.223904 Low 

SE22 0SD GR 28/07/2014 04/08/2014 51.45332 -0.05583 Medium 

TW7 6BE C 30/07/2014 06/08/2014 51.4719 -0.31981 Medium 

W4 2PH C 30/07/2014 06/08/2014 51.48308 -0.25326 Medium 

SE6 C 19/08/2014 26/08/2014 51.42804 -0.01095 Medium 

SE8 4EA C 19/08/2014 27/08/2014 51.46841 -0.02344 Medium 

IG11 0FJ GR 21/08/2014 01/09/2014 51.52069 0.109187 Medium 

W5 5EQ GR 28/08/2014 05/09/2014 51.50975 -0.30812 Medium 

E14 0EY C 02/09/2014 10/09/2014 51.51072 -0.01192 High 

E1 0NR C 03/09/2014 11/09/2014 51.51676 -0.04122 Medium 

SE10 9EY GR 05/09/2014 12/09/2014 51.4849 0.006003 Medium 

N2 9BX GR 15/09/2014 22/09/2014 51.59274 -0.16569 Medium 

SW6 6DU GR 16/09/2014 23/09/2014 51.47369 -0.21695 Medium 

SE6 4PL CG 24/05/2015 01/06/2015 51.43821 -0.02711 Medium 

W1T 4BQ GR 22/06/2015 30/06/2015 51.52143 -0.13836 High 

N4 1ES NR 23/06/2015 02/07/2015 51.57656 -0.1017 Medium 

TN14 7QB NR 25/06/2015 03/07/2015 51.31364 0.067323 Low 

NW3 3RY NR 14/07/2015 22/07/2015 51.54357 -0.16054 High 

N8 8JD CG 11/07/2015 19/07/2015 51.58333 -0.13292 Medium 

KT18 6AP NR 27/07/2015 05/08/2015 51.29036 -0.26158 Low 

NW2 3SH NR 11/08/2015 18/08/2015 51.55287 -0.20628 Medium 
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N17 CG 17/08/2015 27/08/2015 51.59105 -0.0549 High 

RM4 1PL C 27/08/2015 04/09/2015 51.61588 0.18189 Medium 

SE23 2NZ NR 16/09/2015 23/09/2015 51.43224 -0.05197 Medium 

NW3 2BZ NR 17/09/2015 25/09/2015 51.55181 -0.16259 Medium 

NW1 0TA NR 15/10/2015 22/10/2015 51.54073 -0.13613 High 

SE15 4EE CG 13/10/2015 20/10/2015 51.46301 -0.07519 Medium 

RM15 4HX NR 20/10/2015 28/10/2015 51.51749 0.261494 Low 

CitySounds2017test 

W11 2NN C 08/07/2013 16/07/2013 51.53452 -0.12957 High 

WC2H 8LG C 08/07/2013 14/07/2013 51.51521 -0.12823 High 

HA8 6RB C 23/07/2013 30/07/2013 51.60862 -0.2899 Medium 

HA5 3AA C 23/07/2013 30/07/2013 51.59478 -0.37885 Medium 

SE23 C 06/09/2013 13/09/2013 51.45047 -0.05146 Medium 

SE3 C 06/09/2013 13/09/2013 51.46261 0.001164 Medium 

CR8 C 15/09/2013 22/09/2013 51.3305 -0.09394 Medium 

CR0 5EF C 15/09/2013 22/09/2013 51.37199 -0.05031 Medium 

E10 5JP C 06/10/2013 13/10/2013 51.56386 -0.01604 Medium 

SW15 4JY GR 27/08/2014 03/09/2014 51.45012 -0.23859 Medium 

IG6 2XL CG 08/05/2015 15/05/2015 51.60046 0.095681 Low 

E2 9RR NR 25/05/2015 02/06/2015 51.5295 -0.05875 High 

TW7 6ER C 23/06/2015 30/06/2015 51.46711 -0.3454 Medium 

BR2 0EG C 17/07/2015 26/07/2015 51.4047 0.012974 Medium 

BR2 8LB C 31/07/2015 07/08/2015 51.38029 0.042746 Medium 

BR6 7US C 31/07/2015 07/08/2015 51.33605 0.054201 Low 
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BR4 C 18/08/2015 25/08/2015 51.38261 -0.00868 Medium 

DA5 NR 24/08/2015 01/09/2015 51.42268 0.156502 Medium 

CM16 7NP NR 08/09/2015 15/09/2015 51.65396 0.101227 Low 

  682 
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Biotic    

Animal Bird Invertebrate Vegetation 

    
Bird wing beats    

 

   

Anthropogenic    

Air traffic Braking vehicle Electrical buzz Human speech 

    
Mechanical Metal crash Road traffic Siren 

    
Vehicle Alarm Vehicle Horn   

  

  

Geophonic    

Rain Wind   

  

  

Figure S1. Examples of all sound types present in CitySounds2017. ‘Animal’ denotes biotic 683 

sounds that could not be taxonomically identified. Unidentified sounds not shown due to 684 

wide range of sound types within this group. Data is represented in spectrograms (FFT non-685 

overlapping Hamming window size=1024) where blue to yellow corresponds to sound 686 

amplitude (dB). Frequency (kHz) and time (s) are represented on the y- and x-axes, 687 

respectively. Spectrograms represent biotic (sounds generated by non-human biotic 688 
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organisms), anthropogenic (sounds associated with human activities including human speech) 689 

and geophonic sounds. 690 
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