
Customer Rating Reactions Can Be Predicted
Purely Using App Features

Federica Sarro∗, Mark Harman∗†, Yue Jia∗†, Yuanyuan Zhang∗
∗CREST, Department of Computer Science, University College London, London, UK

†Facebook, London, UK
{f.sarro, mark.harman, yue.jia, yuanyuan.zhang}@ucl.ac.uk {markharman, yuej}@fb.com

Abstract—In this paper we provide empirical evidence that the
rating that an app attracts can be accurately predicted from the
features it offers. Our results, based on an analysis of 11,537 apps
from the Samsung Android and BlackBerry World app stores,
indicate that the rating of 89% of these apps can be predicted
with 100% accuracy. Our prediction model is built by using
feature and rating information from the existing apps offered in
the App Store and it yields highly accurate rating predictions,
using only a few (11-12) existing apps for case-based prediction.

These findings may have important implications for require-
ments engineering in app stores: They indicate that app devel-
opers may be able to obtain (very accurate) assessments of the
customer reaction to their proposed feature sets (requirements),
thereby providing new opportunities to support the requirements
elicitation process for app developers.

Index Terms—App Store Analysis, Requirements Elicitation,
App Features Extraction, Rating Estimation, Mobile Applica-
tions, Software Analytics, Predictive Modelling, Natural Lan-
guage Processing, Machine Learning, Case Based Reasoning.

I. INTRODUCTION

App development is an increasingly innovative software in-
dustry [1]. However, app developers face competitive markets
where good apps can fail, receiving poor attention (i.e., few or
no downloads) [2]. According to the analytical firms Adeven,
Distimo and Localytics, more than 60% of the apps in the
Apple App Store have never been downloaded in 2012 [3] and
80% of paid Android apps received fewer than 100 downloads
in 2011 [4], and in 2017 80% of all app users, across all
industries, abandoned an app within 90 days, with 25% of
them using the app once only [5].

App developers therefore need to better understand their
users’ requirements to ensure their apps receive a better
reaction once deployed into an App Store. Fortunately, the
wealth of publicly available and analysable data in App Stores
may hold an answer to this requirements elicitation problem:
App stores provide a new channel of communication between
software developers and their users [6]. Users’ feedback on
previous releases (released by competitors as well as by
the developers themselves) could thus potentially be used to
support novel approaches to requirements elicitation.

This paper further investigates this potential requirements
elicitation channel. We present results that reveal that the extra
communication channels available for App Store developers
may, indeed, support new kinds of requirements elicitation
process. A number of factors may play a role in determining
whether an app becomes successful (see e.g., [7][8][9]). In this

paper we focus purely on the features claimed for apps in their
descriptions as one driver of the customers’ reaction to the
app. A recent study has shown the influence of both product
descriptions and online product reviews on the download
decisions for mobile apps [10]. Past research has also found
that ratings and downloads are often very highly correlated
[11] and that rating is one of the key determinants of users’
app purchase decisions [12]. These results hold out the hope
that app developers might, somehow, use claimed features of
existing apps as a form of requirements elicitation for new
proposed apps.

In this paper, we present empirical evidence that an initial,
coarse-grained, assessment of customers’ likely reaction to a
proposed set of features is possible by leveraging information
about the features of existing apps. Our results reveal that app
developers can mine ratings attracted by existing apps and the
features they claim to offer, in order to predict, accurately,
the likely customer rating reaction to a newly proposed app
(based on the set of features proposed for this new app). By
thinking of such proposed features as potential requirements,
we therefore establish an attractive new predictive modelling
mechanism to support app requirements elicitation. While
the rating that an app attracts remains a relatively coarse-
grained aspect of user feedback it is nevertheless, a highly
important aspect to app developers, because of its correlation
with popularity [11] and, therefore, to the likely commercial
success of the apps that developers may seek to deploy into
an App Store.

As illustrated in Figure 1, our approach predicts the cus-
tomer rating reaction to a given app by comparing its proposed
feature requirements to the technical features (from now on
referred to as claimed features) extracted from the thousands
of such app descriptions available in app stores. To mine the
claimed features we used the approach proposed by Harman
et al. [11], while to estimate the rating of target apps by
solely relying on apps’ claimed features we used Case Based
Reasoning (CBR) [13] as explained in Section II.

We applied this approach to 9,588 and 1,949 apps available
from the BlackBerry App World store and the Samsung App
(Android) store, respectively. It might surprise the reader to
learn that app ratings are predictable just from the claims
developers make about their features. This is the key insight
of our work: App ratings are surprisingly predictable, at least
for the two app stores we studied.



Fig. 1. Approach Overview: Estimating the rating of a given app by comparing its proposed features to claimed features and actual ratings of apps available
from an app store.

The rest of the paper is organised as follows: Section II
describes the approach we used to estimate app ratings solely
using information extracted from app stores. Section III de-
scribes the design of our empirical study, the results of which
are presented in Section IV. Section V describes related work.
Section VI provides the reader with actionable findings and
future work from our study, while Section VII concludes.

II. ESTIMATING APPS’ RATING FROM CLAIMED FEATURES

To mine apps’ features and rating information from an app
store we adopted the app analysis framework proposed by
Harman et al. [11]. We used the first three phases to collect
feature claims from descriptions and extended the fourth phase
to predict rating as follows:

The first phase extracts raw data from the app store (in
this study BLACKBERRY APP WORLD1 and SAMSUNG APP2,
though the approach can be applied to other app stores with
suitable changes to the extraction front end).

In the second phase, the raw data is parsed to retrieve all
the available attributes of each app relating to price, rank of
downloads, ratings, and textual descriptions of the app itself.

In the third phase, the framework leverages app descriptions
to identify technical information. In particular, it uses Natural
Language Processing (NLP) to extract the features of apps
from their textual descriptions. The definition of an app feature
(as extracted by the Harman et al.’s process [11][14]) is as fol-
lows: “A feature is a claimed functionality offered by an app,
captured by a set of collocated words in the app description
and shared by a set of apps in the same category.” For example,
“receive Facebook message” and “7-days weather forecast”
are two features extracted from apps in the IM & Social
Networking and Weather categories, respectively [14].
In order to extract features from app descriptions written in
natural language, a four-step NLP algorithm was devised and
implemented by using the Natural Language Toolkit (NLTK),

1http://appworld.blackberry.com/webstore/
2http://www.samsung.com/levant/apps/mobile/galaxyapps/

a comprehensive Python package for NLP [15]. In this work
we analyse app descriptions written in English. However the
approach is language independent and the algorithm can work
with different corpora [16]. The details of the algorithm and
a running example can be found elsewhere [14].

The fourth and last phase of the approach involves the anal-
ysis of the information collected through the previous phases.
This phase is application-specific since these information
can, of course, support different analyses. In previous work
features’ metrics have been used to analyse the relationship
between price, rating, and rank of downloads [11][14], and
claimed features have been used to cluster mobile apps [17].
Sarro et al. [18] have analysed the migration of claimed
features across product categories in two existing app stores.
In this work we use apps’ rating and the features claimed in
apps’ descriptions as input to the rating prediction system.

Since we aim to study the predictability of apps’ rating
based only on the claimed features extracted from apps’ textual
description, we encode the information extracted for a given
app as a vector containing the actual app’s rating and n
technical features extracted from the app’s description in the
third phase. That is, we form a vector of values that consists
of a numerical value representing the rating and a bit string
containing one bit per feature that a mobile app may possess:
1 if the app possesses the feature; 0 if not. As an example, if
an app resides in a category with 40 potential features, then the
vector has 40 bits denoting the presence or absence of these 40
features, and a numeric value denoting its actual rating. The
set of all apps collected from existing app stores and encoded
as described above forms the database (i.e., case base) we use
for our prediction system.

Given a newly proposed, but as-yet unimplemented, app
(i.e., characterised purely by its set of proposed features) we
retrieve the k most similar apps from this database by using
Case Based Reasoning (CBR). CBR is a branch of Artificial
Intelligence that has attracted significant interest from a wide
range of research domains and it has been successfully used

http://appworld.blackberry.com/webstore/
http://www.samsung.com/levant/apps/mobile/galaxyapps/


in Software Engineering for prediction tasks [19]. Given a
target app, CBR identifies similar apps by using a similarity
function that measures the distance between the target case and
the other cases based on the values of the n features of these
apps. Although numerous techniques are available to measure
similarity, unweighted Euclidean distance (i.e., the square root
of the sum of the squares of the dimension differences) has
been the most widely-used in Software Engineering [19],
and thus in our empirical study we used the n-dimensional
Euclidean distance, where n is the number of features and
each app is represented by an n dimensional vector in the
space 1n.

According to the chosen similarity measure, CBR ranks
apps in decreasing order of similarity to the target and utilises
the past rating of the nearest k apps to estimate the rating of the
target app. The choice of k has been a matter of some debate
[20]. Earlier studies in Software Engineering restricted their
analysis to the closest case (k=1) (see e.g., [21]).More recent
studies have used different numbers of analogies to identify
the best value for this parameter [22][23][24].

In this work we have analysed the impact of using different
number of analogies to shed light on the actionability of CBR
for apps’ rating prediction. If k is too large then the CBR
approach would require too many existing apps’ collected data
to be actionable. We investigate this actionability concern in
RQ3 in the next section.

Once the k most relevant cases have been retrieved, an
adaptation strategy is employed to obtain the final estimate for
the target app. Many adaptation techniques can be used, based
on rules, human expert, or a simple statistical procedure such
as a weighted mean [21], which is the measure we used (in this
case, the CBR system is also known as k-nearest neighbours).

Further details about the settings used for CBR in our
empirical study are given in Section III-D in order to ensure
our work and its findings can be replicated by others.

III. EMPIRICAL STUDY DESIGN

This section explains the design of our empirical study, the
research questions we set out to answer and the methods and
statistical tests we used to answer these questions.

A. Research Questions

Our research questions concern the use of claimed features
to predict app ratings based on reasoning by case. If the
predictive quality is high, then the obtained estimations may
be useful in themselves (to help guide pricing decisions, for
example). Such estimations would also validate the quality
of the feature information extracted (because they would be
extracted to provide accurate predictions of an important
attribute: rating). Therefore the first and foremost research
question we need to investigate is:
RQ1: Rating Predictability. Can we predict apps’ rating from
their claimed features?

In order to assess whether rating is predictable using
only the claimed features, we compare the CBR approach
to Random Guessing (RG), which is a benchmark needed

to assess the usefulness of any prediction system [25]. RG
randomly assigns the y value of another case to the target
case. More formally, it is defined as: Predict a y for the target
case t by randomly sampling (with equal probability) over
all the remaining n − 1 cases and take y = r where r is
drawn randomly from 1...nr = t [25]. Any good prediction
system should outperform random guessing, since an inability
to obtain better estimates than random estimates implies that
the system is not using any case information [25]. In our
case, failure to comfortably outperform RG would imply that
the claimed features do not provide CBR with any useful
information to predict ratings.

If we find out that the rating is predicable overall, we
would still need to understand whether rating predictability
varies across categories. It could be that some categories are
relatively predictable and this would limit the applicability to
app store requirements elicitation. This motivates our second
research question:
RQ2: Rating Predictability Across Categories. Does rating
predictability vary across app stores’ categories?

To answer this question we compare CBR’s results to Ran-
dom Guessing at a finer granularity level, and also compare
CBR to two additional baselines based on the use of mean
and median value of the ratings of all the apps existing in a
given category. Mean and median are two baselines for rating
predictability per category (we refer to these approaches as
the MeanRating and MedianRating from now onwards). This
choice is motivated by the fact that the apps in a certain
category are usually grouped based on the functionalities they
provide and one may argue that a simple approach such as
computing the mean (or median) of the ratings of the existing
apps in a given category would give us a good indication
for the rating of a new app meant for that category. If so,
ratings would not really be predictable, it would simply be that
rating distributions highly cluster around the mean/median.
Moreover, MeanRating and MedianRating are two common
benchmarks for prediction systems when there is no other
state-of-the-art approach for comparison as in our case [25].
Therefore, we formulate the following subquestions:
RQ2.1: Does CBR outperform Random Guessing for all
categories?
RQ2.2: Does CBR outperform MeanRating for all categories?
RQ2.3: Does CBR outperform MedianRating for all cate-
gories?

If we find that rating is predictable within each of the
app stores’ categories, we need to understand how to use our
approach in practice, because our prediction system needs to
select the top k similar apps as bases for prediction. This
choice is usually left to the developers. Therefore, investigating
how robust our approach is to the selection of k provides
developers with guidelines for this choice:
RQ3: Actionability. How robust is our approach to the choice
of the number of apps, k, used to form the cases for predictive
modelling?

In particular, we are interested in observing whether the
prediction performance differs significantly depending on the



number of analogies, k, used and whether we can achieve
reliable prediction using few cases. If prediction requires too
many cases this may make the application to requirements elic-
itation impractical because it relies on too much information.
Therefore, we answer the following subquestions:
RQ3.1: Does CBR provide significantly different predictions
depending on the number of apps, k, used?
RQ3.2: Can reliable prediction be achieved with relatively few
cases (k)?

In order to answer these questions, we compare the predic-
tion accuracy achieved by CBR exploiting different choices for
the number of relevant apps (i.e., from 1 up to 15 analogies) to
obtain the final prediction. This will reveal the number of apps
that are needed as inputs to the case-based reasoning in order
to perform accurate prediction for the stores we considered.

B. Data

To answer the research questions, we constructed an app
store database from the information present on the 1st of
September 2011 in the BlackBerry App World and Samsung
Android App stores for all non-zero priced apps.

Fortunately, the 2011 dataset offers complete data (while the
majority of the current app stores only provide information
about the highest performing apps). Since we have all the
data available in both stores at that time, this study does
not suffer from the App Sampling Problem [26]. Of course
our technique can be applied to any year, any data set,
and any store. However, the ability to overcome the App
Sampling Problem ensures that our evaluation is more robust
and includes modestly performing apps as well as very popular
ones. Our findings therefore hold for all apps in these stores,
not merely the most popular.

In September 2011, BlackBerry App World had 19 cat-
egories and 9,588 paid apps, while Samsung Android App
had 14 categories and 1,949 paid apps. For our analysis we
excluded from the BlackBerry study the ‘Reference & eBooks’
and ‘Themes’ categories because their apps delivered solely
static content (e.g., download books or wallpaper). Moreover,
we excluded from the Samsung App study the ‘Brand’ and
‘News & Magazine’ categories since they contained very few
apps (8 and 12, respectively) and the ‘Handmark’ category
since it contained only apps developed by a same software
company (i.e., Handmark). These categories all denote out-
liers. For the remaining categories, a total of 11,537 apps
(9,588 for BlackBerry and 1,949 for Samsung) were available
and we extracted 1,256 and 620 features from the BlackBerry
apps and the Samsung apps, respectively.

Summary data concerning the categories we studied is
presented in Table I: The number of features represents the
total number of features extracted from the app descriptions in
a given category by using the framework explained in Section
II ; The rating data is recorded by the app stores and computed
as the average of the ratings given by the customers of a given
app (i.e., the rating of an app, as provided by the app stores,
is a real number ranging from 0 to 5); we report in the Table
the mean rating of the apps per category.

TABLE I
Summary data for the (a) BlackBerry and (b) Samsung stores.

(a) BlackBerry App World
Category Apps Features Rating
Games 2,604 40 2.13
Utilities 1,362 78 2.32
Entertainment 908 86 1.86
Travel 764 81 0.67
Health & Wellness 626 84 1.58
Education 576 82 1.38
Productivity 503 92 2.54
Music & Audio 499 82 0.99
Photo & Video 393 86 1.40
Business 350 96 1.79
Maps & Navigation 245 71 2.16
Sports & Recreation 239 43 2.05
Finance 193 75 1.93
IM & Social Networking 150 78 2.55
News 73 53 1.73
Weather 58 73 2.44
Shopping 45 56 2.33
All categories 9,588 1,256 3.20

(b) Samsung App
Category Apps Features Rating
Entertainment 407 98 1.59
Games 102 72 2.14
Healt/Life 252 53 2.19
Music Video 72 36 1.90
Navigation 130 80 1.93
Productivity 145 87 2.20
References 346 79 0.86
Social 35 25 2.10
Utilities 460 90 1.94
All categories 1,949 620 1.87

We make all our data available to support subsequent
downstream analyses3.

C. Evaluation Criteria and Validation Method

To assess the accuracy of the rating estimations obtained
using CBR, we used the most recent best practice for assessing
and comparing prediction systems as proposed in previous
work [25][27][28].

As suggested by Shepperd and MacDonell [25] we mea-
sured the accuracy of a prediction system as the Mean of
Absolute Residual (MAR) errors, where the Absolute Residual
(AR) error is defined as the absolute value of the difference
between the observed value of the dependent variable (y) and
the predicted value (ŷ). In our case the dependent variable is
the rating and the AR indicates the prediction error we commit
in its prediction.

To check for statistical significance we used the Wilcoxon
Signed Rank test [29], since the Shapiro test [30] showed
that many of our samples came from non-normally distributed
populations, making the t-test unsuitable. The Wilcoxon test is
a safe test to apply (even for normally distributed data), since
it raises the bar for significance, by making no assumptions
about underlying data distributions. In particular, to answer
RQ1 and RQ2 we tested the following Null Hypothesis: “The

3The data will be made publicly available at http://www0.cs.ucl.ac.uk/staff/
F.Sarro/projects/UCLappA/home.html.

http://www0.cs.ucl.ac.uk/staff/F.Sarro/projects/UCLappA/home.html
http://www0.cs.ucl.ac.uk/staff/F.Sarro/projects/UCLappA/home.html


absolute residual errors provided by the prediction system
Pi are not significantly less than those provided by the
prediction system Pj .”, while to answer RQ3 we tested the
Null Hypothesis: “The absolute residual errors provided by
CBRk are not different from those provided by CBRk+1” for
k = 1, ..., 14. For these tests we set the confidence limit, α, at
0.05 and applied the standard Bonferroni correction (which is
the most conservatively cautious of all corrections) to account
for multiple statistical hypotheses testing. This conservatism
avoids the risk of Type I error (i.e., incorrectly rejecting the
Null Hypothesis and claiming predictability without strong
evidence).

We also quantified the magnitude of the differences found
by using the non-parametric Vargha and Delaney’s A12 effect
size measure [31]. We used this non-parametric measure
because not all samples were normally distributed and, as
suggested elsewhere [25][32], it is better, in cases such as ours,
to use a standardised measure rather than a pooled measure
such as the Cohen’s d effect size. Given a performance
measure M , the A12 statistic measures the probability that
running algorithm A yields better M -values than running
another algorithm B: A12 = (R1/m− (m+1)/2)/n , where
R1 is the rank sum of the first data group we are comparing,
and m and n are the number of observations in the first
and second data sample, respectively. If the two algorithms
are equivalent, then A12 = 0.5. According to Vargha and
Delaney [31], a small, medium, and a large difference between
two populations is indicated by A12 over 0.56, 0.64, and
0.71, respectively. No transformation of the A12 metric is
needed as we are interested in any improvement in predictive
performance [33][34].

To validate our prediction system, we used a standard
10-fold cross-validation, which partitions the initial data set
of m observations into 10 randomly-selected test subsets of
nearly equal size. For each of the test subsets, the remaining
observations compose a training set which is used to build
the estimation model; such a model is then validated on the
corresponding test subset.

D. Case Based Reasoning Setting

To realise the CBR system used in this study we relied
on the ANGEL tool originally developed by Shepperd and
Schofield to estimate the development effort of software
projects [13]. ANGEL is publicly available and can be easily
used for other prediction tasks. It supports the Euclidean
distance measure between vectors and we used this metric
to compute app similarity, while the final estimation was
computed as the mean rating of the k nearest analogies (i.e.,
the k most similar apps). We report results of each of the
choices of k, between k = 1 and k = 15 analogies. To answer
RQs 1-2 we consider the worst, the mean and the best results
(given the choice of k), while in Section IV-C we report the
analysis of the performance of CBR for each of the k we
investigated (i.e., 1 ≤ k ≤ 15) to answer RQ3.

E. Threats to Validity

We discuss the validity of our study based on three types
of threats: construct, conclusion, and external validity.

Since our data is extracted from the Samsung Android and
Blackberry App Store, we are relying on the maintainers of
these stores for the reliability of our raw data. Therefore
inaccuracies and imprecision in this data may have affected
some of our derived data. For example, customers may, for
various reasons, disappropriately leave ratings that do not
reflect their true opinions [14] or the current store-rating of
apps may not be sufficiently dynamic to capture the changing
user satisfaction levels associated with the evolving nature of
apps [35]. Nevertheless, it is not unreasonable to hope that
broad observations about whole classes of apps may still prove
to be robust [14]. Thus, in order to protect against possibly
incorrect conclusions drawn from analysing such data, we
have been careful to draw all of our primary conclusions from
analyses based on large sets of data.

We also addressed possible construct validity threats due
to a biased selection of the apps used in empirical studies
(a.k.a. the App Sampling Problem [26]) by using all the apps
that were present in both stores at the time of collection.
This ensures that our evaluation includes modestly performing
apps as well as very popular ones. However, our findings may
not generalise to those stores that probably suffer the App
Sampling Problem such that insufficient data is available.

In order to mitigate conclusion validity threats, we carefully
applied the statistical tests by verifying that all the required
assumptions are met by the distributions tested, and correcting
for multiple statistical hypotheses testing.

Our approach to external threats follows widely recom-
mended “best practice” for empirical Software Engineering.
That is, we investigated two different app stores and we
studied a wide set of categories to imbue our study with
a high degree of diversity in application type, domain and
size. Nevertheless we cannot claim that our results generalise
beyond the subjects studied. However, we described in detail
the approach proposed and the empirical methodology we
followed in order to allow other researcher to replicate and
extend our work. Moreover, great care is required in extending
our findings from ‘claimed features’ to features that are
truly available to users of the app as developers may not
be entirely truthful (either intentionally or unintentionally)
about the technical claims made [14]. Therefore a potential
threat to generalisability may lie in the extraction of feature
information from these descriptions [11][14]. This threat has
been mitigated by extracting the features from a large and
varied collection of app descriptions, and clarifying that it
is clearly a constraint of the Harman et al. method [11] as
well as of most NLP-based approaches [36]. Therefore, we
cannot and do not claim that the extracted features include
all the real features of the app, but we can certainly claim
that there is evidence (as indicated by a previous human
sanity check [37] and previous work [11][14][17][38][39])
that what we mine from apps’ descriptions are meaningful



feature descriptions and that they denote features claimed
to be included in the apps according to the developers’
own description. Moreover, previous studies have shown that
it is possible to extract features from product descriptions
available on-line [36][40][41][42][43] and the use of text
written in natural language is growing for requirements elicita-
tion [18][44][45][46][47], software maintenance and evolution
[48][49][50][51] and software testing [52][53][54][55].

IV. EMPIRICAL STUDY RESULTS

This section presents the results of our empirical study in
answer to the research questions described in Section III.

A. RQ1. Rating is Predictable

Figures 2(a) and 2(b) show the number of BlackBerry and
Samsung apps, respectively, for which CBR (configured with
the worst, mean and best k) achieved an Absolute Residual
(AR) error ranging from 0 to 5. Observe the very large number
of apps with AR = 0 and the very low one with AR = 5, this
means that our approach produced most of the time totally
accurate estimates (i.e., the actual rating and the estimated
one coincide) and very rarely totally inaccurate ones (i.e., the
actual rating is 0 and our approach estimates a 5 rating, or
vice versa). In particular, the CBR using the worst k and the
CBR using the best k achieved AR = 0 for 7,143 and 7,750
of the 9,588 total apps contained in the BlackBerry store,
respectively, meaning that our approach achieved completely
correct prediction for 74% and 81% of the total apps in the
worst and best case, respectively. While, the number of apps
for which CBR obtained an AR = 5 is extremely low (i.e.,
0.2% for the worst-performing k and 0.4% for the best k).
For the 2,958 apps from the Samsung store, CBR totally
correctly predicted the rating of 2,344 apps (79%) using CBR
worst k and produced totally inaccurate predictions for only
3% of these apps; while using CBR best k produced totally
accurate predictions for 2,861 Samsung apps (97%) and never
produced totally inaccurate ones. These results suggest that
the app rating is predictable relying solely on claimed features
extracted from app descriptions. This approach has allowed us
to achieve estimates totally accurate for 89% (CBR best k) and
77% (CBR worst k) of the apps contained in both stores (i.e.,
11,537 apps), and the reaming estimates are totally inaccurate
only for 0.4% (CBR best k) and <1.7% (CBR worst k) apps.

To assess whether these results were not merely due to pure
chance, we compared our predictions to random predictions.
Figures 3(a) and 3(b) show the boxplots of the Absolute Resid-
ual (AR) errors achieved using CBR and Random Guessing
to predict the rating of BlackBerry apps and Samsung apps,
respectively. Each of the boxplots displays the full range of
variation (from min to max), the likely range of variation
(i.e., the interquartile range or IQR), the median (depicted
with a black horizontal line) and the mean (depicted with
a blue diamond) of the distribution considered. In particular,
we report the distributions of the Absolute Residual errors
obtained for 1,000 Random Guessing trials, CBR with the best
and worst number of analogies, and the average CBR results

TABLE II
RQ1: Comparing CBR (worst, mean and best k) to Random Guessing (RG)

using Wilcoxon test on Absolute Residual errors.

App Store CBR (worst k) vs. RG CBR (mean k) vs. RG CBR (best k) vs. RG
p-value (A12) p-value (A12) p-value (A12)

BlackBerry <0.001 (0.93) <0.001 (0.96) <0.001 (0.97)
Samsung <0.001 (0.90) <0.001 (0.95) <0.001 (1.00)

obtained using 1 to 15 analogies. We can observe that the AR
errors provided by CBR are on average (mean) lower than 0.5
and much lower than those provided by Random Guessing
(which mean AR is above 2) for both the BlackBerry and
Samsung stores. The statistical inference analysis we carried
out confirms this observation (see Table II): The absolute
residual errors provided by CBR are significantly lower than
those achieved by Random Guessing always with large effect
size for both the stores in 100% of the cases.

These results allow us to positively answer our first research
question RQ1: Apps’ rating is predictable from claimed
features for both the BlackBerry and Samsung stores.

B. RQ2. Predictability Across Categories

Figure 4 reports the Mean of Absolute Residual (MAR)
errors obtained by CBR, RandomGuessing, MeanRating and
MedianRating for each of the categories of the BlackBerry
and Samsung stores. We observe that CBR (mean and best
k) achieved the lowest MAR error for all the BlackBerry and
Samsung categories indicating that it provided more accurate
estimations with respect to RandomGuessing (RQ2.1), Mean-
Rating (RQ2.2) and MedianRating (RQ2.3) for both stores.
Moreover, also CBR worst k achieved always a lower MAR
than RandomGuessing, and a lower MAR than MeanRating
and MedianRating for all categories but one (Health/Life).

These results are confirmed by the Wilcoxon test, per-
formed on the Absolute Residual (AR) errors provided by
the approaches considered. Indeed, the p-values (corrected for
multiple statistical testing) and effect sizes reported in Table
III for the BlackBerry store show always a significantly lower
error of CBR with respect to Random Guessing and with a
large effect size for 48 out of 51 cases (94%) and a medium
effect size for the remaining three. For the Samsung store,
CBR always obtained significantly lower absolute residual
errors than Random Guessing with a large effect size for 25 out
of 27 cases (93%) and a medium effect size for the remainder.
These results allow us to positively answer RQ2.1.

The Wilcoxon test confirms also that, for the BlackBerry
store, CBR achieved AR errors significantly better (i.e., lower)
than those provided by MeanEffort and MedianEffort in 100
out of 102 cases (98%), while no statistically significant
difference was found in the remaining two cases (i.e., CBR-
worst-k vs. Mean and vs. MedianRating for the Weather
category). CBR outperformed MeanRating with large effect
sizes in 47 out of 50 cases and medium effect sizes in the
remaining cases, while CBR outperformed MedianRating with
large (32 out 50 cases) and medium (19 out 50 cases) effect
sizes. For the Samsung store, CBR obtained significantly better



(a) BlackBerry App World (b) Samsung App

Fig. 2. RQ1: Number of apps with Absolute Residual (AR) errors ranging from 0 to 5 obtained by CBR (worst, mean and best k) for the BlackBerry App
World (a) and Samsung App (b) stores.

CBR (worst k) CBR (mean k) CBR (best k) RandomGuessing

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

A
bs

ol
ut

e 
R

es
id

ua
l E

rr
or

s

(a) Prediction Error for BlackBerry App World

CBR (worst k) CBR (mean k) CBR (best k) RandomGuessing

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

A
bs

ol
ut

e 
R

es
id

ua
l E

rr
or

s

(b) Prediction Error for Samsung App

Fig. 3. RQ1: Boxplots of the Absolute Residual (AR) errors obtained by CBR (worst, mean and best k) and Random Guessing for all the apps of the
BlackBerry App World (a) and Samsung App (b) stores (outliers are not visualised for the sake of readability; the mean AR is depicted with a blue diamond).

(i.e., lower) AR errors than those provided by MeanRating
and MedianRating in 52 out of 54 cases. In particular, CBR
outperformed MeanRating with large effect sizes in all cases,
while CBR outperformed MedianRating with large effect size
in 22 out 27 cases, medium effect size in one case and small in
the remaining four cases. These results allow us to positively
answer RQ2.2 and RQ2.3.

In summary, the answer to RQ2 is that apps’ rating
is predictable across the categories of both app stores in
98% of cases, with large (88%), medium (10%) and small
(2%) effect sizes.

C. RQ3. Actionability

Table IV reports the results in terms of Mean Absolute
Residual (MAR) errors obtained with CBR using 1 to 15
analogies (denoted as CBRk, where k is the number of
analogies). This allows us to investigate the sensitivity of our
approach to this parameter (RQ3.1) and also to determine a
suitable recommendation for the value to be used by app de-
velopers (RQ3.2) if they want to use our prediction modelling
approach to predict ratings.

In general, we observe a very low variation in the MAR
errors obtained from different numbers of analogies, that is
there is a low standard deviation (i.e., < 0.1 for 19 categories,
< 0.2 for 5 categories, and ≈ 1 for only 1 category). To further
assess whether the prediction performances differ significantly
depending on the number of apps, k, used we applied the
Wilcoxon test to compare the absolute residual errors obtained
by each of the 15 configurations considered. The results

revealed a significant difference for only 1,180 out of 5,670
cases (21%). These results suggest that the approach is rather
robust to the choice of k (RQ3.1).

In order to investigate whether we can achieve reliable
prediction using few cases (RQ3.2), we anlayse the results
of the Wilcoxon test according to the following win-tie-loss
procedure as in previous work [28][56]: If the distribution
i was statistically significantly different than j according to
the Wilcoxon test (i.e., p − value < 0.05/α, where α is
the number of comparisons) we incremented wini and lossj ,
otherwise we incremented tiei and tiej . Figure 5 shows the
percentage of win-tie-loss values for each of the CBRk to
illustrates graphically the difference in relative performance
of each of the choices for k. From Figure 5(a) (BlackBerry
store) we can observe that all CBR configurations using k
equals from 4 to 15 provide very similar results, which are
only few times better than the configuration using k equals to
1,2, or 3. While, for the Samsung Store (Figure 5(b)) using
CBR with 11 to 15 analogies provides often better or similar
results with respect to the other choices of k. We also observe
that using 11–12 analogies is sufficient to achieve a good win-
tie-loss balance for both the Samsung store (83-57-0) and the
BlackBerry store (8-229-0),therefore giving practical guidance
to the developers who want to apply our approach.

Thus, in answer to RQ3: The approach is robust to
different CBR configurations as we found statistically
significant differences only for 21% of the comparisons
performed for both the BlackBerry and Samsung stores.



(a) BlackBerry App World

(b) Samsung App

Fig. 4. RQ2: Comparing the Mean of Absolute Residual (MAR) errors provided by CBR (worst, mean and best k) and Random Guessing (RG), MeanRating,
and MedianRating for each of the categories of the BlackBerry App World (a) and Samsung App stores.

TABLE III
RQ2: Comparing the Absolute Residual (AR) errors of CBR (worst, mean and best k) to Random Guessing, MeanRating and MedianRating, using the

Wilcoxon test (p-value (A12 effect size)) for the BlackBerry and Samsung app stores.

BlackBerry App World
Category CBR (worst k) CBR (mean k) CBR (best k) CBR (worst k) CBR (mean k) CBR (best k) CBR (worst k) CBR (mean k) CBR (best k)

vs. MeanRating vs. MeanRating vs. MeanRating vs. MedianRating vs. MedianRating vs. MedianRating vs. RG vs. RG vs. RG
Business <0.001 (0.63) <0.001 (0.65) <0.001 (0.65) <0.001 (0.58) <0.001 (0.57) <0.001 (0.58) <0.001 (0.64) <0.001 (0.67) <0.001 (0.67)
Education <0.001 (0.97) <0.001 (0.98) <0.001 (0.99) <0.001 (0.68) <0.001 (0.67) <0.001 (0.67) <0.001 (0.97) <0.001 (0.99) <0.001 (1.00)
Entertainment <0.001 (0.96) <0.001 (0.97) <0.001 (0.97) <0.001 (0.93) <0.001 (0.95) <0.001 (0.95) <0.001 (0.97) <0.001 (0.98) <0.001 (0.97)
Finance <0.001 (0.91) <0.001 (0.96) <0.001 (0.96) <0.001 (0.90) <0.001 (0.95) <0.001 (0.96) <0.001 (0.93) <0.001 (0.98) <0.001 (0.97)
Games <0.001 (0.92) <0.001 (0.94) <0.001 (0.95) <0.001 (0.90) <0.001 (0.92) <0.001 (0.93) <0.001 (0.95) <0.001 (0.99) <0.001 (0.99)
Health & Wellness <0.001 (0.94) <0.001 (0.98) <0.001 (0.98) <0.001 (0.69) <0.001 (0.68) <0.001 (0.69) <0.001 (0.94) <0.001 (0.99) <0.001 (0.99)
IM & Social Netw. <0.001 (0.84) <0.001 (0.91) <0.001 (0.92) <0.001 (0.80) <0.001 (0.87) <0.001 (0.88) <0.001 (0.88) <0.001 (0.98) <0.001 (0.98)
Maps & Nav. <0.001 (0.86) <0.001 (0.92) <0.001 (0.93) <0.001 (0.83) <0.001 (0.89) <0.001 (0.90) <0.001 (0.90) <0.001 (0.97) <0.001 (0.97)
Music & Audio <0.001 (0.93) <0.001 (0.95) <0.001 (0.97) <0.001 (0.58) <0.001 (0.58) <0.001 (0.58) <0.001 (0.93) <0.001 (0.96) <0.001 (0.97)
News <0.001 (0.88) <0.001 (0.94) <0.001 (0.95) <0.001 (0.85) <0.001 (0.92) <0.001 (0.93) <0.001 (0.91) <0.001 (0.99) <0.001 (0.99)
Photo & Video <0.001 (0.93) <0.001 (0.96) <0.001 (0.96) <0.001 (0.63) <0.001 (0.62) <0.001 (0.62) <0.001 (0.94) <0.001 (0.97) <0.001 (0.97)
Productivity <0.001 (0.90) <0.001 (0.94) <0.001 (0.97) <0.001 (0.86) <0.001 (0.86) <0.001 (0.91) <0.001 (0.94) <0.001 (0.99) <0.001 (1.00)
Shopping <0.001 (0.84) <0.001 (0.88) <0.001 (0.91) <0.001 (0.85) <0.001 (0.90) <0.001 (0.93) <0.001 (0.94) <0.001 (0.99) <0.001 (1.00)
Sports & Recr. <0.001 (0.94) <0.001 (0.96) <0.001 (0.97) <0.001 (0.93) <0.001 (0.95) <0.001 (0.95) <0.001 (0.97) <0.001 (1.00) <0.001 (0.99)
Travel <0.001 (0.96) <0.001 (0.97) <0.001 (0.97) <0.001 (0.59) <0.001 (0.60) <0.001 (0.59) <0.001 (0.96) <0.001 (0.97) <0.001 (0.98)
Utilities <0.001 (0.93) <0.001 (0.94) <0.001 (0.95) <0.001 (0.90) <0.001 (0.91) <0.001 (0.92) <0.001 (0.95) <0.001 (0.97) <0.001 (0.97)
Weather 0.002 (0.62) <0.001 (0.70) <0.001 (0.74) 0.003 (0.62) <0.001 (0.70) <0.001 (0.75) <0.001 (0.75) <0.001 (0.88) <0.001 (0.88)

Samsung App
Category CBR (worst k) CBR (mean k) CBR (best k) CBR (worst k) CBR (mean k) CBR (best k) CBR (worst k) CBR (mean k) CBR (best k)

vs. MeanRating vs. MeanRating vs. MeanRating vs. MedianRating vs. MedianRating vs. MedianRating vs. RG vs. RG vs. RG
Entertainment <0.001 (0.96) <0.001 (0.99) <0.001 (1.00) <0.001 (0.69) <0.001 (0.70) <0.001 (0.72) <0.001 (0.96) <0.001 (0.99) <0.001 (1.00)
Games <0.001 (0.72) <0.001 (0.72) <0.001 (0.77) <0.001 (0.98) <0.001 (0.95) <0.001 (0.98) <0.001 (1.00) <0.001 (1.00) <0.001 (1.00)
Health/Life 0.70 (0.46) <0.001 (0.58) <0.001 (1.00) 0.65 (0.46) <0.001 (0.60) <0.001 (0.97) 0.004 (0.47) <0.001 (0.62) <0.001 (1.00)
Music/Video <0.001 (0.92) <0.001 (0.97) <0.001 (1.00) <0.001 (0.91) <0.001 (0.95) <0.001 (0.98) <0.001 (0.95) <0.001 (0.99) <0.001 (1.00)
Navigation <0.001 (0.92) <0.001 (0.97) <0.001 (1.00) <0.001 (0.90) <0.001 (0.94) <0.001 (0.97) <0.001 (0.93) <0.001 (0.99) <0.001 (1.00)
Productivity <0.001 (0.91) <0.001 (0.99) <0.001 (1.00) <0.001 (0.92) <0.001 (0.98) <0.001 (1.00) <0.001 (0.93) <0.001 (1.00) <0.001 (1.00)
Reference <0.001 (0.87) <0.001 (0.92) <0.001 (1.00) <0.001 (0.55) <0.001 (0.51) <0.001 (0.60) <0.001 (0.88) <0.001 (0.92) <0.001 (1.00)
Social <0.001 (0.92) <0.001 (0.95) <0.001 (1.00) <0.001 (0.91) <0.001 (0.94) <0.001 (0.99) <0.001 (0.96) <0.001 (1.00) <0.001 (1.00)
Utilities <0.001 (0.95) <0.001 (0.99) <0.001 (1.00) <0.001 (0.93) <0.001 (0.98) <0.001 (0.98) <0.001 (0.96) <0.001 (1.00) <0.001 (1.00)



(a) BlackBerry App World: Comparing CBR settings

(b) Samsung App: Comparing CBR settings

Fig. 5. RQ3: Percentage of win-tie-loss obtained from the Wilcoxon test
performed on the Absolute Residual errors obtained by using CBR with
different numbers of analogies for all the considered categories of the
BlackBerry App World (a) and Samsung App (b) stores.

We also found that the use of 11-12 analogies is sufficient
to reliably predict the rating across all categories for both
the stores.

V. RELATED WORK

In this section we discuss previous work that used the
information available in app stores for estimation purposes. A
comprehensive literature review of other work on App Store
Analysis for Software Engineering can be found elsewhere [6].

No study has been conducted so far on the predictability of
rating for mobile apps. However, previous study have found
statistical relationships between apps’ rating and factors such
as number of downloads [11][14], change and fault proneness
of Android APIs [7], complexity of user interface [57], ap-
plication churn [58], bug fixes [9][59], advertisements [60][8]
and app size [8][61]. Despite being correlated with ratings,
these factors cannot be known at requirements elicitation time
for a newly proposed app. Furthermore they are not accessible
for competitors’ apps. So none of them can be used to estimate
the rating that might be accorded to a new app in the early
phases of app development such as at requirements elicitation
time. Our approach, instead, uses only and solely information
publicly available in app stores, which are easy to access
and collect, and can be used as a good basis for accurate
predictions as shown by our empirical study.

Although no study has focused on rating estimation, a
few studies have looked at other estimation tasks, such as

estimating mobile apps’ size [62][63], cost [64], development
effort [65], and crashes [66], as detailed in the following.

Several functional size measurement approaches have been
proposed in literature to derive the functional size of mobile
apps (e.g., [67][68][69]) and have been used in subsequent
studies to estimate the cost and size of mobile apps. Preuss
[64] carried out a preliminary case study using Function Points
to estimate the cost of an Android app, while Ferrucci et
al. [62][63] applied two different COSMIC measurement ap-
proaches to 13 Android apps, showing that the apps’ functional
size was strongly correlated with the final apps’ size, and that
the functional size could be used to accurately estimate the
apps’ bytecode size.

Francese et al. [65] investigated prediction models based on
information extracted from requirements specification docu-
ments (e.g., number of actors, number of use cases) in order to
estimate the effort needed to implement an app. They validated
this proposal building regression-based estimation models for
23 Android apps and comparing the results to a prediction
model based on source code measures (e.g., number of classes,
number of files). Their results suggest that the measures from
the artefacts produced during the requirements phase are not
worse predictors than those based on code source measures.

Xia et at. [66] used machine learning to predict crashing
releases (i.e., app releases that are more likely to cause
crashes). They collected and used a number of release factors
grouped into six categories (complexity, time, code, diffusion,
commit, text) and used a Naive Bayes classifier to perform
the prediction for 10 open source apps (for a total of 2,638
releases) from the F-Droid repository. Their results revealed
that they can improve over a baseline (random) predictor by
50% and 28% in terms of F1 and AUC, respectively.

Finally, several analytic companies (e.g., AppAnnie [70],
County [71]) provide usage data to developers, such as
downloads, in-app purchase info, etc. Using such information,
developers can make data-driven decisions that may allow for
more successful apps. However, as observed by Nagappan and
Shihab [72], these recommendations are mainly proposed from
a marketing perspective rather than a software engineering one.

Of all this previous work, none has provided assistance
to app developers in determining arguably the most critical
aspect: the app’s requirements. Our findings indicate that we
can fill this gap using the features previously highly rated
by users, as reflected in their predicted rating for previously
published apps containing these features.

VI. DISCUSSION AND FUTURE WORK

Our findings (RQ1 and RQ2) provide evidence to suggest
that the combination of app features extraction via NLP and
machine learning introduced in this paper can allow us to
accurately predict rating. Also, our rating prediction system
is based on the simple (and intuitive) approach of case
based reasoning. Unlike other more complex machine learning
techniques, case based reasoning has relatively few parameters
that require tuning. RQ3 shows that 11 or 12 analogies are
sufficient for accurately predicting ratings for all categories of



TABLE IV
RQ3: Mean Absolute Residual (MAR) errors obtained with CBR using 1 to 15 analogies to estimate rating for (a) BlackBerry and (b) Samsung apps.

BlackBerry App World
Category CBR1 CBR2 CBR3 CBR4 CBR5 CBR6 CBR7 CBR8 CBR9 CBR10 CBR11 CBR12 CBR13 CBR14 CBR15 Min Avg Max St.Dev.
Business 1.50 1.47 1.48 1.42 1.42 1.40 1.41 1.42 1.41 1.42 1.44 1.43 1.41 1.41 1.41 1.40 1.43 1.50 0.03
Education 0.12 0.09 0.09 0.09 0.07 0.07 0.07 0.06 0.06 0.05 0.04 0.05 0.05 0.05 0.05 0.04 0.07 0.12 0.02
Entertainment 0.18 0.15 0.15 0.13 0.14 0.14 0.12 0.12 0.12 0.12 0.11 0.11 0.11 0.11 0.11 0.11 0.13 0.18 0.02
Finance 0.39 0.35 0.27 0.28 0.24 0.22 0.22 0.21 0.21 0.20 0.20 0.21 0.21 0.21 0.21 0.20 0.24 0.39 0.06
Games 0.29 0.25 0.23 0.21 0.20 0.20 0.19 0.20 0.20 0.19 0.19 0.19 0.19 0.18 0.18 0.18 0.21 0.29 0.03
Health & Wellness 0.26 0.17 0.14 0.12 0.10 0.09 0.11 0.11 0.10 0.10 0.11 0.11 0.12 0.11 0.12 0.09 0.13 0.26 0.04
IM & Social Netw. 0.62 0.55 0.46 0.42 0.39 0.37 0.33 0.34 0.33 0.33 0.34 0.35 0.36 0.36 0.36 0.33 0.39 0.62 0.09
Maps & Nav. 0.58 0.47 0.44 0.40 0.40 0.39 0.39 0.38 0.37 0.37 0.37 0.37 0.38 0.37 0.38 0.37 0.40 0.58 0.06
Music & Audio 0.25 0.17 0.17 0.16 0.17 0.15 0.14 0.14 0.13 0.13 0.13 0.12 0.12 0.11 0.12 0.11 0.15 0.25 0.04
News 0.45 0.39 0.38 0.31 0.28 0.24 0.25 0.23 0.23 0.22 0.22 0.22 0.23 0.25 0.25 0.22 0.28 0.45 0.07
Photo & Video 0.28 0.19 0.18 0.19 0.19 0.20 0.20 0.19 0.19 0.18 0.17 0.17 0.18 0.17 0.16 0.16 0.19 0.28 0.03
Productivity 0.37 0.36 0.31 0.28 0.23 0.21 0.21 0.22 0.20 0.20 0.19 0.18 0.17 0.16 0.16 0.16 0.23 0.37 0.07
Shopping 0.43 0.49 0.48 0.32 0.32 0.28 0.32 0.33 0.29 0.31 0.40 0.45 0.47 0.47 0.54 0.28 0.39 0.54 0.09
Sports & Recr. 0.25 0.24 0.18 0.17 0.14 0.15 0.15 0.14 0.15 0.15 0.15 0.16 0.15 0.15 0.15 0.14 0.17 0.25 0.03
Travel 0.10 0.07 0.08 0.08 0.07 0.07 0.07 0.07 0.06 0.06 0.06 0.06 0.05 0.05 0.05 0.05 0.07 0.10 0.01
Utilities 0.33 0.27 0.26 0.26 0.26 0.27 0.27 0.26 0.27 0.27 0.28 0.28 0.29 0.29 0.30 0.26 0.28 0.33 0.02
Weather 0.91 0.89 0.79 0.79 0.87 0.83 0.85 0.87 0.90 0.97 0.94 0.97 1.00 1.10 1.20 0.79 0.93 1.20 0.11

Samsung App
Category CBR1 CBR2 CBR3 CBR4 CBR5 CBR6 CBR7 CBR8 CBR9 CBR10 CBR11 CBR12 CBR13 CBR14 CBR15 Min Avg Max St.Dev.
Entertainment 0.15 0.08 0.06 0.05 0.06 0.05 0.05 0.04 0.03 0.03 0.00 0.01 0.00 0.00 0.00 0.00 0.04 0.15 0.04
Games 0.40 0.31 0.29 0.27 0.25 0.27 0.25 0.24 0.23 0.24 0.04 0.04 0.04 0.02 0.03 0.02 0.19 0.40 0.12
Healt/Life 2.18 2.16 2.18 2.17 2.19 2.19 2.19 2.19 2.19 2.19 0.00 0.00 0.00 0.00 0.00 0.00 1.46 2.19 1.07
Music/Video 0.25 0.26 0.26 0.27 0.21 0.22 0.21 0.19 0.18 0.16 0.03 0.01 0.02 0.00 0.01 0.00 0.15 0.27 0.11
Navigation 0.28 0.17 0.19 0.19 0.19 0.20 0.21 0.23 0.23 0.24 0.05 0.02 0.00 0.02 0.00 0.00 0.15 0.28 0.10
Productivity 0.37 0.19 0.13 0.10 0.10 0.11 0.11 0.11 0.09 0.08 0.00 0.01 0.01 0.00 0.01 0.00 0.10 0.37 0.10
Reference 0.42 0.35 0.34 0.39 0.39 0.39 0.40 0.38 0.38 0.38 0.01 0.02 0.02 0.01 0.01 0.01 0.26 0.42 0.18
Social 0.16 0.12 0.13 0.17 0.17 0.17 0.17 0.18 0.19 0.20 0.05 0.02 0.00 0.01 0.00 0.00 0.12 0.20 0.08
Utilities 0.23 0.15 0.10 0.07 0.06 0.06 0.05 0.04 0.04 0.03 0.00 0.00 0.01 0.00 0.00 0.00 0.06 0.23 0.06

both app stores. The implication for app developers is that a
prediction system will require mercifully little tuning and can
be deployed immediately. Ease of deployment is an important
property as developers might not have either the time or the
inclination for the tedious and error-prone task of parameter
tuning [73].

The scientific evidence we present in this paper is based
upon the BlackBerry App World and Samsung Android App
markets. Naturally, we cannot (and do not) claim that these
findings will necessarily generalise to other markets and
platforms. However, our results prospect the possibility of
developing suitable prediction systems for other app platforms.
The investigation of such systems remains an open problem
for future work by the research community.

There also remain many other challenging (but exciting)
open problems for App Store Requirement Analysis. For
example, a predictive model can be a complement to other
requirements elicitation approaches such as user and developer
surveys [72][74], or sentiment analysis of customer text re-
views [75][76]. Our approach might also help identify features
that attract a higher rating, or are unique to certain cate-
gories/apps, so that these could be prioritised for development.
The prediction of feature popularity may also be useful in
prioritising features development and enhancement.

In the future we intend to investigate predictive models of
customer evaluations, and the interplay between functional and
non-functional properties of apps, and the data available in app
stores. For example, the inclusion of other possible success
factors and different similarity functions in our proposed CBR
system can augment its capabilities to detect interesting cases
such as apps having very similar features, but very different
user interface or power consumption so that one app is rated
higher than the other.

We will also investigate multi-objective predictive models
using Search Based Software Engineering (SBSE) [77][78].

The use of multi-objective SBSE, which has provided human-
competitive results for other SE prediction tasks [33], can al-
low us to develop predictive models tailored to the conflicting
and competing needs of different app store developers and,
perhaps also their customers.

VII. CONCLUSIONS

In this paper we have proposed an approach to predict the
rating of mobile apps based solely on the technical information
gathered from apps’ description. We used a Natural Language
Processing algorithm to extract, from existing app descriptions,
feature information that capture some of the functionalities
of these apps in the store [11][14]. This data is the basis
for estimates of the rating of apps under consideration at the
requirements elicitation phase.

We evaluated our proposed approach on 11,537 apps con-
tained in the BlackBerry App World and Samsung App stores.
Our results indicate that app ratings are highly predictable
from the claims developers made about their features. The
combination of apps’ features extraction via NLP and Machine
Learning introduced in this paper allowed us to predict with
100% accuracy the rating for 89% of the apps contained
in the stores we considered. Moreover, our prediction is
consistently reliable across all categories of the stores. Finally,
the configuration of the case-base prediction system does not
dramatically impact on the prediction performance and the best
prediction can be obtained in practice using only few apps,
making rating prediction based on proposed app requirements
readily deployable in practice.

ACKNOWLEDGEMENT

This work is partly supported by the ERC advanced grant
Evolutionary Program Improvement Collaborators (EPIC) and
by the EPSRC programme grant Dynamic Adaptive Auto-
mated Software Engineering (DAASE), EP/J017515/1.



REFERENCES

[1] A. Holzer and J. Ondrus, “Mobile application market: A developer’s
perspective,” Telemat. Inf., vol. 28, no. 1, pp. 22–31, Feb. 2011.

[2] S. Lim, P. Bentley, N. Kanakam, F. Ishikawa, and S. Honiden, “Inves-
tigating country differences in mobile app user behavior and challenges
for software engineering,” Software Engineering, IEEE Transactions on,
vol. 41, no. 1, pp. 40–64, Jan 2015.

[3] Adeven, http://techcrunch.com/tag/adeven/, accessed: 2018-02-07.
[4] GSMArena, http://blog.gsmarena.com/80-of-paid-apps-in-android-

market-get-downloaded-less-than-100-times/, accessed: 2018-02-07.
[5] Localytics, http://info.localytics.com/blog/

mobile-apps-whats-a-good-retention-rate, accessed: 2018-02-07.
[6] W. Martin, F. Sarro, Y. Jia, Y. Zhang, and M. Harman, “A survey of app

store analysis for software engineering,” IEEE Transactions on Software
Engineering, vol. 43, no. 9, pp. 817–847, Sept 2017.

[7] G. Bavota, M. Linares-Vasquez, C. Bernal-Cardenas, M. Di Penta,
R. Oliveto, and D. Poshyvanyk, “The impact of API change- and fault-
proneness on the user ratings of android apps,” IEEE Transactions on
Software Engineering, vol. 41, no. 4, pp. 384–407, 2015.

[8] Y. Tian, M. Nagappan, D. Lo, and A. Hassan, “What are the character-
istics of high-rated apps? a case study on free android applications,” in
Software Maintenance and Evolution (ICSME), 2015 IEEE International
Conference on, 2015, pp. 301–310.

[9] W. Martin, F. Sarro, and M. Harman, “Causal impact analysis for app
releases in google play,” in Proceedings of the 2016 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, ser.
FSE 2016. New York, NY, USA: ACM, 2016, pp. 435–446.

[10] S. Cheng and B. Meszaros, “The influence of online product reviews
on the downloading decision for mobile apps,” Dept. of Industrial
Economics, Blekinge Institute of Technology, Mater Thesis IY2578,
2015.

[11] M. Harman, Y. Jia, and Y. Zhang, “App Store Mining and Analysis:
MSR for App Stores,” in Proceedings of the 9th IEEE Working Con-
ference on Mining Software Repositories (MSR ’12). Zurich, Swiss:
IEEE, June 2012, pp. 108–111.

[12] J. E. S. Hee-Woong Kim, Hyun Lyung Lee, “An exploratory study on
the determinants of smartphone app purchase,” in In Proceedings of
the 11th International DSI and the 16th APDSI Joint Meeting, Taipei,
Taiwan, 2011, 2011.

[13] M. Shepperd and C. Schofield, “Estimating Software Project Effort using
Analogies,” IEEE Transactions on Software Engineering, vol. 23, no. 11,
pp. 736 –743, Nov 1997.

[14] A. Finkelstein, M. Harman, Y. Jia, W. Martin, F. Sarro, and Y. Zhang,
“Investigating the relationship between price, rating, and popularity in
the blackberry world app store,” Information & Software Technology,
vol. 87, pp. 119–139, 2017.

[15] E. Loper and S. Bird, “NLTK: The Natural Language Toolkit,” in Pro-
ceedings of the ACL Workshop on Effective Tools and Methodologies for
Teaching Natural Language Processing and Computational Linguistics
(TeachNLP ’02). Philadelphia, USA: Association for Computational
Linguistics, 7-12 July 2002, pp. 69–72.

[16] E. L. Steven Bird, Ewan Klein, Natural Language Processing with
Python Analyzing Text with the Natural Language Toolkit. OŔeilly
Media, 2009.

[17] A. A. Al-Subaihin, F. Sarro, S. Black, L. Capra, M. Harman, Y. Jia, and
Y. Zhang, “Clustering mobile apps based on mined textual features,”
in Proceedings of the 10th ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement, ESEM 2016, Ciudad
Real, Spain, September 8-9, 2016, 2016, pp. 38:1–38:10.

[18] F. Sarro, A. A. Al-Subaihin, M. Harman, Y. Jia, W. Martin, and
Y. Zhang, “Feature lifecycles as they spread, migrate, remain, and die
in app stores,” in 23rd IEEE International Requirements Engineering
Conference, RE 2015, 2015, pp. 76–85.

[19] M. Shepperd, “Case-based reasoning and software engineering,” in
Managing Software Engineering Knowledge, A. Aurum, R. Jeffery,
C. Wohlin, and M. Handzic, Eds. Springer Berlin Heidelberg, 2003,
pp. 181–198.

[20] G. Kadoda, M. Cartwright, and M. Shepperd, “Issues on the effective
use of cbr technology for software project prediction,” in Case-Based
Reasoning Research and Development, ser. Lecture Notes in Computer
Science, D. Aha and I. Watson, Eds. Springer Berlin Heidelberg, 2001,
vol. 2080, pp. 276–290.

[21] L. Briand, T. Langley, and I. Wieczorek, “A replicated Assessment and
Comparison of Common Software Cost Modeling Techniques,” in Pro-
ceedings of the 21st International Conference on Software Engineering
(ICSE ’99). Los Angeles, California, USA: IEEE, 16-22 May 1999,
pp. 313–322.

[22] F. Ferrucci, E. Mendes, and F. Sarro, “Web Effort Estimation: The Value
of Cross-company Data Set Compared to Single-company Data Set,” in
Proceedings of the 8th International Conference on Predictive Models
in Software Engineering (PROMISE ’12). Lund, Sweden: ACM, 21-22
September 2012, pp. 29–38.

[23] B. Turhan, T. Menzies, A. B. Bener, and J. Di Stefano, “On the relative
value of cross-company and within-company data for defect prediction,”
Empirical Software Engineering, vol. 14, no. 5, pp. 540–578, October
2009.

[24] J. Huang, J. W. Keung, F. Sarro, Y.-F. Li, Y. Yu, W. Chan, and H. Sun,
“Cross-validation based k nearest neighbor imputation for software
quality datasets: An empirical study,” Journal of Systems and Software,
vol. 132, pp. 226 – 252, 2017.

[25] M. J. Shepperd and S. G. MacDonell, “Evaluating Prediction Systems
in Software Project Estimation,” Information & Software Technology,
vol. 54, no. 8, pp. 820–827, August 2012.

[26] W. Martin, M. Harman, Y. Jia, F. Sarro, and Y. Zhang, “The app sam-
pling problem for app store mining,” in IEEE/ACM Working Conference
on Mining Software Repositories, MSR 2015, 2015, pp. 123–133.

[27] W. B. Langdon, J. J. Dolado, F. Sarro, and M. Harman, “Exact mean
absolute error of baseline predictor, MARP0,” Information & Software
Technology, vol. 73, pp. 16–18, 2016.

[28] F. Sarro and A. Petrozziello, “Linear Programming as a Baseline for
Software Effort Estimation,” ACM Transactions on Software Engineer-
ing and Methodology (TOSEM), 2018.

[29] J. Cohen, Statistical Power Analysis for the Behavioral Sciences (2nd
Edition), 2nd ed. Routledge Academic, Jan. 1988.

[30] J. P. Royston, “An Extension of Shapiro and Wilk’s W Test for
Normality to Large Samples,” Journal of the Royal Statistical Society.
Series C (Applied Statistics), vol. 31, no. 2, pp. 115–124, 1982.

[31] A. Vargha and H. Delaney, “A critique and improvement of the cl
common language effect size statistics of mcgraw and wong,” Journal
of Educational and Behavioral Statistics, vol. 25, no. 2, pp. 101–132,
2000.

[32] A. Arcuri and L. Briand, “A Practical Guide for using Statistical Tests
to Assess Randomized Algorithms in Software Engineering,” in Pro-
ceedings of the 33rd International Conference on Software Engineering
(ICSE ’11). Hawaii, USA: ACM, 21-28 May 2011, pp. 1–10.

[33] F. Sarro, A. Petrozziello, and M. Harman, “Multi-objective software
effort estimation,” in Proceedings of the 38th International Conference
on Software Engineering, ser. ICSE ’16. ACM, 2016, pp. 619–630.

[34] G. Neumann, M. Harman, and S. Poulding, “Transformed vargha-
delaney effect size,” in Search-Based Software Engineering, M. Barros
and Y. Labiche, Eds. Springer International Publishing, 2015, pp. 318–
324.

[35] J. I. Mojica Ruiz, M. Nagappan, B. Adams, T. Berger, S. Dienst, and
E. A. Hassan, “An examination of the current rating system used in
mobile app stores,” IEEE Software, pp. 86–92, 2015.

[36] H. Dumitru, M. Gibiec, N. Hariri, J. Cleland-Huang, B. Mobasher,
C. Castro-Herrera, and M. Mirakhorli, “On-demand Feature Recom-
mendations Derived from Mining Public Product Descriptions,” in Pro-
ceedings of the 33rd International Conference on Software Engineering
(ICSE ’11). Hawaii, USA: ACM, 21-28 May 2011, pp. 181–190.

[37] A. Finkelstein, M. Harman, Y. Jia, W. Martin, F. Sarro, and Y. Zhang,
“App store analysis: Mining app stores for relationships between cus-
tomer, business and technical characteristics,” UCL - Research Note
RN/14/10, September 2014.

[38] A. Gorla, I. Tavecchia, F. Gross, and A. Zeller, “Checking app behavior
against app descriptions,” in 36th International Conference on Software
Engineering, ICSE ’14, Hyderabad, India - May 31 - June 07, 2014,
2014, pp. 1025–1035.

[39] A. A. Al-Subaihin, A. Finkelstein, M. Harman, Y. Jia, W. Martin,
F. Sarro, and Y. Zhang, “App store mining and analysis,” in Proceedings
of the 3rd International Workshop on Software Development Lifecycle
for Mobile, DeMobile 2015, 2015, pp. 1–2.

[40] J.-M. Davril, E. Delfosse, N. Hariri, M. Acher, J. Cleland-Huang,
and P. Heymans, “Feature model extraction from large collections of
informal product descriptions,” in Proceedings of the 2013 9th Joint

http://info.localytics.com/blog/mobile-apps-whats-a-good-retention-rate
http://info.localytics.com/blog/mobile-apps-whats-a-good-retention-rate


Meeting on Foundations of Software Engineering, ser. ESEC/FSE 2013,
2013, pp. 290–300.

[41] N. Hariri, C. Castro-Herrera, M. Mirakhorli, J. Cleland-Huang, and
B. Mobasher, “Supporting domain analysis through mining and recom-
mending features from online product listings,” Software Engineering,
IEEE Transactions on, vol. 39, no. 12, pp. 1736–1752, Dec 2013.

[42] T. Johann, C. Stanik, A. M. A. B., and W. Maalej, “Safe: A simple
approach for feature extraction from app descriptions and app reviews,”
in IEEE 25th International Requirements Engineering Conference (RE),
2017, pp. 21–30.

[43] T. Quirchmayr, B. Paech, R. Kohl, and H. Karey, “Semi-automatic
software feature-relevant information extraction from natural language
user manuals - an approach and practical experience at roche diagnostics
gmbh,” in Requirements Engineering: Foundation for Software Quality -
23rd International Working Conference, REFSQ 2017, Essen, Germany,
February 27 - March 2, 2017, Proceedings, 2017, pp. 255–272.

[44] A. Sutcliffe and P. Sawyer, “Requirements elicitation: Towards the
unknown unknowns,” in IEEE International Requirements Engineering
Conference, 2013, pp. 92–104.

[45] A. Massey, J. Eisenstein, A. Anton, and P. Swire, “Automated text
mining for requirements analysis of policy documents,” in IEEE In-
ternational Requirements Engineering Conference, 2013, pp. 4–13.

[46] E. Guzman, R. Alkadhi, and N. Seyff, “A needle in a haystack: What
do twitter users say about software?” in 2016 IEEE 24th International
Requirements Engineering Conference (RE), Sept 2016, pp. 96–105.

[47] N. Jha and A. Mahmoud, “Mining user requirements from application
store reviews using frame semantics,” in Requirements Engineering:
Foundation for Software Quality, P. Grünbacher and A. Perini, Eds.
Springer International, 2017, pp. 273–287.

[48] C. Arora, M. Sabetzadeh, L. Briand, and F. Zimmer, “Extracting domain
models from natural-language requirements: Approach and industrial
evaluation,” in Proceedings of the ACM/IEEE 19th International Con-
ference on Model Driven Engineering Languages and Systems, ser.
MODELS ’16. New York, NY, USA: ACM, 2016, pp. 250–260.

[49] E. Guzman, M. Ibrahim, and M. Glinz, “A little bird told me: Min-
ing tweets for requirements and software evolution,” in 25th IEEE
International Requirements Engineering Conference, RE 2017, Lisbon,
Portugal, September 4-8, 2017, 2017, pp. 11–20.

[50] ——, “Mining twitter messages for software evolution,” in 2017
IEEE/ACM 39th International Conference on Software Engineering
Companion (ICSE-C), May 2017, pp. 283–284.

[51] M. Nayebi, H. Cho, H. Farrahi, and G. Ruhe, “App store mining is not
enough,” in 2017 IEEE/ACM 39th International Conference on Software
Engineering Companion (ICSE-C), May 2017, pp. 152–154.

[52] B. Rosadini, A. Ferrari, G. Gori, A. Fantechi, S. Gnesi, I. Trotta,
and S. Bacherini, “Using NLP to detect requirements defects: An
industrial experience in the railway domain,” in Requirements Engi-
neering: Foundation for Software Quality - 23rd International Working
Conference, REFSQ 2017, Essen, Germany, February 27 - March 2,
2017, Proceedings, 2017, pp. 344–360.

[53] M. Harman, A. Al-Subaihin, Y. Jia, W. Martin, F. Sarro, and Y. Zhang,
“Mobile app and app store analysis, testing and optimisation,” in
Proceedings of the International Conference on Mobile Software Engi-
neering and Systems, ser. MOBILESoft ’16. ACM, 2016, pp. 243–244.

[54] Y. Zhang, M. Harman, Y. Jia, and F. Sarro, “Inferring test models
from kate’s bug reports using multi-objective search,” in Search-Based
Software Engineering, M. Barros and Y. Labiche, Eds. Springer
International Publishing, 2015, pp. 301–307.

[55] F. Sarro, “Predictive analytics for software testing,” in ACM/IEEE 11th
International Workshop on Search-Based Software Testing, (SBST?18)
May 28?29, 2018, Gothenburg, Sweden, 2018, p. 1.

[56] F. Sarro, F. Ferrucci, M. Harman, A. Manna, and J. Ren, “Adaptive multi-
objective evolutionary algorithms for overtime planning in software
projects,” IEEE Trans. Software Eng., vol. 43, no. 10, pp. 898–917,
2017.

[57] S. E. S. Taba, I. Keivanloo, Y. Zou, J. Ng, and T. Ng, “An ex-
ploratory study on the relation between user interface complexity and
the perceived quality,” in Web Engineering, S. Casteleyn, G. Rossi, and
M. Winckler, Eds. Springer International, 2014, pp. 370–379.

[58] L. Guerrouj, S. Azad, and P. Rigby, “The influence of app churn on
app success and stackoverflow discussions,” in IEEE 22nd Interna-
tional Conference on Software Analysis, Evolution and Reengineering
(SANER), 2015, 2015, pp. 321–330.

[59] W. Martin, F. Sarro, and M. Harman, “Causal impact analysis applied
to app releases in google play and windows phone store,” University
College London, Tech. Rep., 2015. [Online]. Available: http://www.cs.
ucl.ac.uk/fileadmin/UCL-CS/research/Research Notes/RN 15 07.pdf

[60] J. Gui, S. Mcilroy, M. Nagappan, and W. G. J. Halfond, “Truth in
advertising: The hidden cost of mobile ads for software developers,”
in Proceedings of the 37th International Conference on Software Engi-
neering - Volume 1, ser. ICSE ’15, 2015, pp. 100–110.

[61] E. Shaw, A. Shaw, and D. Umphress, “Mining android apps to predict
market ratings,” in Mobile Computing, Applications and Services (Mo-
biCASE), 2014 6th International Conference on, 2014, pp. 166–167.

[62] F. Ferrucci, C. Gravino, P. Salza, and F. Sarro, “Investigating functional
and code size measures for mobile applications,” in 41st Euromi-
cro Conference on Software Engineering and Advanced Applications,
EUROMICRO-SEAA 2015, 2015, pp. 365–368.

[63] ——, “Investigating functional and code size measures for mobile
applications: A replicated study,” in Proceedings of the 16th Interna-
tional Conference on Product-Focused Software Process Improvement,
PROFES 2015, 2015, pp. 271–287.

[64] T. Preuss, “Mobile applications, function points and cost estimating,” in
Proceedings of the International Cost Estimation and Analysis Associ-
ation Conference, 2013.

[65] R. Francese, C. Gravino, M. Risi, G. Scanniello, and G. Tortora, “On
the use of requirements measures to predict software project and product
measures in the context of android mobile apps: A preliminary study,”
in 41st Euromicro Conference on Software Engineering and Advanced
Applications, EUROMICRO-SEAA 2015, 2015, pp. 357–364.

[66] X. Xia, E. Shihab, Y. Kamei, D. Lo, and X. Wang, “Predicting crashing
releases of mobile applications,” in Proceedings of the 10th ACM/IEEE
International Symposium on Empirical Software Engineering and Mea-
surement, ESEM 2016, Ciudad Real, Spain, September 8-9, 2016, 2016,
pp. 29:1–29:10.

[67] G. Sethumadhavan, “Sizing android mobile applications,” in In Pro-
ceedings od tge 6th IFPUG International Software Measurement and
Analysis Conference (ISMA), 2011.

[68] H. van Heeringen and E. Van Gorp, “Measure the functional size of a
mobile app: Using the cosmic functional size measurement method,” in
Software Measurement and the International Conference on Software
Process and Product Measurement (IWSM-MENSURA), 2014 Joint
Conference of the International Workshop on, 2014, pp. 11–16.

[69] M. Haoues, A. Sellami, and H. Ben-Abdallah, “A rapid measurement
procedure for sizing web and mobile applications based on cosmic fsm
method,” in Proceedings of the 27th International Workshop on Software
Measurement and 12th International Conference on Software Process
and Product Measurement, ser. IWSM Mensura ’17. New York, NY,
USA: ACM, 2017, pp. 129–137.

[70] “AppAnnie,” https://www.appannie.com, accessed: 2018-02-06.
[71] “County,” https://count.ly, accessed: 2018-02-06.
[72] M. Nagappan and E. Shihab, “Future trends in software engineering

research for mobile apps,” in In Proceedings of the 23rd IEEE Interna-
tional Conference on Software Analysis, Evolution, and Reengineering
(SANER 2016), 2016, pp. 21–32.

[73] W. Fu, T. Menzies, and X. Shen, “Tuning for software analytics: Is
it really necessary?” Information & Software Technology, vol. 76, pp.
135–146, 2016.

[74] M. Nayebi, B. Adams, and G. Ruhe, “Release practices in mobile
apps? Users and developers perception,” in Proceedings of the 23rd
IEEE International Conference on Software Analysis, Evolution, and
Reengineering (SANER), Osaka, Japan, March 2016.

[75] E. Guzman and W. Maalej, “How do users like this feature? A fine
grained sentiment analysis of app reviews,” in Proceedings of the 22nd
IEEE International Requirements Engineering Conference (RE) 2014),
2014, pp. 153–162.

[76] H. Khalid, E. Shihab, M. Nagappan, and A. Hassan, “What do mobile
app users complain about?” Software, IEEE, vol. 32, no. 3, pp. 70–77,
2015.

[77] M. Harman and B. F. Jones, “Search Based Software Engineering,”
Information and Software Technology, vol. 43, no. 14, pp. 833–839,
December 2001.

[78] M. Harman, “The Relationship between Search Based Software En-
gineering and Predictive Modeling,” in Proceedings of the 6th Inter-
national Conference on Predictive Models in Software Engineering
(PROMISE ’10). Timisoara, Romania: ACM, 12-13 September 2010,
pp. 1–13.

http://www.cs.ucl.ac.uk/fileadmin/UCL-CS/research/Research_Notes/RN_15_07.pdf
http://www.cs.ucl.ac.uk/fileadmin/UCL-CS/research/Research_Notes/RN_15_07.pdf
https://www.appannie.com
 https://count.ly

	Introduction
	Estimating Apps' Rating from Claimed Features
	Empirical Study Design
	Research Questions
	Data
	Evaluation Criteria and Validation Method
	Case Based Reasoning Setting
	Threats to Validity

	Empirical Study Results
	RQ1. Rating is Predictable
	RQ2. Predictability Across Categories
	RQ3. Actionability

	Related Work
	Discussion and Future Work
	Conclusions
	References

