
 

Available online at www.sciencedirect.com 

ScienceDirect 

Energy Procedia 00 (2018) 000–000  

www.elsevier.com/locate/procedia 

 

1876-6102 Copyright © 2018 Elsevier Ltd. All rights reserved. 

Selection and peer-review under responsibility of the publication committee of the International Carbon Conference 2018.  

International Carbon Conference 2018, ICC 2018, 10–14 September 2018, Reykjavik, Iceland 

Carbon sequestration potential of altered mafic reservoirs 

Chiara Marienia,*, Eric Oelkersa,b 

aGeosciences Environment Toulouse (GET), CNRS UMR 5563, 14 Avenue Edouard Belin, Toulouse 31400, France 
bEarth Science, University College London, Gower Street, London WC1E 6BT, UK  

Abstract 

Porous basaltic aquifers are currently being considered as a key geologic carbon storage host due to its widespread distribution and 

high reactivity. The co-injection of CO2 and groundwater into basaltic reservoirs has the potential to mineralize this gas into solid 

phases within years, thanks to the release of divalent cations. Many natural basalts, however, contain substantial alteration minerals. 

Here we explore the potential of basalt alteration minerals to provide the Ca to fix injected CO2 within calcite and/or aragonite. 

Preliminary results suggest that altered basaltic rocks can provide this Ca as efficiently as fresh basalts at 25 and 100 °C. Further 

experimental work is ongoing to confirm these findings at different temperatures and as a function of injected fluid chemistry. 
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1. Introduction 

Emissions of carbon dioxide (CO2) into the atmosphere must be substantially reduced and/or carbon capture and 

storage efforts must be substantially increased to meet the goals of the Paris agreement, which aims to keep the 

temperature rise “well below 2 °C”, compared to pre-industrial levels [1]. In-situ mineral carbonation is one of the 

several mitigation strategies proposed to safely store CO2 over extended time frames [2, 3].  This process may 

promoted by the reaction of CO2-charged water with the surrounding host rocks in the subsurface to form geologically 

stable carbonate minerals [4]. This long-term storage option reduces the likelihood of accidental CO2 release and the 

need of post-storage monitoring [5, 6], making mineral carbonation one of the most promising trapping mechanism 

[7, 8]. 
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This mineral storage has been found to be particularly efficient in mafic and ultramafic rocks [9-16], such as basalts 

and peridotites, where the abundance of divalent cations (e.g. Ca2+, Mg2+, and Fe2+) promotes the precipitation of CO2 

as carbonates. In particular, the findings from the CarbFix project – a pilot field study injecting CO2-charged fluids 

within a basaltic reservoir in Iceland – show that the time required to mineralize over 95% of the injected CO2 into 30 
oC basalts was less than two years [17, 18]. However, most of laboratory and field scale results are based on “ideal” 

scenarios characterized by relatively young and highly reactive rocks, and do not reflect the variety of potential 

reservoirs spread across our planet, many of which contain abundant alteration minerals. 

To address this issue, the reactivity of common fresh and alteration phases are compared. Here, we report the 

preliminary results of this effort, focusing on altered basaltic rocks. 

2. Basaltic reservoirs 

Basalts offer a potentially huge reservoir capacity for carbon storage, both on-land [3] and off-shore [19]. A critical 

step to quantifying how efficiently these rocks can mineralize injected CO2 is the rate at which they liberate their 

divalent metal cations. 

The reactivity of both fresh, unaltered basaltic glass and crystalline basalt from the Stapafell mountain 

(southwestern Iceland) has been investigated (Table 1). The crystalline basalt was assumed to contain five mineral 

phases: 41 vol.% labradoritic plagioclase (Ca0.7Na0.3(Fe, Mg)0.1Al1.5Si2.4O8), 34 vol.% augitic pyroxene ((Ca, Mg, Fe, 

Ti)1.9Al2.5Si1.8O6), 16 vol.% olivine (Mg1.7Fe0.3Si1.0O4), 5 vol.% opaque minerals (Fe-Ti oxide-hydroxides), 4 vol.% 

glass [20]. 

Table 1. Composition of crystalline and glassy basalt from the Stapafell Mountain, together with mid-ocean ridge basalt (MORB) reference. The 

data were obtained by XRF analysis and reported as weight percentage of oxides. 

 SiO2 Al2O3 Fe2O3 
* MgO CaO Na2O K2O TiO2 MnO P2O5 LOI Total 

Basaltic glass [11]  48.1 14.6 10.9 9.1 11.8 2.0 0.3 1.6 0.2 0.2  98.8 

Crystalline basalt [20]  47.9 13.4 12.3 10.0 12.2 1.5 0.3 1.6 0.2 0.2 -0.5 99.1 

MORB [21]  49.9 15.3 10.3 8.0 11.5 2.6 0.1 1.4 0.2 0.2  99.4 

* Most iron in the +2 form [11]  

 

Despite their different crystallinity, both rocks exhibit bulk compositions similar to each other and to mid-ocean 

ridge basalts (Table 1). However, the reactivity of basalts decreases with increasing crystallinity (e.g. basaltic glass 

dissolves faster than crystalline basalt) [22-24]. Also, fresh basalt alters over time. Alteration consists of: i) the 

decomposition of primary basaltic phases, and ii) the precipitation of secondary minerals [25]. The common order of 

susceptibility to alteration for a basaltic rock is glass ~ olivine > plagioclase > pyroxene > opaque minerals [26], but 

pH, temperature, and mineral composition are all variables that influence the relative reactivity of these phases [27, 

8]. For example, studies suggest that pyroxene will preferentially be dissolved at acidic to neutral pH conditions, 

releasing Mg and Fe, whereas plagioclase at basic pH with the release of Ca and Al [20, 29, 30]. 

The identity of the secondary minerals that form within a basalt depends on the thermal conditions and the initial 

rock composition [31] (Fig.1). At low temperature (<100 °C), glass, olivine, and plagioclase are commonly replaced 

by carbonates and clay minerals, and in some cases by quartz, zeolites, and sphene, whereas pyroxene is commonly 

replaced by clays. At temperature >200 °C, albite and chlorite become the predominant alteration phases, whereas at 

temperature exceeding ~220 °C epidote and actinolite tend to replace the original plagioclase and pyroxene, 

respectively. However, the chemistry of the fluids circulating through the rock can modify the average basalt 

solubility, and in turn the type of forming secondary minerals, such as for the case of seawater that induces the 

precipitation of mostly clay (smectite and saponite) at 250-300 °C [32, 33]. Pyrite and sphene precipitate over the 

whole temperature range as alteration products of the opaque minerals.  
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Fig. 1. Primary phases characterizing the crystalline basalt [20] and their common alteration minerals [31, 34], shown as a function of alteration 

susceptibility and temperature, respectively. Ol-Olivine; Plg-Plagioclase; Px-Pyroxene; Op-Opaque minerals. 

Amongst the secondary minerals, clays (which commonly contain less than 1 wt.% Ca [35]), zeolites, chlorite, 

epidote, actinolite, and carbonates can be the sources of divalent cations for mineral carbonation. Work during the 

CarbFix CO2 injections suggest that calcium is the most important divalent cation for basalt carbonation at 

temperatures of not more than 40 oC, leading rapidly to the precipitation of Ca-carbonates [18, 36]. To begin assessing 

the role of various alteration phases to provide this Ca we have compared the Ca release rates from basaltic glass, 

crystalline basalt, plagioclase, pyroxene, epidote, and actinolite. 

3. Calcium release rates 

Most of the dissolution rates of silicate rocks and minerals provided in the literature are based on silicon release, 

due to its position within the mineral framework [11]. Hence, the Ca release rates were calculated for basaltic glass 

(Na0.08Ca0.263Mg0.281Fe0.188Al0.358SiO3.32), labradoritic plagioclase (Ca0.5Na0.5AlSi3O8 [20, 37]), diopsidic pyroxene 

(Ca0.97Mg0.89Fe0.08Al0.04Si1.99O6 [38]), and actinolite (Na0.41Mg3.10Ca2.70Fe0.97Al0.85Si7.38O22(OH)2 [39]) assuming 

stoichiometric dissolution. Calcium release rates for crystalline basalt, and epidote [40, 41] were directly measured at 

steady-state (Fig. 2). 

 

Fig. 2. Comparison of BET surface area normalized calcium release rates as a function of pH, at 25 (a) and 100 °C (b). Epidote at 25 °C [40] and 

90 °C [41]; diopside [38], labradoritic plagioclase [20, 37], crystalline [20] and glassy [42] basalt at 25 and 100 °C; actinolite only at 25 °C [39]. 

All the release rates have been normalized to the Brunauer-Emmett-Teller (BET) surface area, and are provided 

for 25 and 100 °C. In some cases, the Si based dissolution rates at 100 °C were not available, and the rates for this 
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temperature have been extrapolated as described below. The Ca release rates for the labradoritic plagioclase have been 

extrapolated from 25 to 100 °C by applying a constant activation energy of 18.2 kJ/mol, consistent with that reported 

for anorthitic plagioclase [43].  Calcium release rates for the diopside were extrapolated from 70 to 100 °C by applying 

an activation energy of 37.7 kJ/mol [38]. For crystalline basalt, the Ca release rates at 100 °C were generated from 

rates reported at 25 °C [20] using a constant activation energy of 30 kJ/mol. Actinolite release rates have been found 

only for 25 °C [39]. 

Calcium release rates exhibit the common U-shaped variation as a function of pH for all minerals other than 

diopside, whose Ca release rate decreases continuously with increasing pH.  At 25 °C, Ca release from crystalline and 

basaltic glass increase more rapidly with decreasing pH than for epidote, plagioclase, and pyroxene. At 25 °C and 

neutral pH conditions all the phases besides diopside exhibit similar BET surface area normalized Ca release rates; 

each are within ±0.5 log mol/cm2/s. In contrast, at 100 °C crystalline basalt and plagioclase are estimated to have the 

same BET surface area normalized calcium release rates over the whole pH range, epidote dissolves slightly faster, 

and diopside becomes the most reactive amongst the crystalline phases only at the specific pH range from 2 to 7. 

4. Discussion and conclusions 

Overall, basaltic glass appears to liberate Ca from 0.5 to 3.0 orders of magnitude faster than fresh and altered 

crystalline basalts. At 25 °C and neutral pH, all the rocks show comparable release rates, which correspond to the 

lowest reactivity conditions of most of these phases.  

The close correspondence between the Ca release rate pH trends between fresh crystalline basalt and plagioclase 

shows that this mineral is the main source of Ca within the crystalline rock for Ca-carbonate formation at both 25 and 

100 °C. Furthermore, results indicate that pyroxene is less reactive than Ca-rich plagioclase. On the other hand, the 

alteration of plagioclase to epidote appears to increase the BET surface area normalized Ca release rates of the rock, 

mainly at 100 °C. 

These results suggest that, for the geological storage of CO2, an altered mafic reservoir can be as efficient as a fresh 

crystalline basaltic reservoir so long as these secondary phases do not substantially alter fluid flow pathways. Such 

conclusions would be improved by further insight into: 

 the dissolution rates of secondary phases and bulk altered rocks; 

 the effect of aqueous fluid composition, such as seawater compositions, on the overall phase reactivity [12], to 

account for potential offshore scenarios; 

 the feasibility of CO2 injection into altered basaltic reservoirs; notably the presence of clay minerals in these 

rocks may alter substantially their injectivity. 
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