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Enhanced sampling techniques such as umbrella sampling and metadynamics are now routinely used
to provide information on how the thermodynamic potential, or free energy, depends on a small number
of collective variables (CVs). The free energy surfaces that one extracts by using these techniques
provide a simplified or coarse-grained representation of the configurational ensemble. In this work, we
discuss how auxiliary variables can be mapped in CV space. We show that maps of auxiliary variables
allow one to analyze both the physics of the molecular system under investigation and the quality of
the reduced representation of the system that is encoded in a set of CVs. We apply this approach to
analyze the degeneracy of CVs and to compute entropy and enthalpy surfaces in CV space both for
conformational transitions in alanine dipeptide and for phase transitions in carbon dioxide molecular
crystals under pressure. Published by AIP Publishing. https://doi.org/10.1063/1.5027528

I. INTRODUCTION

Representing the configurational ensemble of a molecu-
lar system on a low dimensional hyper-surface defined by a
set of collective variables (CVs) s is a common practice in
molecular dynamics simulations. The CVs used to construct
these hyper-surfaces can be inspired by physical or chemi-
cal intuition, or they might emerge by using a dimensionality
reduction algorithm to analyze the trajectory.1–4 Regardless
of how it is constructed, however, the representation in CV
space finds its natural application in the analysis of the inher-
ently high dimensional conformational spaces obtained from
molecular dynamics trajectories for complex biomolecular
systems2,5,6 and for collective transformations in liquids.7–13

Moreover, the definition of a set of CVs, s, as the domain for
the definition of bias potentials is commonplace in a range of
enhanced sampling methods such as umbrella sampling,14,15

metadynamics,16,17 and adaptive biasing force,18 to name just
a few.

When CVs are employed to define biasing forces for
enhanced sampling methods, the dimensionality of s is only
limited by the computational efficiency of the sampling
protocol. Furthermore, methods for facilitating the usage
of high dimensional sets of CVs have been proposed.19–21

There is a problem with using a large number of CVs,
however, as when analyzing, representing, and interpreting
information obtained from sampling conformational spaces,
we are really limited to three dimensions. For this reason,
being able to systematically and quantitatively map informa-
tion on human readable CV spaces is key when it comes

Note: This article was intended as part of the Special Topic “Enhanced Sam-
pling for Molecular Systems” in Issue 7 of Volume 149 of J. Chem. Phys.
a)Electronic mail: m.salvalaglio@ucl.ac.uk

to understanding and conveying information on molecular
systems.

In this paper, we therefore discuss a set of best practices for
mapping auxiliary variables in CV space. This approach allows
one to perform a quantitative breakdown of free energy maps
into their entropic and enthalpic components and allows one
to map state functions and structural variables along transition
pathways. Building such maps in CV space also allows one
to assess the local level of degeneracy of the low dimensional
representation with respect to auxiliary variables and to thus
identify regions where the descriptive quality of the map CVs
deteriorates.

The analysis techniques we present are general, and we
begin by demonstrating them on a simple 2D model potential.
We then assess the accuracy of the method by analyzing the
thermodynamics of certain conformational transitions of ala-
nine dipeptide in vacuum. We then conclude the paper by char-
acterizing the I-III polymorphic transition in CO2 molecular
crystals under pressure.

II. THEORY
A. Mapping variables in CV space
with conditional probability

In what follows, the representation of the configuration
ensemble of a molecular system on a low-dimensional set of
CVs s is considered. Additional information for the system
mapped on s is conveyed by the auxiliary variable s̄. To be
clear, however, s and s̄ are both simply functions of the sys-
tem coordinates. For the sake of clarity in the discussions that
follow, we will refer to s as the map variables and to s̄ as the
auxiliary variable.

The equilibrium probability density in the extended
domain including both the map and auxiliary variables, p(s, s̄),
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is related to the thermodynamic potential of the ensemble of
interest through the Kirkwood relationship22

F(s, s̄) = −β−1 ln (p(s, s̄)) + C. (1)

In the canonical ensemble, F(s, s̄) is the Helmholtz free energy
hyper-surface mapped onto a set of CVs that includes both
the map and auxiliary variables. It should be noted, how-
ever, that the considerations that follow are general and can
be straightforwardly applied to other thermodynamic poten-
tials and their corresponding ensembles, as discussed in
Secs. II B–VI.

In the domain defined by s, each point represents an
ensemble of configurations that, despite being degenerate in
s, may or may not be identical. For any value of s, one
can therefore define a local probability density for s̄. This
local probability density will give one the conditional prob-
ability density for s̄ subject to a constraint on the value
of s,

p(s̄|s) = Zs̄ |s
−1

∫
e−βF(s,s̄)δ

(
s − s′

)
ds′, (2)

where Zs̄ |s is a partition function that is locally defined in s as

Zs̄ |s =

∫∫
e−βF(s,s̄)δ(s − s′)ds̄ds. (3)

This definition of a probability density p(s̄|s) allows one
to systematically map characteristic features of the local dis-
tribution of the auxiliary variable s̄ onto the domain defined
by the map variables, s.

The most intuitive map that can be constructed provides
information on the average value of the auxiliary variable s̄. In
what follows, we indicate this map using the symbol 〈s̄〉s and
compute it as

〈s̄〉s =
∫

s̄ p(s̄|s) ds̄. (4)

The quantity 〈s̄〉s can be physically interpreted as the ensemble
average of s̄ computed over the ensemble of configurations that
are degenerate in s.

One can also compute a map in s of any function of
the probability density p(s̄|s). For example, one could con-
struct a map for the standard deviation for this distribution as
follows:

σs̄
s =

√∫
(s̄ − 〈s̄〉s)2p(s̄|s)ds̄. (5)

In the following, we will discuss how the appropriate choice
of auxiliary variables allows one to analyze transition path-
ways, to assess the quality of the representation variables, and
to break down free energy surfaces into their entropic and
enthalpic components.

B. Mapping entropy and enthalpy in CV space
1. Canonical ensemble

A thermodynamic potential surface projected on a CV
space s implicitly includes both internal energy and entropy
contributions. Often times, however, in order to improve the
understanding of molecular processes, to analyze transition
pathways in CV space and to infer mechanistic hypotheses, it
is desirable to break F(s) down into its enthalpic and entropic
components, and to map each of these separate contributions

on s. To understand how one might go about performing this
operation, we begin by discussing the decomposition of a ther-
modynamic potential surface in the canonical ensemble. In
other words, we will discuss how a Helmholtz free energy
surface can be decomposed into its entropic and enthalpic con-
tributions. Consider a scenario in which the exact Helmholtz
free energy surface in the map CV domain, F(s) =−β−1 ln p(s)
+ C, has been obtained from the equilibrium probability den-
sity p(s) in the canonical ensemble. We can write the follow-
ing expression for this Helmholtz free energy surface, using
the definition of the Helmholtz free energy from classical
thermodynamics:

F(s) = U(s) − TS(s). (6)

The term U(s) here is the internal energy of the ensemble of
configurations mapped on s, T is the temperature of the sys-
tem, and S(s) is the entropy of the ensemble of configurations
mapped on s. The term U(s) can be computed as

U(s) = 〈EP〉s + 〈EK 〉s, (7)

where 〈EP〉s and 〈EK 〉s are the ensemble averages of the poten-
tial and kinetic energies of configurations that are degenerate
in s.

At this point, it is worth noting that F(s) defines the free
energy modulo an immaterial constant C. In other words, it
captures relative free energy differences between ensembles of
configurations projected at points of the CV space where p(s)
has been sampled. In order to consistently get rid of C in this
work, we introduce a reference state sref, which corresponds to
an arbitrary point in CV space where p(s) has been sampled.
We thus indicate the relative free energy difference with respect
to state sref as

∆F(s) = F(s) − F(sref ) = −β
−1 ln

p(s)
p(sref )

. (8)

Incidentally, introducing a reference state sref also allows us to
eliminate the s-independent kinetic energy contribution from
Eq. (7). It should be noted that, this elimination is only pos-
sible when s only depends on the atomic positions. That
is to say, s is not a function of the momenta. If s satis-
fies this condition, we can rewrite the internal energy term
as

∆U(s) = U(s) − U(sref ) = 〈EP〉s − 〈E
P〉sref , (9)

where 〈EP〉s is the local ensemble average of the potential
energy mapped on s, which can be directly computed using
Eq. (4) with s̄ = EP,

〈EP〉s =

∫
Ω

EP p(EP |s) dEP. (10)

The ensemble average of the potential energy for the reference
state that is indicated using 〈EP〉sref in the expressions above
is simply 〈EP〉s evaluated for s = sref.

Combining Eqs. (6), (8), and (9) provides an expression
that we can use to calculate a map of entropy differences
in s

∆S(s) =
1
T

(∆U(s) − ∆F(s)). (11)
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2. Isothermal-isobaric ensemble

Now consider sampling in the isothermal-isobaric ensem-
ble. Sampling in this ensemble yields a Gibbs free energy map
G(s) = −β−1 ln p(s) + C, which is defined as

G(s) = U(s) − TS(s) + PV (s). (12)

Following the approach that was detailed for the canonical
ensemble, we define a common reference state and express the
internal energy term using Eq. (9). At variance with Sec. II B 1,
however, we also introduce a pressure-volume work term that
is computed using

P∆V (s) = P
(
〈V〉s − 〈V〉sref

)
. (13)

The map in CV space for the local ensemble average of the
system’s volume 〈V〉s is obviously computed by using Eq. (4)
with s̄ = V ,

〈V〉s =
∫
Ω

V p(V |s) dV . (14)

The enthalpic contribution to the free energy can therefore be
mapped as

∆H(s) = ∆U(s) + P∆V (s), (15)

while the map of the entropic contribution to the Gibbs free
energy surface defined in s is given by

∆S(s) =
1
T

(∆H(s) − ∆F(s)). (16)

C. Entropy map for a 2D model potential

In order to give an intuitive explanation for the physi-
cal meaning of the entropy and energy maps that have been
introduced in Sec. II B we will begin by considering a two-
dimensional model potential. The functional form, EP(x, y), for
the potential energy landscape that we have studied is given
in the caption of Fig. 1. Furthermore, the left panel of the fig-
ure gives an illustration of the potential. For the purposes of
this example, we will use x as the map collective variable.
In other words, the x variable will be used in a way that is
analogous to the way the s variable was used in the general
discussions of Sec. II B. The y variable, by contrast, will be

a hidden, unknown variable and will thus be ignored in the
analysis of the free energy landscape. The reason for using the
two variables in this way is that the potential energy land-
scape EP(x, y) has two wells whose centers have different
values for the x variable and the same value for the y vari-
able. Figure 1(a) shows that these two wells, A and B, have
widths in x that are comparable. Furthermore, the depths of the
two wells are the same. There is a marked difference between
the two wells, however, as the extension in y of well B is
markedly larger than that of well A. It is straightforward to
calculate a canonical probability density for this potential in
r = [x y] as

p(r) = Z−1e−βEP(x,y), where Z =
∫

e−βEP(x,y)dxdy. (17)

We can thus calculate the free energy as a function of the map
variable x straightforwardly by using

F(x) = −β−1 ln

[∫
e−βEP(x,y)dy

]
. (18)

The resulting free energy profile that we obtain by applying
this equation is shown in blue in the right panel of Fig. 1.
When the free energy landscape is projected in this way, basin
B appears to have a free energy that is substantially lower
than the free energy of basin A, which is perhaps surprising
given that we know that potential energies of these two basins
are the same. We can understand the physical origin of this
effect, however, by constructing the average potential energy
and entropy maps that were discussed in Sec. II B. The red line
in Fig. 1(b) is the potential energy profile along x which was
computed using Eq. (4), and the potential energy as an auxiliary
variable, i.e., s̄ = EP, while the green line is the entropy map
[Fig. 1(b)].

Elementary statistical mechanics tells us that the entropic
term is large when the accessible volume of phase space is
larger. The results described in the previous paragraph were
thus to be expected. In fact, the same conclusion could have
been drawn by simply examining the energy landscape and
noting that basin B has a larger spatial extent in the auxiliary
variable y. It is obvious that these greater spatial extents are

FIG. 1. (a) 2D model potential function that we have used to explain the technique introduced in this paper. In what follows, we use x as the map variable and y as
the auxiliary variable. As you can see this potential has two minima along x with very similar depths. Minima B has a much larger width in the auxiliary, y, direction

than minima A, however. The 2D potential energy function is defined as EP(x, y) = −(W1 + W2) + 4x.2 + 5 × 10−3y.2, where Wi = Ai exp
(
−

(x−xi).
2

(2σi .2)
−

(y−yi).
2

(2λi .2)

)
,

and A1 = 50.1, σ1 = 1.3, λ1 = 200, x1 = 2.5, y1 = 0, A2 = 50.0, σ2 = 1.3, λ2 = 1.0, x2 = −2.5, and y2 = 0. (b) Free energy, potential energy, and entropy profiles
for the potential energy landscape shown in (a) as a function of the map variable x.
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going to ensure that the degeneracy of x with respect to the
hidden variable y is larger in basin B than it is in basin A and
that the entropy of basin B is thus going to be larger than the
entropy of basin A. The example is still instructive, however,
because, while these considerations are intuitively obvious for
a model potential with a single hidden degree of freedom,
they are far less obvious in real systems, where degeneracy
with respect to hidden variables can often be very difficult to
quantify. In these cases, Eq. (11) is thus very useful as it allows
one to map this hidden entropic contribution in CV space and
to thus disentangle the roles played by entropy and energy in
ensuring thermodynamic stability.

III. SIMULATION DETAILS

In order to demonstrate our analysis, we discuss its appli-
cation to two model systems; namely, Alanine dipeptide in
vacuum and the I-III polymorphic transition of solid CO2 under
pressure (Fig. 2). In analysing these systems, we have to deal
with the fact that we do not have an exact analytical expres-
sion for the free energy surface and thus have to extract this
quantity via sampling. This limitation introduces two practi-
cal problems which we will discuss how to resolve. The first
of these problems is that we will only have a finite number of
samples. It will thus be important for us to quantify the random
error in all our estimates of the ensemble averages. The second
practical problem is that many of the conformational transi-
tions that we are interested in take place over time scales that
are far longer than we can simulate using molecular dynamics.
In what follows, we will thus, after a brief discussion of the
simulations that we have performed, discuss how we can use
bias potentials to enhance the rates for these slow processes
and how the free energy can be extracted from such biased
simulations.

A. Alanine dipeptide in vacuum

Four independent well-tempered metadynamics
(WTmetaD)17 simulations of alanine dipeptide in vacuum
have been carried out at T = 300, 350, 400, and 450 K.
The AMBER99SB23 force field was used in all these calcu-
lations, periodic boundary conditions were not applied, and
non-bonded interactions were computed with an infinite cut-
off. All bonds were constrained using LINCS (LINear Con-
straint Solver), and the dynamics was propagated using a

time step of 2 fs for 2 µs for each temperature. Tempera-
ture was controlled with the Bussi-Donadio-Parrinello ther-
mostat, and initial velocities were randomly chosen from the
Maxwell-Boltzmann distribution at the appropriate temper-
ature.24 WTmetaD was carried out by depositing Gaussians
in a CV space defined by the dihedral angles φ and ψ (see
Fig. 4) every 500 steps. These Gaussians had an initial height of
1.2 kJ mol−1 and a width of 0.35 rad for both CVs. The bias
factor for well-tempered metadynamics was set equal to 6 and
all simulations were performed with gromacs 5.1.425 patched
with plumed 2.3.26

B. CO2 polymorphic transitions

The I-III polymorphic transition in solid carbon dioxide
was investigated using well-tempered metadynamics at 350 K
and 3 GPa. The initial configuration was a super cell of phase
I that was composed of 64 unit cells (256 molecules). The unit
cell of phase I was obtained from the Crystallography Open
Database (COD, ID 1010060), from Ref. 27, while for phase
III it was built from Refs. 28 and 29. This initial structure was
minimized and then a 500 ps NVT equilibration was performed
at 350 K. This initial equilibration was followed by a 5 ns NPT
equilibration at 350 K and 3 GPa without long-range correc-
tions and a 5 ps NPT equilibration with long-range corrections.
The TraPPE force field30 was employed which necessitated
the introduction of two dummy atoms per molecule in order
to ensure that each molecule remained rigid with the desired
180◦ angle.31 Periodic boundary conditions were employed,
the cut-off was set to 0.7 nm, and long-range corrections
were included for both van der Waals and electrostatic inter-
actions by using the particle mesh Ewald (pme) approach.
To ensure that the isothermal and isobaric ensemble is sim-
ulated, the Bussi-Donadio-Parrinello thermostat24 was used
together with an anisotropic Berendsen barostat.32 The integra-
tion time step was set equal to 0.5 fs, and WTmetaD was run for
∼281 ns.

In the well-tempered metadynamics simulations, the bias
was deposited on two collective variables. These CVs are
the order parameters that are based on the local environment
around each CO2 molecule that are discussed in Refs. 33–35.
In essence, these variables measure whether the coordina-
tion numbers and the relative orientation between pairs of
molecules in each other’s first coordination shells are simi-
lar to the arrangements that are found in the perfect crystal.

FIG. 2. (a) A representation of the Ala-
nine Dipeptide molecule that has been
studied in this work that illustrates the
three dihedral angles φ, ψ, and θ that
are instrumental in our analysis. (b) A
snapshot showing Phase I of crystalline
CO2. This particular phase is the ther-
modynamically stable state at 3 GPa and
350 K.
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A detailed description of the formulation of λI and λIII can
be found in our previous work on CO2.35,36 In the meta-
dynamics simulations, the well-tempered bias factor is set
equal to 100 and Gaussians are deposited every 500 steps.
These Gaussians have an initial height of 10 kJ mol−1 and
a width, σ, of 7.81 × 10−3 in both CVs. In addition, a har-
monic repulsive potential is used to ensure that the box sides
only fluctuate between 1.7 and 3.0 nm. This potential pre-
vents excessive and irreversible distortions of the cell shape
that can occur when the system undergoes a transition to the
melt. It is worth mentioning, however, that at the T-P condi-
tions investigated in this work (350 K and 3 GPa), no melting
is observed and so the box edges do not approach regions of
configuration space where these constraints would act. When
analyzing the CO2 trajectories, we often discuss the anisotropy
of the supercell, which is defined as the ratio between the
lengths of the largest and the smallest edges of the simulation
box.

C. Reweighting methods and conditional
probability convergence

As discussed at the start of Sec. III, the time scales for
many of the processes that we are interested in are often
longer than we can simulate. Therefore we use metadynamics
to enhance the frequencies with which these rare events occur
in our simulations. Our usage of this technique introduces a
history-dependent bias potential on the map variables, V (s, t).
Consequently, if we assume that the system is in equilibrium
with the bias potential at all times, the probability, p′(s, t), that
we sample a particular set of map variables at any given point
in our trajectory is given by

p′(s, t) =
e−βF(s)−βV (s,t)

∫ e−βF(s)−βV (s,t)ds
. (19)

It is straightforward to show37–39 that, if the bias’ time depen-
dence is ignored and if the final converged metadynamics bias,
V (s), is used in place of V (s, t) in the above, an estimate of
the unbiased free energy can be extracted from a set of M
trajectory frames using

F(s) = −β−1 ln


∑M
i=1 δ(s − si)e+βV (si)∑M

i=1 e+βV (si)


. (20)

Recently a number of more refined techniques40,41 that
take the time dependence of the bias into account have been
proposed. The aim of this section is, therefore, to compare the
performance of these different methods. These new methods
for reweighting start from a recognition that Eq. (19) can be
written as

p′(s, t) =
e−βF(s)−βV (s,t)−βc(t)

∫ e−βF(s)ds
(21)

with

c(t) = β−1 ln

[
∫ e−βF(s)ds

∫ e−βF(s)−βV (s,t)ds

]
(22)

and thus introduce c(t) as a running estimate of the differ-
ence between the normalisation constants for the unbiased and
biased probability distributions. As the bias potential is time

dependent, this quantity is obviously also time dependent. It
is, therefore, useful to estimate its time dependence in order to
make best use of the statistics that were collected before the
bias had fully converged. In Tiwary and Parrinello’s method,40

this is achieved by updating the estimate of c(t) every τ ps of
the trajectory using

c(t) = β−1 ln

[
∫ eγ∆βV (s,t)ds

∫ e∆βV (s,t)ds

]
, (23)

where γ is the well-tempered metadynamics parameter and
where (∆β)−1 = kBT (γ − 1). In Tiwary and Parrinello’s
method, reweighting is thus achieved by using Eq. (20) with
V (s) = V (s, t) + c(t). Bonomi et al.41 use a different method
to deal with c(t) and introduce the following expression that
describes how the probability that a CV, f , takes a particular
value over time window changes over a time period of length
∆t:

P(f , t + ∆t) =
∫

e−β∆t
[
V ′(s,t)−V ′(t)

]
P(s, f , t)ds. (24)

In this expression, V ′(s, t) is the derivative of the bias
potential with respect to time at the map variable s and V ′(t) is
an average of this time derivative that is calculated by integrat-
ing over the whole domain. In the method of Bonomi et al., a
histogram that is a function of f and s is therefore accumulated
and a suitably manipulated version of the expression above is
used to convert the biased histogram that is accumulated back
to the unbiased distribution. In the software that was released
with Bonomi’s paper, the numerical details of this procedure
can be done in one of two notionally equivalent ways, so we
test both in what follows.

Before constructing maps for any of the systems that
were simulated using metadynamics, we performed a short
study on our alanine dipeptide data to compare the efficacy
of these various reweighting algorithms. In this section, we
will thus analyze the data from a WTmetaD simulation of
alanine dipeptide in vacuum at 300 K. In particular, the free
energy estimates that we obtained by applying the various
reweighting methods described in the previous paragraph were
compared against the free energy estimate obtained by inte-
grating the time dependent WTmetaD bias potential. In what
follows, we use the symbol ∆F(φ,ψ)ref to refer to the esti-
mate of the free energy that was obtained by integrating in this
way.

In the analysis of the convergence of the free energy
as a function of the Ramachandran angles, ∆F(φ, ψ), that
is reported in Fig. 3, we consider using the final bias in
Eq. (20), the method proposed by Tiwary and Parrinello40 with
three different τ parameters (10, 50, and 100 metadynamics
cycles) and the implementations of Bonomi et al.’s method
that are included in the reweight utility that is distributed with
PLUMED 1.3.26,42 To assess the degree to which each of these
methods has converged to the reference result, we define resid-
uals δ = ∆F(φ, ψ) − ∆F(φ, ψ)ref . In panels (a) and (b) of
Fig. 3, we monitor how the mean and standard deviation of
the residual distribution varies as a function of the simulation
time.

In panels (c) and (d) of Fig. 3, the degree to which
∆F(φ, ψ, EP) has converged is monitored. A slightly different
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FIG. 3. Convergence of conditional
probability distributions in CV space
for alanine dipeptide in vacuum at
T = 300 K. To construct the figures in
the top two panels, we estimated the free
energy as a function of the map vari-
ables, s, using three different reweight-
ing techniques. We then computed the
s-dependent difference with respect to
the FES obtained by integrating the bias
potential. In (a), we report the average
value of the difference, and in (b) we
report its standard deviation. It can be
seen that in all cases, both these indica-
tors are well below kBT, showing that
all the reweighting strategies provide
consistent estimates of the probability
density in s. In panels (c) and (d), we
repeat this procedure but now, instead of
computing the free energy as a function
of the map variables only, we compute
it as a function of the map variables
and the auxiliary variable, EP . The way
the reference free energy constructed in
this second case is explained in the text.
Also in this case, the mean difference is
well below kBT, while the width of the
residuals distribution is of the order of
kBT.

approach was used when constructing these two figures as the
free energy as a function of φ, ψ, and EP cannot be calculated
by integrating the simulation bias because EP was not biased
in the simulation. In this case, we thus used the average of the
estimates obtained by employing the final bias, the approach of
Bonomi et al.,41 and the approach of Tiwary and Parrinello40

on the entire 2 µs trajectory as a reference free energy surface
(FES). Once again, panels (c) and (d) show the mean and the
standard deviation for the distribution of residues.

Figure 3(a) shows that the average absolute discrepancy
between the reweighted FES and the FES that is obtained
by integrating the deposited bias is within kBT. Furthermore,
this discrepancy always converges to a fraction of a kJ mol−1

within the first 50 ns of the simulation. It should be noted
that the method used to construct histograms has a signifi-
cant impact on the high energy regions of the FES leading
to large deviations from the FES obtained by integrating the
metadynamics bias. To limit this effect, histograms for the
Tiwary and Parrinello and final bias reweighting methods
were constructed using Gaussian kernels with a bandwidth of
0.035 rad.

The comparisons in Fig. 3 show that when comparing
with the FES obtained by integrating the metadynamics bias,
the reweighting approach of Bonomi is slightly more accurate.
When estimating probability density with respect to auxiliary
variables, however, all the methods tested provide a very sim-
ilar degree of accuracy. We note that, in practice, even simply
reweighting with the final bias gives an accurate estimate of
the free energy surface.

D. Estimating sampling errors

At the start of Sec. III we explained that, we cannot extract
an exact analytical expression for the free energy surface and
that we instead use simulations to estimate this quantity by
sampling. This procedure introduces a sampling error that it
is important to quantify. We can estimate this using a block
averaging technique,43 which divides our trajectory up into a
series of N blocks of length M. If we are calculating a map
for the average value of the auxiliary variable, s, we need to
consider the propagation of the sampling error associated with
Eq. (4). To this aim, we calculate the following two func-
tions of the map variables for each of our blocks of trajectory
data: (

Zs |s〈s(s)〉
) (j)
=

1

W (j)

M∑
t=1

stδ(st − s)e+βV (s,t), (25)

Z (j)
s |s =

1

W (j)

M∑
t=1

δ(st − s)e+βV (s,t), (26)

where W j =
∑M

t=1 e+βV (s,t).
We can obviously recover the averages of either of these

two quantities over the whole trajectory from the quantities
calculated for each block using

〈A〉 =

∑N
i=1 W jAj∑N

i=1 W j
, (27)

where A(j) in the above is substituted by either (w s̄(s))j

or W j.
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Better still, however, because we set the blocks lengths to
be longer than the autocorrelation time for both s and s, we
can compute an estimate for the variance using

δ2(A) =
Ω

Ω − S/Ω

N∑
j=1

W j
(
Aj − 〈A〉

)2
, (28)

where Ω and S are the sum and the sum of the squares of the
W (j) values for each block. As we have samples from each of
our N blocks, we can thus compute a confidence limit on our
estimate of 〈A〉 using

ε = Φ−1
(

pc + 1
2

)√
δ2(A)

N
, (29)

where Φ−1 is the inverse of the cumulative probability distri-
bution for a standard normal distribution and where pc is the
level of statistical confidence we would like our error bars to
represent. This quantity, ε , must be estimated for the two aver-
ages Zs |s〈s(s)〉 and Zs |s separately. The error on the map 〈s(s)〉
is then given by

ε(s(s)) = 〈s(s)〉

√
ε(Zs |s〈s(s)〉)

Zs |s〈s(s)〉
+
ε(Zs |s)

Zs |s
. (30)

IV. RESULTS
A. Alanine dipeptide in vacuum

Alanine dipeptide in vacuum provides a prototypical
example of a conformational free energy landscape that is char-
acterized by metastable states. As such, dialanine has often
been used as a case study for development and as a test bed for
enhanced sampling algorithms. In this section, we will thus
use this system once more in order to discuss a few aspects
of our analysis in a setting that should be familiar to other
researchers in this field. In addition, by simulating this simple
system, we should be able to assess the quantitative accuracy
of the ensemble averages mapped in CV space that we will
obtain. We will begin by comparing the entropy and internal
energy differences between the metastable states of alanine
dipeptide (C7eq and C7ax). This analysis is useful as the inter-
nal energy and entropy differences between these two states
can be computed in one of two ways. We can compute the
internal energy and entropy maps described in Sec. II from
a single simulation at one particular temperature and hence
extract the internal energy and entropy difference between the
two states. Alternatively, we can calculate free energy surfaces

FIG. 4. Breakdown of the free energy surface for alanine dipeptide in vacuum at T = 300 K. We denote block averaged maps using angular brackets. Block
averaged ∆F(s) (a), ∆U(s) (b), and −T∆S(s) (c) are reported as a function of the Ramachandran CV space s = (φ, ψ), together with maps of their respective
sampling errors ε∆F (s) (d), ε∆U (s) (e), and ε−T∆S (s) (f). The sampling errors, averaged over the CV space for configurations which have ∆F < 50 kJ/mol, are
ε∆F = 0.14, ε∆U = 0.61, and εT∆S = 0.63 kJ/mol. (g) Free energy difference between the C7ax and C7eq conformations as a function of temperature. The red
circles correspond to estimates obtained from simulations performed at four different temperatures. The blue dashed line is the result of fitting these four data
points using a linear function. The parameters ∆U and T∆S obtained from this fit are reported in Table I and compared with estimates obtained from a single
simulation using Eqs. (10) and (11).
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at a range of temperatures and extract from these the differ-
ence in free energy between the two states as a function of
temperature. Equation (11) tells us that this free energy dif-
ference should be a linear function of temperature and that
the intercept and gradient of this line should be equal to the
internal energy difference and the entropy difference, respec-
tively. In what follows, we will thus compute the energy and
entropy differences in these two ways in order to test the relia-
bility of our approach. Furthermore, we also show that we can
use our approach to accurately compute the FES at a temper-
ature that is different from the one we simulated at. Finally,
we discuss how projecting auxiliary variables that describe the
conformation of the molecule allows one to further analyze the
complexity of the ensemble of configurations projected in CV
space.

B. Conformational transition thermodynamics

To assess the reliability of the free energy breakdown
into its enthalpy and entropy components that is obtained by
mapping the potential energy as described in Sec. II, we ana-
lyzed a set of four independent WTmetaD simulations that
were carried out at 300, 350, 400, and 450 K. For each sim-
ulation, we computed the change in internal energy ∆Uax→eq

and the change in entropy ∆Sax→eq that is associated with the
C7ax → C7eq conformational transition. The values that we
obtained by performing these analyses were then compared
with estimates for ∆Uax→eq and ∆Sax→eq that were obtained
by fitting the dependence of ∆Fax→eq on temperature using
a linear function. This linear fit is justified because we know
that the free energy is given by 6. Furthermore, Fig. 4 shows
that the data points obtained from the four simulations all lie
very close to the linear regression line. Table I shows that
the parameters we obtained from this fit are consistent with
the four independent estimates for ∆Uax→eq and ∆Sax→eq that
were obtained by applying the approach detailed in Sec. II to
the simulations at the four different temperatures. To obtain
values for the internal energy differences, ∆Uax→eq, in this
table, we computed the difference between the ensemble aver-
ages of ∆U(φ, ψ) that were computed over the domains in CV

TABLE I. Internal energy and entropy changes associated with the
C7ax → C7eq conformational transition for alanine dipeptide in vacuum. Val-
ues reported in the first column in this table were obtained by fitting multiple
simulations at different T, while others were obtained by applying Eqs. (10)
and (11) to the results from single simulations.

∆Fax→eq(T )
Linear fit

Equations (10) and (11)

300 K 350 K 400 K 450 K

∆Uax→eq �5.6219 �5.5619 �5.5662 �5.7285 �6.0741
∆Sax→eq �0.0140 �0.0142 �0.0141 �0.0137 �0.0129

space corresponding to conformer C7eq and conformer C7ax,
respectively. The ∆Sax→eq term was instead computed using
Eq. (11).

C. Computing temperature-dependent
free energy surfaces

If a FES can be broken down into its internal energy∆U(s)
and entropy ∆S(s) components as shown in Figs. 4(a)–4(c), it
becomes trivial to capture the local temperature dependence
of the free energy projected in CV space. In other words, if
one has the internal energy and entropy maps at one tempera-
ture, it is straightforward to compute the free energy surfaces
∆F(s) at a second, different temperature by locally applying
Eq. (12).44 As a second test for this methodology, we thus per-
formed a comparison between free energy surfaces that were
obtained using Eq. (12) with those obtained by re-simulating
the system at the various different temperatures. In particu-
lar, we computed ∆F(φ, ψ)i, ∆U(φ, ψ)i, and ∆S(φ, ψ)i for
each of the four WTmetaD simulations performed at Ti =
300, 350, 400, and 450 K. From each of the pairs of maps
that we obtained from this analysis, we then computed ∆F(φ,
ψ)j ,i = ∆U(φ, ψ)i − T j∆S(φ, ψ)i. Figure 5 shows the results
of a comparison between the free energy surfaces that are
obtained through this procedure and the reference free energies
that are computed by simulating at each of the temperatures,
∆F(φ, ψ)i. Panel (a) of this figure shows a typical map of the
absolute difference between ∆F(φ, ψ)j ,i and ∆F(φ, ψ)i with

FIG. 5. A further test on the efficacy of our new method. To construct the first two of these figures, the free energy surface ∆F(s, T ) was computed at T = 450 K
by applying Eq. (12) with ∆S(s) and ∆U(s) values that were computed from a simulation that was performed at 350 K. In addition, a reference free energy
surface ∆F(s, T )ref was computed by analyzing a WTmetaD that was performed at T = 450 K. Panel (a) shows the difference between these two free energy
surfaces as a function of the φ and ψ variables. Panel (b) then shows the cumulative distribution of the local differences. Panels (c) and (d) show what happens
when this analysis is extended over all the temperatures studied. The colors of the squares in panel (c) are used to indicate the average difference between the
estimate of the free energy that is obtained at the temperature shown on the vertical axis by using Eq. (12) with ∆S(s) and ∆U(s) surfaces that are computed at
the temperature on the horizontal axis with an estimate of the free energy that is computed from a simulation at the temperature shown on the vertical axis. Panel
(d), meanwhile, shows a similar set of results, but in this panel the standard deviation for this distribution of differences is shown instead of the mean. It is clear
from these figures that the average differences between these various estimates are all significantly lower than kBT at all temperatures.
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i = 450 K and j = 350 K. It is clear from this figure that there is
quantitative agreement between the free energy surfaces that
are computed in these two different ways. The residual differ-
ences between the two estimates are of the order of one tenth
of kBT for most of the map. In fact, the only regions where
there are substantial 2 kBT discrepancies between the two free
energy estimates are the highest energy regions of the energy
landscape.

To further illustrate the quantitative agreement between
these two different ways of estimating the free energy, Fig. 5(b)
shows an example of the distribution of the absolute error. It
is clear from this figure that for the majority of grid points, the
discrepancy between the two estimates is less than 0.5 kBT.
Furthermore, Fig. 5 also shows that similar results hold for
other pairs of temperatures. To extract Fig. 5(c), we com-
puted ∆F(φ, ψ)j ,i for each of the 16 possible combinations
of temperatures. For each of these surfaces, we then per-
formed a comparison that was similar to that shown in panel
(a) between ∆F(φ, ψ)j ,i and ∆F(φ, ψ)i. This procedure gives
us a map showing how the difference between the two esti-
mates of the free energy depends on φ and ψ. Rather than
displaying all this information for all 16 possible pairs of tem-
peratures, we calculated the mean and standard deviation of
each of the 16 set of local difference values. In Figs. 5(c)
and 5(d), four by four grids are used to display the values
of these 16 means and 16 standard deviations, respectively.
It is clear from these two figures that both the mean and
the standard deviation of the differences are smaller than
0.5 kBT. There is thus quantitative agreement between the
values obtained using the two methods over a wide range of
temperatures. We note that the effectiveness of the approach
described relies on the fact that all the relevant states are
present in the entire temperature range investigated, and hence
the number of basins and their location in CV space do not

depend on temperature. While somehow restrictive, we expect
these conditions to hold for most conformational transition
problems.

D. Mapping auxiliary structural variables

In addition, to computing maps that show how the entropy
and the internal energy depend on the map variables, s, we can
also calculate maps for any auxiliary CV s̄. Figure 6 shows why
this procedure is useful. In this figure, the average value for
the θ dihedral angle of alanine dipeptide is shown as a function
of the Ramachandran angles φ and ψ. It is clear from this plot
that some details of the interconversion mechanism between
the C7eq and C7ax are hidden when the free energy landscape
is displayed as a function of the Ramachandran angles, which
is interesting given that this energy landscape is considered
to be fully understood. Figure 6 shows that both the C7eq and
C7ax basins are characterized by two sub-populations of states
that can take both positive and negative values for the angle
θ. Furthermore, within both the C7eq and C7ax basins, one
can see an anti-correlation between the local average of the
value of θ and the value of φ. This anti-correlation is rem-
iniscent of the anti-correlation between the trajectories that
escape from the C7eq basin and those that commit to the C7ax

basin.45,46

It is also interesting to map the local average of θ onto the
minimum free energy path for the C7eq→C7ax transition. The
result of performing this calculation is shown in Fig. 6(b). It
is interesting to note that the average value of θ changes sign
along the pathway. Furthermore, the most probable θ angle
for configurations that are projected on top of the free energy
barrier in CV space is close to zero.

In addition, to calculating the average value of the aux-
iliary structural variable as a function of the map variables,
we can also compute the conditional probability distribution

FIG. 6. (a) Map showing the average value of the θ dihedral angle as a function of the dihedral angles φ and ψ. The average sampling error computed on the
map is εθ = 0.0256 rad. (b) Value of the θ dihedral angle mapped along the pathway between C7eq and C7ax represented in red in panel (a). In constructing this
figure, the sampling error was computed at the 95% confidence limit and is reported as a shaded area. (c) Probability distributions for θ at specific points in φ,
ψ space. The particular points chosen correspond to the two (meta)stable conformers and to the saddle point SP corresponding to the apparent transition state
in CV space.
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for the auxiliary variable for a particular set of map variables,
p(θ|φ, ψ). Figure 6(c) reports three such conditional probabil-
ity distributions that have φ and ψ values that correspond to
being in the two stable conformers and at the apparent tran-
sition state (TS). It is clear from these figures that the width
of the distribution of θ values depends markedly on the posi-
tion in (φ, ψ). As a case in point, when the system is at the
apparent TS, the width of the local distribution in θ is much
larger. This is perhaps because in these conditions, the sys-
tem is between the two basins and will thus undergo larger
fluctuations.

V. I-III POLYMORPHIC TRANSITION IN CO2

A. Polymorphic transition thermodynamics

As discussed in Sec. II, we can break down any free energy
maps that was obtained by simulating in the isothermal iso-
baric ensemble by building maps in CV space for the average
potential energy and the average volume. In this section, we
will thus map the local enthalpic and entropic contributions
to the Gibbs free energy in CV space and thus investigate the
I-III polymorphic transition of solid CO2. In a recent paper,35

we have investigated the thermodynamics and the mechanism

FIG. 7. Breakdown of the free energy surface (a) associated with the polymorphic transition between form I and III for solid CO2. Block averaged ∆U (d), P∆V
(e), ∆H (f), and −T∆S are reported as a function of the collective variables λI and λIII that were introduced and discussed at length in Ref. 35. In all the maps, a
green line indicates the minimum free energy path for the I-III transition. The sampling errors averaged over the CV domain for these surfaces are ε∆G = 17.14,
ε∆U = 16.3, ε∆H = 28.3, and εT∆S = 35.07 kJ/mol. [(f) and (g)] Breakdown of the free energy difference between polymorph I and III of solid CO2 along
the minimum free energy path in which the error bars indicate 95% confidence intervals. In all plots, the transition path is defined so that moving rightwards
corresponds to moving from form III to form I. Panel (b) shows that form I has a lower free energy at 350 K and 3 GPa than form III. Intriguingly, however, the
overall enthalpy contribution is close to null and the fact that form I is more stable in these conditions must, therefore, be due to entropic contributions. Panel
(c) shows that the internal energy and the mechanical work of expansion along the I→ III transition pathway almost compensate for each other. While the P∆V
favours form III, internal energy favours form I along the entire transition pathway.
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for this phase transition using a rigid model of CO2. Here we
further analyze simulations that are performed at conditions
for which form I is thermodynamically stable with respect
to form III, i.e., 3 GPa and 350 K, and will produce maps
in the space defined by the collective variables λI and λIII

(see Sec. III and Ref. 35 for details). Figure 7 shows the free
energy ∆G(λ), internal energy ∆U(λ), mechanical work P∆V
(λ), and entropy −T∆S(λ) maps. Figure 7 shows that all of
these terms contribute significantly to the free energy surface.
The features that we observe in the final free energy surface
cannot therefore be attributed to one of the particular com-
ponents from which this quantity is determined. Furthermore,
there is a clear transition channel around the minimum free
energy path for all the surfaces shown in Fig. 7. It is also
interesting to note that, there is a small free energy barrier
between form III and form I for values of the progression
variable of around 0.6. By breaking down this free energy land-
scape into its constituent enthalpic and entropic components,
we can clearly identify that this barrier is associated with the
enthalpy contribution, and, in particular, with the mechanical
work of expansion P∆V [see Fig. 7(c)] that is necessary to
transform form III into form I. On the other hand, entropic
contributions contribute crucially to the stabilization of
form I.

B. Assessing degeneracy in CV space

Thus far, the maps in CV space that we have discussed and
analyzed have been based on the calculation of local ensemble
averages using Eq. (4). While ensemble averages for auxiliary
structural variables allow us to improve the description of the

configuration ensemble that is projected in s, it is the width
of the conditional probability density p(s̄|s) that provides the
information on the local level of degeneracy in the CV space.
As suggested in Sec. II, however, any function of p(s̄|s) can be
computed and mapped in s. One can thus also apply Eq. (5)
to s and thus map the standard deviation of p(s̄|s). This pro-
cedure is useful as the standard deviation does indeed provide
information on the local width of the conditional probability
density in p(s̄|s). Since the I-III polymorphic transition in the
bulk takes place through a concerted rearrangement of CO2

molecules that is assisted by a global anisotropic expansion
of the crystal supercell, we decided to consider the system
anisotropy as auxiliary variable to analyze degeneracy in CV
space. We constructed the map of the standard deviation of the
cell anisotropy σA in the space defined by the collective vari-
ables λI, λIII that is reported in Fig. 8(b). Moreover, we used
this map to reconstruct the behavior of σA along the minimum
free energy path that connects phase I to phase III in the λI,
λIII space [Fig. 8(b)]. The σA profile along the minimum free
energy path clearly shows that p(s̄|s) tends to broaden as the
system moves away from phase I. The standard deviation σA

then goes through a local maximum whose position appears
to correspond to the position of the apparent transition state
associated with the transformation to phase III. The presence
of this local maximum in σA would appear to indicate that
the degeneracy with respect to the anisotropy of configura-
tions is larger when the system is close to the saddle point. In
other words, the fluctuations in the anisotropy is small when
the system is in phase I or phase III and large when it is at
the apparent transition state between these two states. This
behavior suggests that the λI and λIII CVs, which were built to

FIG. 8. Maps of structural variables in CV space: cell anisotropy map (a) and map of the standard deviation of the cell anisotropy (b) with their respective error
maps [(c) and (d)]. (e) Cell anisotropy along the minimum energy pathway showing that cell anisotropy is highly correlated with the free energy profile. (f)
Standard deviation of the cell anisotropy along the minimum energy pathway. In both (e) and (f), the sampling error, reported as 95% confidence interval, is
shown as a shaded area. Interestingly the maximum for the fluctuations in the cell anisotropy along the transition pathway occurs at the same point as the top
of the free energy barrier. Moreover, these figures show that the sampling error of the fluctuation is maximal near the top of the free energy barrier. (g) Typical
configurations projected in the CV space in the proximity of phase III. A corresponds to a view of a slightly distorted phase III configuration, while B corresponds
to an unstable ordered packing that is projected in this region of CV space.
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distinguish between the unperturbed structures of polymorph
I and III, are less descriptive in the regions of phase space
where transitions take place. Furthermore, this may also sug-
gest that the projection of different ensembles of structures
overlap in the map variables space. This observation is consis-
tent with results that we have recently obtained for this system
by performing a committor analysis and histogram tests in
λI, λIII.35 These calculations revealed that, while the λI and
λIII variables can provide a satisfactory description for the I-
III transition thermodynamics, they cannot properly map the
transition state ensemble. To map the transition state ensemble,
one must include the system anisotropy explicitly as discussed
at length in Ref. 35. Our point here is that with the analysis
of the anisotropy maps carried out in this section, we obtain a
qualitatively similar insight at a fraction of the computational
cost.

By further analysing theσA map, one can clearly see addi-
tional regions where the standard deviations in this quantity
are large and where the map variables are thus perhaps defi-
cient. In addition to the apparent TS region, large fluctuations
in the cell anisotropy are evident in the region of CV space
marked with the label A in Figs. 8(a)–8(d). By analyzing the
configurations that are projected in this region, we can see that
these wider distributions for anisotropy are associated with
the projection of distorted phase III configurations (snapshot
A in Fig. 8). Furthermore, moving downhill from region A
in Fig. 8(b) toward the point indicated using the label B, we
can identify high energy unstable ordered packings that do
not resemble phase III and that do not correspond to a local
minimum in the free energy. In this case, it would therefore
seem that the topology of theσA surface allows one to identify
a transition region between two different ensembles of struc-
tures that are projected at different points in the CV space even
when such structures do not correspond to stable free energy
basins.

VI. CONCLUSIONS

In this work, we described an approach to map auxil-
iary variables in CV space that works by evaluating local
conditional probability densities. By carrying out this type of
analysis, one can considerably deepen the insight obtained
from enhanced sampling simulations and enable an in-depth
analysis of the thermodynamics of the ensembles of molecular
structures projected in CV space. In addition, it also enables
one to critically assess the characteristics of the CV space that
has been used to represent the results. To demonstrate our tech-
niques, we have analyzed a simple 2D potential, alanine dipep-
tide in vacuum as well as a polymorphic transition that takes
place in CO2 at high pressure. Analyzing these model systems
has allowed us to demonstrate how this method can be used to
construct internal energy and volume maps in CV space and
how these maps can be used to systematically breakdown free
energy differences in their energetic, enthalpic, and entropic
components. Furthermore, we have shown how having access
to entropy and internal energy maps in CV space allows us to
compute free energy surfaces at temperatures different from
those at which the conformational space has been sampled with
quantitative accuracy. In taking this analysis further, we have

demonstrated how we can construct maps based on the values
of auxiliary variables in CV space and how we can use such
maps to characterize the evolution of state functions and struc-
tural features along transition pathways. This application is
useful as it allows us to identify correlations between variables
and to identify the dominant driving force for complex pro-
cesses such as CO2 polymorphic transitions. Finally we high-
light that, by complementing maps of local ensemble averages
with higher order features of the conditional probability distri-
bution, one can qualitatively assess the quality of the represen-
tation of complex conformational spaces in low-dimensional
CV spaces. In particular, we can clearly identify regions of the
CV space in which different ensembles of molecular structures
overlap.
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