Inter-site variability in prostate segmentation
accuracy using deep learning
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Abstract. Deep-learning-based segmentation tools are yielding higher
reported segmentation accuracies for many medical image segmentation
problems. However, inter-site variability in medical image acquisition
protocols and quality can challenge the translation of these tools to data
from unseen sites. This study quantifies the impact of inter-site variabil-
ity on the accuracy of deep-learning-based segmentation of the prostate
from magnetic resonance (MR) images, and evaluates two strategies for
mitigating the performance discrepancies for data from unseen sites:
training on multi-site datasets and retraining with data from the un-
seen site. Using 424 T2-weighted prostate MR images from six sites,
we compare the segmentation accuracy of three deep-learning-based net-
works trained on data from a single site and on various configurations
of data from multiple sites. We found that the segmentation accuracy of
a single-site network was substantially worse on data from unseen sites
than on data from the training site, and that training on multi-site data
gives only marginal improvement. However, including as few as 8 sub-
jects from the unseen site, e.g. during commissioning each new clinical
system, yields substantial improvement (regaining 75% of the difference).
Keywords: segmentation, neural network, deep learning, inter-site vari-
ability, prostate

1 Introduction

With the development of deep-learning-based segmentation methods for medical
images, reported segmentation accuracies have improved substantially for many
segmentation problems including prostate [7], brain tumors [1] and abdominal
organs [6]. Applying these methods in practice, however, remains challenging,
with few segmentation methods achieving previously reported accuracies on new
data sets. This may be due, in part, to inter-site variability in medical image
acquisition equipment, protocols and quality.

Inter-site variability has remained a challenge in medical image analysis for
decades [12,9]. Data sets used to design, train and validate segmentation algo-
rithms are, for logistical and financial reasons, sampled in clusters from one or
a small number of hospitals, rather than independently sampled from the pop-
ulation of all images. The distribution of images in collected data sets may not



be representative of, and may have less variability than, the whole population.
Furthermore, an algorithm optimized for data from one site may not be optimal
for data from another site, and reported estimates of segmentation accuracy may
overestimate the expected accuracy.

Deep-learning-based methods may be more susceptible to this problem than
previous approaches. Segmentation methods with hand-crafted image and algo-
rithmic features, such as bias field correction [12], can explicitly encode high-level
priors that reflect knowledge of sources of inter-site variability. Deep-learning-
based methods, in contrast, typically aim to use weaker priors and rely on learn-
ing corresponding patterns from the data. Accordingly, the performance of deep-
learning-based methods may depend more heavily on having a large training data
set that is representative of the images to which the method will be applied.

In this study, we aimed to quantify the impact of inter-site variability on the
accuracy of deep-learning-based segmentation of the prostate from T2-weighted
MRI of three deep-learning-based methods, and evaluated two strategies to mit-
igate the performance loss at an unseen site: training on multi-site data sets, and
retraining with some data from the unseen site. To identify general trends, we
conducted these experiments using three different deep-learning based methods.
Specifically, this study addresses the following questions:

1) How accurate are prostate segmentations using networks trained on data
from a single site when evaluated on data from the same site and from unseen
sites? 2) How accurate are prostate segmentations using networks trained on
data from multiple sites when evaluated on data from the same sites and from
unseen sites? 3) Can the accuracy of these prostate segmentations be improved
by including a small sample of data from the unseen site?

2 Methods

2.1 Imaging

This study used T2-weighted 3D prostate MRI from 6 sites (256 from SITE13,
48 from SITE2 and SITE5, and 24 from SITE3, SITE4 and SITE6), drawn
from publicly available data sets and clinical trials requiring manual prostate
delineation. Reference standard manual segmentations were performed at one of
3 sites: SITE1, SITE2 or SITE5. Images were acquired with anisotropic voxels,
with in-plane voxel spacing between 0.5 and 1.0 mm, and out-of-plane slice spac-
ing between 1.8 and 5.4 mm. All images and reference standard segmentations
were resampled to 256 by 256 by 32 before automatic segmentation.

2.2 Experimental design

These data were randomized within each center and then used in various com-
binations to measure the performance under different choices of training data.
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FEach experiment was conducted for three different neural networks architec-
tures, described in Section 2.3. Segmentation performance was measured using
the Dice coefficient and the symmetric boundary distance (BD).

Experiment 1: single-site networks To evaluate the within- and inter-site
segmentation performance of networks trained on data from one site, we trained
the network on 232 subjects from SITE1, and evaluated the data on the remain-
ing 24 subjects from SITE1 and all subjects from each of the other sites.

Experiment 2: multi-site networks To evaluate the segmentation perfor-
mance of networks trained on data from multiple sites, we used two experimen-
tal setups. First, we conducted a patient-level 6-fold cross-validation where, in
each fold, 16 subjects from each site were used for training, and 8 subjects from
each site were used for testing. This patient-level setup has been used in online
challenges, such as the PROMISE12 segmentation challenge [7]. Because this
may overestimate the performance at a site that has not been seen in training,
we conducted a second site-level 6-fold cross-validation where, in each fold, 24
subjects from 5 sites were used for training, and all subject from the remaining
site were used for testing.

Experiment 3: mitigating inter-site variation In practice, when introduc-
ing new imaging technology, hospitals typically undergo a commissioning process
to calibrate and validate the technology. In principle, such a process could include
re-training or fine-tuning a neural network on data from that site. To evaluate
the utility of this approach, we conducted a hierarchical cross-validation where
in each fold the network was trained using 24 subjects from 5 sites and a subset
of subjects from the remaining site (3 subsets with 8 subjects and 3 subsets with
16 subjects).

2.3 Neural networks

To distinguish general trends from network-specific properties, three different
neural network architectures, illustrated in Fig. 1 were used in this study: Den-
seVNet [4], ResUNet [3], and VoxResNet [2]. Like most medical image segmen-
tation networks, these networks are all variants of U/V-Net architectures[11, 8]
comprising a downsampling subnetwork, an upsampling subnetwork and skip
connections. ResUNet segments 2D axial slices using a 5-resolution U-Net with
residual units, max-pooling, and additive skip connections. DenseVNet segments
3D volumes using a 4-resolution V-Net with memory-efficient batch-wise spatial
dropout and dense feature stacks to preserve high-resolution 3D information
through the network; skip connections comprise a single convolution and are
concatenated before a final segmentation convolution. VoxResNet segments 3D
volumes using a 4-resolution V-Net with residual units [5], transpose-convolution
upsampling, and deep supervision to improve gradient propagation. It is impor-
tant to note that this study is not designed to compare the absolute performance
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Fig. 1. Architectures of the neural networks.

of these networks; accordingly, the network dimensionality and features, hyper-
parameter choices, and training regimen were not made equivalent.

2.4 Network training and inference

For each fold of each experiment, the network was trained by minimizing the
Dice loss using the Adam optimizer for 10000 iterations. The training data set
was augmented online using affine perturbations. Final segmentations were post-
processed to eliminate spurious segmentation by taking the largest connected
component.

3 Results

The described experiments entailed the training of 174 networks and nearly
2500 segmentations. The aggregated segmentation accuracies for DenseVNet,
VoxResNet and ResUNet are reported in Tables 3, 3, 3, respectively, and
summarized below.



Table 1. DenseVNet

SITE1 SITE2 SITE3 SITE4 SITE5 SITE6 pooled
Dice coefficient
Single-site 0.88 0.88 0.84 0.83 0.73 0.86 0.84
Patient-level 0.87 090 0.87 0.88 0.86 0.88 0.88
Site-level 0.87 088 085 0.74 0.78 085 0.83
Site-level + 8 0.87 0.89 0.87 0.86 0.86 0.88 0.87
Site-level + 16 0.87 0.89 0.88 0.86 0.86 0.88 0.87
Boundary distance

Single-site 1.58 1.69 1.95 217 495 191 237
Patient-level 1.74 1.52 154 149 202 156 1.64
Site-level 1.76 1.67 1.80 4.19 3.18 1.99 243
Site-level + 8 1.80 1.64 1.60 1.69 2.03 165 1.73
Site-level + 16 1.82 1.62 150 1.68 2.08 1.58 1.71

For networks trained on data from a single site, the mean accuracy on data
from other sites was generally lower and varied substantially between sites, with
the Dice score dropping by a mean (SD;range) of 0.13 (0.14;0.00-0.45).

For networks trained on multi-site data in a patient-level cross-validation,
the mean accuracies (Dice: 0.88, 0.84, 0.84; BD: 1.7 mm, 2.2 mm, 3.0 mm) were
nearly identical to those of the single-site networks on test data from the single
site (Dice 0.88, 0.85, 0.86; BD: 1.6 mm, 2.1 mm, 2.3 mm), suggesting that it was
not inherently more difficult to train the networks on multi-site data. However,
for networks trained on multi-site data in a site-level cross-validation, mean
accuracies for the unseen site (averaged Dice: 0.83, 0.74, 0.74; BD: 2.4 mm, 4.3
mm, 5.3 mm) were only marginally better than the accuracy of the single-site
network for unseen sites (averaged Dice: 0.82, 0.70, 0,70; BD: 3.0 mm, 4.8 mm,
5.3 mm), suggesting training on data from 5 sites does not yield substantially
better generalization.

For networks trained on data from five sites with some ’commissioning’ data
from the sixth site, segmentation accuracies on test data from the sixth site re-
gained most of the difference between the patient- and site-level cross-validations.
With only 8 subjects used as commissioning data, segmentation accuracies re-
gained a mean (SD;range) 75% (19;31-96%) of the difference (averaged Dice:
0.87, 0.83, 0.82; BD: 1.8 mm, 2.5 mm, 3.3 mm) when the Dice score discrep-
ancy was > 0.02. With 16 subjects used as commissioning data, segmentation
accuracies regained a mean (SD;range) 95% (18;64—;100%) of the difference (av-
eraged Dice: 0.87, 0.85, 0.83; BD: 1.7 mm, 2.3 mm, 3.5 mm) when the Dice score
discrepancy was > 0.02.

4 Discussion

In this work, we demonstrated that multiple deep-learning-based segmentation
networks have poor accuracy when applied to data from unseen sites. This chal-



Table 2. VoxResNet

SITE1 SITE2 SITE3 SITE4 SITE5 SITE6 pooled
Dice coefficient
Single-site 0.85 0.83 0.83 0.59 040 0.80 0.72
Patient-level 0.84 0.87 0.86 0.84 0.80 0.86 0.84
Site-level 0.83 083 085 0.66 0.50 083 0.75
Site-level + 8 0.85 0.86 0.85 0.83 0.79 0.84 0.84
Site-level + 16 0.85 0.88 0.86 0.85 0.82 0.85 0.85
Boundary distance

Single-site 195 230 2.06 7.92 10.58 2.59 4.57
Patient-level 2.08 1.85 1.71 1.91 2.72 186 2.02
Site-level 220 224 183 584 6.62 226 3.50
Site-level + 8 2.00 1.94 1.78 2.06 287 2.02 211
Site-level + 16 2.01 1.68 1.70 1.81 253 188 1.94

Table 3. ResUNet

SITE1 SITE2 SITE3 SITE4 SITE5 SITE6 pooled
Dice coefficient
Single-site 0.87 0.85 0.77 0.47 0.57 0.83 0.73
Patient-level 0.85 0.88 0.87 0.87 0.81 0.84 0.85
Site-level 083 084 083 0.71 0.51 0.80 0.75
Site-level + 8 0.84 0.85 0.86 0.84 0.74 0.82 0.83
Site-level + 16 0.84 0.86 0.85 0.86 0.78 0.85 0.84
Boundary distance

Single-site 1.74 190 239 816 7.00 2.15 3.89
Patient-level 199 1.69 1.56 1.61 239 2.07 1.89
Site-level 214 202 195 392 838 252 3.49
Site-level +8 2.09 205 164 196 3.73 230 2.30
Site-level + 16 2.10 1.79 1.69 1.65 2.83 2.05 2.02

lenges the translation of segmentation tools based on these networks to other
research sites and to clinical environments.

In our experiments, and more broadly in medical image analysis, different
methods have different capacity to generalize to new sites. Since this is impor-
tant for the clinical and research impact of these methods, generalization ability
should become a metric evaluated by our community. This will require the cre-
ation of multi-site datasets, such as PROMISE12 [7] and ADNI [10], to design
and evaluate methods. Standardized evaluation protocols, in independent stud-
ies and in MICCAI challenges, should include unseen sites in the test set to
evaluate generalizability.

For both single- and multi-site training data set, some sites consistently
yielded poorer accuracy when no data from that site was included in training.
For example, SITE5 yielded low accuracies in many analyses, likely due site-



specific differences in prostate MRI protocol: for example, the median inter-slice
spacing at SITE5 was 4.7 mm compared to 2.8 mm across the other sites. One
solution to this problem would be to adjust clinical imaging at this site to be
more consistent with other sites; however, such a solution could be very disrup-
tive. Note that this effect almost disappears in the patient-level cross-validation
suggesting that these cases are probably not substantially harder to segment, as
long as they are represented in the training data to some extent. This suggests
that the more practical solution of retraining the segmentation network with
some data from each site during the commissioning process may be effective.

The conclusions of this study should be considered in the context of its
limitations. Our study focused exclusively on prostate segmentation, where deep-
learning-based segmentation methods have become dominant and multi-site data
sets are available. Reproducing our finding on other segmentation problems, once
appropriate data is available, will be valuable. We observed variability between
networks in their generalization to new sites; while we evaluated three different
networks, we cannot conclude that all networks will need commissioning with
data from each new site. Evaluating each network required training 58 networks,
so a more exhaustive evaluation was not feasible for this work.

Our analysis of the accuracy of deep-learning-based segmentation methods
demonstrated the performance on networks trained and tested on data from one
or more sites can overestimate the performance at an unseen site. This suggests
that segmentation evaluation and especially segmentation challenges should in-
clude data from one or more completely unseen sites in the testing data to
estimate how well methods generalize. They also suggest that commissioning
segmentation methods at a new site by retraining networks with a limited num-
ber of additional samples from that site could be an effective way to mitigate
this problem.
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