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Non-linear exposure-outcome relationships such as between body mass index
(BMI) and mortality are common. They are best explored as continuous func-
tions using individual participant data from multiple studies. We explore
two two-stage methods for meta-analysis of such relationships, where the
confounder-adjusted relationship is first estimated in a non-linear regression
model in each study, then combined across studies. The “metacurve” approach
combines the estimated curves using multiple meta-analyses of the relative
effect between a given exposure level and a reference level. The “mvmeta”
approach combines the estimated model parameters in a single multivariate
meta-analysis. Both methods allow the exposure-outcome relationship to dif-
fer across studies. Using theoretical arguments, we show that the methods
differ most when covariate distributions differ across studies; using simulated
data, we show that mvmeta gains precision but metacurve is more robust to
model mis-specification. We then compare the two methods using data from the
Emerging Risk Factors Collaboration on BMI, coronary heart disease events, and
all-cause mortality (>80 cohorts, >18 000 events). For each outcome, we model
BMI using fractional polynomials of degree 2 in each study, with adjustment
for confounders. For metacurve, the powers defining the fractional polynomi-
als may be study-specific or common across studies. For coronary heart disease,
metacurve with common powers and mvmeta correctly identify a small increase
in risk in the lowest levels of BMI, but metacurve with study-specific powers does
not. For all-cause mortality, all methods identify a steep U-shape. The metacurve
and mvmeta methods perform well in combining complex exposure-disease
relationships across studies.
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1 INTRODUCTION

It is often of primary interest in epidemiological studies to assess the nature of the relationship between continuous expo-
sure(s) or covariate(s) and disease outcome(s), with or without adjustment for confounders. Moreover, with increasing
adoption of collaborative research (or consortia approaches) in many disease fields to help standardize methodology and
improve statistical power by meta-analysis,1,2 there is increasing interest in making such assessments, especially in the
context of meta-analysis of individual participant data (IPD) from multiple studies. Outcome data are often time to event
in prospective studies or case-control status in case-control studies.

Methods for fitting non-linear exposure-outcome relationships are well established for the analysis of data from a sin-
gle study. A commonly used approach is to categorize the exposure in model fitting, but this is sensitive to the choice
of categories and risks losing power and information and introducing bias.3,4 A better alternative, widely used and our
main choice here, is fractional polynomials (FPs).5 Alternatives to FPs, which we discuss in Section 7.4, include ordinary
polynomials,6 restricted cubic splines,6,7 and other splines.8,9

Two extensions to the meta-analysis context, such as application to IPD meta-analysis involving hundreds of stud-
ies and millions of participants, have been proposed: the metacurve approach10 uses pointwise averaging of best-fitting
study-specific functions, while the mvmeta approach11,12 uses multivariate meta-analysis of study-specific regression
coefficients. These have not been broadly assessed for validity of results or to reveal any computational challenges.

Our broad aim is to compare the approaches proposed for the meta-analysis of the shape of the relationship between
a continuous exposure and an outcome, adjusted for one or more confounders using IPD from multiple studies.
We specifically consider the Cox proportional hazards regression framework and two-stage approaches, where the
exposure-outcome relationship is first estimated in each study and then combined across studies. The key question is how
to combine relationships across studies. The aims of this paper are to evaluate and compare the metacurve and mvmeta
approaches and hence to gain insight into when both methods, one method or neither method may be appropriate.

In Section 2, we describe the motivating data, a large IPD dataset from the Emerging Risk Factors Collaboration (ERFC),
assessing the exposure-outcome relationship of body mass index (BMI) with risk of coronary heart disease (CHD) and
all-cause mortality (ACM). In Section 3, we provide detailed descriptions of the two methods compared. We then evaluate
the methods using mathematical comparison (Section 4), analysis of hypothetical data (Section 5), and analysis of the
ERFC data (Section 6). In Section 7, we discuss the results, outline some advantages and disadvantages of each method,
discuss some issues that need further investigation, and draw tentative conclusions.

2 DATA

The ERFC13 has requested and harmonized data from >120 prospective cohort studies in Western populations in order
to facilitate IPD meta-analysis of the associations of risk factors with incident cardiovascular disease outcomes and
cause-specific mortality. For the current analysis we use two ERFC datasets. Dataset 1 comprises 121 prospective cohorts
and a total of 1 234 354 participants with data on BMI (exposure variable); age, sex and smoking status (confounders); and
incident outcomes (55 780 CHD events; 225 356 ACM). The cohorts were based in Western Europe (82 cohorts, 734 779
participants), North America (25 cohorts, 417 726 participants), and other regions (Australia, Caribbean, Israel, Japan,
and Turkey: 14 cohorts, 81 849 participants). In further modeling that might be used to explore the mechanism of asso-
ciation, we also adjust for systolic blood pressure (SBP), diabetes status, total cholesterol, and high-density lipoprotein
cholesterol (HDL-C) as potential mediators using complete-case data from 454 415 participants in 82 cohorts (dataset 2).
For more details see other works.13-16

To reduce the influence of extreme observations in modeling of continuous variables, we truncate the distribution of
each continuous variable except age at its 1st and 99th centiles across cohorts, replacing values more extreme than these
centiles by the values of these centiles.

3 METHODS

3.1 Notation
Denoting studies as i = 1, … , I, individuals as j = 1, … , Ji, the continuous exposure of interest (BMI at baseline) as xij, and
confounders as a vector cij (possibly including non-linear terms or interactions), the Cox proportional hazards model17 in
study i may be written as:

log
(

h𝑖𝑗 (t)
)
= log

(
h0i (t)

)
+ 𝑓i

(
x𝑖𝑗 ; 𝜷 i

)
+ 𝜸′ic𝑖𝑗 , (1)
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where h0i(t) is a baseline hazard, fi(.) is defined below and 𝜷 i and 𝜸i are vectors of study-specific coefficients. The param-
eters 𝜷 i and 𝜸i are estimated by maximising the partial likelihood for the data (time to event or censoring and event
indicator).

3.2 Fractional polynomials in a single data set
FPs model the effect of an exposure x as 𝑓(x; 𝜷) =

∑m
k=1 𝛽kx pk where m is the degree of the FP, the powers pk are chosen

from the set −2, − 1, − 0.5, 0, 0.5, 1, 2, 3, and 𝜷 = (𝛽1, 𝛽2, … , 𝛽m). In FP models, x 0 is defined as log(x), and modifications
allow two powers to be equal: for example, an FP model with degree 2 and powers (p, p) is defined as 𝛽1x p + 𝛽2x p log (x).18

The degree is constrained to be less than or equal to a limit called the dimension. Usually the dimension is set to 2
so that the degree is 1 or 2, denoted FP1 or FP2. Models of all degrees considered and all possible powers are fitted
by maximising the likelihood or partial likelihood. The degree may be selected by a closed testing procedure19 or on
subject-matter grounds. The best-fitting powers of the model with the selected degree are used.

3.3 Overall modeling strategy with fractional polynomials
The overall modeling strategy comprises five steps:

1. Select the confounders using subject matter knowledge and the data.
2. Select the degree of the FP function. This selection should not be performed within studies, which causes bias towards

simple functional forms (here, towards linearity) because single studies tend to lack power to select complex func-
tional forms.5,10 Selection may be performed across studies by summing maximized likelihoods for each degree across
studies or on subject-matter grounds.

3. Select the powers in the FP function. This could be done either using study-specific powers, giving

𝑓i
(

x;𝜷 i
)
=

m∑

k=1
𝛽𝑖𝑘x p𝑖𝑘 , (2)

where 𝜷 i = (𝛽 i1, 𝛽 i2, … , 𝛽 im), or using common powers, giving

𝑓i
(

x; 𝜷 i
)
= 𝑓

(
x; 𝜷 i

)
=

m∑

k=1
𝛽𝑖𝑘x pk (3)

(with the modifications noted above if powers equal each other or zero).
4. Fit the selected model to each study to get estimates 𝜷 i = (𝛽i1, 𝛽i2, … , 𝛽𝑖𝑚) with variance-covariance matrix Si.
5. Combine estimates or fitted functions across studies using the metacurve method (Section 3.4) or the mvmeta method

(Section 3.5). Both methods involve meta-analysis. The meta-analysis may assume no heterogeneity: this is usually
called the fixed-effect model, but we follow Higgins et al20 in calling it the common-effect (CE) model. Alterna-
tively the meta-analysis may allow for heterogeneity using the random-effects (RE) model. With the RE model, the
empirical Bayes estimates of the study-specific curves may help in understanding the nature of the heterogeneity.21

3.4 Pooling method 1: Metacurve
The metacurve approach (implemented in the Stata package metacurve) conducts pointwise averaging of estimated
study-specific curves, and proceeds as follows:

1. Choose reference level x0 (eg, the overall mean of x).
2. For each x in the data (pointwise):

• For each study i, estimate 𝑓i (x, x0) = 𝑓i (x;𝜷 i) − 𝑓i (x0;𝜷 i) and derive its standard error from Si.
• Perform meta-analysis (CE or RE) on the 𝑓i (x, x0) to get a pooled estimate 𝑓(x, x0) and its variance.

3. Graph 𝑓(x, x0) against x. Add pointwise confidence bands.
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The metacurve approach is a direct way to pool estimated curves. However, different choices of reference level may give
different answers. More important is the variation of study weights which reflect at each point the information in each of
the studies, relevant if the distribution of x varies across studies. The next proposal avoids these issues.

3.5 Pooling method 2: Mvmeta
The mvmeta (multivariate meta-analysis) approach uses meta-analysis of the set of regression coefficients. This only
works when common powers have been used across studies, as in Equation (3). The approach proceeds as follows.

1. Combine the 𝜷 i and Si using multivariate meta-analysis (CE or RE) to give an overall mean 𝜷 and its variance S.
2. Draw fitted curves of 𝑓(x, x0) = 𝑓(x; 𝜷) − 𝑓(x0; 𝜷) where the reference level x0 is only used to graph the estimated

curves. Add pointwise confidence bands.

3.6 Categorized exposure
An alternative to FPs, included here because it is frequently used in the epidemiological literature, is to categorize the
exposure into K groups and fit K − 1 dummy variables. For example, let Ik(x) be an indicator of x falling in the kth group,
and take the rth group as the reference group. This strategy fits into the framework presented in Section 3.1 above with
𝑓i (x; 𝛽i) =

∑K
k=1k≠r

𝛽𝑖𝑘Ik (x) and 𝜷 i = (𝛽 i1, … , 𝛽 ir − 1, 𝛽 ir + 1, … , 𝛽 iK). The first stage of estimation involves fitting model (1)
to each study separately, yielding estimates 𝜷 i with variance-covariance matrix Si. Whether we choose the CE or RE
model, we must also choose to perform the meta-analysis separately for each 𝛽𝑖𝑘 (univariate meta-analysis), or jointly for
the whole vector 𝜷 i (multivariate meta-analysis).

3.7 Approach to method comparison
We evaluate the metacurve and mvmeta methods in three ways. First, we use mathematics to identify when they are
likely to agree and when they are likely to differ, in the common powers case (Section 4). Second, we create hypothetical
data sets to explore the extent of differences in rather extreme cases with common powers (Section 5). Third, we analyze
the ERFC data using metacurve and mvmeta, and investigate any differences (Section 6). In this comparison, we include
metacurve with study-specific powers as well as with common powers, because the study-specific powers option is a
potential advantage of metacurve, affording greater flexibility. We also perform a sensitivity analysis of the ERFC data
using metacurve in order to assess the importance of choice of reference level.

3.8 Summary of FP pooling methods
eTable 1 summarizes the modeling approaches we have described and (in bold) options within those approaches:
metacurve with study-specific or common powers, mvmeta with common powers, and categorization. All approaches
have the option of CE or RE meta-analysis. Metacurve approaches further require a choice of reference level, while
categorization approaches require a choice of number of categories and whether to perform univariate or multivariate
meta-analysis.

4 MATHEMATICAL EXPLORATION

We perform a mathematical comparison of metacurve and mvmeta, using the within-studies model defined by
Equations (1) and (3). For simplicity, we assume a correctly specified FP2 model with common powers, although this is
a critical assumption in practice. Let the study-specific parameters be 𝜷 i = (𝛽 i1, 𝛽 i2) and the overall mean parameters be
𝜷 = (𝛽1, 𝛽2). The between-studies model for CE meta-analysis is 𝜷 i = 𝜷, and for RE meta-analysis is 𝜷 i∼N(𝜷,𝜮). For given
reference level x0, our aim is to estimate the average log hazard ratio at exposure x compared to reference:

𝑓(x, x0) = 𝛽1
(

x p1 − x p1
0
)
+ 𝛽2

(
x p2 − x p2

0
)
= a(x)T𝜷,

where a (x) =
(

x p1 − x p1
0 , x p2 − x p2

0
)T .



330 WHITE ET AL.

Our data yield estimates 𝜷 i ∼ N(𝜷 i,Si)where Si is the within-study variance-covariance matrix. We can write the marginal
model as 𝜷 i ∼ N (𝜷,V i) where Vi = Si for the CE meta-analysis and V i = Si + 𝜮̂ for the RE meta-analysis, and the
heterogeneity variance matrix 𝜮̂ is estimated from the data.

The mvmeta approach uses the multivariate pooled estimate 𝜷 =
∑

iW i𝜷 i where W i = (
∑

iV
−1
i )−1V−1

i , giving an
estimate of f(x, x0) given by

𝑓mv (x, x0) = a(x)T𝜷 =
∑

i
a(x)TW i𝜷 i.

The metacurve approach on the other hand pools univariate estimates a(x)T𝜷 i with their variances vi(x), where
vi(x)=a(x)TSia(x) for the CE meta-analysis and vi (x) = a(x)TSia (x)+𝜎̂(x)2 for the RE meta-analysis, and 𝜎̂(x)2 is estimated
from the data. Then, the pooled estimate is

𝑓𝑚𝑐 (x, x0) =
∑

i
wi (x)a(x)T𝜷 i

with weights wi(x) = vi(x)−1/
∑

ivi(x)−1.
We consider two special cases. First, suppose all studies have a similar distribution of covariates. In linear regres-

sion on covariates x p1
𝑖𝑗
, x p2

𝑖𝑗
, c𝑖𝑗 , the variance-covariance matrix Si of the coefficients is proportional to the inverse

variance-covariance matrix of the covariates. In non-linear regressions such as Cox regression, the same statement is
true for a weighted variance-covariance matrix of the covariates, where the weights allow for individual risk. Hence, Si is
approximately proportional to the inverse variance-covariance matrix of the covariates, the approximation being good for
small coefficients and covariate-independent censoring. If in addition all studies have a similar distribution of covariates,
it follows that Si ≈ 𝜆iS is likely to hold for scalar 𝜆i and matrix S. Under CE meta-analysis, this implies Vi ≈ 𝜆iV, which
we call “proportional variances.” Proportional variances occur in the RE model if additionally (i) all Si are much larger
than 𝜮̂, (ii) all Si are much smaller than 𝜮̂ (so V i ≈ 𝜮̂), or (iii) S = 𝜈𝜮̂ for some scalar 𝜈.

The second special case arises if vi(x) = a(x)TVia(x). This is always true under a CE meta-analysis, but typically not true
under a RE meta-analysis because univariate and multivariate models yield different heterogeneity variance estimates.22

It occurs under a RE meta-analysis if all Si are much larger than 𝚺, so that we are close to the CE model, or if hetero-
geneity variance estimates are stable between univariate and multivariate models, which would occur if there were little
borrowing of strength. We call this second case “stable heterogeneity.”

In the case of proportional variances, it follows that W i = w∗
i I, where scalar w∗

i = (
∑

i𝜆
−1
i )−1𝜆−1

i and I is the 2 × 2
identity matrix. Then, 𝑓mv (x, x0) simplifies to

∑
iw∗

i a(x)T𝜷 i which is a weighted average of study-specific x − x0 contrasts.
If addition, we have stable heterogeneity, then wi (x) = w∗

i for all x, the weights are equal across the two methods and
𝑓mv (x, x0) = 𝑓𝑚𝑐 (x, x0).

If on the other hand proportional variances does not hold, then the mvmeta estimate is not a combination of
study-specific x − x0 contrasts: it therefore draws strength from other aspects of the fitted curve. We argue that mvmeta
therefore borrows strength and gains precision if the model is correct but may lose robustness (that is, have greater error)
if the model is mis-specified. These results motivate the hypothetical data below.

5 HYPOTHETICAL DATA

We compare the metacurve and mvmeta methods using four hypothetical data sets. using studies with very different
exposure distributions to explore the implications of non-proportional variances. For simplicity, we use only two studies
and consider only quadratic polynomials: that is, we use FP2 with common powers (1, 2). Our aims are: to compare the
precisions of the two methods when both studies follow the same quadratic polynomial (a correctly specified model,
example 1); to compare the methods’ ability to approximate the true exposure-outcome relationship when both studies
follow the same curve that is not a quadratic polynomial (a mis-specified model, examples 2 and 3); and to explore possible
artefacts due to weights varying with exposure (example 4).

In examples 1-3, the studies have adjacent but non-overlapping ranges of the exposure x (BMI): uniformly distributed
between 20 and 25 in Study 1 and between 25 and 30 in Study 2. The two studies are both large (size 500 000) to minimize
noise. A time-to-event outcome is simulated from a proportional hazards model. We fit quadratic models followed by CE
meta-analyses, with reference point x0 = 25 for metacurve.
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FIGURE 1 Comparison of metacurve and mvmeta methods: Simulated data. BMI, body mass index [Colour figure can be viewed at
wileyonlinelibrary.com]

In Example 1, the true model is quadratic with minimum at x = 22 (Figure 1, top left panel). Both mvmeta and
metacurve correctly reproduce this curve (Figure 1, middle left panel), but metacurve has larger standard error than
mvmeta (Figure 1, bottom left panel). Note that, by definition, standard errors are zero at the reference point x = 25. The
difference in standard errors arises because at x < 25 metacurve yields standard errors approximately equal to those for
Study 1 (leading the two curves almost to coincide), indicating that it draws very little information from Study 2 in this
range, and similarly at x > 25 metacurve draws information primarily from Study 2. The mvmeta method, on the other
hand, can draw information from both curves.

In Example 2, the true model is flat at x < 25 and a quadratic at x > 25 (Figure 1 second column). This is mis-specified
because it is not a quadratic model. The fitted curves are wrong for both mvmeta and metacurve, but metacurve is much
closer to the truth. Differences in standard errors are similar to those in Example 1. In Example 3, the true model follows
different quadratics at x < 25 and x > 25 (Figure 1, third column). In this case, metacurve again approximates the true
model well, but mvmeta (which is restricted to quadratics) misses all the curvature.

In Example 4, the studies have overlapping exposure ranges: BMI is uniformly distributed between 20 and 30 in study 1,
and between 22 and 28 in study 2 (Figure 1, last column). The sample sizes are 25 000 and 75 000 respectively. Further, the
two studies follow very different linear models. When they are pooled using metacurve, the impact of the weights varying
with BMI becomes clear, as study 1 dominates for BMI around 25 (giving a positive gradient) while study 2 dominates
for BMI below 22 and above 28 (giving a negative gradient). This demonstrates that weights varying with exposure can
yield implausible conclusions: however, this is an extreme example where it is questionable whether the curves should
be combined.

6 ANALYSIS OF ERFC DATA

6.1 Data summary
Table 1 summarizes the EFRC data used for modeling. Dataset 1 is used for the confounder-adjusted analyses in
Sections 6.2 to 6.4; dataset 2 is used for the analyses additionally adjusted for mediators in Section 6.5. Between-cohort
variation in risk factors was generally smaller than within-cohort variation, except for age for which the within- and
between-cohort SDs were similar. Cohort-specific distributions of age and BMI are shown in the supplementary mate-
rials (eFigure 1). These findings suggest that exposure distributions vary between studies and therefore the results in
Section 4 suggest that metacurve and mvmeta approaches are likely to differ. We set the reference level x0 at 25 kg/m2

http://wileyonlinelibrary.com
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TABLE 1 Summary of the Emerging Risk Factors Collaboration data used for modeling

Characteristic Summary Dataset 1 Dataset 2
(121 Cohorts, 1 234 354 (82 Cohorts, 454 415

Participants) Participants)
Summary Within Between Summary Within Between

Cohort SD Cohort SD Cohort SD Cohort SD
Outcomes
CHD events n (%) 55 780 (5.72%) - - 17 947 (5.14%) - -
All-cause mortality n (%) 225 356 (23.0%) - - 59 771 (20.2%) - -
First event follow up (years) Median (5th, 95th*) 12.6 (3.7, 30.5) - - 11.0 (3.3, 22.5) - -
Mortality follow up (years) Median (5th, 95th*) 13.7 (4.5, 30.8) - - 11.9 (4.0, 23.0) - -
Covariates
BMI (kg/m2) Mean 26.1 4.2 1.2 26.3 4.2 1.2
Age at baseline (years) Mean 55.5 10.0 8.2 57.1 9.4 8.9
Sex (female) n (%) 642 419 (53.0%) (39.0%) (9.5%) 217 601 (52.3%) (42.3%) (10.7%)
Smoking status (current) n (%) 360 765 (31.2%) (43.4%) (14.9%) 136 654 (28.9%) (43.9%) (14.3%)
SBP (mmHg) Mean - - - 136 19.0 8.0
Diabetes (yes) n (%) - - - 26 203 (6.6%) (21.4%) (3.3%)
Total cholesterol (mmol/l) Mean - - - 5.83 1.1 0.5
HDL-C (mmol/l) Mean - - - 1.35 0.4 0.2

SD: standard deviation. CHD: coronary heart disease. BMI: body mass index. HDL-C: high density lipoprotein cholesterol. * 5th and 95th centiles

(close to the overall mean of just over 26 kg/m2) because this is the WHO common cutoff for overweight.16,23 We choose
to use FP2 functions on subject-matter grounds, because previous studies suggest non-monotonic relationships.15,16 An
FP1 function would be preferred if a monotonic function were expected.

6.2 Main meta-analysis results: BMI and CHD adjusted for confounders in dataset 1
The metacurve method with study-specific FP powers showed an increasing association with a leveling off at low val-
ues of BMI (Figure 2, left-hand panels). For the metacurve and mvmeta methods with common FP powers, the powers
(selected across studies) were (−2,−2), implying the model f (x; 𝜷) = 𝛽1x−2 + 𝛽2 log (x)x−2. Using these common FP pow-
ers, metacurve and mvmeta gave similar results (Figure 2, middle and right-hand panels): both methods identified a
J-shape with nadir at 20.5 kg/m2, and unlike the results with study-specific powers, a small increase in risk at the lowest
levels of BMI. With the CE approach, confidence intervals were narrow; with RE they were a little wider.

FIGURE 2 Meta-analysis of BMI-CHD association using FPs: Comparison of metacurve vs. mvmeta with study-specific powers (SSP) or
common powers (CP). Dataset 1, adjusted for confounders. With SSP, only metacurve can be used. BMI, body mass index; CHD, coronary
heart disease; FP: fractional polynomial [Colour figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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FIGURE 3 Random-effects meta-analysis of linear BMI-CHD associations in the BMI range of 18 to 20 kg/m2. The meta-analysis results
are shown for 35 cohorts contributing >10 CHD cases within this BMI range. Dataset 1, adjusted for confounders. BMI, body mass index;
CHD, coronary heart disease [Colour figure can be viewed at wileyonlinelibrary.com]

To explore whether the data truly support an upturn at low BMI, we conducted a sensitivity analysis by restricting data
to the BMI range of 18 to 20 kg/m2, assuming the BMI-CHD associations are linear in this short range, and performing
a univariate meta-analysis. This found a negative association (Figure 3) consistent with the upturn. We also used the
exposure categorization method with categorization of BMI into 10 or 20 quantile groups across studies (Figure 4). The
reference group in each case is the quantile group containing 25 kg/m2. With 10 groups, a plateau is apparent at the lowest
end of the BMI distribution, but using 20 groups instead suggests a J-shaped association. Inferences from univariate and
multivariate meta-analysis were broadly similar in these results. The analysis with 10 groups may not be sensitive enough
to explore the upturn at low BMI, which is found by the analysis with 20 groups. Thus the upturn at low BMI appears
real and the analyses with common FP powers appear to have performed better here than the analysis with study-specific
FP powers.

http://wileyonlinelibrary.com
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FIGURE 4 Random-effects meta-analysis of BMI-CHD association using categorization approach. Dataset 1, adjusted for confounders.
Overlapping data points are slightly offset in the x-axis for better clarity. BMI, body mass index; CHD, coronary heart disease [Colour figure
can be viewed at wileyonlinelibrary.com]

6.3 Illustration of the metacurve method
Figure 5 summarizes BMI-CHD association results for 20 studies from the ERFC: in the top row, the 10 studies with most
events (each contributing from 1369 to 5829 events, mean 3012); in the bottom row, the 10 studies with fewest events
(contributing from 11 to 26 events, mean 17). The left-hand panels show the fitted functions (with common FP pow-
ers). The middle and right-hand panels graph the meta-analysis percentage weight for each study against BMI level by
meta-analysis method (CE or RE). In the large studies, fitted study-specific functions were consistent with the J-shaped
association evident in the overall meta-analysis result. Study weights varied from 2% to 12% depending on BMI value and
meta-analysis method, with RE meta-analysis shrinking study weights to be similar at the extremes of BMI levels (sug-
gesting greater estimated between-study heterogeneity). For the small studies, the fitted functions were noisy, and each
study contributed <1% weight in any meta-analysis. The empirical Bayes estimates revealed a greater extent of shrinkage
in the functions of the smallest studies (eFigure 2).

6.4 Meta-analysis of BMI and ACM adjusted for confounders in dataset 1
Meta-analysis of the BMI-ACM association using metacurve and mvmeta identified steep U-shaped associations, irre-
spective of the method of FP power selection (eFigure 3), with nadirs for CE and RE meta-analysis at 23.6 and 24.3 kg/m2

respectively. Using the categorization approach demonstrated clear U-shaped associations whether using 10 groups or 20
groups (eFigure 4).

6.5 Meta-analyses adjusted for confounders and mediators in dataset 2
We repeated the above analyses with further adjustment for mediators, thus estimating the direct effect of BMI on
outcomes. Estimated overall curves were again very similar between FP methods for CHD (eFigure 5) and ACM
(eFigure 6).

http://wileyonlinelibrary.com
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FIGURE 5 Fitted study-specific functions for BMI-CHD association in the 10 studies with most events (top: 1369 to 5829 events,
mean = 3012) as compared to the 10 studies with fewest events (bottom: 11 to 26 events, mean = 17), and their weights in meta-analysis.
Dataset 1, adjusted for confounders. Studies are indicated by same line color within each of the top and bottom row. Fitted study-specific
hazard ratios are shown only above a lower limit of 0.25 for clarity. BMI, body mass index; CHD, coronary heart disease [Colour figure can be
viewed at wileyonlinelibrary.com]

.25

.5

1

2

4

C
om

m
on

ef
fe
ct

.25

.5

1

2

4

R
an
do
m
ef
fe
ct
s

20 25 30 35 40 20 25 30 35 40 20 25 30 35 40 20 25 30 35 40

Ref = 20 Ref = 25 Ref = 30 Ref = 35

metacurve

H
az
ar
d
ra
tio
(9
5%

C
I)

BMI (kg/m2)

FIGURE 6 Comparison of metacurve results for BMI-CHD association when varying the reference value of BMI (Ref) from 20 to 35
kg/m2. Dataset 1, adjusted for confounders. BMI, body mass index; CHD, coronary heart disease [Colour figure can be viewed at
wileyonlinelibrary.com]

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com


336 WHITE ET AL.

6.6 Choice of reference category
To explore whether metacurve results were sensitive to the choice of reference value x0, we varied this value to 20, 30, and
35 kg/m2. The fitted curves were similar in shape for BMI and CHD (Figure 6) and for BMI and ACM (eFigure 7).

7 DISCUSSION

7.1 Which method?
We have explored relationships between BMI and two outcomes using metacurve of FPs and mvmeta of FPs. Table 2
summarizes the advantages and disadvantages of the two methods. We now highlight the key points.

Mathematical exploration showed that the two approaches tend to differ when exposure distributions vary consider-
ably between studies, implying that mvmeta is more efficient when models are correctly specified and suggesting that
metacurve is more robust to model mis-specification. Hypothetical data simulated with extreme variation in exposure
distributions between studies and rather extreme effects supported this view and showed that implausible pooled associ-
ations can in principle occur. In real analyses, exposure distributions always differ to some extent (see eFigure 1 for an
example) and the different weighting schemes should result in some differences between averaged curves. While mvmeta
may have advantages because it borrows strength, metacurve may have advantages because the weights better reflect the
information in the data. We found similar results for metacurve and mvmeta in the ERFC data, except that metacurve with
study-specific powers did not show an upturn in CHD risk at low levels of BMI. Closer exploration showed that these data
did support the upturn, thus supporting the use of metacurve and mvmeta with common FP powers. In principle, the fit
to the data should be better (or at least not worse) with study-specific powers: metacurve with study-specific powers may
have performed worse because power selection in some studies was driven by other features of the data. Overall, these
results suggest that the theoretical differences between methods may not be important in practice, and both methods may
be recommended.

The results of metacurve are in principle sensitive to the choice of reference value. However, we did not find any impor-
tant sensitivity over a wide range of reference values. In practice, subject-matter knowledge often provides arguments for
a suitable interval for the reference value, and then the specific choice made is highly unlikely to influence the result.
Reference values should not be chosen outside the range of the data.

Both methods extrapolate study results beyond the range of their data. Metacurve extrapolates explicitly, since it aver-
ages weighted estimates from each study at each covariate value. Weights reflect the information at each point, implying
that a study gets a relatively low weight in areas with a small number of participants (or events). Including studies only
within their own covariate ranges is a possible alternative, but it risks artefacts in the curve shape where studies switch
from included to excluded. Mvmeta extrapolates implicitly, by assuming the study-specific curves are correct over the
whole covariate range.

Exposure categorization may be useful as a first step to modeling when data are sufficient to accommodate fine catego-
rization without much loss of precision, as in the current context of large-scale IPD meta-analysis. However, the results
in Figure 4 highlight a major limitation of this approach, that the choice of categories affects the results and in particular
the extent to which nonlinear associations may be apparent.

7.2 Outstanding issues
Outstanding issues in the metacurve and mvmeta methods include how to assess and compare model fit, which is com-
plicated by the difficulty of pooling likelihood or discrimination over studies after random-effects meta-analysis; how to

TABLE 2 Comparison of the fractional polynomial pooling methods

Characteristic Metacurve Mvmeta

Reference level Required; has small effect on results Not required
Use of fitted curves Uses only local parts Uses all of fitted curves (global)
Performance with correctly specified models Less efficient More efficient
Performance with incorrectly specified models More robust Less robust
Allows study-specific FP powers Yes Not at present
Ease of use Very easy: Metacurve in Stata Easy: Mvmeta_make and mvmeta in Stata
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assess influential points; and how to display and interpret heterogeneity. Further, the impact of truncation (Section 2) is
not fully understood. The methods proposed use IPD and are unlikely to be useful with aggregate data.

7.3 Confounders
Because of the considerable richness and standardization of the ERFC data, we were easily able to handle the com-
mon and difficult problem of adjusting for confounders. In much smaller meta-analyses (say with about 5 to 10 studies),
with larger differences between measured confounders, how to conduct a meta-analysis adjusting for confounders is less
straightforward. For a more detailed discussion, see Section 5 in Sauerbrei and Royston.10

7.4 Extensions
We have illustrated the methods using FPs as the method to derive functions in each study, but they apply for any model
with a small number of parameters. For example, with restricted cubic splines,24 we would initially choose the number
of knots (say K) and their location (eg, by model comparisons across all studies), then construct the appropriate spline
basis (of size K − 1), and fit the model to each study separately. Metacurve would then pool the estimated relative effects
exactly as with FPs, while mvmeta would pool the K − 1 coefficients. Results would depend on the choice of the knots.

For models with many parameters, eg, smoothing splines or penalized splines, metacurve would still apply as described.
Here we propose implementing mvmeta by applying multivariate meta-analysis to a set of relative effects estimated
over a grid of exposure values. The size of the grid would need to balance accuracy with the computational difficulty
of high-dimensional multivariate meta-analysis. This method is also appropriate to apply the mvmeta approach when
study-specific FPs have been selected.

In a randomized trial, it may be of interest to explore interactions between randomized treatment zi and a contin-
uous effect modifier xij.25 The multivariable fractional polynomial interaction (MFPI) approach has been proposed to
tackle this flexibly.26 To explore interactions across multiple trials, the linear predictor in Equation (1) is changed to
fi(xij;𝜶i) + fi(xij; 𝜷 i)zij, and the methods presented in this paper could be used to combine the treatment-effect functions
𝑓i(x𝑖𝑗 ; 𝜷 i).27

The methods have been described for Cox models, but they can be applied to any model where the exposure is modeled
through a linear predictor. Unlike the Cox model, such models usually include an intercept. It would therefore be possible
to combine absolute risk curves (including the intercept) across studies; however, there is a danger of confounding by
study. The methods presented for combining relative risk curves (ignoring the intercept) would be preferable since they
only combine within-study information.

7.5 Conclusions
The metacurve and mvmeta methods appear to perform well in combining complex exposure-disease relationships across
studies. Compared with the popular approach based on categorization, they use the full information from continuous
variables, and results do not depend on the number and choice of cutpoints. Both methods rely on having good evidence
from the study-specific analyses, as was achieved here using a large consortium approach to standardize methodology
and improve statistical power. Software is available in Stata for wider practical application.
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