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ABSTRACT  

 

Background:  

Recent evidence suggests that combining individual imaging markers of cerebral small vessel 

disease (SVD) may more accurately reflect its overall burden and better correlate with clinical 

measures.  

 

Objective: 

We established the clinical relevance of the total SVD score in a memory clinic population by 

investigating the association with SVD score and cognitive performance, cortical atrophy and 

structural network measures, after adjusting for amyloid-β. 

 

 

Methods:  

We included 243 patients with amnestic mild cognitive impairment (MCI), Alzheimer’s disease 

dementia, subcortical vascular MCI, or subcortical vascular dementia. All underwent MR and [11C] 

PiB PET scanning, and had standardized cognitive testing. Multiple linear regression was used to 

evaluate the relationships between SVD score and cognition, cortical thickness and structural 

network measures. Path analyses were performed to evaluate whether network disruption mediates 

the effects of SVD score on cortical thickness and cognition.  

 

Results:  



Total SVD score was associated with the performance of frontal (β -4.31, SE 2.09, p = 0.040) and 

visuospatial (β -0.95, SE 0.44, p = 0.032) tasks, and with reduced cortical thickness in widespread 

brain regions. Total SVD score was negatively correlated with nodal efficiency, as well as changes 

in brain network organization, with evidence of reduced integration and increasing segregation. 

Path analyses showed that the associations between SVD score and frontal and visuospatial scores 

were partially mediated by decreases in their corresponding nodal efficiency and/or cortical 

thickness.  

 

Conclusion:  

Total SVD burden has clinical relevance in a memory clinic population and correlates with 

cognition, cortical atrophy, as well as structural network disruption.  

 

Keywords:  

Alzheimer disease; cerebral small vessel diseases; cognitive dysfunction; dementia, vascular; 

magnetic resonance imaging; positron-emission tomography



INTRODUCTION     

Cerebral small vessel diseases (SVD) are common age-related pathologies that affect the brain[1]. 

There are a number of recognized structural markers of SVD, including white matter 

hyperintensities (WMH), lacunes, cerebral microbleeds and MRI-visible perivascular spaces, but 

their individual correlation with clinical measures, in particular cognition, is often inconsistent[2]. 

A recently developed “total SVD score”[3] combines these separate imaging markers in an attempt 

to more closely reflect overall burden, and has shown associations with a number of clinical 

measures including cognitive performance[4-7], recurrent stroke[8], gait and balance measures[9, 

10] and mortality[11]. However, the majority of these studies are in populations with high 

cardiovascular risk, for example those with hypertension, previous transient ischemic attacks 

(TIA) or ischemic stroke, with a few in the healthy elderly (aged over 60 years)[5, 7].  Patients 

with mild cognitive impairment or dementia differ from these patient groups because they more 

frequently have other coexistent neuropathologies together with SVD, in particular, amyloid-beta 

(Aβ) deposition. It is not known whether the SVD score has clinical relevance in this patient cohort, 

given that alternate pathologies may make the dominant contribution in these cases.  

 

One method of estimating the impact of SVD has been to use network measures, based on the 

hypothesis that these SVD processes disrupt the normal connectivity of the brain[12]. The damage 

caused by SVD extends beyond that visible on brain imaging; for example, “normal appearing” 

white matter may show diffusion tensor abnormalities in those with SVD[12, 13]. Structural 

network measures have shown correlations with the presence and progression of cognitive 

impairment[2, 14] and provide a potential mechanism by which SVD disrupts cognition. 

Individual structural markers of SVD are also associated with cortical atrophy, another imaging 



measure that correlates with cognitive dysfunction[15, 16]. The total SVD score provides a unique 

opportunity to better estimate SVD impact on both brain atrophy and structural network disruption 

in patient populations with coexisting neuropathologies. Moreover, we hypothesized that vascular 

damage in the white matter could subsequently cause structural network disruption and then 

cortical atrophy[17]; this is supported by  evidence showing that the topography of cortical atrophy 

is similar  in regions connected via damaged tracts represented by white matter 

hyperintensities[18]. Therefore, investigating whether the association between total SVD score 

and cognition is mediated by structural network disruption and cortical atrophy might help to 

emphasize the clinical relevance of total SVD score as a marker for overall SVD burden.  

 

Thus, our primary aim was to establish the clinical relevance of the total SVD score in a pooled 

memory clinic population by reviewing the cognitive associations of total SVD burden; we 

hypothesized that total SVD score would be particularly associated with “vascular” domains, in 

particular, frontal and attentional function [19], regardless of clinical diagnosis. Our second 

objective was to quantify the relative contributions of SVD (as measured by the total SVD score) 

and brain Aβ (as measured by PiB-PET) to cortical atrophy and structural brain network disruption 

(as measured by local nodal efficiency, a network parameter that quantifies the importance of each 

node for communication within a network). Finally, we explored whether any association between 

total SVD score and cognition was mediated by structural network disruption, or cortical atrophy, 

or both. In all cases, we wished to review the relative impact of pathology (and in particular small 

vessel pathology) rather than diagnosis on our measures of interest.  

 

 



 

MATERIALS AND METHODS 

 

Participants 

251 subjects with cognitive impairment were prospectively recruited between July 2007 and July 

2011. All subjects were clinically diagnosed at the Samsung Medical Center, Seoul, Republic of 

Korea. In order to be included in the study, patients required a diagnosis of subcortical vascular 

mild cognitive impairment (MCI), subcortical vascular dementia, probable Alzheimer’s disease 

(AD) dementia or amnestic MCI.  

 

Subcortical vascular MCI (n=67) was defined using a previously described modification of 

Petersen’s criteria [20]. Subcortical vascular dementia (n=70) was defined clinically using the 

Diagnostic and Statistical Manual of Mental Disorder Fourth Edition and using imaging criteria 

proposed by Erkinjuntti et al[21]. Patients with subcortical MCI and subcortical vascular dementia 

all had severe white matter hyperintensities (WMH) on FLAIR, defined as periventricular WMH 

≥ 10mm and deep WMH ≥ 25mm, as modified from the Fazekas ischemia criteria[22]. 

 

Amnestic MCI (n=45) was defined by Petersen’s criteria for mild cognitive impairment (MCI). 

Probable Alzheimer’s Disease (AD) dementia (n=69) was defined using National Institute of 

Neurological and Communicative Disorders and Stroke and the AD and Related Disorders 

Association criteria[23]. Those with amnestic MCI or AD had WMH that were either minimal 

(periventricular WMH<5mm and deep WMH<5mm) or moderate (between minimal and severe 

WMH classifications).  



 

Patients with territorial (i.e. large vessel) infarctions, WMH due to radiation injury, 

leukodystrophy, multiple sclerosis, or vasculitis were excluded. Whilst patients with large vessel 

infarctions were excluded, patients with a clinical history of lacunar stroke or deep intracerebral 

haemorrhage were not excluded. All patients underwent a clinical interview (for details including 

cardiovascular risk factors), neurological examination, cognitive assessment by a trained 

neuropsychologist, blood tests, APOE genotyping, PiB-PET and structural brain MRI.  

 

This study was approved by Institutional Review Board of the Samsung Medical Center. We 

obtained written consent from each patient. 

 

Neuropsychological tests 

The cognitive assessments were performed by trained neuropsychologists. Participants were tested 

using the Seoul Neuropsychological Screening Battery (SNSB), which contains tests for attention, 

language, visuospatial function, verbal and visual memory, and frontal-executive function[24, 25]. 

Attention score was calculated by summing scores in digit span forward (range 0 to 9) and digit 

span backward (range 0 to 8). Memory-domain score (memory score) was calculated by summing 

scores in verbal and visual memory tests; raw scores on Seoul Verbal Learning Test (SVLT) 

immediate recall (range 0 to 36), delayed recall (range 0 to 12), and recognition (range 0 to 24) 

and raw scores on Rey–Osterrieth Complex Figure Test (RCFT) immediate recall (range 0 to 36), 

delayed recall (range 0 to 36), and recognition (range 0 to 24) were all summated. Frontal-

executive-domain score (frontal score) was calculated by summing scores in a category word 

generation task, a phonemic word generation task, and the Stroop color-reading test (range 0 to 



120). Raw scores on Korean version of the Boston Naming Test (K-BNT) and RCFT copy test 

were used as language and visuospatial score, respectively.  

 

 

MRI acquisition   

Standardized T2-weighted, three-dimensional (3D) T1-weighted turbo field echo, 3D fluid-

attenuated inversion recovery (FLAIR), T2* gradient echo (GRE) and DTI sequences were 

acquired for all subjects at the Samsung Medical Center using the same 3.0T MRI scanner (Philips 

3.0T Achieva). We acquired 3D T1-weighted turbo field echo MR images using the following 

parameters: sagittal slice thickness of 1.0 mm, over contiguous slices with 50% overlap; no gap; 

repetition time (TR) of 9.9 msec; echo time (TE) of 4.6 msec; flip angle of 8°; and matrix size of 

240 × 240 pixels, reconstructed to 480 × 480 over a field of view (FOV) of 240 mm. The following 

parameters were used for the 3D FLAIR images: axial slice thickness of 2 mm; no gap; TR 11000 

msec; TE 125 msec; flip angle 90°; and matrix size of 512 × 512 pixels. T2* GRE images were 

obtained using the following parameters: axial slice thickness of 5.0mm, inter-slice thickness of 

2mm, TR 669 msec, TE 16 msec, flip angle 18°, and matrix size 560 × 560 pixels. In whole-brain 

DT-MRI examinations, sets of axial diffusion-weighted single-shot echo-planar images were 

collected with the following parameters: 128×128 acquisition matrix, 1.72 × 1.72 × 2 mm3 voxels; 

70 axial slices; 22 × 22 cm2 FOV; TE 60 msec, TR 7696 msec; flip angle 90°; no gap; b-factor of 

600 smm−2. Diffusion-weighted images were acquired from 45 different directions using the 

baseline image without weighting [0, 0, 0]. All axial sections were acquired parallel to the anterior 

commissure-posterior commissure line. 

 



Structural markers of cerebral small vessel disease (SVD) 

Rating was performed by trained individuals blinded to clinical details.  Two experienced 

neurologists (HJK, JHP) rated WMH severity, lacunes and cerebral microbleeds. WMH severity 

was rated using FLAIR images using the simplified Fazekas scale[22]; Interrater reliabilities for 

rating periventricular, deep, and total WMH were between 72.6 and 90.5%. Lacunes were 

identified and counted using FLAIR, T1- and T2-weighted images in accordance with STRIVE 

(STandards for ReportIng Vascular changes on nEuroimaging) criteria[26]. Cerebral microbleeds 

were rated using the validated Microbleed Anatomical Rating Scale (MARS)[27] using T2* GRE 

images. Interrater agreement was 78.0% for lacunes and 92.3% for cerebral microbleeds, and 

consensus was reached in all cases of discrepancy. MRI-visible perivascular spaces in the basal 

ganglia (BG-PVS) were defined and rated using T2-weighted images by a single rater (GB) using 

a validated four-point visual rating scale[28, 29].  

 

The SVD score was determined using a previously described four-point scale [3, 5]. This scale 

awards 1 point for the presence of each of the following (with the maximum possible score being 

4): presence of 1 or more lacunes (1 point), presence of 1 or more cerebral microbleeds (1 point), 

moderate to severe BG-PVS (i.e. presence of >10 BG-PVS; 1 point) and WMH (periventricular 

WMH Fazekas grade 3 or deep WMH greater than Fazekas grade 2; 1 point) [3].  

 

 

PET acquisition and analysis 

All patients completed a [11C] PiB PET scan at either the Samsung Medical Center or the Asan 

Medical Center, using identical settings and a Discovery STe PET/CT scanner (GE Medical 



Systems, Milwaukee, WI, USA) in both cases. [11C] PiB-PET scanning was performed in 3-

dimensional scanning mode that examined 35 slices of 4.25-mm thickness spanning the entire 

brain. [11C] PiB was injected into an antecubital vein as a bolus with a mean dose of 420 MBq 

(range 259 to 550 MBq). A CT scan was performed for attenuation correction 60 minutes after 

injection. A 30-minute emission static PET scan was then initiated. The specific radioactivity of 

[11C] PiB at the time of administration was more than 1,500 Ci/mmol for patients and the 

radiochemical yield was more than 35%. The radiochemical purity of the tracer was more than 

95% for all PET studies. 

 

PiB PET images were co-registered to individual MRIs, which were normalized to a Montreal 

Neurological Institute (MNI)-152 template[30]. The quantitative regional values of PiB retention 

on the spatially normalized PiB images were obtained by an automated VOIs analysis using the 

automated anatomical labeling (AAL) atlas. Data processing was performed using SPM Version 

5 (SPM5) within Matlab 6.5 (MathWorks, Natick, MA). 

 

We selected 28 cortical VOIs from left and right hemispheres using the AAL atlas. The cerebral 

cortical VOIs that were chosen for this study consisted of the bilateral frontal (superior and middle 

frontal gyri, the medial portion of superior frontal gyrus, the opercular portion of inferior frontal 

gyrus, the triangular portion of inferior frontal gyrus, supplementary motor area, orbital portion of 

the superior, middle, and inferior orbital frontal gyri, rectus and olfactory cortex), posterior 

cingulate gyri, parietal (superior and inferior parietal, supramarginal and angular gyri, and 

precuneus), lateral temporal (superior, middle and inferior temporal gyri, and heschl gyri), and 



occipital (superior, middle, and inferior occipital gyri, cuneus, calcarine fissure, and lingual and 

fusiform gyri). Regional cerebral cortical uptake ratios were calculated by dividing each cortical 

VOI’s uptake ratio by the mean uptake of the cerebellar cortex (cerebellum crus1 and crus2), in 

order to obtain standardized uptake value ratios (SUVR). Global PiB uptake ratio was calculated 

from the volume-weighted average uptake ratio of bilateral 28 cerebral cortical VOIs. Patients 

were considered PiB-positive if their global PiB uptake ratio was greater than 1.5.  

 

 Image processing for cortical thickness measurement 

The CIVET anatomical pipeline was used to extract cortical thickness (http://mcin-

cnim.ca/neuroimagingtechnologies/civet/) [32]. In brief, using a linear transformation, native MRI 

images were registered to the MNI-152 template [30]. The N3 algorithm was used to correct the 

images for intensity-based non-uniformities [33] caused by the inhomogeneities in the magnetic 

field. Then, the registered and corrected images were classified into white matter, grey matter, 

cerebrospinal fluid and background using a 3D stereotaxic brain mask and the Intensity-

Normalized Stereotaxic Environment for Classification of Tissues (INSECT) algorithm [34]. The 

surfaces of the inner and outer cortex were automatically extracted using the Constrained 

Laplacian-based Automated Segmentation with Proximities (CLASP) algorithm [35]. 

 

Cortical thickness was defined as the Euclidean distance between the linked vertices of the inner 

and outer surfaces; there were 40,962 vertices in each hemisphere in native space [35]. The cortical 

thickness value was spatially normalized using surface-based two-dimensional registration with a 

sphere-to-sphere warping algorithm. Thus, the vertices of each subject were nonlinearly registered 

to a standard surface template to compare cortical thickness across subjects [36, 37]. Cortical 



thickness was subsequently smoothed using a surface-based diffusion kernel in order to increase 

the signal-to-noise ratio. We chose a 20-mm full-width at half-maximum kernel size to maximize 

statistical power while minimizing false positives [38]. Using these  methods, we obtained the 

mean cortical thickness values for each lobe. 

 

The presence of extensive WMH in the MRI scans made it difficult to completely delineate the 

inner cortical surface with the correct topology due to tissue classification errors. To overcome 

this technical limitation, we automatically defined the WMH region using a FLAIR image and 

substituted it for the intensity of peripheral, normal-appearing tissue on the high-resolution T1 

image after affine co-registration, as described in earlier studies [39]. 

 

Network analysis 

Network nodes were defined based on the automated anatomical labeling atlas [40], which 

parcellates the cerebral cortex into 78 areas (39 regions in each hemisphere). Individual T1-

weighted images were non-linearly registered to the MNI-152 template [30]. The AAL atlas was 

transformed from MNI space to T1 native space through inverse transformation with a nearest 

neighbor interpolation method. 

 

We corrected distortions in DTIs caused by eddy currents and simple head motions using the FSL 

(FMRIB’s Software Library) package diffusion toolbox in the FSL package 

(www.fmrib.ox.ac.uk/fsl/fdt). Diffusion tensor models were estimated, and the fractional 

anisotropy (FA) was calculated at each voxel. We reconstructed whole-brain white matter fiber 



tracts in native diffusion space for each subject using the fiber assignment of the continuous 

tracking algorithm [41] embedded in the Diffusion Toolkit (trackvis.org) [42]. We terminated 

tracking when the angle between two consecutive orientation vectors was greater than the given 

threshold of 45° or when both ends of the fibers extended outside of the white matter mask 

generated by the tissue segmentation process [43]. A fiber cutoff filter was applied such that fibers 

shorter than 20 mm and longer than 200 mm were eliminated. 

 

T1-weighted images were co-registered to the b0 images using the affine registration tool from the 

FSL package (www.fmrib.ox.ac.uk/fsl/ flirt). Reconstructed whole-brain fiber tracts were 

inversely transformed into the T1 space, and fiber tracts and AAL-based parcellated regions were 

located in the same space. Two nodes (regions) were considered to be structurally connected by 

an edge when at least the endpoints of three fiber tracts were located in these two regions. A 

threshold for the number of fiber tracts was selected to reduce the risk of false-positive connections 

due to noise or limitations in the deterministic tractography [43]. The FA value is considered an 

important index to evaluate fiber integrity [44], and in this study, the mean FA value along all 

fibers connecting pairs of regions was used to weight the edge. Finally, weighted structural 

networks represented by symmetric 78 * 78 matrices were constructed for each individual. 

 

Graph theoretical analyses were carried out on weighted connectivity networks using the Brain 

Connectivity Toolbox (www.brain-connectivity-toolbox.net)[46]. To measure network integration 

(the ability to rapidly combine specialized information from distributed nodes), we calculated the 

average shortest path length between all pairs of nodes and global efficiency in the network. We 



also calculated the weighted clustering coefficient, transitivity and modularity as measures of 

network segregation (the ability for specialized processing to occur within densely interconnected 

groups of nodes). Particularly for path analyses, we used nodal efficiency as a nodal topological 

characteristic of structural network, defined using the inverse of the weighted shortest path length 

between a given node and all other nodes in the network[46]. The definitions of these network 

measures and computation methods have been described previously[45-47]. Averaged values of 

the nodal efficiency in the frontal, temporal, and parietal regions predefined in the AAL atlas were 

used. Of 243 subjects, we excluded 18 patients for whom the quality of diffusion image (low 

signal-to-noise ratio) was not sufficient to reconstruct reliable fiber tracts. Thus network analysis 

was performed in 225 subjects (Figure 1).  

 

Statistical analysis  

For baseline characteristics, the mean and standard deviation were presented for continuous 

variables (age, years of education, cognitive and neuropsychological scores, global PiB-SUVR), 

and frequency and percentage of total population for categorical variables (sex, cardiovascular risk 

factors, APOE genotype, PiB positivity, components of SVD score). The median and interquartile 

range was presented for ordinal variables (SVD score).  Multiple linear regression analyses 

(adjusted for age, sex, and education) were used to explore the relationship between SVD score 

and neuropsychological test results, cortical thickness and structural network measures; linear 

regression (adjusted as above) was also performed for PiB positivity, to evaluate its relative 

contribution to cognitive domains significantly associated with SVD score. 

 



For cortical thickness analyses, we used a MATLAB-based toolbox (available free online at the 

University of Chicago website: 

http://galton.uchicago.edu/faculty/InMemoriam/worsley/research/surfstat/). In order to analyze 

the localized differences and the statistical map of cortical thickness on the surface model 

according to increasing SVD score (from 0 to 4), linear regression was performed vertex-by-vertex 

after controlling for age, sex, education, PiB positivity, and intracranial volume (ICV). The 

resulting statistical maps were thresholded using a RFT with a p-value of 0.05, after pooling the 

p-values from the regression analysis. 

 

To evaluate whether alteration of the WM network mediates the effects of SVD score on cortical 

thickness and cognition, path analyses were performed after controlling for age, sex, and 

education. Path analyses were performed for cognitive domains which showed significant 

associations with total SVD score in multiple linear regression analyses. In the structural equation 

modeling (SEM), we inserted all possible covariates including SVD score and PiB SUVR as 

exogenous variables and network measures, cortical atrophy and cognitive score as endogenous 

variables in the order according to the hypothesis. We selected nodes or cortical regions that were 

related to frontal-executive (bilateral frontal lobe) and visuospatial (bilateral parietal lobe) 

function. Path analysis using frontal score as the outcome was performed using mean frontal nodal 

efficiency and mean frontal thickness as mediators (path analysis A). Path analyses using 

visuospatial score as the outcomes were performed using mean parietal nodal efficiency/cortical 

thickness as mediators, respectively (path analysis B). SPSS Amos Version 18.0 software (SPSS, 

Chicago, IL, USA) was used for all path analyses.  

 



RESULTS 

From the original cohort (n=251), 243 patients were included in the cognitive and cortical atrophy 

analyses, and 225 in the network analyses; reasons for exclusion are provided in Figure 1.  Baseline 

characteristics for the included cohort are presented in Table 1.  

 

We first investigated the relationship between total SVD score with composite scores for five 

cognitive domains (Table 2). Total SVD score was significantly associated with deficits in frontal 

(β -4.31, SE 2.09, p = 0.040) and visuospatial (β -0.95, SE 0.44, p = 0.032) performance. When 

looking at associations with PiB positivity together, we found that this was significantly associated 

with deficits in memory (β -14.78, SE 2.69, p < 0.001) and language (β -3.46, SE 1.52, p = 0.024), 

with an associative trend between PiB positivity and visuospatial (β -2.28, SE 1.25, p = 0.070) 

performance.  

 

We then investigated the relationship between cortical thickness, total SVD score and PiB 

positivity (Table 3). Total SVD score was negatively associated with mean cortical thickness, 

globally and regionally. A statistical map of cortical thickness showed that increasing SVD score 

was associated with cortical thinning in widespread regions, in particular frontal (lateral, medial, 

inferior) and superior temporal regions (Figure 2). PiB positivity showed a trend for an overall 

negative association (β -0.049, SE 0.028, p = 0.082) and was regionally correlated with temporal 

cortical thickness (β -0.090, SE 0.033, p = 0.007), with a trend towards a negative association with 

occipital cortical thickness (β -0.049, SE 0.027, p = 0.067).  



 

We next reviewed the associations between total SVD score and structural network measures 

(Table 4). The most striking finding was that SVD score was highly and significantly correlated 

with all structural network measures of network strength, while there were no significant 

associations between PiB positivity and any of the network measures evaluated. Increasing SVD 

score was associated with a change in network organization, with reduced network integration 

(increasing path length and lower global efficiency) and increased network segregation (clustering 

coefficient, transitivity, modularity) (Table 4). Total SVD score was negatively correlated with 

nodal efficiency across frontal (β -0.182, SE 0.028, p < 0.001), temporal (β -0.015, SE 0.002, p < 

0.001), and parietal (β -0.171, SE 0.030, p < 0.001) networks.  

 

We then performed path analyses for frontal and visuospatial scores which showed significant 

associations with total SVD score in multiple linear regression analyses. (Figure 3; Table 5). The 

path analysis evaluating frontal score demonstrated goodness to fit the data (χ2 = 5.83, degrees of 

freedom = 5, p = 0.323, comparative fit index = 0.998, root mean square error of approximation = 

0.027 (90% CI 0.000 to 0.100)). Increasing SVD score was associated with a decrease in mean 

frontal nodal efficiency, which itself was associated with a decrease in mean frontal thickness; 

these two parameters together contributed to impaired frontal-executive function. Decreased 

frontal nodal efficiency was also associated with reduced frontal score independently of frontal 

thickness. Increased global PiB SUVR was associated with lower frontal score, independently of 

frontal nodal efficiency or frontal thickness. The path analysis for visuospatial score showed 

goodness to fit the data (χ2 = 5.77, degrees of freedom = 3, p = 0.124, comparative fit index = 



0.991, root mean square error of approximation = 0.064 (90% CI 0.000 to 0.142)). Increasing SVD 

score was associated with reduced parietal nodal efficiency, which itself has its effect on 

visuospatial score via parietal thickness. Reductions in parietal nodal efficiency also had a negative 

direct effect on visuospatial score, independent of the effect mediated by parietal thickness. Global 

PiB SUVR had a direct effect on parietal thickness with no effect on parietal nodal efficiency.  

 

DISCUSSION   

In a memory clinic population, we report that higher total SVD burden, as measured by a composite 

SVD score is associated with: (1) reductions in frontal and visuospatial cognitive function; (2) 

reduced cortical thickness across a number of regions, in particular in frontal and superior temporal 

regions; (3) altered brain network organization, with reduced integration and increased 

segregation. The presence of Aβ, as measured by PiB positivity, was associated with impairments 

in memory and language scores, and reduced temporal cortical thickness, but did not have an 

impact upon any of the network measures considered. Additionally, in path analyses for both 

frontal and visuospatial scores, total SVD score had direct effects upon nodal efficiency, which in 

turn had negative effects on cortical thickness and cognitive performance.  

 

This is the first time that this total SVD score has been used in a memory clinic cohort. Our mean 

score is higher than those in previously published cohorts [3-6, 8, 11] (1.9, compared with 

calculated means between 0.6 and 1.7). This suggests that there is significant burden of SVD in 

this cohort, above that observed in ischemic stroke (including lacunar stroke and TIA), 

hypertensive and healthy elderly populations. Our results are in keeping with studies in other 



populations, which have shown an association between total SVD score and cognitive deficits in 

multiple domains including memory, executive functioning and information processing speed, as 

well as general or overall cognitive ability[4, 5] and longitudinal cognitive decline[6]. However, 

we have extended these observations by demonstrating that total SVD score is also related to 

cortical thickness and brain network measures, highlighting processes by which structural SVD 

damage may result in cognitive impairment. Our path analyses show that regional nodal efficiency 

has both a direct and an indirect (via regional cortical atrophy) effect upon cognitive performance 

in two different domains, suggesting that subcortical damage intrinsically disrupts network 

efficiency, leading to cortical atrophy and impairment of tasks requiring cortical integration (i.e. 

those that rely on “distributed systems” and may be particularly susceptible to 

“disconnection”[50]). Previous results from this cohort have shown an association between 

individual structural markers of SVD, specifically WMH and lacunes[45], and cerebral network 

disruption. However, our results are in contrast with previous work, which did not find any 

association between total SVD score and cerebral atrophy[3]. This might be because the previous 

study used a visual rating scale rather than a quantitative measure of cortical thickness.  

 

These results also add to our understanding of how different age-related pathologies may affect 

the brain. In contrast with the clear and direct impact of total SVD score on cerebral networks, we 

did not find any association of Aβ burden with structural network measures (again, a finding that 

has previously been described in this cohort[17]). This may reflect the relative impact that amyloid 

pathology and small vessel damage have on the white matter tracts that underlie brain network 

connections. The relatively meagre blood supply of these tracts means that they are particularly 

vulnerable to hypoxia and the effects of small vessel damage[51]. In contrast, Aβ appears to exert 



its effects either directly (frontal-executive function) or via cortical thickness (visuospatial score); 

this may reflect an effect on network “hubs” rather than connections, which are likely to be in the 

grey matter, and is in keeping with the predominantly cortical distribution of Aβ pathology[52].  

 

The strengths of this study are that this is a well characterized prospective patient cohort, with 

detailed phenotyping and standardized imaging for all participants. There are also some 

limitations. Firstly, these findings may only be applicable to a selected memory clinic population 

rather than the full spectrum of dementia syndromes that can be encountered in this setting; 

moreover, our diagnoses were made clinically without pathological verification, and the criteria 

for patient selection may have resulted in the exclusion of patients with a high burden of both SVD 

and Aβ pathology. Additionally, we chose to consider the cohort as a whole rather than by 

diagnosis (as we wished to focus on the impact of small vessel disease as a pathology), which may 

have made our data more heterogenous than if each category was considered individually.  

Secondly, patients underwent PiB PET at two centers; although the scanner settings and imaging 

preprocessing methods were identical, we cannot rule out an inter-scanner effect. Thirdly, there 

are limitations of single diffusion tensor-based deterministic tractography algorithms, because this 

method cannot detect fiber crossings. Future studies using advanced diffusion acquisition methods, 

where crossing fibers are included in the model, are warranted to construct enhanced anatomical 

networks. Finally, the total SVD score has some intrinsic limitations. The interaction between 

individual markers is likely to be more complex than simple summation of their effects, and the 

individual markers may have independent effects upon clinical outcomes (as seen with WMH and 

lacunes[17]), information which is lost once the score is generated.  



 

In summary, total SVD burden has clinical relevance in a memory clinic population, and correlates 

with cognitive performance of frontal-executive and visuospatial tasks, cortical atrophy in multiple 

regions, as well as network strength, efficiency and organization. Further work is needed to 

confirm the potential of the total SVD score in other dementia syndromes. 
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TABLES 

Table 1: Baseline characteristics of participants (n=243) 

Demographics 

Mean age, years (SD) 72.2 (8.1) 

Sex, female, n (%) 143 (58.8) 

Years of Education, mean (SD) 10.0 (5.4) 

  

Cardiovascular risk factors 

Hypertension, n (%) 154 (63.4) 

Diabetes mellitus, n (%) 48 (19.8) 

Hyperlipidemia, n (%) 72 (29.6) 

Previous clinical history of stroke, n (%) 38 (15.6) 

  

APOE genotype† 

ε2 allele carrier, n (%) 24/238 (10.1) 

ε4 allele carrier, n (%) 87/238 (36.6) 

  

Cognitive scores 

MMSE, mean score, (SD) 22.9 (5.1) 

CDR_SB, mean score, (SD) 3.7 (3.2) 
  

Neuropsychological scores 

Attention, mean score, (SD) 8.3 (2.4) 

Language, mean score, (SD) 35.1 (11.5) 

Visuospatial, mean score, (SD) 24.7 (9.7) 

Memory, mean score, (SD) 61.3 (20.8) 

Frontal, mean score, (SD) 81.3 (45.0) 
  

PiB-PET measures 

Global PiB-SUVR, mean (SD) 1.7 (0.5) 

PiB positive, n (%) 130 (53.5) 

  

SVD score 

Total SVD score, median (IQR) 2 (0-3) 

Lacunes, presence, n (%) 140 (57.6) 

Cerebral microbleeds, presence, n (%) 103 (41.4) 

Moderate or severe WMH, presence, n (%) 147 (60.5) 

Moderate to severe BG-PVS, presence, n (%) 71 (29.2) 

 

 

†APOE genotyping was performed in 238 out of 243 participants. 



Abbreviations: APOE, Apolipoprotein E; CDR_SB, Clinical Dementia Rating sum or boxes; IQR, 

interquartile range; MMSE, Mini-mental status examination; PiB, Pittsburgh compound B; SD, 

standard deviation; SVD, small vessel disease.  



Table 2: Summary of multiple linear regression models investigating the relationship between 

neuropsychological composite scores and imaging parameters of interest (SVD score, PiB 

positivity) 

Neuropsychological Composite 

Score 

SVD score PiB positivity 
R2 

β (SE) p value β (SE) p value 

Attention -0.12 (0.10) 0.254 0.19 (0.30) 0.528 0.254 

Language -0.15 (0.54) 0.779 -3.46 (1.52) 0.024 0.151 

Visuospatial -0.95 (0.44) 0.032 -2.28 (1.25) 0.070 0.174 

Memory 1.54 (0.95) 0.106 
-14.78 

(2.69) 
<0.001 0.189 

Frontal -4.31 (2.09) 0.040 -8.64 (5.95) 0.147 0.145 

 

Age, sex, and education were entered as covariates for all models. 

Abbreviations: β, Unstandardized regression coefficient; COWAT, Controlled Oral Word 

Association Test; K-BNT, Korean version of the Boston Naming Test; RCFT, Rey-Osterrieth 

Complex Figure Test; PiB, Pittsburgh compound B; SE, standard error; SVD, small vessel disease; 

SVLT, Seoul Verbal Learning Test. 

  



Table 3: Summary of multiple linear regression models investigating the relationship between 

cortical thickness and imaging parameters of interest (SVD score, PiB positivity) 

 SVD score PiB positivity R2 

β (SE) p value β (SE) p value  

Global cortical thickness -0.033 (0.010) 0.001 -0.049 (0.028) 0.082 0.138 

Frontal cortical thickness -0.043 (0.011) <0.001 -0.017 (0.031) 0.567 0.148 

Temporal cortical 

thickness 
-0.039 (0.012) 0.001 -0.090 (0.033) 0.007 

0.183 

Parietal cortical thickness -0.020 (0.010) 0.052 -0.045 (0.029) 0.122 0.098 

Occipital cortical thickness -0.029 (0.009) 0.003 -0.049 (0.027) 0.067 0.099 

 

Age, sex, and education were entered as covariates for all models. 

Abbreviations: β, unstandardized regression coefficient; PiB, Pittsburgh compound B; SE, 

standard error; SVD, small vessel disease. 

  



Table 4: Summary of multiple linear regression models investigating the relationship between 

structural network measures and imaging parameters of interest (SVD score, PiB positivity) 

 
SVD score PiB positivity R2  

β (SE) p value β (SE) p value  

Shortest path length  0.017 (0.004) <0.001 0.000 (0.012) 0.974 0.143 

Global efficiency -0.007 (0.001) <0.001 -0.001 (0.004) 0.781 0.177 

Clustering coefficient 0.258 (0.037) <0.001 0.019 (0.106) 0.858 0.284 

Transivity 0.241 (0.033) <0.001 -0.001 (0.094) 0.990 0.298 

Modularity 0.013 (0.002) <0.001 0.000 (0.006) 0.960 0.270 

      

Mean frontal nodal 

efficiency 
-0.182 (0.028) <0.001 0.061 (0.079) 0.439 

0.317 

Mean temporal nodal 

efficiency 
-0.015 (0.002) <0.001 0.008 (0.006) 0.177 

0.274 

Mean parietal nodal 

efficiency 
-0.171 (0.030) <0.001 -0.035 (0.086) 0.683 

0.260 

 

Age, sex, and education were entered as covariates. Abbreviations: β, unstandardized regression 

coefficient; PiB, Pittsburgh compound B; SE, standard error; SVD, small vessel disease. 

 



Table 5:  Effects of SVD score and global PiB SUVR as predictors on frontal (path analysis A) 

and visuospatial function (path analysis B) through mediators (mean nodal efficiency and mean 

cortical thickness) 

Path analysis A  
Mean frontal nodal 

efficiency 
Mean frontal thickness Frontal score 

  β SE p β SE p β SE p 

SVD score -0.429 0.058 <0.001 -0.092 0.075 0.186 0.056 0.064 0.424 

Global PiB SUVR 0.018 0.061 0.776 -0.075 0.069 0.215 -0.148 0.055 0.015 

Mean frontal nodal 

efficiency 
- - - 0.519 0.055 <0.001 0.311 0.072 <0.001 

Mean frontal thickness - - - - - - 0.278 0.060 <0.001 

Path analysis B 

 
Mean parietal 

nodal efficiency 

Mean parietal 

thickness 
Visuospatial score 

 β SE p β SE p β SE p 

SVD score -0.391 0.065 <0.001 -0.090 0.076 0.241 -0.041 0.067 0.560 

Global PiB SUVR -0.052 0.067 0.417 -0.162 0.074 0.018 -0.102 0.066 0.112 

Mean parietal nodal 

efficiency 
- - - 0.263 0.064 <0.001 0.171 0.066 0.011 

Mean parietal thickness - - - - - - 0.342 0.060 <0.001 

 

Abbreviations: β, standardized regression coefficient; PiB, Pittsburgh compound B; SE, standard 

error; SVD, small vessel disease. 



 

FIGURE LEGENDS 

Figure 1: Flowchart demonstrating inclusion and exclusion of participants included within the study. 

 

Abbreviations:  

DTI, diffusion tensor imaging; MR, magnetic resonance. 



 

Figure 2: Statistical map of cortical thickness according to increasing SVD score (range between 0 

and 4).  

Thresholds were applied using random field theory with a p-value of 0.05. The linear regression model 

was adjusted for age, sex, education, intracerebral volume and PiB positivity. Increasing SVD score 

is associated with cortical thinning in widespread regions including the frontal (lateral, medial, 

inferior) and superior temporal lobes.  

 

Abbreviations: PiB, Pittsburgh compound B; RFT, random field theory; SVD, small vessel disease. 



 

Figure 3:  Schematic representation of the path analyses for frontal-executive (A) and visuospatial (B) 

scores. 

Small vessel disease (SVD) score and Aβ burden were entered as predictors. Mean nodal efficiency 

and mean cortical thickness were entered as mediators. Age, sex, and education were entered as 

covariates. Numbers on the paths are standardized coefficients that were statistically significant. 

 

Abbreviations: PiB, Pittsburgh compound B; SUVR, standardized uptake value ratios; SVD, small 

vessel disease. 

 



 

 


