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Abstract

An agent forms estimates (or forecasts) of individual variables con-

ditional on some observed signal. His estimates are based on fitting a

subjective causal model - formalized as a directed acyclic graph, fol-

lowing the “Bayesian networks”literature - to objective long-run data.

I show that the agent’s average estimates coincide with the variables’

true expected value (for any underlying objective distribution) if and

only if the agent’s graph is perfect - i.e., it directly links every pair of

variables that it perceives as causes of some third variable. This result

identifies neglect of direct correlation between perceived causes as the

kind of causal misperception that can generate systematic prediction

errors. I demonstrate the relevance of this result for economic appli-

cations: speculative trade, manipulation of a firm’s reputation and

a stylized “monetary policy” example in which the inflation-output

relation obeys an expectational Phillips Curve.
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1 Introduction

Many economic models assume that outcomes depend on some agents’esti-

mates or predictions of particular variables. For instance, a manager’s career

depends on outside observers’estimate of his “quality”. Similarly, in models

of financial markets, speculative trade depends on whether traders predict

positive expected monetary gains. Finally, in models of monetary policy, the

central bank’s policy can positively affect real variables to the extent that

the private sector underestimates inflation.

In conventional models, an agent’s estimates and predictions are con-

strained by the “rational expectations”postulate - i.e., the agent fully un-

derstands the statistical regularities in his environment and thus forms “opti-

mal”forecasts of any variable conditional on his information. His predictions

may miss the target, but prediction errors cancel out on average, such that

the average of the agent’s predictions coincides with the average of the pre-

dicted variables. In other words, the agent cannot be “systematically fooled”.

Indeed, economists sometimes identify the latter property with the rational-

expectations principle itself:

“The concept of rational expectations asserts that outcomes do

not differ systematically (i.e., regularly or predictably) from what

people expected them to be. The concept is motivated by the

same thinking that led Abraham Lincoln to assert, “You can fool

some of the people all of the time, and all of the people some of

the time, but you cannot fool all of the people all of the time.”

From the viewpoint of the rational expectations doctrine, Lin-

coln’s statement gets things right. It does not deny that people

often make forecasting errors, but it does suggest that errors will

not persistently occur on one side or the other.”(Sargent (2003))

However, rational expectations involve more than the requirement that

the agent’s predicted outcome is unbiased on average - they demand a correct

perception of the entire joint distribution over all relevant variables. A priori,
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an agent’s beliefs may satisfy the former while violating the latter. This paper

is an attempt to get a better understanding of this distinction.

Of course, one can depart from rational expectations in many ways; this

paper focuses on the role of causal perceptions in the formation of beliefs.

As in Spiegler (2016a), I assume that the agent holds a subjective causal

model that links some of the relevant variables. Following the Statistics and

Artificial Intelligence literature on “Bayesian networks”(Cowell et al. (1999),

Pearl (2009), Koller and Friedman (2009)), a causal model is represented

by a directed acyclic graph (DAG): nodes represent variables, and a link

x → y signifies a perceived direct causal effect of x on y (without any pre-

conception regarding the sign or magnitude of this effect). The agent fits

his causal model to objective data obtained from a steady-state distribution,

thus quantifying the perceived causal relations. The agent then employs this

quantified model to estimate the expected value of individual variables in his

model, conditional on the observed realization of one of them.

The agent’s DAG has at least two interpretations. First, it can represent

a lay person’s intuitive causal perceptions, or a narrative that he employs

to create an understanding of empirical regularities (for a summary of psy-

chological research on the role of intuitive causal models in reasoning about

uncertainty, see Sloman (2005)). The DAG can also represent a professional

forecaster’s explicit formal model, which consists of a recursive system of

non-parametric structural equations. The forecaster’s commitment to a par-

ticular model can result from theoretical preconceptions, or from its ability

to “tell a story”.1

What is common to both interpretations is the idea that reasoning about

multivariate probability distributions is cognitively demanding. One cannot

perceive them directly as a whole, and instead must settle for learning several

correlations among a relatively small number of variables. Thinking in terms

1Consider the following quote from an economic forecasting company
(http://www.macroadvisers.com/why-model-based-forecasting): “A model-based forecast
tells a story. The model allows us to identify the key forces that are driving the
economy...We quickly found that most of our clients didn’t want to sort through computer
output for the hundreds of variables in our model over the next twelve quarters (or more).
They wanted to understand why; they wanted stories...”. For a critical discussion of
theory-based forecasting, see Giacomini (2015).
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of a causal model - whether intuitive or formal, and especially if it can be

represented by a sparse DAG - simplifies this task. The model alerts the

agent to specific correlations and puts them together in narrative form, which

makes it easier for him to grasp the system as a whole. Once the agent has

quantified his causal model, he can use it to make any conditional prediction

that is required by whatever the task he is facing.

The question that I study in this paper is whether an incorrect wrong

causal model will nevertheless have properties that produce conditional pre-

dictions of individual variables that are correct on average. When these

properties fail to hold, I analyze (in the context of specific applications) the

extent to which an outside party will take advantage of the agent’s belief

biases. The following example illustrates the formalization of this question

and its economic motivation.

Example 1.1: Exploiting a belief in monetary neutrality

Monetary theory offers what is arguably the most well-known economic ex-

ample of the “systematic fooling”problem. In a textbook model that goes

back to Kydland and Prescott (1977) and Barro and Gordon (1983), a cen-

tral bank controls a policy variable that affects inflation. The private sector

forms an inflation forecast, possibly after observing some signal regarding

the central bank’s decision. Private-sector expectations are relevant because

real output is determined by an “expectations-augmented”Phillips Curve,

such that the real effect of inflation is at least partly offset when inflation

is anticipated. Thus, if the central bank wants to raise expected output,

it would like to be able to set inflation systematically above private-sector

expectations.

Consider the following simple version of this class of models, which I

mostly borrow from Sargent (1999). A central bank chooses an action a

that affects inflation π. The private sector forms an inflation forecast e

after observing a. Real output y is given by a “New Classical” Phillips

Curve y = π − e+ η, where η is independent Gaussian noise, such that only

unanticipated inflation has real effects. The central bank’s utility function is

y − π - i.e., it wants higher output and lower inflation.
Suppose that this system is in a steady state that is described by an
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objective distribution p over all variables a, π, e, y. If the private sector had

rational expectations, e would be equal to the expected value of π conditional

on the observed realization of a, according to p. As a result, expected output

would be zero, independently of the central bank’s strategy. In this case, the

central bank’s ex-ante optimal strategy would be to choose an action that

minimizes expected inflation.

The private sector’s causal model is represented by the following DAG,

denoted R:

a→ π ← y (1)

According to this causal model, inflation is a consequence of two causes: out-

put and the central bank’s action. The model is wrong because it perceives

output to be independent of monetary policy whereas according to the true

process, output is an indirect consequence of the central bank’s action via

the Phillips Curve. In particular, (1) reverses the direction of causality be-

tween output and inflation: it regards output as a cause of inflation, whereas

according to the true model, inflation is among the causes of output. In

addition, (1) excludes e - i.e., it does not recognize the role of private-sector

expectations in the determination of macroeconomic variables (as did mone-

tary theory prior to the seminal contributions of Phelps (1967) and Friedman

(1968)). Thus, the private sector’s causal model tells a “classical”story that

postulates the absolute neutrality of monetary policy, as it contains no causal

path from a to y. In contrast, the true model allows a to have an indirect

causal effect on y, via inflationary surprises.

How does the private sector employ its causal model to forecast inflation?

It simply fits the model to the true joint distribution p over a, π, y, according

to the following formula:

pR(a, π, y) = p(a)p(y)p(π | a, y) (2)

The formula pR(a, π, y) describes the private sector’s subjective belief as a

function of the true distribution p. If p were consistent with R, it would be

legitimate to write it in this form.

Expression (2) is an example of a “Bayesian-network factorization for-
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mula”, which factorizes p over a, π, y into a product of conditional-probability

terms, as if p were indeed consistent with R. The terms on the R.H.S of

(2) can be viewed as outcomes of specific correlation measurements that a

forecaster makes in order to quantify his model. Because the forecaster per-

ceives statistical regularities through the prism of an incorrect model, the

subjective belief pR may systematically distort the correlation structure of

the true distribution p. In particular, a correct way of factorizing p in this

example is given by the textbook chain rule

p(a, π, y) = p(a)p(y | a)p(π | a, y)

The private sector’s inflation forecast after observing the central bank’s

action a is2

ER(π | a) =
∑
π

pR(π | a)π =
∑
π

∑
y

p(y)p(π | a, y)π (3)

Because the steady-state distribution p is affected by private-sector expecta-

tions, it is an “equilibrium”distribution; the equilibrium requirement is that

e = ER(π | a) with probability one, for every a.

Note that ER(π | a) is in general different from the rational-expectations

inflation forecast

E(π | a) =
∑
π

p(π | a)π =
∑
π

∑
y

p(y | a)p(π | a, y)π

The discrepancy arises because pR(π | a) involves an implicit summation

over y without full conditioning on a. Moreover, the term p(y) in (3) is not

independent of a. As a result, a change in the central bank’s strategy can

lead to a change in ER(π | a). This dependency is what makes the central

bank’s problem interesting analytically.

2I abuse notation and use simple summations rather than integration, for expositional
clarity.
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Plugging (3) into the Phillips Curve, we obtain that expected output is∑
a
p(a) [ER(π | a)− E(π | a)] =

∑
a
p(a)ER(π | a)− E(π) = E(e)− E(π)

Thus, because the Phillips Curve is linear, expected output depends on

whether the private sector’s average inflation forecast deviates from average

inflation - in other words, on whether the private sector’s inflation forecasts

are “systematically biased”. The private sector’s inflation forecast may de-

part from E(π | a) for given realizations of a, and yet these errors will not

affect ex-ante expected output if they cancel each other out on average. Thus,

the central bank’s ability to influence real activity depends on whether the

private sector’s causal model generates forecasts with a systematic bias.

In Section 4.1, I present a simple specification of p(π | a) for which the

central bank has a strategy that leads the private sector to systematically

underestimate inflation - i.e.,
∑

a p(a)ER(π | a) <
∑

π p(π)π - and therefore

boosts expected output. My main task will be to find restrictions on R or

the domain of p that would make such “systematic fooling” impossible in

general. And when fooling is possible, I will use the formalism to examine

its limits in specific settings.

Overview of the model and the main results

In Section 2, I present a general model in which an agent forms estimates of

economic variables after observing the realization of one variable. The agent’s

subjective causal model is represented by a DAG R over a set of nodes that

correspond to some subset of the economic variables. He fits this model to

an objective joint probability distribution p, and this produces a subjective

distribution pR over the variables that his model admits. The agent derives

his conditional estimates of individual variables from pR.

Can such an agent be systematically fooled, in the sense that his condi-

tional estimate of some individual variable deviates in expectation from the

expected value of this variable? Of course, this is only one aspect of how

causal misperceptions distort decision makers’understanding of statistical

regularities. However, it naturally comes up in economic applications where

an agent’s payoff is linear in his or some other agent’s beliefs. The above
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“monetary policy”example is a case in point. Other examples that I consider

in this paper include reputation (or career-concern) models and speculative

trade among risk-neutral traders. Given the ubiquity of this linearity prop-

erty in the economics literature, focusing on average estimates is of interest

- especially if the characterization of the causal models that prevent agents

from being systematically fooled in the above sense happens to be simple yet

non-trivial.

The first main result, given in Section 3.1, provides such a characteriza-

tion: The agent’s estimates are correct on average for any possible p if and

only if his DAG is perfect. A DAG is perfect if any pair of direct causes of any

third variable are directly linked themselves. The private sector’s DAG in

Example 1.1 violates perfection, because it perceives a and y as direct causes

of π, and yet it does not postulate a direct causal link between them. As a

result, we can find some objective distribution for which the agent’s average

forecast of some variable (in this case, inflation) is biased. In contrast, the

DAG a→ π → y is perfect, and therefore cannot give rise to systematically

biased predictions.

Perfection is a familiar property in the Bayesian-networks literature. Its

significance in the present context is that it highlights the role of a particular

form of correlation neglect in generating systematically biased estimates. Any

DAG that omits a direct link between two variables captures some neglect of

their correlation. However, not every type of correlation neglect can lead to

average prediction errors; the main result identifies neglect of direct correla-

tion between perceived causes as the potential source of systematically biased

estimates. Indeed, in Section 3.2 I provide a graphical characterization of the

causal models that can generate biased estimates of a given variable, which

is based on this structural property, and explains why inflation forecasts in

Example 1.1 can be biased, whereas output forecasts cannot.

Perfect DAGs are significant for another reason. In perfect DAGs - and

only in such DAGs - the direction of any given causal link is unidentified

from observational data (i.e., there is an observationally equivalent DAG

that reverses that link). Thus, the agent’s wrong causal model renders him

vulnerable to biased estimates if and only if it postulates empirically mean-
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ingful direction of causation.

In Section 4 I apply the model to environments in which the possibil-

ity of systematically biased estimates of individual variables is economically

relevant. I first provide a thorough analysis of the “monetary policy” ex-

ample. Then, I present a simple example of a firm that considers the use

of sponsored reviews to enhance its reputation among consumers. Section 5

studies two extensions of the model. First, I explore the role of restrictions

on the domain of permissible objective distributions. Specifically, I show that

when p is a multivariate normal distribution, the agent’s average estimates

are unbiased, regardless of his DAG. Second, I examine what happens when

the agent observes multiple variables before forming his estimates. I use this

characterization to obtain a “no-trade theorem”in a simple model of specula-

tive trade in which traders form beliefs according to (possibly heterogeneous)

perfect DAGs.

2 The Model

Let x0, x1, ..., xn be a collection of real-valued economic variables. In this

section and the next, I assume that every economic variable can take finitely

many values (the extension to continuous variables is straightforward). For

every M ⊆ {0, 1, ..., n}, denote xM = (xi)i∈M . An agent observes the real-

ization of one variable, which I will take to be x0. He then forms a subjec-

tive estimate ei of each of the economic variables xi, i ∈ N − {0}, where
N ⊆ {1, ..., n} is some subset of the indices (or labels) of the economic vari-
ables. In some applications, I refer to ei as the agent’s forecast of xi.

Let p be an objective joint distribution over all economic variables x0, ..., xn
as well as the estimate variables (ei)i∈N−{0}. This distribution represents

steady-state statistical regularities in the agent’s environment. I will later

impose the condition that the ei’s are consistent with a specific model of be-

lief formation. In particular, if they are based on rational expectations, then

p must satisfy the restriction that for every i ∈ N − {0}, p(ei | x0) assigns
probability one to E(xi | x0) =

∑
xi
p(xi | x0)xi.3 (The reason I define p

3Throughout the paper, E without a subscript means expectation w.r.t the objective
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over ei’s as well as xi’s is that in some applications (e.g. Example 1.1), the

agent’s beliefs affect the realization of economic variables. However, this is

not necessary for the general analysis of Section 3, where we can afford to

define p over the xi’s only.)

Our agent is characterized by a directed acyclic graph (DAG) (N,R),

where N ⊆ {0, ..., n} is the set of nodes and R is the set of directed links.

I use jRi or j → i interchangeably to denote a directed link from j into

i. Acyclicity means that the binary relation R is acyclic - i.e., the graph

contains no directed path from a node to itself. Abusing notation, let R(i) =

{j ∈ N | jRi} be the set of “parents”of node i. In another abuse of notation,
I will usually suppress N and refer to R itself as the agent’s DAG, unless

explicit reference to the set of nodes is important for intelligibility.

Following Pearl (2009), I interpret the DAG as a causal model - i.e., the

link j → i means that xj is perceived as an immediate cause of xi. The model

embodies no preconception regarding the causal effect’s sign or magnitude.

I assume throughout that 0 ∈ N - i.e., the agent’s model acknowledges the

variable he gets to observe. In contrast, it does not acknowledge the estimate

variables e1, ..., en - they are not represented by nodes in the DAG. I will

provide a formal justification for the latter restriction in Section 5.3.

The agent perceives the steady-state statistical regularities through the

prism of his subjective causal model. Specifically, for any objective distribu-

tion p, the agent’s subjective belief over xN is

pR(xN) =
∏
i∈N

p(xi | xR(i)) (4)

Thus, R encodes a mapping that transforms every objective distribution p

into a subjective belief pR. Marginalization and conditioning of pR are defined

as usual. For every M ⊂ N , the subjective marginal distribution over xM is

pR(xM) =
∑

xN−M
pR(xM , xN−M). The agent’s subjective distribution over

xi conditional on his observation of x0 is pR(xi | x0) = pR(x0, xi)/pR(x0).

A probability distribution p is consistent with R if pR(xN) ≡ p(xN).

When p is inconsistent with R, the agent’s belief distorts the true correlation

distribution p.
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structure of p. When R is fully connected, (4) is reduced to the textbook

chain rule, such that pR(xN) ≡ p(xN). Thus, every objective distribution

is consistent with a fully connected DAG. In other words, a fully connected

DAG induces rational expectations.

In the general analysis, I impose the following domain restrictions on p.

Condition 1 (i) The objective distribution p has full support over XN , such

that all the conditional probabilities in (4) are well-defined. (ii) For every x0
and i ∈ N − {0}, p(ei | x0) assigns probability one to

ER(xi | x0) =
∑
xi

pR(xi | x0)xi (5)

In applications, I will sometimes be able to relax condition (i). Note that

condition (ii) implies that the objective expectation of the agent’s estimate

of the variable xi is

E(ei) =
∑
x0

p(x0)ER(xi | x0) (6)

The notations ER and E(ei) do not explicitly invoke the objective distribu-

tion p. Whenever I use them (as well as the notation E(xi)), the objective

distribution to which they relate will be clear from the context.

The formula pR describes how the agent employs his subjective causal

model to form beliefs. I have in mind two more specific interpretations of

this belief formation process. First, following the work of psychologists on

causal reasoning (e.g. Sloman (2005)), the DAG R may capture intuitive

causal perceptions of an agent in his everyday decision making. These prior

perceptions determine the correlations that the agent pays attention to. He

learns these correlations, and then interprets them causally in accordance

with his subjective model. The output of this activity is a subjective belief,

given by (4). Then, when he receives the signal x0, he relies on his subjective

belief to form a conditional estimate of specific variables.

Alternatively, we can think of the agent as a professional forecaster, who

has an explicit formal model of the economic environment; he fits the model
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to the steady-state distribution, and uses this “estimated model” to form

forecasts of specific variables upon request. The forecaster’s model consists

of a system of structural equations having two crucial characteristics. First,

the system is recursive: a dependent variable in any given equation cannot

appear as an explanatory variable in some earlier equation. This feature is

implied by the graph’s acyclicity. It may be introduced as a simplifying device

(recursive systems are easier to estimate), or because the agent has an explic-

itly causal theory. Second, each individual equation is non-parametric - i.e.,

it does not commit to any specific functional form. As a result, estimating

the equation for xi produces the true conditional distribution p(xi | xR(i)). It
is as if the forecaster tweaks the equation’s functional form until he gets per-

fect empirical fit, but he does not tamper with the equation’s R.H.S variables

- possibly due to fundamental theoretical pre-conceptions. This is probably

not the way successful forecasting should be done, but I believe it approxi-

mates the way it is sometimes practiced.

Although I have fixed x0 as the variable that the agent gets to observe, this

is merely an expositional device that is not needed for the general results.

We should think of the agent as potentially facing many situations that

involve the economic variables x1, ..., xn; every situation requires the agent

to predict some variable xi as a function of some other variable xj, and

these two variables vary across situations. (A subsequent extension of the

basic model assumes that the agent conditions his prediction on multiple

variables.) Grounding each of these numerous conditional predictions in a

direct measurement of some conditional probability would be very costly. The

“estimated model” pR simplifies this task: it requires the agent to make a

relatively small number of direct measurements once and for all, and enables

him to draw on pR whenever a situation calls for making a specific conditional

prediction.4

We are now ready for the paper’s central definitions.

4There is a third interpretation, according to which R does not describe an explicit
subjective model, but rather represents the agent’s objective data limitations, such that
pR is the agent’s extrapolated belief from his limited data. This interpretation is elaborated
in Spiegler (2015b), and I discuss it briefly in Section 6, but I do not pursue it elsewhere
in this paper.
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Definition 1 (Unbiased estimate of a specific variable) A DAG (N,R)

induces an unbiased estimate ei for some i ∈ N − {0} if E(ei) = E(xi) for

every objective distribution p that satisfies condition 1.

Definition 2 (Universally unbiased estimates) A DAG (N,R) induces

universally unbiased estimates if it induces an unbiased estimate ei for every

i ∈ N − {0}.

Definitions 1 and 2 allow the agent to form estimates that depart from the

rational-expectations benchmark - i.e., ER(xi | x0) 6= E(xi | x0) for some
x0. However, the errors even out when we integrate over x0. The simplest

example of a wrong DAG that induces universally unbiased estimates is an

empty DAG (R(i) = ∅ for every i ∈ N). This DAG fails to capture correla-
tions, because it satisfies pR(xi, xj) = p(xi)p(xj) for every i, j. However, this

identity implies pR(xi | x0) ≡ p(xi), hence E(ei) = E(xi). My goal in the

next section will be to characterize the class of DAGs that share the latter

property.

3 General Results

I begin this section with a few graph-theoretic concepts and results, most

of which are borrowed from the Bayesian-networks literature (though often

with different notation and terminology).

Fix a DAG (N,R). The DAG’s skeleton (N, R̃) is its undirected version

- i.e., iR̃j if and only if iRj or jRi. A subset M ⊆ N is a clique in (N,R) if

iR̃j for every i, j ∈M , i 6= j. A clique M is ancestral if R(i) ⊂M for every

i ∈ M . In particular, a node i is ancestral if R(i) is empty. A collider is an

ordered triple of nodes (i, j, k) such that iRk and jRk. A collider (i, j, k) is

referred to as a v-collider if i /Rj and j /Ri (i.e., R contains links from i and

j into k, yet there is no link between i and j). For instance, the DAG (1)

contains a v-collider y → π ← a. When discussing a v-collider, I will use the

notations (i, j, k) and i→ k ← j interchangeably.
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A DAG encodes a mapping from objective distributions to subjective

beliefs, which is given by (4). Two DAGs can be equivalent in the sense that

they encode the same mapping.

Definition 3 Two DAGs (N,R) and (N,Q) are equivalent if pR(xN) ≡
pQ(xN) for every p ∈ ∆(X).

For instance, the DAGs 1 → 2 and 2 → 1 are equivalent, by the basic

identity p(x1)p(x2 | x1) ≡ p(x2)p(x1 | x2). A DAG that involves intuitive

causal relations can be equivalent to a DAG that makes little sense as a

causal model.

Proposition 1 (Verma and Pearl (1991)) Two DAGs are equivalent if
and only if they have the same skeleton and the same set of v-colliders.

To illustrate this result, the DAGs 1→ 2→ 3 and 1← 2← 3 are equiv-

alent because they have the same skeleton and an empty set of v-colliders.

In contrast, the DAGs 1 → 2 → 3 and 1 → 2 ← 3 are not equivalent:

although their skeletons are identical, the former DAG has no v-colliders

whereas (1, 3, 2) is a v-collider in the latter.

3.1 Universally Unbiased Estimates

I now turn to a characterization of the DAGs that induce universally un-

biased estimates. We will see later that this characterization is a simple

corollary of the characterization of DAGs that induce unbiased estimates of

a given variable, which I provide in the next sub-section. Therefore, from

a logical point of view, the order of the two sub-sections should have been

reversed. However, presenting the universal case first is superior in terms of

expositional simplicity, even if it leads to some redundancy in presentation.

The following lemma (borrowed from Spiegler (2016b)) begins the analysis

of how graphical properties of the agent’s causal model affect the structure

of his belief distortions.
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Lemma 1 (Spiegler (2016b)) Let R be a DAG and let C ⊆ N . Then,

pR(xC) ≡ p(xC) for every p with full support on XN if and only if C is an

ancestral clique in some DAG in the equivalence class of R.

This lemma establishes that if C is an ancestral clique (in the DAG itself

or in some equivalent DAG), then the subjective marginal distribution over

xC is always correct. Otherwise, we can find an objective distribution for

which it will be distorted.

Definition 4 A DAG is perfect if it contains no v-colliders.

A perfect DAG has the property that if xi and xj are perceived as direct

causes of xk, then there must be a perceived direct causal link between them.

If we think of a DAG as a recursive system of structural equations, perfection

means that if xi and xj appear as explanatory variables in the equation for

xk, then there must be an equation in which one of these two variables is

explanatory and the other is dependent.

Corollary 1 Two perfect DAGs are equivalent if and only if they have the
same skeleton. In particular, if M ⊆ N is a clique in a perfect DAG (N,R),

thenM is an ancestral clique in some DAG in the equivalence class of (N,R).

Corollary 1 is an immediate implication of Proposition 1. It means that the

causal links postulated by a perfect DAG are unidentified from observational

data: if iRj, there exists a DAG R′ that is equivalent to R, such that jR′i.

A DAG contains causal links with observationally meaningful direction only

when it contains a v-collider.

The following result is an immediate combination of Corollary 1 and

Lemma 1.

Corollary 2 In a perfect DAG R, pR(xC) ≡ p(xC) for any clique C.
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In particular, the agent’s subjective marginal distribution over any vari-

able coincides with its objective marginal distribution. In other words, an

agent with a perfect DAG never distorts individual variables’marginal dis-

tributions. In contrast, an imperfect DAG induces incorrect subjective mar-

ginals for some variables and some objective distribution. If we viewed unbi-

ased marginals as a desirable property that a plausible model of non-rational

expectations “must” satisfy, then we would have to restrict attention to

causal models that are represented by perfect DAGs. However, I do not share

this view. As explained in the previous sections, I think of the agent’s sub-

jective model as a tool for making multiple conditional predictions in many

possible choice contexts. The aspects of the objective distribution that the

agent correctly perceives are the marginal and conditional distributions that

quantify his causal model. Any other marginal or conditional subjective dis-

tribution is derived from his estimated model, and there is no a priori reason

why it must be correct.

Proposition 2 A DAG induces universally unbiased estimates if and only

if it is perfect.

Thus, as long as the agent’s DAG is perfect, he cannot be systematically

fooled about any variable. For instance, suppose that R : 1 → 2 → 0.

This DAG is perfect, hence Proposition 2 implies that the agent’s estimates

of x1 or x2 are unbiased. The key for this result is the property that in a

perfect DAG, every node can be regarded as ancestral, which ensures that the

perceived marginal distribution of the variable it represents is undistorted. As

mentioned earlier, perfect DAGs have the property that the causal links they

postulate are unidentified from observational data. Proposition 2 thus implies

that the agent’s causal misperceptions expose him to systematic fooling if and

only if the direction of some of them is meaningful for observational data.

The suffi ciency part of Proposition 2 has a three-line proof, thanks to the

above preliminary results.

Proof of suffi ciency part of Proposition 2. Suppose the DAG (N,R)
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is perfect. By Corollary 2, pR(xj) ≡ p(xj) for every j ∈ N . Therefore,∑
x0

p(x0)pR(xi | x0) ≡
∑
x0

pR(x0)pR(xi | x0) ≡ pR(xi) ≡ p(xi)

which immediate implies E(ei) = E(xi).

Thus, the key property of perfect DAGs that ensures universally unbiased

estimates is that they induce correct marginals over all individual variables

- including the conditioned variable x0 and any estimated variable xi.

In contrast, consider an imperfect DAG like 0 → 2 ← 1. Its neglect of

the potential correlation between x0 and x1 can lead to a biased marginal

subjective distribution over x2. This in turn implies that the agent’s average

estimate of x2 can be biased. The complete proof of the necessity part will

be presented as a simple corollary of the characterization result in the next

sub-section.

An immediate corollary of Proposition 2 is that universal unbiasedness is

not monotone with respect to the thickness of the agent’s DAG. When we

add links to a DAG (e.g., from 0 → 2 1 to 0 → 2 ← 1), we may destroy

perfection and therefore create a vulnerability to systematic fooling. Non-

monotonicity results in this spirit appear in Eyster and Piccione (2013) and

Spiegler (2016a).

Within the literature on equilibrium models with non-rational expecta-

tions, perfection emerges naturally in certain formulations of analogy-based

expectations (Jehiel (2005)). For example, consider the DAG s← θ → π →
a, where s represents the agent’s signal, θ represents the state of Nature, π

represents the analogy class to which θ belongs and a represents an oppo-

nent’s action. Under this DAG, the agent perceives the opponent’s behavior

as a consequence of the analogy partition, whereas in fact it is a function

of the state of Nature. As a result, the agent’s conditional forecast of the

opponent’s action is overly coarse. Nevertheless, Proposition 2 implies that

it is correct on average.

A recent explicit application of perfect DAGs is Schumacher and Thysen

(2017), who study a principal-agent model in which the agent has a wrong
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causal model of the mapping from effort decisions to output. In particular,

the agent’s causal model is given by the perfect DAG a → x → y (a, y and

x represent effort, output and an intermediate outcome, respectively). The

true process involves additional causal paths from a to y, which the agent’s

causal model neglects.

3.2 Unbiased Estimates of a Specific Variable

In this sub-section I hold the estimated variable fixed, and provide a necessary

and suffi cient condition on the agent’s DAG under which it induces unbiased

estimates of this variable. For this purpose, additional graphical definitions

and notation are needed. Fix a DAG (N,R). A path is a sequence of directly

linked nodes, ignoring the links’directions. For example, in the DAG 1 →
2← 3, there is a path between 1 and 3, even though there is no directed path

between them. Define the binary relation P : for any i, j ∈ N , iP j if there is
a directed path from i to j or if i = j. For example, in the DAG 1→ 2→ 3,

1 /R3 and 1 /R1 yet 1P3 and 1P1. When iP j and i 6= j, we say that i is an

ancestor of j and j is a descendant of i.

d-separation

One of the basic ideas in the Bayesian-network literature is that a DAG

represents a collection of conditional-independence assumptions (common to

all probability distributions that are consistent with a DAG, and violated by

the distributions that are inconsistent with it). The concept of d-separation

operationalizes this idea. It appears in any textbook on the subject (e.g.

Pearl (2009)). I now present a version of d-separation that is specialized

to our current needs. First, I introduce the notion of path blocking that is

standard in the literature.

Definition 5 (Path blocking) The node 0 blocks a path in the DAG if

either of the following two conditions holds: (1) the path contains a segment

of the form k → 0 → j or k ← 0 → j, for some nodes k, j; (2) the path

contains a segment of the form k → m ← j for some nodes k, j, such that

neither m nor its descendants are 0.
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To illustrate this definition, consider the DAG 1→ 2← 0→ 3. The node

0 blocks the path between 1 and 3 - either because it contains the segment

2 ← 0 → 3 (thus satisfying condition (1)) in the definition), or because it

contains the segment 1 → 2 ← 0 and 2 has no descendants (thus satisfying

condition (2) in the definition). In contrast, in the DAG 1 → 0 ← 2 → 3,

0 does not block the path between 1 and 3, because it does not contain a

segment of the form i → 0 → j or i ← 0 → j, and the only segment of the

form i→ m← j that it contains satisfies m = 0.

In what follows, let A and B be two disjoint subsets of N − {0}. In
addition, write xA ⊥R xB | x0 if every distribution that is consistent with R
satisfies the conditional-independence property xA ⊥ xB | x0.

Definition 6 (d-separation) The node 0 d-separates A and B if 0 blocks

every path between any j ∈ A and any k ∈ B.

Proposition 3 (Verma and Pearl (1990)) xA ⊥R xB | x0 if and only if
0 d-separates A and B.

Thus, d-separation provides a convenient (and computationally simple)

graphical rule for checking whether a conditional independence property is

satisfied by all the distributions that are consistent with a DAG, hence by

all subjective beliefs that can be induced by a given causal model.

The following simplification will be useful for the results of this sub-

section. It can be immediately seen from (4) that the only variables that are

relevant for pR(x0, xi) - and therefore for pR(xi | x0) - are those represented
by nodes j for which jP i or jP0. All other nodes can be ignored. Since this

will simplify definitions and notation without affecting the analysis, in what

follows, I assume that the DAG (N,R) satisfies the following:

{j ∈ N | jP i or jP0} = N (7)

In other words, any terminal node in the DAG must be 0 or i.
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Proposition 4 A DAG induces an unbiased estimate ei if and only if for

every v-collider j → k ← h in the DAG, 0 d-separates {i} and {j, h}.

This result traces the possibility of a biased estimate ei to the existence

of a v-collider in the agent’s DAG - specifically, a v-collider whose upper

nodes are ancestors of i or 0.5 However, if 0 d-separates the node i from

the v-collider’s upper nodes, ei will be unbiased. What is the meaning of

the role of v-colliders in this characterization? Every DAG that is not fully

connected distorts some objective distributions by neglecting certain correla-

tions. However, not every type of correlation neglect leads to systematically

biased estimates. Proposition 4 identifies neglect of direct correlation between

perceived causes as the reason for biased estimates. However, if every per-

ceived causal chain from these variables to the predicted variable xi passes

through the observed variable x0, then by conditioning his estimate ei on the

observed x0 protects him from the bias that can potentially result from the

above correlation neglect.

The complete proof of Proposition 4 is in the Appendix. Here I will settle

for an example that illustrates the result. Suppose that the agent’s DAG R

is
j → 0 ← h

↓ ↙
i

(8)

Here there is a direct link from one of the v-collider’s upper nodes into i,

hence 0 does not block it.

To see how this feature can generate a biased estimate ei, construct the

following objective distribution p. Suppose that all variables take values in

{0, 1}. Let p(xj = 1) = 1
2
, and assume that the other variables are given the

by the following sequence of deterministic equations:6

xh = xj x0 = 1− (1− xj)(1− xh) xi = x0xh

5If we did not impose the simplifying assumption (7), the d-separation condition would
only pertain to v-colliders j → k ← h in which i′Pi or i′P0 for some i′ ∈ {j, h}.

6This specification of p violates the full-support assumption. This is purely for expo-
sitional simplicity - small perturbations of p that restore this property would leave the
argument intact.
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Observe that the only feature of p that is inconsistent with R is the (perfect)

correlation between xj and xh, whereas R assumes they are independent.

Under p, E(xi) = p(xi = 1) = 1
2
. Let us now calculate

E(ei) =
∑

x0
p(x0)pR(xi = 1 | x0)

where pR(xi = 1 | x0) is given by

pR(x0, xi = 1)

pR(x0)
=

∑
xj ,xh

p(xj)p(xh)p(x0 | xj, xh)p(xi = 1 | xh, x0)∑
xj ,xh

p(xj)p(xh)p(x0 | xj, xh)

Note that p(xj = 1) = p(xh = 1) = 1
2
. All the other conditional-probability

terms are 0 or 1, as given by our equations for x0 and xi. We obtain pR(xi =

1 | x0 = 1) = 2
3
and pR(xi = 1 | x0 = 0) = 0, leading to

E(ei) = p(x0 = 1) · 2

3
=

1

2
· 2

3
=

1

3
6= 1

2
= E(xi)

The calculation makes it clear that the reason for the bias is the neglect of

the correlation between xj and xh.

Now suppose that the agent’s DAG omitted the link h → i from (8).

Then, pR(xi | x0) would be given by

pR(x0, xi)

pR(x0)
=

∑
xj ,xh

p(xj)p(xh)p(x0 | xj, xh)p(xi | x0)∑
xj ,xh

p(xj)p(xh)p(x0 | xj, xh)
= p(xi | x0)

which implies that ei is unbiased.7

Finally, we are able to derive the necessity part of Proposition 2 from

Proposition 4.

Proof of necessity part of Proposition 2. Suppose the DAG (N,R) is

imperfect. Then, it contains a v-collider j → k ← h. There are two cases

7In this example, the agent’s estimate coincides with rational expectations for every
x0, but this is only because of the direct link 0 → i. If we replaced this link with the
segment 0→ i′ → i, ei would depart from rational expectations but it would be unbiased
on average.
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to consider. First, suppose that 0 = k. Then, 0 does not block the only

path between h and j. As a result, the condition for unbiased eh (or ej) is

violated. Second, suppose that 0 6= k. Obviously, 0 6= j or 0 6= h. Assume

the former case, w.l.o.g. Then, the only path between k and j is a direct link,

which 0 obviously does not block. As a result, the condition for unbiased ek
is violated.

Recall that perfect DAGs induce an unbiased estimate of any xi because

they induce correct marginal subjective distributions over both x0 and xi.

However, the latter property is not necessary. For instance, consider the

following DAG:
1 → 0 → 3

↑ ↓
2 4

This modified DAG can induce incorrect marginals over x0, x3 and x4. Nev-

ertheless, e3 and e4 are unbiased because the node 0 blocks the only causal

path from the DAG’s v-collider to the nodes 3 and 4.

4 Two Applications

In this section I examine two applications in which the possibility of system-

atically biased estimates is of crucial economic importance.

4.1 Monetary Policy

In this sub-section I analyze a more elaborate version of Example 1.1. Recall

the three economic variables: the central bank’s action a, inflation π and

real output y. Now introduce a fourth variable θ that the central bank

privately observes before taking its action. Suppose that θ is real-valued and

distributed over some finite subset of (0, 1) - the exact distribution will be

immaterial for our purposes. The central bank’s utility function is y − θπ.
Thus, θ measures the central bank’s trade-off between the two motives, but

does not have any direct effect on macroeconomic variables.
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Assume that both π and a take values in {0, 1}, where π = 0 (1) rep-

resents low (high) inflation. The central bank’s strategy is thus defined by

a collection of conditional probabilities: α(θ) = p(a = 1 | θ) for every θ.
Inflation is a stochastic function of a, given by p(π = 1 | a) = βa, where

β ∈ (0, 1). That is, a = 0 is a safe action that induces low inflation with

certainty, whereas a = 1 is a risky action that induces high inflation with

probability β. The private sector forms its inflation forecast after observing

the realization of a - i.e., e = ER(π | a). Output is given by the “Phillips

Curve”y = π − e+ η, where η ∼ N(0, σ2η) is independently distributed.

The objective steady-state distribution p is consistent with the following

“true DAG”R∗ defined over θ, a, π, y:8

θ → a

↙ ↓
π → y

(9)

Plugging the Phillips Curve into the central bank’s payoff function, we

obtain the following:∑
θ

p(θ)
∑
a

p(a | θ) [(1− θ) · E(π | a)− ER(π | a)]

= E(π)− E(e)−
∑
θ

p(θ)E(π | θ)θ

If the private sector had rational expectations (R = R∗ or fully connected),

this expression would collapse into

−
∑
θ

p(θ)E(π | θ)θ = −β
∑
θ

p(θ)p(a = 1 | θ)θ

and the central bank’s ex-ante optimal strategy would be p(a = 1 | θ) = 0

for every θ > 0 (I discuss the issue of dynamic consistency at the end of this

sub-section).

8If we incorporated e as an explicit variable in the causal model, the direct link a→ y
would be replaced with the chain a→ e→ y. See Section 5.3 for a discussion of estimates
as variables in DAGs.
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Consider two possibilities for the private sector’s DAG. Each DAG rep-

resents a different narrative about how macro variables are interconnected.9

First, consider the DAG θ → a→ y → π. Because it is perfect, Proposition

2 implies that inflation forecasts would be unbiased. As a result, the cen-

tral bank’s ex-ante optimal policy coincides with the rational-expectations

prediction.

Now turn to the DAG R given by

θ → a

↓ ↓
y → π

(10)

As in Example 1.1, this DAG reflects a “classical”belief in absolute monetary

neutrality - namely, that a has no causal effect on y. The private sector’s

causal model allows a and y to be correlated, but only to the extent that

both are caused by the exogenous variable θ.

Given this DAG R, the private sector’s inflation forecast after observing

a is

ER(π | a) =
∑
π

pR(π | a)π =
∑
π

(∑
y

∑
θ

p(θ | a)p(y | θ)
)
p(π | a, y)π

whereas the “rational”conditional inflation forecast is

E(π | a) =
∑
π

p(π | a)π =
∑
π

(∑
y

p(y | a)

)
p(π | a, y)π

The discrepancy arises because pR(π | a) only acknowledges the correlation

between a and y through their mutual correlation with θ.

The DAG given by (10) is imperfect. Moreover, it violates the condition

in Proposition 4 because it contains a v-collider y → π ← a, where there is a

direct link between π and y (an upper node in the v-collider), which therefore

cannot be blocked by a. (On the other hand, the DAG satisfies the condi-

9Hoover (2001) describes historical controversies in macroeconomics in terms of con-
flicting causal mechanisms.
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tion with respect to output forecasts, because the only v-collider involves a

descendant of y and a.) Therefore, we cannot rule out the possibility that

the private sector’s inflation forecasts will be systematically biased. Indeed,

the following result establishes that under the current parameterization, the

central bank’s ex-ante optimal strategy involves inflating and the private

sector systematically underestimates inflation (as the Phillips-Curve noise

vanishes).

Proposition 5 In the σ2η → 0 limit, the central bank’s ex-ante optimal strat-

egy under R is p(a = 1 | θ) = 1
2
(1 − θ) for every θ. Expected output in this

limit is (1− θ2)/4 for every θ.10

Proof. The following notation will be helpful in the proof:

e(a) = ER(π | a) = pR(π = 1 | a)

αθ = p(a = 1 | θ)
α =

∑
θ

p(θ)αθ

Because π ∈ {0, 1} and by the specification of R,

e(a) =
∑
θ

p(θ | a)
∑
y

p(y | θ)p(π = 1 | y, a)

Let us first calculate e(0). Because p(π = 1 | a = 0) = 0, it follows that

p(π = 1 | a = 0, y) = 0 for all y. Therefore, e(0) = 0. This in turn means

that E(y | a = 0) = 0, which means that the central bank’s expected payoff

can be reduced to ∑
θ

p(θ)αθ[β − e(1)− θβ] (11)

10Because p(π, y | a) and p(e | a) are jointly determined, the central bank’s problem is
not a straightforward maximization problem in which the only object of choice is its own
strategy. Rather, there could also be a need to select among multiple possible private-
sector expectations (just as we apply equilibrium selection in mechanism design problems).
However, the proof of the following result makes it clear that this issue does not arise in
this example.
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If αθ = 0 for all θ, the central bank’s payoff is zero. From now on, assume

αθ > 0 for some θ such that α > 0.

Let us now calculate e(1). Because α > 0 and η is normally distributed

(such that p(y | θ) has full support), the terms in the expression for e(1) are all

well-defined. For any fixed θ, y ∼ N(µ, σ2η), where µ is random: µ = e(0) = 0

with probability 1 − αθ, µ = 1 − e(1) with probability αθβ, and µ = −e(1)

with probability αθ(1 − β). By definition, e(1) ∈ [0, 1]. Let us verify that

e(1) is interior and does not converge to 0 or 1 in the σ2η → 0 limit, such that

the above three values that µ can get are all distinct. Because the normal

distribution is symmetrically distributed around its mean, the probability of

y < −e(1) given θ cannot be lower than αθ(1−β)/2, whereas the probability

of y > 1 − e(1) given θ cannot be lower than αθβ/2. Moreover, as σ2η → 0,

p(π = 1 | a = 1, y < −e(1)) → 0 and p(π = 1 | a = 1, y > 1 − e(1)) → 1.

Therefore, in the σ2η → 0 limit,

0 <
αβ

2
≤ e(1) ≤ 1− α(1− β)

2
< 1

It follows that in the σ2η → 0 limit, the three possible values for µ -

namely, −e(1), 0 and 1 − e(1) - are all distinct. Moreover, in this limit,

p(π = 1 | a = 1, y = 1 − e(1)) = p(π = 0 | a = 1, y = −e(1)) = 1.

By comparison, p(π = 1 | a = 1, y = 0) is not obvious because the joint

realization a = 1, y = 0 gets zero probability in the σ2η → 0 limit. By (11)

and the definition of e(1), the central bank’s payoffwould be higher if we set

p(π = 1 | a = 1, y = 0) = 0. Therefore, let us guess that this is the case, and

verify this guess later on. It follows that∑
y

p(y | θ)p(π = 1 | y, a = 1) = αθβ

and

e(1) = β
∑
θ′

p(θ′ | a = 1)αθ′ = β
∑
θ′

p(θ′)αθ′∑
θ′′ p(θ

′′)αθ′′
αθ′ (12)
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Expression (11) then becomes

β

[∑
θ

p(θ)αθ(1− θ)−
∑
θ

p(θ)αθ
∑
θ′

p(θ′)(αθ′)
2∑

θ′′ p(θ
′′)αθ′′

]

= β

[∑
θ

p(θ)αθ(1− θ)−
∑
θ′

p(θ′)(αθ′)
2

( ∑
θ p(θ)αθ∑

θ′′ p(θ
′′)αθ′′

)]
= β

∑
θ

p(θ)
[
αθ(1− θ)− (αθ)

2
]

(13)

This objective function is additively separable in θ, such that for every θ, the

optimal value of αθ maximizes αθ(1 − θ) − (αθ)
2, which immediately gives

the solution.

It remains to verify our guess that p(π = 0 | a = 1, y = 0) = 1 in

the σ2η → 0 limit. Because αθ = 1
2
(1 − θ) ≤ 1

2
for all θ, (12) implies that

e(1) ≤ 1
2
β. It follows that |−e(1)− 0| ≤ 1

2
β < 1

2
whereas |1− e(1)− 0| ≥

1 − 1
2
β > 1

2
. The conditional distribution p(y | e, a = 1) is distributed

according to N(β − e, σ2η). As we observed above, the only values of y that
get positive probability in the σ2η → 0 limit conditional on a = 1 are −e(1)

and 1 − e(1). Furthermore, p(π = 1 | a = 1, y = 1 − e(1)) = p(π = 0 | a =

1, y = −e(1)) = 1. Since −e(1) is closer to zero than 1− e(1) in the σ2η → 0

limit (by a margin that is bounded away from zero in this limit), it follows

that p(π = 0 | a = 1, y = 0)→ 1 as σ2η → 0, thus confirming our guess.

The intuition behind the result is as follows. When the central bank plays

a = 0, it induces π = 0 with certainty. As a result, ER(π | a = 0) = 0, as

if the private sector had rational expectations. In contrast, when a = 1,

inflation fluctuates, and the private sector’s error is that it tries to account

for these fluctuations by the variation in y - as if the latter were only caused

by the exogenous variable θ. Therefore, the private sector’s inflation forecast

conditional on a = 1 involves summing over all values of y, weighting them

according to the distribution pR(y | a = 1) =
∑

θ p(θ | a = 1)p(y | θ).
If the central bank plays a deterministic strategy, pR(y | a = 1) = p(y |

a = 1), such that the private sector’s inflation forecast conditional on a = 1 is

consistent with rational expectations. However, if the central bank employs
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randomization, it garbles the perceived correlation between a and y, such that

the private sector’s inflation forecast underreacts to the observed realization

a = 1. This means that the private sector systematically underestimates

inflation after observing a = 1. As long as θ < 1, the output boost due to

this systematic forecast error outweighs the cost of inflation.

Comment: Dynamic inconsistency

The central bank’s optimal strategy is dynamically inconsistent. On one

hand, playing a = 0 with positive probability is necessary for inducing the

private sector’s systematic prediction error. On the other hand, we saw that

the realization a = 0 induces an unbiased private-sector inflation forecast,

and therefore the central bank would want to switch to a = 1 if it could

take ER(π | a = 1) as given. (In contrast, the central bank’s strategy is

dynamically consistent with respect to the exogenous variable θ. The proof

of Proposition 5 establishes that the central bank’s objective function ends

up being additively separable in θ, and therefore it would not want to revise

its strategy after θ is realized.)

This is a different sort of dynamic inconsistency than the one tradition-

ally associated with this problem since Kydland and Prescott (1977). The

latter arises when the private sector does not perfectly monitor the central

bank’s action before forming its inflation forecast. In contrast, in the present

example, the private sector perfectly monitors the realization of a. Moreover,

it also correctly grasps the central bank’s strategy: pR(a | θ) = p(a | θ). This
is a consequence of the fact that θ and a form an ancestral clique in R. The

dynamic inconsistency here has an entirely different origin - namely, the need

to create statistical patterns that the private sector will misperceive because

of its wrong causal model.

Comment: Connection with Example 1.1

Suppose that the central bank’s payoff is y − π, as in Example 1.1. Then,
the variable θ is payoff-irrelevant. It can be shown that in this case, the

central bank prefers to mix over a independently of θ. The intuition is

that the central bank benefits from the private sector’s misperception of

the correlation between a and y; and when θ ceases to be payoff-relevant,
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it is optimal for the bank to maximize this misperception by making a and

y appear (to the private sector) to be completely independent. As a result,

θ becomes independent of all other variables, and therefore the model is

effectively reduced to Example 1.1. Plugging αθ = α for all θ in (13), we

obtain that the central bank’s optimal policy is to randomize uniformly over

the two actions, independently of θ.

4.2 Manipulating Reputation

A firm offers a product of exogenous quality θ, which is the firm’s private

information. The agent is a consumer who receives a signal t, interpreted

as a review of the firm’s product. Based on the signal, the consumer forms

an estimate e of the product’s quality. Let s ∈ {0, 1} indicate whether the
review is sponsored by the firm (s = 1 means that it is). Although the

consumer does not know whether a review is sponsored at the time he reads

it, s is not an unobservable variable. Data about the historical frequency

of sponsored reviews and their correlation with product quality or review

content is available to the consumer, as he fits his causal model - given by a

DAG R defined over three nodes that represent the variables θ, s, t - to the

joint distribution p over these variables.

The firm’s strategy specifies the probability of sponsoring the review as

a function of θ. The realized review is some probabilistic function of θ and

s. This function, the exogenous distribution over θ and the firm’s strategy

constitute the objective joint distribution p over θ, s, t. As usual in this

paper, e = ER(θ | t) with probability one for every t. The firm’s payoff
is e − cs, where c ∈ (0, 1

2
) is the cost of sponsoring a review. That is, the

firm trades off its reputation and the cost of sponsoring reviews. The firm’s

ex-ante expected payoff is thus∑
θ

p(θ)
∑
s

p(s | θ)
∑
t

p(t | θ, s) [e− cs] = E(e)− cE(s)

The relation between the firm’s objective and the “systematic fooling”

question is apparent from this expression. If the consumer had rational
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expectations, the firm’s objective function would collapse into E(θ)− cE(s).

In this case, the firm cannot use sponsored reviews to manipulate its average

reputation, because it coincides with the product’s expected quality. The

firm’s ex-ante optimal strategy is p(s = 1 | θ) = 0 for every θ. (Of course,

this policy will typically fail to be time-consistent; however, I focus entirely

on the ex-ante perspective.)

In this example, the consumer’s DAG tells a causal story about the

process that generates review content. For instance, the DAG θ → t → s

represents a “naive”story, according to which content is only influenced by

the product’s objective characteristics, and sponsorship is reactive (akin to

tipping). By comparison, the DAG θ → s → t represents a “cynical”story,

according to which content has nothing to do with the product’s quality

once we condition on the sponsorship status. Both DAGs are perfect, and

therefore generate unbiased quality estimates. As a result, the firm’s ex-ante

optimal strategy under these DAGs coincides with the rational-expectations

prediction.

In contrast, the DAG R : θ → t← s is imperfect. Specifically, it violates

the condition of Proposition 4, because t does not block the only path between

θ and s. A consumer with this DAG realizes that sponsorship may affect

reviews, but he believes that the prevalence of sponsorship is independent

of the product’s quality. This DAG treats s and θ as mutually independent

primary causes of t, whereas in reality s may be caused by θ via the firm’s

strategy. This type of correlation neglect falls into the category that Eyster

and Rabin (2005) refer to as “cursedness”. We will now see that the firm can

play a strategy that exploits cursedness to enhance its average reputation.

For this purpose, impose the following additional structure on p. Let

θ ∈ {0, 1}; the two values are equally likely, such that E(θ) = 1
2
. The firm’s

strategy can thus be represented by two conditional probabilities: α = p(s =

1 | θ = 1) and β = p(s = 1 | θ = 0). Finally, p(t | θ, s) is degenerate:
t = θ + s with probability one for every θ, s.

Proposition 6 Let R : θ → t← s. Then, the firm’s ex-ante optimal strategy

is α = 0, β = 1
2
− c. The firm’s average reputation under the ex-ante optimal
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strategy is

E(e) =
1

2
+

1

16
(1− 4c2)

Proof. The consumer’s quality assessment after observing t = 2 is

pR(θ = 1 | t = 2) =
pR(θ = 1, t = 2)

pR(t = 2)
=
p(θ = 1)

∑
s p(s)p(t = 2 | s, θ = 1)∑

θ p(θ)
∑

s p(s)p(t = 2 | s, θ)

=
p(θ = 1)p(s = 1)

p(θ = 0)
∑

s p(s) · 0 + p(θ = 1)p(s = 1)
= 1

because the realization t = 2 is possible only when θ = 1. Likewise, the

realization t = 0 is possible only when θ = 0, and a similar calculation yields

ER(θ | t = 0) = 0. It follows that when t 6= 1, the consumer’s quality

estimate is consistent with rational expectations.

Let us turn to the consumer’s quality assessment after observing t = 1:

pR(θ = 1 | t = 1) =
p(θ = 1)

∑
s p(s)p(t = 1 | s, θ = 1)∑

θ p(θ)
∑

s p(s)p(t = 1 | s, θ)

=
p(θ = 1)p(s = 0)

p(θ = 1)p(s = 0) + p(θ = 0)p(s = 1)

= p(s = 0) =
1

2
(1− α) +

1

2
(1− β) = 1− 1

2
(α + β)

We can now calculate the firm’s expected payoff for any strategy (α, β):

1

2
· α · 1 + [

1

2
· (1− α) +

1

2
· β] · [1− 1

2
(α + β)]− c · (1

2
· α +

1

2
· β)

The strategy (α, β) that maximizes this expression is α = 0, β = 1
2
− c. That

is, the firm sponsors reviews only when its quality is low, and even then only

with some probability. Plugging the values of α, β into the expression for the

firm’s average reputation yields the result.

Note that the extent to which the firm can exploit the consumer’s “cursed-

ness”is limited: it can increase its perceived expected quality by at most 1
16

on average.
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Comment: Why is the consumer’s DAG imperfectly connected?

This is a good opportunity to revisit an interpretational issue first mentioned

in Section 2. Why would a consumer who is aware of all three variables θ, s, t

hold a causal model that does not fully link them? The answer is that my

use of a simple three-variable example is a pedagogical device; its simplicity

should not be mistaken for a simplicity of the real-life environment it aims to

capture. This environment would typically involve many variables: the qual-

ity of numerous types of products, numerous reviewers and various outlets

that publish their reviews. It would be hard for consumers to fully under-

stand the intricate web of influences among these variables. Furthermore, the

consumer will encounter various situations that require him to make differ-

ent conditional predictions: guessing whether a given review was sponsored,

predicting the content of a review written by one author after seeing a review

by another author (not knowing whether they are sponsored and by whom),

predicting review content after learning that it was sponsored, etc. A bound-

edly rational consumer is likely to make simplifying assumptions that assist

his attempt to understand statistical regularities in his environment. An ex-

ample of such a simplifying assumption is that sponsorship is independent of

product quality. This particular assumption enables firms to use sponsored

reviews to manipulate their average reputation.

5 Extensions

In this section I extend the basic analysis in various directions. Proofs of all

the results are in the Appendix.

5.1 Multivariate Normal Distributions

Proposition 2 means that an imperfect DAG exposes the agent to system-

atically biased estimates for some objective distribution. However, in ap-

plications we often restrict the domain of objective distributions, and this

makes it harder to systematically fool our agent. In this section I examine

the implications of a domain restriction that is common in economic models,
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namely that the distribution over economic variables is multivariate normal.

Proposition 7 Let R be an arbitrary DAG, and let the objective distribution
over the variables x1, ..., xn be multivariate normal. Then, E(ei) = E(xi) for

every i = 1, ..., n.

Thus, the mere assumption that the agent forms his beliefs by fitting

some causal model to the steady-state distribution guarantees that he cannot

be systematically fooled - as long as the true distribution over economic

variables is multivariate normal. The key to this finding is an existing result

in the Bayesian-networks literature (see Koller and Friedman (2009, Ch. 7)):

factorizing a multivariate normal distribution according to a DAG produces

a multivariate normal distribution. Conditional expectations of variables in

this class of distributions are simply weighted averages. While a wrong DAG

can distort the weights, these distortions cancel out on average.

In each of the applications of Section 4, one of the variables was an action

taken by some other agent (the central bank in Section 4.1, the firm in

Section 4.2). Proposition 7 implies that in such cases, if that other agent

plays a linear-normal strategy (and all other variables are linked by a system

of linear-normal equations), our agent will never be systematically fooled.

Thus, when the exogenous components of a model are linear-normal, non-

linear strategies are necessary for inducing systematically biased predictions.

5.2 Observing Multiple Variables

So far, we have assumed that the agent conditions his estimates on a single

observed variable x0. Now suppose that the agent’s signal is xA, whereA ⊂ N

is non-empty and may include more than one node. In a standard model with

rational expectations, we can always redefine the agent’s signal as a single

variable, w.l.o.g. However, when the agent’s beliefs are based on a wrong

DAG, it is important to be explicit about the variables that constitute the

agent’s signal. The agent’s estimate of xi conditional on observing xA is ei =

ER(xi | xA). As before, we say that R induces universally unbiased estimates
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if
∑

xA
p(xA)ER(xi | xA) =

∑
xi
p(xi)xi for every objective distribution p in

the restricted domain and every i ∈ N − A.
The following result makes use of the following definition. Two sets of

nodes A,B ⊂ N aremutually disconnected in (N,R) if for every pair of nodes

i ∈ A and j ∈ B, there is no path in the skeleton (N, R̃) that connects i and

j.

Proposition 8 A perfect DAG induces universally unbiased estimates if and
only if A is a union of mutually disconnected cliques.

Thus, even when R is perfect, it may still give rise to biased estimates

when the agent conditions his estimates on multiple variables that are con-

nected by R but fail to form a clique. However, as long as A is a clique (or

a collection of mutually disconnected cliques), the agent’s estimates are uni-

versally unbiased. When A is empty, the result is reduced to the statement

that the agent’s ex-ante (unconditional) estimates of individual variables are

correct.

Example 5.1: A no-trade theorem

Another economic phenomenon in which the possibility of systematically

biased estimates plays a key role is speculative trade in financial markets. In

principle, when risk-neutral traders have heterogeneous subjective models,

this can lead to belief heterogeneity and thus allow for speculative trade.

Consider the following standard trading game. There is a collection of

m risk-neutral traders. Each trader i has access to a set of trading actions

S. Let θ be the state of Nature, and let ti represent a signal that trader

i receives prior to making his choice of trading action si. As usual, any

objective distribution that is consistent with the game form satisfies si ⊥
(θ, t−i, s−i) | ti for every trader i - i.e., the trader’s action is independent of
the state of Nature and other traders’signals and actions, conditional on his

signal. Let z = (z1, ..., zm) be a zero-sum vector of monetary transfers among

traders, which is some stochastic function of θ and s1, ..., sm. This function

satisfies the following property: there exists a default no-trade action s0 ∈ S,
such that if trader i plays si = s0, he gets zi = 0 with probability one, for all
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s−i and θ. Assume that p(θ, (ti)i=1,...,m) has full support, but we do not need

to assume that p(z | θ, (ti)i, (si)i) has full support. Trader i’s utility function
is ui(zi, si) = zi − c · 1(si 6= s0), where c > 0 is an arbitrarily small cost of

taking a non-default action.

The variables that are allowed to feature in the traders’causal models

are θ and (ti, si, zi)i=1,...,m. Assume that trader i’s DAG includes at least

three nodes that represent the variables ti, si, zi, and that it contains the

link ti → si. A justification for this assumption is that because the trader

considers conditioning his action on his signal, he acknowledges this as a

causal effect. The following are examples of perfect DAGs for trader i that

represent incorrect subjective causal models:

θ → ti → si → zi

θ → ti → tj

↓ ↗ ↓
si → zi

A strategy for trader i is given by the conditional probabilities (p(si |
ti))ti,si . We say that a profile of strategies is an ε-equilibrium if (p(si | ti))ti,si
has full support for every i and every ti, and if whenever p(si | ti) > ε,

si ∈ arg max
s∈S

∑
zi

pRi(zi | ti, si)ui(zi, si)

That is, if a trader plays an action with probability greater than ε after ob-

serving some signal, this action must be a subjective expected-utility max-

imizer according to his updated subjective belief. The following result is a

“no-trade theorem”.

Proposition 9 Suppose that Ri is perfect for every i = 1, ...,m. Then, for

suffi ciently small ε, every ε-equilibrium satisfies p(si | ti) ≤ ε for every i, ti
and si 6= s0.

The impossibility of biased estimates under perfect DAGs (in which the

nodes that represent a trader’s signal and his action are linked) plays a crucial

role in this result. Each trader’s prediction of his earnings conditional on his
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trading action and his information is unbiased on average, and this is what

precludes speculative trade, despite the possible heterogeneity in the traders’

subjective models. The claim is not vacuous: if ε is suffi ciently small, we can

construct an ε-equilibrium in which every trader plays s0 with probability

1− ε · (|S| − 1) and randomizes uniformly over all other actions.

5.3 Estimates as Variables

Throughout the paper, I assumed that the agent’s DAG does not admit his

own estimates as variables. However, estimates or forecasts are themselves

variables that can play a role in the determination of economic outcomes -

e.g., recall the Phillips Curve in the “monetary policy”example. In principle,

they could also enter the agent’s subjective causal model. Denote xi+n = ei

for every i = 1, ..., n, and x = (x0, x1, ..., x2n). Allow the set of nodes N

in the agent’s DAG to be a subset of the enlarged set {0, 1, ..., 2n}. When
i ∈ N for some i > n, this means that the agent’s causal model admits ei−n
as a variable. Recall our earlier restriction that 0 ∈ N . The following is a
sensible additional restriction.

Condition 2 If i ∈ N for some i > n, then R(i) = {0} and i− n ∈ N .

This condition requires two things. First, it says that the agent perceives

x0 to be the only immediate cause of his own estimates. The justification is

that the agent is aware that he conditions his estimates on x0 alone. Second,

it requires that if the agent’s DAG includes an estimate of some variable, it

must also admit the variable itself. This restriction on R implies the following

result.

Proposition 10 Suppose that R satisfies Condition 2 (as well as the require-
ment that 0 ∈ N). Then, there is a DAG R′ that omits the nodes n+1, ..., 2n

altogether, such that pR′(xN−{n+1,...,2n}) ≡ pR(xN−{n+1,...,2n}) for every p in

the restricted domain defined in Section 2.
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This result means that our original assumption that the agent’s DAG

omits his own estimates is w.l.o.g, as long as we accept the domain restrictions

on p and R.

5.4 Conditional Estimates

Throughout the paper, the question I addressed was whether the agent’s

estimates of economic variables are unbiased on average. I provided three

economic applications in which this is all that mattered. However, for many

purposes, it also matters whether the agent’s conditional estimates are con-

sistent with rational expectations for all realizations of a (e.g., the agent may

interact with a principal whose payoffs are non-linear in the agent’s beliefs).

Note that when this stronger requirement holds, the dynamic inconsistency

problem discussed in Section 4 disappears. The following is a suffi cient con-

dition for the stronger requirement to hold for a given variable.

Claim 1 Suppose that R is perfect and that 0Ri for some node i 6= 0. Then,

ER(xi | x0) ≡ Ep(xi | x0) for every objective distribution p.

Proof. By assumption, {0, i} is a clique in a perfect DAG. Therefore, we
can treat it as ancestral, such that pR(x0, xi) is unbiased. This immediately

implies that pR(xi | x0) ≡ p(xi | x0) whenever p(x0) > 0.

Imposing this condition on all possible i 6= 0 is a very strong requirement,

because it means that the agent’s causal model regards x0 as a direct cause

of all other variables.

6 Related Literature

This paper continues the research agenda set forth by Spiegler (2016a), where

I initiated the use of the Bayesian-network formalism to model decision mak-

ing under causal misperceptions. Specifically, in that paper I introduced the

standard Bayesian—network factorization formula (4) as a representation of

belief distortions that arise from fitting subjective causal models to objec-

tive data. I showed how the formalism can express familiar errors of causal
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reasoning (mistaking correlation for causation, reverse causality, omitting

confounding variables, attributing outcomes to the wrong cause) and how it

can be embedded in a model of individual decision making. I demonstrated

that an equilibrium approach may be required to define subjectively optimal

decisions under wrong causal models, and used basic tools from the literature

on graphical models to characterize the causal misperceptions that call for

such an approach.

This paper goes beyond Spiegler (2016a) in two main respects. First, it

focuses on the question of whether wrong causal models generate systemati-

cally biased estimates of individual variables. Second, it extends the modeling

approach from individual choice to interactive principal-agent settings such

as those analyzed in Section 4, where the question of “systematic fooling”is a

key aspect of the strategic interaction. In particular, the “monetary policy”

example offers a prototype for future applications to macroeconomic theory.

More broadly, both Spiegler (2016a) and this paper contribute to the liter-

ature on equilibrium models under wrong subjective models. Prominent con-

cepts in the literature include analogy-based expectations equilibrium (Jehiel

(2005)), “cursed” equilibrium (Eyster and Rabin (2005)), behavioral equi-

librium (Esponda (2008)) and Berk-Nash equilibrium (Esponda and Pouzo

(2016)). In relation to the preceding literature, the factorization formula for

pR can be viewed as a class of models of how agents form subjective be-

liefs that systematically distort objective distributions’correlation structure.

Spiegler (2016a) contains a detailed explanation of how the Bayesian-network

representation relates to these previous approaches.

Within this literature, Piccione and Rubinstein (2003) share the “expec-

tations management”aspect of the examples in Section 4. In their model,

a seller commits to a deterministic temporal sequence of prices, taking into

account that consumers (who play the role of the agent in this paper) can

only perceive statistical patterns that allow the price at any period t to be a

function of price realizations at periods t− 1, ..., t− k, where k is a constant
that characterizes the consumer. When the value of k is negatively corre-

lated with consumers’willingness to pay, the seller may want to generate a

complex price sequence as a discrimination device. Relatedly, Ettinger and
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Jehiel (2010) study a bargaining model, in which a sophisticated seller em-

ploys deception tactics that lead a buyer who exhibits coarse reasoning to

form a biased estimate of the traded object’s value.

Spiegler (2016b) interprets the Bayesian-network factorization formula as

a representation of objective data limitations. According to this interpreta-

tion, the agent measures particular correlations because these are the only

ones that are available to him. As a result, the agent’s belief is a consequence

of applying a certain extrapolation method to his limited data. In partic-

ular, Spiegler (2016b) shows that when R is perfect, pR is the outcome of

extrapolating a belief from incomplete datasets drawn from p, via an iterative

variant on a method known as “conditional stochastic imputation”. From

this point of view, perfect DAGs capture implicit data limitations rather than

an explicit causal model.

The “monetary policy”example links the paper to a few works that ex-

amine monetary policy when the rational-expectations assumption is relaxed.

Evans and Honkapohja (2001) and Woodford (2013) review dynamic macro-

economic models in which agents form non-rational expectations, and explore

implications for monetary policy. Garcia-Schmidt and Woodford (2015) is a

recent exercise in this tradition. The most closely related equilibrium con-

cept that is employed in this literature is known as “restricted perceptions

equilibrium”, which is based on a notion of coarse beliefs in the same spirit

as Piccione and Rubinstein (2003) and Jehiel (2005). Sargent (1999), Cho

et al. (2002) and Esponda and Pouzo (2016) study models in which it is the

central bank that forms non-rational expectations, whereas the private sector

is modeled conventionally.

Finally, the general idea of modeling economic agents as econometricians

or statisticians has many precedents. This is typically done in learning, non-

equilibrium models (e.g. Bray (1982)). There are examples of equilibrium

concepts that treat agents as (possibly flawed) statisticians - see Osborne

and Rubinstein (1998), Cherry and Salant (2016) and Liang (2016).
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7 Conclusion

This paper explored the possibility of systematically fooling agents with

causal misperceptions. Although I provided several examples that demon-

strated this possibility, perhaps a surprising feature of the analysis was the

ubiquity of impossibility results. Subjective causal models represented by

perfect DAGs rule out systematically biased estimates; and if the objective

distribution is multivariate-normal, this impossibility extends to all DAGs.

Finally, even when biased estimates were possible, we saw that their mag-

nitude in concrete examples was constrained. Thus, the mere process of

forming beliefs by fitting a causal model to objective data restricts a third

party’s ability to exploit the beliefs’departure from rational expectations.

In the “monetary policy” example, negative findings along these lines

mean that classical results regarding the non-exploitability of the Phillips re-

lation continue to hold even when the private sector forms beliefs according

to a wrong model. This lesson is intriguing, considering the heated his-

torical debate over this question (see Klamer (1984)). The key assumption

behind classical non-exploitability results (Lucas (1972), Sargent and Wal-

lace (1975)) was allegedly the private sector’s rational expectations, and this

was perceived by many as the crux of the matter. The impossibility results

of this paper put this historical debate in a new perspective.

Appendix: Proofs
Proposition 4
(If). Our objective is to show that if the agent’s DAG satisfies the property
that the node 0 d-separates i and the upper nodes of any v-collider, then

the DAG induces an unbiased estimate ei. Consider a DAG (N,R) in which

any terminal node is either 0 or i. If the DAG has no v-colliders, then it is

perfect, and the suffi ciency part of Proposition 2 applies, such that the DAG

induces unbiased estimates of any variable, including the variable represented

by node i.

Now suppose that the DAG has v-colliders. Let A ⊂ N be the set of upper

nodes of these v-colliders as well as their ancestors - i.e., A is the union of all
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nodes i′ such that i′Pj and (j, h, k) is a v-collider for some k, h ∈ N (recall

that the triple (j, h, k) represents the form j → k ← h where j and h are

not directly linked - that is, j and h are the upper nodes of the v-collider).

By assumption, 0 blocks any path between i and the upper nodes of any

v-collider. By the definition of path blocking and the assumption that any

terminal node must be either i or 0, it must be the case that 0 blocks any path

between i and A (in particular, 0, i /∈ A). By Proposition 3, xi ⊥R xA | x0 -
i.e., pR(xi | xA, x0) ≡ pR(xi | x0).
Consider the DAG (N,R′) that modifies (N,R) as follows: A is a clique

under R′, and R′(j) = R(j) for every j ∈ N −A. That is, the only difference
between (N,R) and (N,R′) is that (N,R′) fully connects all the upper nodes

of v-colliders and their ancestors in (N,R). I will now show that pR′(xi |
x0) = pR(xi | x0). First, by construction, A is an ancestral set of nodes in

(N,R), in the sense that for every j ∈ A, R(j) ⊆ A. It immediately follows

from (4) that

pR(xN−A | xA) =
∏

j∈N−A
p(xj | xR(j)) (14)

The same holds for (N,R′). And since R′(j) = R(j) for every j ∈ N − A,
we have pR′(xN−A | xA) ≡ pR(xN−A | xA). In particular, this means that

pR′(xi | xA, x0) ≡ pR(xi | xA, x0). We can now rewrite pR′(xi | x0) as follows:

pR′(xi | x0) ≡
∑

xA
pR′(xA | x0)pR′(xi | xA, x0)

≡
∑

xA
pR′(xA | x0)pR(xi | xA, x0)

≡
∑

xA
pR′(xA | x0)pR(xi | x0) ≡ pR(xi | x0)

By construction, (N,R′) is a perfect DAG. Therefore, by Corollary 2, pR′(xi) ≡
p(xi) and pR′(x0) ≡ p(x0). We can now write∑

x0

p(x0)pR(xi | x0) ≡
∑
x0

pR′(x0)pR′(xi | x0) ≡ pR′(xi) ≡ p(xi)

which implies that (N,R) induces an unbiased estimate ei.

(Only if). Let us first restrict attention to the case in which all variables
get two possible values, 0 and 1. At the end of the proof I will explain why
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this is w.l.o.g. Our objective is to show that if the agent’s DAG violates the

property that the node 0 d-separates i and the upper nodes of any v-collider,

then there is an objective distribution p for which E(ei) 6= E(xi). Consider

a DAG (N,R) in which any terminal node is either 0 or i. The DAG must

contain a v-collider j → k ← h. Moreover, for every such v-collider, kP0 or

kP i. There are two cases to consider.

Case 1: The DAG contains a v-collider j → k ← h, such that there is a

directed path from k to i that excludes 0 (in particular, 0 6= k). Let M be

the set of nodes consisting of j, k, h as well as all the nodes along the above

directed path from k to i (in case k 6= i). Impose the following structure on

p. First, for every i′ /∈M , xi is independently distributed. This enables us to
ignore these variables entirely in our calculations. Second, if k 6= i, then for

every i′ along the directed path from k to i (including i itself), xi′ is equal

to xk with arbitrarily high probability. This means that we can perform the

calculations as if i = k, and this will be an arbitrarily precise approximation.

There are now two subcases to consider.

Case 1.1: 0 6= j, h. Then, by assumption, p(xi | x0) ≡ p(xi) and p(xi |
x0) ≡ p(xi). We can effectively assume that the DAG is j → i ← h, and

the objective is to construct p over the three variables xj, xh, xi such that

pR(xi = 1) 6= p(xi = 1). Lemma 1 establishes this is possible. (For an

explicit example of such a distribution, see the proof of this lemma in Spiegler

(2016b).)

Case 1.2: 0 = j. We can effectively assume that the DAG is 0 → i ← h,

and define p over the three variables x0, xh, xi. Then,

pR(xi = 1 | x0) =
∑
xh

p(xh)p(xi = 1 | x0, xh)

Impose the following additional structure on p. First, p(x0 = 1) = 1
2
. Second,

xh = xi = x0 with arbitrarily high probability. Third, p(xi = 1 | x0 6= xh) is

arbitrarily low. Therefore p(xi = 1) ≈ 1
2
, whereas

∑
x0
p(x0)pR(xi = 1 | x0)
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is equal to

1

2

{∑
xh

p(xh) [p(xi = 1 | x0 = 0;xh) + p(xi = 1 | x0 = 1;xh)]

}
≈ 1

4

Case 2: For every v-collider j → k ← h in the DAG, if there is a directed

path from k to i, then it must include 0. Therefore, kP0 for every v-collider

j → k ← h. Moreover, by the assumption that 0 does not d-separate i and

A, there must be a v-collider j → k ← h such that there is a path between

j and i that does not include 0. As in case 1, we can impose structure on

p that enables us to effectively define p over three variables xi, xh, x0 and

assume that the DAG is i → 0 ← h, and all calculations will be arbitrarily

precise approximations.

Impose the following additional structure on p. First, p(xh = 1) = 1
2
.

Second, p(xi = xh) with arbitrarily high probability. Third, p(x0 = 1 | xi, xh)
is arbitrarily high when xixh = 1 and arbitrarily low when xixh = 0. Then,

p(xi = 1) ≈ 1
2
. Now,

pR(xi = 1 | x0) =

∑
xh
p(xh)p(xi = 1)p(x0 | xi = 1;xh)∑
xh
p(xh)

∑
xi
p(xi)p(x0 | xi;xh)

Then, pR(xi = 1 | x0 = 1) ≈ 1 and pR(xi = 1 | x0 = 0) ≈ 1
3
, such that∑

x0
p(x0)pR(xi = 1 | x0) ≈ 2

3
.

Extending the proof to arbitrarily large X is straightforward - we only

need to assume that the marginal of p over each of the variables assigns ar-

bitrarily high total probability to two arbitrary values, and that the small

probability that is assigned to each of the other values is independently dis-

tributed.

Proposition 7
Let p ∼ N(µ,Σ). From now on, I will assume µ = 0. To see why this is

w.l.o.g, note that we could define the auxiliary vector y = x− µ, such that
for every i, ER(yi | y0) ≡ ER(xi | x0) − µi and E(yi) ≡ E(xi) − µi. If we
prove our result for the y variables, it immediately implies the result for
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x. By a standard result (e.g., Theorem 7.4 in Koller and Friedman (2009)),

p(xi | xR(i)) is multivariate normal. Specifically, we can write p(xi | xR(i)) as
a linear regression equation with normally distributed noise:

xi ∼ N(βTxR(i),Σi,i − Σi,R(i)Σ
−1
R(i),R(i)ΣR(i),i)

where

β = Σ−1R(i),R(i)Σi,R(i)

Thus, the collection (p(xi | xR(i)))i=1,...,n constitutes a Gaussian Bayesian
network (see Definition 7.1 in Koller and Friedman (2009)). By Theorem 7.3

in Koller and Friedman (2009), pR ∼ N(0,Σ′), where Σ′ is some variance-

covariance matrix. Then, by the definition of conditional expectations under

multivariate normal distributions, ER(xi | x0) = bx0, where b is some con-

stant. Because E(x0) = 0, it then immediately follows that∑
x0

p(x0)ER(xi | x0) = 0 = E(xi)

which completes the proof.

Proposition 8
(If). Suppose that A is a union of mutually disconnected cliques. This

includes the possibility that A itself is a clique. Let i ∈ N − A. If i is

disconnected from A, then pR(xi | xA) = pR(xi). Since R is perfect, Corollary

1 and Lemma 1 imply that pR(xi) = p(xi), hence ER(xi | xA) = E(xi) for all

xA. Now suppose that i is connected to A. By assumption, i is connected to

at most one of the cliques that constitute A. Denote this clique by C. Then,

pR(xi | xA) = pR(xi | xC). Because R is perfect, Corollary 1 implies that we

can take C or {i} to be ancestral cliques. By Lemma 1, pR(xC) ≡ p(xC) and

pR(xi) ≡ p(xi). Therefore, we can write∑
xC

p(xC)pR(xi | xC) ≡
∑
xC

pR(xC)pR(xi | xC) ≡ pR(xi) ≡ p(xi)

which implies the claim.
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(Only if). Suppose that A is not a union of mutually disconnected cliques
(in particular, A itself is not a clique). Therefore, there exist nodes j, k ∈ A
such that there is a path in R̃ that connects j and k, and yet j and k are

not directly linked. Moreover, because R is perfect, there must be at least

one such path that does not contain a collider. Without loss of generality, all

the nodes along this path do not belong to A, except for j and k themselves.

Finally, there must be a node i along this path, such that for some DAG R′

in the equivalence class of R, there is a directed path in R′ from i into j, as

well as a directed path in R′ from i into k.

Construct an objective distribution p for which all the variables that lie

outside the above path are independent. Moreover, suppose that xj ⊥ xk

according to p, and p(xj = 1) = p(xk = 1) = α ∈ (0, 1). Therefore, we can

ignore them when calculating pR(xi | xA). As before, we can consider w.l.o.g

the case in which every variable can only take the values 0 and 1. Suppose

that for every node j′ (k′) that lies along the path from i to j (k), xj′ =

xj (xk′ = xk) with independent and arbitrarily high probability. Finally,

suppose that xi = xjxk with independent and arbitrarily high probability.

By construction,

ER(xi | xj, xk) = pR(xi = 1 | xj, xk) =
pR(xi = 1, xj, xk)∑

x′i

pR(x′i)pR(x′i | xj, xk)

Because we have assumed that all variables outside the above path are inde-

pendent, we can ignore these variables and treat the node i as ancestral in

R for the purpose of this calculation. Therefore, pR(x′i) = p(xi) for every xi.

Note that R, xj ⊥ xk | xi. Therefore, and by the additional assumptions we
imposed on p,

pR(xi | xj, xk) ≈
p(xi)p(xj | xi)p(xk | xi)∑
x′i

p(x′i)p(xj | x′i)p(xk | x′i)

To calculate this expression, note first that because xi = xjxk with proba-

bility close to one, p(xi = 1) ≈ α2 and p(xj = 1 | xi = 1) = p(xk = 1 | xi =
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1) ≈ 1, whereas

p(xj = 1 | xi = 0) = p(xk = 1 | xi = 0) ≈ α(1− α)

1− α2 =
α

1 + α

Plugging these expressions into pR(xi | xj, xk), we can verify that∑
xj ,xk

p(xj, xk)ER(xi | xj, xk) 6= p(xi = 1) ≈ α2

which completes the proof.

Proposition 9
By assumption, the action s0 generates a sure payoff of zero. Therefore,∑

zi

pRi(zi | ti, s0)ui(zi, s0) =
∑
zi

pRi(zi | ti, s0)zi = 0

Now suppose that p(si | ti) > ε for some trader i, signal ti and action si 6= s0.

For every such i, ti, si, we must have∑
zi

pRi(zi | ti, si)zi > 0

in order for the action to be a subjective best-reply. It follows that if ε is

suffi ciently small, ∑
ti

∑
si

p(ti, si)
∑
zi

pRi(zi | ti, si)zi > 0

for every trader i. Therefore,

m∑
i=1

∑
ti

∑
si

p(ti, si)
∑
zi

pRi(zi | ti, si)zi > 0

By assumption, Ri contains the link ti → si. Therefore, the two variables
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constitute a clique in Ri. By Proposition 8,∑
ti

∑
si

p(ti, si)
∑
zi

pRi(zi | ti, si)zi = E(zi)

hence
m∑
i=1

∑
ti

∑
si

p(ti, si)
∑
zi

pRi(zi | ti, si)zi = E(
∑
i

zi) > 0

a contradiction.

Proposition 10
Suppose that i + n ∈ N for some i = 1, ..., n. Then, by Condition 2, the

factorization formula (4) contains the term p(ei | x0). Also, i ∈ N . By

assumption, p(ER(xi | x0) | x0) = 1. Therefore, we can remove the term

p(ei | x0) from (4) altogether, and plug ei = ER(xi | x0) in any term in (4)

that conditions on ei - which effectively means that such a term conditions

on x0. We have thus obtained a DAG representation in which the node e is

omitted, and any link from e to some node in R is replaced with a link from

x0 into the same node.
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