
1 
 

 

RNA-Seq of newly diagnosed patients in the PADIMAC study 
leads to a bortezomib/lenalidomide decision signature 

Michael A Chapman1,2, Jonathan Sive3, John Ambrose4, Claire Roddie5, Nicholas Counsell6, 
Anna Lach7, Mahnaz Abbasian7, Rakesh Popat5, James D Cavenagh3, Heather Oakervee3, 
Matthew J Streetly8, Stephen Schey9, Mickey Koh10, Fennela Willis10, Andres E Virchis11, 
Josephine Crowe12, Michael F Quinn13, Gordon Cook14, Charles R Crawley2, Guy Pratt15, 
Mark Cook15, Nivette Braganza6, Toyin Adedayo6, Paul Smith6, Laura Clifton-Hadley6, 
Roger Owen16, Pieter Sonneveld17, Jonathan J Keats18, Javier Herrero4, Kwee Yong7 

1Department of Haematology, University of Cambridge, United Kingdom 
2Department of Haematology, Addenbrookes Hospital, Cambridge, United Kingdom 
3Department of Haematology, St. Bartholomew’s Hospital, London, United Kingdom 
4Bill Lyons Informatics Centre, UCL Cancer Institute, University College London, United Kingdom 
5Department of Haematology, University College London Hospitals, London, United Kingdom 
6Cancer Research UK and UCL Cancer Trials Centre, London, United Kingdom 
7Department of Haematology, University College London Cancer Institute, London, United Kingdom 
8Department of Haematology, Guys and St. Thomas’ Hospital, London, United Kingdom 
9Department of Haematology, Kings College Hospital, London, United Kingdom 
10Department of Haematology, St. George’s Hospital, London, United Kingdom 
11Department of Haematology, Royal Free London, Barnet and Chase Farm Hospitals, London, United Kingdom 
12Department of Haematology, Royal United Hospitals Bath, Bath, United Kingdom 
13Department of Haematology, Belfast City Hospital, Belfast, United Kingdom 
14Department of Haematology, St. James’ University Hospital, Leeds, United Kingdom 
15Centre for Clinical Haematology, University Hospitals Birmingham, Birmingham, United Kingdom 
16Haematological Malignancy Diagnostic Service, St. James’ University Hospital, Leeds, United Kingdom 
17Erasmus Medical Centre, Rotterdam, Netherlands 
18Integrated Cancer Genomics Division, Translational Genomics Institute, Phoenix, Arizona, United States of America 

Short title: A bortezomib/lenalidomide decision signature 

Corresponding Author 
Michael Chapman, Department of Haematology, University of Cambridge, NHS Blood and 
Transplant, Long Road, Cambridge CB2 0PT, United Kingdom. 

Telephone: +44 (0)1223 588034  
Fax: +44 (0)1223 588155 
Email: mac54@cam.ac.uk 

Counts 
3992 text words. 225 abstract words. 5 figures and 2 tables. 68 references. 

Key points 

• A seven-gene signature is derived which can identify myeloma patients who respond 
better to bortezomib- or to lenalidomide-based therapy. 

• Treatment according to the signature is non-inferior to treatment with combined 
bortezomib, lenalidomide, and dexamethasone. 
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Abstract 

Improving outcomes in multiple myeloma will not only involve development of new 

therapies, but better use of existing treatments. We performed RNA sequencing (RNA-Seq) 

on samples from newly diagnosed patients enrolled into the phase II PADIMAC 

(Bortezomib, Adriamycin, and Dexamethasone (PAD) Therapy for Previously Untreated 

Patients with Multiple Myeloma: Impact of Minimal Residual Disease (MRD) in Patients 

with Deferred ASCT) study. Using an empirical Bayes approach and synthetic annealing, we 

developed and trained a seven-gene signature to predict treatment outcome. We tested the 

signature on independent cohorts treated with bortezomib- and lenalidomide-based therapies. 

The signature was capable of distinguishing which patients would respond better to which 

regimen. In the CoMMpass (relating Clinical outcomes in Multiple Myeloma to personal 

assessment of genetic profile) dataset, patients who were treated correctly according to the 

signature had a better progression-free survival (median 20.1 months versus not reached; 

hazard ratio 0.44; confidence interval 0.25-0.78; p=0.0034) and overall survival (median 31.2 

months versus not reached; hazard ratio 0.44; confidence interval 0.23-0.84; p=0.0088) than 

those who were not. Indeed, the outcome for these correctly treated patients was non-inferior 

to those treated with combined bortezomib, lenalidomide, and dexamethasone, arguably the 

standard of care in the United States, but not widely available elsewhere. The small size of 

the signature will facilitate clinical translation, thus enabling more targeted drug regimens to 

be delivered in myeloma. 
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Introduction 

Multiple myeloma is a plasma cell neoplasm characterised by lytic bone lesions, 

hypercalcemia, renal impairment and bone marrow failure. Although outcomes have 

improved in recent years with the introduction of novel agents, the disease remains incurable 

and clinical responses display considerable heterogeneity.1,2 Further improvements will not 

only come from introduction of new drugs but from better use of existing drugs. Younger, 

fitter patients are usually treated with a drug combination involving a proteasome inhibitor 

(PI) and/or an immunomodulatory drug (IMiD) followed by high-dose melphalan therapy 

with autologous stem cell transplant (ASCT). For transplant-ineligible patients, recent trial 

data suggest that the treatment of choice may be a combination of the PI, bortezomib 

(Velcade, Millennium Pharmaceuticals, Cambridge, MA), the IMiD, lenalidomide (Revlimid, 

Celgene, Summit, NJ), and dexamethasone (VRD).3 However, this combination is expensive 

and is not funded in most countries outside the United States (US). Furthermore, for very frail 

patients, three-drug combinations may prove too toxic. 

It is possible that treatment outcomes in myeloma might be improved by the application of 

precision medicine, i.e. the rational selection of drugs based on the biology of each patient’s 

tumour. Several studies have demonstrated the potential of using transcriptomic data to 

derive prognostic information in myeloma.4-6 Signatures can be usefully combined,7 but are 

generally agnostic to treatment4,5,8-12 and their main clinical utility is likely to be the 

identification of patients who may benefit from trials for high-risk disease. We sought to 

derive a signature that could predict responses to specific therapies. 

The phase II study of Bortezomib, Adriamycin, and Dexamethasone (PAD) therapy for 

previously untreated patients with multiple myeloma: Impact of minimal residual disease 

(MRD) in patients with deferred ASCT (PADIMAC) was designed to examine whether 
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patients with good responses to PAD could safely avoid upfront ASCT. We employed RNA-

sequencing (RNA-Seq) on available good-quality RNA from enrolled patients and derived a 

training dataset from patients with sustained deep responses in the absence of ASCT. We thus 

generated a signature for predicting bortezomib-responsiveness in myeloma patients not 

receiving ASCT. When tested in independent datasets, the signature performed well, 

identifying patients who benefited from bortezomib-based treatment in the absence of an 

IMiD. Furthermore, when tested on lenalidomide-dexamethasone (RD) treated patients, the 

signature performed in a reciprocal fashion, suggesting that it could be used as a binary 

classifier to choose between bortezomib-based treatment and RD. Patients who had been 

treated correctly according to the signature classification had a superior survival to those who 

had not. Indeed, in the relating Clinical outcomes in Multiple Myeloma to personal 

assessment of genetic profile (CoMMpass) dataset, correctly treated patients receiving either 

bortezomib-based therapy (without IMiD) or receiving RD (without bortezomib) had a non-

inferior survival to those treated with VRD. This suggests that our signature could be 

employed to improve the safety and cost-effectiveness of myeloma therapy without 

compromising outcomes. 

Materials and Methods 

Sample accrual and processing and data generation 

Sample accrual and RNA isolation 

RNA of sufficient quality for RNA-Seq was available from 44 patients treated on the 

PADIMAC trial (ISRCTN03381785). The trial protocol is described in the Supplementary 

Materials. PADIMAC was conducted in accordance with the Declaration of Helsinki and 

Good Clinical Practice guidelines and was approved by the NHS National Research Ethics 

Service. Participants provided written informed consent. Patient registration and trial 
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management were performed by the Cancer Research UK and University College London 

Cancer Trials Centre. All patients had newly diagnosed untreated myeloma, Eastern Co-

operative Oncology Group performance status 0-3, and were eligible for ASCT.  Total RNA 

was isolated using standard methodology, as described in the Supplementary Materials. 

Identification of mutations and gene expression 

Standard methods were used to identify mutations and determine gene expression. Detailed 

methodology is described in Table S1 and the Supplementary Materials. Briefly, reads were 

mapped with TopHat13 and aligned with Samtools.14 Single nucleotide variants (SNVs) and 

small indels were identified using VarScan15,16 and RNA fusions were identified using 

FusionCatcher.17 Read counts were generated with the Rsubread package.18,19 Raw and count 

level data have been uploaded to Gene Expression Omnibus (GEO), reference GSE116324. 

Differentially expressed genes were identified using DESeq220-22 and the Gage23 and 

Pathview24,25 packages were used for pathway analysis. 

Machine learning 

Selection of test datasets 

Test RNA-Seq datasets were derived from CoMMpass (https://research.themmrf.org/). 

Microarray test sets were obtained for relapsed/refractory patients treated with bortezomib26 

(GEO reference GSE9782), plasma cell leukemia (PCL) patients treated with RD27 

(GSE39925), and newly diagnosed myeloma patients treated with PAD followed by ASCT28 

(GSE19784). We refer to these data as the Millennium, PCL, and HOVON/GMMG datasets, 

respectively. 

Data pre-processing, training, validation, and testing 

RNA-Seq counts were normalized and corrected for heteroscedasity according to published 

methods.29-35 Potential signature genes were identified from the PADIMAC dataset by an 
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empirical Bayes method,36 then selected as described using synthetic annealing 37 with an 

error rate determined by a support vector machine implemented from the e1071 package 

(https://cran.r-project.org/web/packages/e1071/index.html). 

Signature assignments were made using the Largest Margin Nearest Neighbors (LMNN) 

algorithm.38 Performance within the PADIMAC dataset was checked by ten-fold cross-

validation. For external testing, all PADIMAC data were used for training, with an initial 

50:50 split into a training and internal validation set that was fixed for all testing. R and 

Matlab scripts replicating this process have been included with the Supplementary Materials. 

All the CoMMpass, Millennium, PCL, or HOVON/GMMG data were used for testing. To 

determine the robustness of the signature performance in each case, a form of permutation 

testing was used, as described in the Supplementary Materials. 

Statistical considerations 

Null and observed assignments were compared using the Mann-Whitney-Wilcoxon test. 

Survival was compared using the Cox proportional hazards model. P-values of 0.05 or less 

were considered significant. 

Results 

Initial assessment of PADIMAC data excludes a mutation-based classifier 

We performed RNA-Seq on purified CD138+ plasma cells from a cohort of 44 patients 

treated on the PADIMAC trial. Clinical data are shown in Table S2. We first explored the 

possibility of using a mutation-based classifier for bortezomib-responsiveness. We identified 

fusion and SNV transcripts from the RNA-Seq data (Figures 1A and 1B and Tables S3 and 

S4). There were 0-8 fusions in each sample with a median of one (Figure 1A). Expected IgH-

WHSC1 fusions were detected from t(4;14) patients (Table S3). There was a median of nine 
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SNVs per patient in coding regions, which is lower than seen in previous DNA sequencing 

studies.39-42 This may reflect reduced expression from mutant alleles43 as well as a failure to 

detect mutations in the furthest 5’ regions of some genes. Nevertheless, we identified many of 

the known driver mutations in myeloma (Figure 1B and Table S4). Other known drivers were 

not mutated in our cohort, which may be related to sample size or may reflect lack of 

expression of mutated alleles.43 

Overall, 45.5% of patients in the cohort achieved very good partial remission (VGPR) or 

better following PAD induction (Table S2). We defined a “bortezomib-good” group, namely 

patients who achieved a VGPR or better and who were progression-free at one year without 

ASCT (13/44; 29.5%). We termed the remaining patients “bortezomib-standard” (31/44; 

70.5%). There were no associations between these groups and age, International Staging 

System (ISS), or myeloma type (Table S5). We also saw no significant associations between 

bortezomib-responsiveness and the presence of key cytogenetic, SNV, and translocation 

events (Table S6). There were trends towards significant associations between the 

bortezomib-good group and (a) the presence of any translocation and (b) the presence of a 

beta2-microglobulin translocation (Table S6). However, we did not feel that these 

associations were sufficiently strong for predicting clinical outcomes. We therefore turned to 

expression profiling.  

Derivation of a seven-gene bortezomib-response signature 

Expression of target genes known to be differentially expressed using microarray44 and 

qPCR45 technologies in the Translocation-Cyclin D (TC) classification was consistent with 

that previously described (Figure 1C),44 confirming the utility of RNA-Seq for measuring 

relative gene expression in myeloma. We therefore proceeded to identify a gene signature for 

bortezomib-responsiveness. We ranked potential genes using synthetic annealing37 (Figures 
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S1 and S2). Derived signatures comprising 4-11 genes performed better than permuted 

assignments in cross-validation of PADIMAC data using the LMNN algorithm (Figures S3 

and S4; Matthews Correlation Coefficient (MCC) median 0.55 versus -0.045, Mann-Whitney 

U 0, p=0.00090, two-tailed, Figure S4A; F-measure median 0.67 versus 0.25, Mann-Whitney 

U 0, p=0.00090, two-tailed, Figure S4B). Of these signatures, the best performing was the 

seven-gene signature (Figure 2A). As training of the LMNN algorithm parameters involves 

splitting the training set into a training and internal validation set (Figure S2), we checked 

that the seven-gene signature was robust by performing multiple (n=100) training/validation 

splits and comparing performance with permuted assignments (n=100) during cross-

validation. The observed assignments had higher MCC and F-measures than the null 

assignments (MCC median 0.50 versus 0.0054, Mann-Whitney U 8, p=2.85x10-34, two-tailed, 

Figure 2B; F-measure median 0.64 versus 0.26, Mann-Whitney U 3, p=2.42x10-34, two-

tailed, Figure 2C), confirming that the signature performed well regardless of the 

training/validation split. 

The genes comprising the signature are EMC9, FAM171B, PLEK, MYO9B, RCN3, FLNB, 

KIF1C (Table S7). We did not see enrichment of these genes within the pathway genesets 

from the Molecular Signatures Database46-48 

(http://software.broadinstitute.org/gsea/msigdb/annotate.jsp; C2 collection). However, at least 

three of the proteins (EMC9, RCN3, and KIF1C) are associated with the endoplasmic 

reticulum and three others (PLEK, MYO9B, and FLNB) interact with actin filaments. 

Furthermore, three genes (EMC9, MYO9B, and KIF1C) associate positively with 

proliferation in myeloma.10 Despite the lack of objective pathway enrichment in our 

signature, supervised analysis of the RNA-Seq data as a whole did reveal pathways 

upregulated in the bortezomib-good patients (Table S8). 
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The seven-gene signature is predictive of outcome of bortezomib-treated patients in the 

independent CoMMpass dataset 

To enable testing of our signature in an independent external dataset, we extracted RNA-Seq 

data from CoMMpass. We selected previously untreated patients who did not proceed to 

ASCT, as none of the bortezomib-good patients had received transplant. There were 147 such 

bortezomib-treated patients (who had received no IMiD), 40 RD patients, and 208 VRD 

patients for whom RNA-Seq data were available (Tables S9-S11). There were a few 

differences in clinical features between the groups. PADIMAC patients, being transplant-

eligible, were younger than all the CoMMpass cohorts (Figures S5-S7). VRD-treated patients 

in CoMMpass were younger than the bortezomib-treated and RD cohorts (Figures S9 and 

S10). RD-treated patients had higher rates of del13 than PADIMAC or bortezomib-treated 

patients and a lower rate of t(4;14) than bortezomib-treated patients (figures S6 and S8). 

There were no differences in ISS stage between the groups (figures S5-S10). 

We trained our seven-gene signature on the PADIMAC data and tested its ability to identify 

patients who would benefit from bortezomib-based therapy within CoMMpass (Figure S11). 

Patients who received bortezomib-based therapy and were assigned to the bortezomib-good 

group had a better progression-free survival (PFS) than those assigned to the bortezomib-

standard group (Figure 2D; Table 1, row 1). The randomization seed for the PADIMAC 

training/validation split had been fixed prior to testing. To ensure that the predictive ability of 

the signature was robust, we performed multiple additional training/validation splits of the 

PADIMAC training set and compared the resulting assignments in the CoMMpass test set 

with permuted assignments that formed a null dataset. As expected for a robust signature, 
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hazard ratios (HRs) for the predicted bortezomib-good patients were lower than the HRs from 

random predictions (Figure 2E; Table 2, row 1). 

The seven-gene signature has reciprocal performance in RD-treated patients and has 

the potential to select therapy 

To distinguish between the signature acting as a general predictor of good-prognosis disease 

and as a specific predictor of bortezomib-sensitive disease, we tested it in RD-treated 

patients. We reasoned that, if the signature were bortezomib-specific, the survival of RD-

patients assigned to the bortezomib-good would be no better than those assigned to the 

bortezomib-standard groups. To our surprise, RD-treated patients assigned to the bortezomib-

good group in fact had an inferior PFS to those assigned to the bortezomib-standard group 

(Figure 3A; Table 1, row 2). Whilst the difference was not significant, those assigned to the 

bortezomib-good group across repeated training/validation splits had consistently lower 

survival, with higher hazard ratios (HRs) than those obtained by permuting the assignments 

(Figure 3B; Table 2, row 2). 

The implication of these findings is that patients predicted to do well with bortezomib by our 

signature do poorly when treated with RD and vice versa. Hence the seven-gene signature 

could be used as a binary classifier to rationally choose between bortezomib-based therapy 

and RD. To test this, we selected CoMMpass patients treated with bortezomib-based therapy 

or with RD and assigned each to a bortezomib-best or lenalidomide-best group. We then 

compared survival between those patients who received the predicted best treatment with 

those who did not. Patients who received the correct therapy had a superior PFS (Figure 3C; 

Table 1, row 3) and overall survival (OS; Figure 3D; Table 1, row 4). The incorrectly treated 

patients had a median PFS of 20.1 months and a median OS of 31.2 months, whereas the 

median PFS and OS were not reached for correctly treated patients. These predictions were 
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again robust to the initial training/validation split of the PADIMAC dataset (Figure S12; 

Table 2, rows 3 and 4). 

We excluded the possibility that the signature was acting as a surrogate for clinical features. 

We saw no association between signature assignment and key cytogenetic events (p=0.13; 

Fisher’s exact test; Table S12) and in multivariate Cox regression, ideal treatment according 

to the signature retained significance for survival when age, ISS, or myeloma subtype were 

taken into account (Tables S13, rows 1 and 2). 

Because of the finding of proliferative genes in our signature, we also wanted to check that it 

was not acting as a surrogate for the gene-expression based proliferation index (GPI50) 

signature10 or other prognostic signatures. As these signatures have not, to our knowledge, 

been applied to RNA-Seq data previously, we first tested that they could be applied to the 

CoMMpass dataset. Indeed, when all of the GPI50, University of Arkansas for Medical 

Sciences (UAMS70), Erasmus University Medical Centre (EMC92), and Intergroupe 

Francophone du Myélome (IFM15) signatures4-6,10 were applied to CoMMpass, the 

distribution of scores was similar to that seen in microarray datasets5 (Figures S13A, S13C, 

S3E, and S13G). Furthermore, all signatures retained prognostic significance using thresholds 

equivalent to those previously published5 (Figures S13B, S13D, S13F, S13H). Having 

established that these prognostic signatures were effective in RNA-Seq data, we examined 

whether there was any association between their assignments and the assignments of our 

seven-gene signature. None was seen (Table S14). Furthermore, receiving ideal treatment 

according to the seven-gene signature retained its prognostic significance even in a 

multivariate analysis including these signatures (Table S15). 

A recent trial reported the superiority of VRD over RD in transplant-ineligible patients,3 but 

VRD treatment is not currently funded widely outside the US. We wondered whether 
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rationally selected therapy could be a cost-effective alternative to this gold-standard 

treatment. We first demonstrated that VRD was superior to unselected bortezomib-based 

treatment or RD in CoMMpass (Figure S14; Table 1, rows 5 and 6). We then compared the 

survival of patients treated correctly according to our signature with the survival of all 

patients treated with VRD in CoMMpass. There was no statistically significant difference in 

OS (Figure 3E; Table 1, row 7) or PFS (Figure S15A; Table 1, row 8) between patients 

treated correctly with bortezomib or RD and those treated with VRD. This was also true in a 

multivariate analysis incorporating clinical features (Table S13, rows 3 and 4). We also 

compared the outcome of CoMMpass patients treated correctly with bortezomib according to 

the signature and all patients receiving bortezomib-based induction followed by ASCT. 

Interestingly, there was no significant difference in survival between the two groups (Figure 

S16; Table 1 rows 9 and 10), although there was weak evidence of an effect implying longer 

OS with transplant. 

We hypothesized that the seven-gene signature should have minimal predictive ability in 

VRD-treated patients. As expected, we saw no difference between the outcomes for patients 

assigned to the bortezomib-best or lenalidomide-best groups when those patients were treated 

with VRD. This was true both for OS (Figure 3F; Table 1, row 11) and for PFS (Figure 

S15B; Table 1, row 12). This lack of predictive ability was also seen in multivariate analyses 

incorporating clinical features (Table S13, rows 5 and 6). 

The seven-gene signature performs well in other independent datasets 

We were keen to test how our signature would perform in other non-transplant settings, such 

as relapsed disease. However, we were limited by the availability of publicly-available RNA-

Seq data, so turned to microarray data. There were two suitable datasets available. One 

comprised samples from patients with relapsed-refractory myeloma treated with single-agent 



13 
 

 

bortezomib26 (the Millennium dataset). The second contained transcriptomic data from a 

small series of patients with PCL treated with RD27 (the PCL dataset). We reasoned that, 

within the Millennium dataset, patients assigned to the bortezomib-best class should have a 

better survival, whereas within the PCL dataset, those assigned to the lenalidomide-best class 

should have the superior outcome. 

Signature assignments behaved as predicted. In the Millennium dataset the bortezomib-best 

group had a superior PFS (Figure 4A; Table 1, row 9) and OS (Figure 4B; Table 1, row 10) to 

the lenalidomide-best group. These results were robust to training/validation splits (Figure 

4C; Table 2, rows 5 and 6). In the PCL dataset, those predicted to be in the lenalidomide-best 

group had a superior PFS (Figure 4D; Table 1, row 11) and OS (Figure 4E; Table 1, row 12) 

than patients assigned to the bortezomib-best group. Again, the signature was robust, with 

little influence from the training/validation split (Figure 4F; Table 2, rows 7 and 8). 

The seven-gene signature loses predictive power in patients proceeding to ASCT 

The bortezomib-good patients in the PADIMAC training set avoided ASCT because of their 

good response, according to trial protocol. We had thus far confined testing in external 

datasets to patients who had not had ASCT. We wondered whether the signature would retain 

its predictive power in patients proceeding to ASCT or whether transplant would overcome 

the survival differences between correctly and incorrectly treated patients. The HOVON-

64/GMMG-HD4 phase III trial49 compared patients with newly diagnosed myeloma treated 

with conventional chemotherapy versus those treated with PAD. Both groups of patients 

proceeded to ASCT. 

We used our signature to make bortezomib-best and lenalidomide-best assignments in 

patients who had received PAD. We reasoned that, if the signature retained its predictive 

power in the ASCT setting, we would see superior survival in those patients assigned to the 
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bortezomib-best group. This was not the case, however, and we saw no significant difference 

in either PFS (Figure 5A; Table 1, row 13) or OS (Figure 5B; Table 1, row 14) between the 

different signature assignments. 

As a further check for the specificity of the signature, we also tested its predictive value in the 

dexamethasone-only arm. As anticipated, there was no difference in PFS between those 

patients predicted to be bortezomib-good and those predicted to be lenalidomide-good 

(Figure S17A). However, patients predicted to be bortezomib-good had a superior OS in this 

arm (Figure S17B). This is likely to be because patients receiving dexamethasone were 

eligible to receive cross-over bortezomib upon disease progression. 

Discussion  

If it can be realized, precision cancer medicine will benefit patients in terms of improved 

efficacy and reduced toxicity and will benefit society in terms of better management of 

stretched drug budgets. Transcriptomics has considerable promise in this area.50 There are 

signatures that predict for overall prognosis in cancer,51-62 including myeloma,4-12 and 

signatures that predict response to individual therapies.63-67 However, we are not aware of any 

published signature that can be used to rationally select between different active cancer 

therapies. Remarkable improvements in myeloma outcome over recent years have been seen 

thanks to the introduction of multiple novel agents, but this has been associated with 

increasing costs of treatment.68 Therefore, precision medicine is arguably of particular 

importance in this disease to help navigate through the increasing armamentarium of 

available therapies. 

Herein, we describe the derivation and testing of a seven-gene signature that can be used to 

select between bortezomib-based or RD therapy in myeloma patients not undergoing ASCT. 

Patients treated correctly according to the signature in the CoMMpass dataset had a 69.7 
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months 3-year OS, similar to the outcome of patients treated with VRD, probably the current 

standard care for transplant-ineligible patients.3 These comparisons have to be viewed with 

caution, as CoMMpass is not a clinical trial. Nevertheless, the OS seen in the VRD group 

(74.5 months) is similar to that of the VRD-treated patients in the trial of Durie et al. (75.0 

months).3 Furthermore, there was no evidence that VRD-treated patients represented a poor-

prognosis cohort in CoMMpass; there were no significant differences between the rates of 

poor-risk cytogenetics or ISS in the VRD group and the bortezomib- or RD-treated groups, 

and non-inferior survival was maintained in a multivariate model incorporating ISS. 

If the outcome of rationally selected bortezomib- or lenalidomide-based therapy is equivalent 

to that of VRD, it would be important to consider why this might be. It may be that many 

patients treated with VRD are predominantly benefiting from just the bortezomib or the 

lenalidomide. Alternatively, it might be that any gains in combining the drugs are offset by 

increased toxicity, particularly in older or frailer patients. It is important to note that the 

reciprocal performance that we observe is an intrinsic property of the signature and not 

simply because bortezomib-sensitivity is automatically associated with lenalidomide-

resistance (and vice versa). This is clearly not the case in clinical practice, nor is it consistent 

with the existence of multiple treatment-agnostic prognostic signatures in myeloma. 

Although PADIMAC was a trial for transplant-eligible patients, the signature was trained on 

patients who had had a good response in the absence of ASCT. Therefore, our initial test set 

comprised patients who were transplant-ineligible (there were no datasets from transplant-

eligible patients who did not proceed to transplant). Transplant-ineligible patients would be 

the most obvious to benefit following successful translation of the signature to the clinic. 

When tested in transplant-eligible patients who had received PAD and ASCT in the 

HOVON-64/GMMG-HD4 trial, the signature lost its predictive ability, implying that 

transplant can overcome the effect of receiving the “wrong” treatment. An interesting 
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question would be whether receiving the correct predicted treatment without transplant is 

equivalent to ASCT. We saw no survival difference between transplant-ineligible patients 

treated correctly with bortezomib and all transplant-eligible patients treated with bortezomib 

followed by ASCT. However, there was weak evidence of an effect suggesting better OS for 

patients who had a transplant. 

There are limitations of our signature that need to be overcome before employment in a 

clinical trial. The signature assigns approximately one-quarter to one-third of patients to the 

bortezomib-best group and the remainder to the lenalidomide-best group by default. It may be 

that this larger group is heterogeneous, with some patients having poorer prognosis or multi-

clonal disease and thus requiring VRD or the addition of other novel agents. Others may 

benefit equally from bortezomib- or lenalidomide-based treatments, regardless of signature 

assignment. Our signature was not capable of identifying these different groups (data not 

shown). Our external test cohorts were fairly small, owing to the lack of publicly-available 

and appropriate test datasets, and prospective validation of our signature will be needed. This 

will probably require the development of a quantitative PCR- or MiSeq-based approach, 

though the small number of genes in the signature means that this should be feasible. Finally, 

it is not clear to what extent our signature represents a drug effect or a class effect, because of 

the lack of publicly available test datasets involving patients treated with alternative PIs or 

IMiDs. Future data may become available from clinical trials in which expression profiling 

has been incorporated into the protocol. 

We believe that our signature has the potential to move the myeloma field towards rational 

therapy decisions for transplant-ineligible patients in the future. It is essential that myeloma 

genomic datasets with relevant clinical outcome data continue to be made publicly available 

to allow refinement and prospective validation of these approaches. This will require the 

ongoing support of the myeloma research community. 
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Tables 

Row Treatment 
(dataset) 

Comparison n1 n2 Median 
survival 1 
(months) 

Median 
survival 2 
(months) 

HR (CI) p-value 

1 Bortezomib-based 
(C) 

Bortezomib-standard vs. 
bortezomib-good (PFS) 

110 37 21.9 36.2 0.43 
(0.20-0.92) 

0.02 

2 RD (C) Bortezomib-standard vs. 
bortezomib-good (PFS) 

29 11 Not 
reached 

18.8 2.35 
(0.76-7.63) 

0.16 

3 Bortezomib-based 
or RD (C) 

Incorrectly-treated vs. 
correctly-treated (PFS) 

121 66 20.1 Not 
reached 

0.44 
(0.25-0.78) 

0.0034 

4 Bortezomib-based 
or RD (C) 

Incorrectly-treated vs. 
correctly-treated (OS) 

121 66 31.2 Not 
reached 

0.44 
(0.23-0.84) 

0.0088 

5 Bortezomib-based 
or RD or VRD (C) 

All VRD vs. all non-
VRD (PFS) 

208 187 43.7 26.0 1.50 
(1.06-2.13) 

0.02 

6 Bortezomib-based 
or RD or VRD (C) 

All VRD vs. all non-
VRD (OS) 

208 187 Not 
reached 

37.8 2.05 
(1.34-3.13) 

0.00084 

7 Bortezomib-based 
or RD or VRD (C) 

All VRD vs. non-VRD 
correctly-treated (OS) 

208 66 Not 
reached 

Not 
reached 

1.15 
(0.60-2.21) 

0.67 

8 Bortezomib-based 
or RD or VRD (C) 

All VRD vs. non-VRD 
correctly-treated (PFS) 

208 66 43.7 Not 
reached 

0.89 
(0.52-1.52) 

0.68 

9 Bortezomib-based 
+/- ASCT 

Bortezomib correctly 
treated vs. ASCT (PFS) 

47 39 36.6 36.2 1.16 0.75 

10 Bortezomib-based 
+/- ASCT 

Bortezomib correctly 
treated vs. ASCT (OS) 

47 39 43.7 Not 
reached 

3.10 0.08 

11 VRD (C) Lenalidomide-best vs. 
bortezomib-best (OS) 

163 45 Not 
reached 

Not 
reached 

1.23 
(0.58-2.60) 

0.59 

12 VRD (C) Lenalidomide-best vs. 
bortezomib-best (PFS) 

163 45 43.7 45.4 0.93 
(0.52-1.68) 

0.82 

13 Bortezomib alone 
(M) 

Lenalidomide-best vs. 
bortezomib-best (PFS) 

137 36 4.14 4.77 0.66 
(0.43-1.0) 

0.04 

14 Bortezomib alone 
(M) 

Lenalidomide-best vs. 
bortezomib-best (OS) 

150 38 15.2 25.8 0.57 
(0.53-0.91) 

0.01 

15 RD (PCL)  Lenalidomide-best vs. 
bortezomib-best (PFS) 

8 10 Not 
reached 

1.0 Not defined* 2.52x10-5 

16 RD (PCL) Lenalidomide-best vs. 
bortezomib-best (OS) 

8 10 Not 
reached 

12.5 Not defined* 0.0013 

17 PAD/ASCT (H) Lenalidomide-best vs. 
bortezomib-best (PFS) 

84 57 26.6 31.8 0.91 0.63 

18 PAD/ASCT (H) Lenalidomide-best vs. 
bortezomib-best (OS) 

85 58 Not 
reached 

Not 
reached 

0.73 0.30 

Table 1 – Cox regression results for survival comparisons. All signature assignments were based on the 
seven-gene signature. Correctly-treated patients (rows 3-6) were those predicted by the signature as 
lenalidomide-best and who were treated with RD or those predicted as bortezomib-best and treated with 
bortezomib-based therapy. The datasets are CoMMpass (C), Millennium (M), plasma cell leukemia (PCL), 
or HOVON/GMMG (H). The numbers in the first group in the comparison (n1) and second group in the 
comparison (n2) are given. The hazard ratio (HR) is that of the second group versus the first group. CI – 
confidence interval. *The HR for the PCL group is not defined because all patients in group 2 progressed 
before any progressions in group 1 (row 11) or because there were no deaths in group 1 (row 12). 
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Row Treatment (dataset) Comparison Median HR 
observed 

Median HR 
null 

Mann-
Whitney U 

p-value 

1 Bortezomib-based (C) Bortezomib-standard vs. 
bortezomib-good (PFS) 

0.43 0.93 384 1.56x10-29 

2 RD (C) Bortezomib-standard vs. 
bortezomib-good (PFS) 

1.95 0.93 1672 3.96x10-16 

3 Bortezomib-based or 
RD (C) 

Incorrectly-treated vs. correctly-
treated (PFS) 

0.48 0.92 152 2.17x10-32 

4 Bortezomib-based or 
RD (C) 

Incorrectly-treated vs. correctly-
treated (OS) 

0.46 0.85 28 5.56x10-34 

5 Bortezomib alone (M) Lenalidomide-best vs. 
bortezomib-best (PFS) 

0.68 0.97 489 2.75x10-28 

6 Bortezomib alone (M) Lenalidomide-best vs. 
bortezomib-best (OS) 

0.53 0.97 108 5.67x10-33 

7 RD (PCL)  Bortezomib-best vs. 
lenalidomide-best (PFS) 

0.24 0.83 1334 2.84x10-19 

8 RD (PCL) Bortezomib-best vs. 
lenalidomide-best (OS) 

0.20 0.96 1117 1.98x10-21 

Table 2 – Mann-Whitney-Wilcoxon results testing the robustness of the seven-gene signature to 
assignments across multiple (n=100) training/validation data splits. Each dataset is from CoMMpass (C), 
Millennium (M), plasma cell leukemia (PCL), or HOVON/GMMG (H). One hundred assignments were made 
in each dataset by the seven-gene signature following random training/validation splits (observed). Each of 
these assignments was then permuted to maintain assignment ratios (null). The performance of the observed 
and null assignments for predicting progression-free survival (PFS) and overall survival (OS) was compared 
in terms of hazard ratios (HRs) by the Mann-Whitney-Wilcoxon test. The hazard ratio (HR) is that of the 
second group versus the first group. 
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Figure Legends 

Figure 1 – Fusion events, key single nucleotide variations (SNVs), and translocation-

cyclin D (TC) classification of PADIMAC data. Each column represents a single sample. 

Samples are arranged into their TC classes. (A) Numbers of fusion events in each sample. (B) 

Key SNVs in each sample. (C) Expression of genes whose dysregulation is associated with 

TC classification in each sample. 

Figure 2 – A seven-gene signature accurately predicts response to bortezomib-based 

therapy in PADIMAC and the independent CoMMpass datasets. (A) Matthews 

correlation coefficients (MCCs) and F-measures of bortezomib-good assignments by 4-11 

gene signatures derived from synthetic annealing, following cross-validation within the 

PADIMAC dataset. (B) and (C) MCCs and F-measures of bortezomib-good assignments by 

the seven-gene signature following multiple (n=100) cross-validations within the PADIMAC 

dataset (Signature) compared to the MCC and F-measures of permuted assignments (Null). 

The p-values are those of the Wilcoxon-Mann-Whitney test, under the null hypothesis that 

the distributions of observed and null performances are the same. (D) Kaplan-Meier plot 

showing the progression-free survival of patients who received bortezomib-based therapy 

within CoMMpass (n=147) and who were predicted to benefit (n=37; broken line) or not 

(n=110; solid line) from bortezomib-based therapy by the seven-gene signature following 

training in PADIMAC. The p-value and hazard ratios (HRs) are those obtained from Cox 

regression analysis. (E) HRs for disease progression of bortezomib-good versus bortezomib-

standard patients who received bortezomib-based therapy in CoMMpass. Predictions were 

made by the seven-gene signature, trained in PADIMAC, and followed repeated (n=100) 

training/validation splits (Signature). The HRs are compared with a null dataset of HRs 

obtained following permutations of the assignments (Null). The p-value is that of the 
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Wilcoxon-Mann-Whitney test, under the null hypothesis that the distributions of observed 

and null performances are the same. 

Figure 3 – The seven-gene signature can be used as a classifier to select between 

bortezomib-based therapy and lenalidomide/dexamethasone (RD) in the independent 

CoMMpass dataset. (A) Kaplan-Meier plot showing the progression-free survival (PFS) of 

patients who received RD therapy (n=40) within CoMMpass and who were predicted to 

benefit (n=11; broken line) or not (n=29; solid line) from bortezomib-based therapy by the 

seven-gene signature following training in PADIMAC. The p-value and hazard ratios are 

those obtained from Cox regression analysis. (B) HRs for disease progression of bortezomib-

good versus bortezomib-standard patients who received RD in CoMMpass. Predictions were 

made by the seven-gene signature, trained in PADIMAC, and followed repeated (n=100) 

training/validation splits (Signature). The HRs are compared with a null dataset of HRs 

obtained following permutations of the assignments (Null). The p-value is that of the 

Wilcoxon-Mann-Whitney test, under the null hypothesis that the distributions of observed 

and null performances are the same. (C) Kaplan-Meier plot showing the PFS of patients who 

received bortezomib-based therapy or RD within CoMMpass (n=187) and who received the 

correct (n=66; broken line) or incorrect (n=121; solid line) therapy predicted by the seven-

gene signature following training in PADIMAC. The p-value and HR are those obtained from 

Cox regression analysis. (D) Kaplan-Meier plot showing the overall survival (OS) of patients 

who received bortezomib-based therapy or RD within CoMMpass (n=187) and who received 

the correct (n=66; broken line) or incorrect (n=121; solid line) therapy predicted by the 

seven-gene signature following training in PADIMAC. The p-value and HR are those 

obtained from Cox regression analysis. (E) Kaplan-Meier plot showing the OS of patients 

(n=274) who received bortezomib/lenalidomide/dexamethasone (VRD; n=208; solid line) or 

who received bortezomib-based therapy or RD within CoMMpass and who received the 
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correct therapy predicted by the seven-gene signature (n=66; broken line) following training 

in PADIMAC. The p-value and HR are those obtained from Cox regression analysis. (F) 

Kaplan-Meier plot showing the OS of patients who received VRD in CoMMpass (n=208; 

solid line) and who were predicted to benefit from RD (n=163; solid line) or from 

bortezomib-based therapy (n=45; broken line) by the seven-gene signature following training 

in PADIMAC. The p-value and HR are those obtained from Cox regression analysis. 

Figure 4 – The seven-gene signature accurately predicts bortezomib- or lenalidomide-

responsiveness in further independent datasets. (A) Kaplan-Meier plot showing the 

progression-free survival (PFS) of patients who received single-agent bortezomib within the 

Millennium studies (n=173) and who were predicted to benefit from bortezomib-based 

therapy (n=36; broken line) or from RD therapy (n=137; solid line) by the seven-gene 

signature following training in PADIMAC. The p-value and hazard ratios (HRs) are those 

obtained from Cox regression analysis. (B) Kaplan-Meier plot showing the overall survival 

(OS) of patients who received single-agent bortezomib within the Millennium studies 

(n=188) and who were predicted to benefit from bortezomib-based therapy (n=38; broken 

line) or RD therapy (n=150; solid line) by the seven-gene signature following training in 

PADIMAC. The p-value and HRs are those obtained from Cox regression analysis. (C) HRs 

for PFS and OS of patients predicted to benefit from bortezomib-based therapy who received 

bortezomib in the Millennium studies. Predictions were made by the seven-gene signature, 

trained in PADIMAC with repeated (n=100) training/validation splits (Signature). The HRs 

are compared with a null dataset of HRs obtained following permutations of the assignments 

(Null). The p-values are those of the Wilcoxon-Mann-Whitney test, under the null hypothesis 

that the distributions of observed and null performances are the same. (D) Kaplan-Meier plot 

showing the PFS of patients who received RD within the plasma cell leukemia study (n=18) 

and who were predicted to benefit (n=8; solid line) or not (n=10; broken line) from RD 
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therapy by the seven-gene signature following training in PADIMAC. The p-value is that 

obtained from Cox regression analysis. (E) Kaplan-Meier plot showing the OS of patients 

who received RD within the plasma cell leukemia study (n=18) and who were predicted to 

benefit (n=8; solid line) or not (n=10; broken line) from RD therapy by the seven-gene 

signature following training in PADIMAC. The p-value is that obtained from Cox regression 

analysis. (F) HRs for PFS and OS of patients predicted to benefit from lenalidomide-based 

therapy and who received RD in the plasma cell leukemia study. Predictions were made by 

the seven-gene signature, trained in PADIMAC with repeated (n=100) training/validation 

splits (Signature). The HRs are compared with a null dataset of HRs obtained following 

permutations of the assignments (Null). The p-value is that of the Wilcoxon-Mann-Whitney 

test, under the null hypothesis that the distributions of observed and null performances are the 

same. 

Figure 5 – The signature loses predictive ability in the transplant setting. (A) Kaplan-

Meier plot showing the progression-free survival (PFS) of patients who received bortezomib, 

adriamycin, and dexamethasone (PAD) within the HOVON-65/GMMG-HD4 study (n=143) 

prior to autologous stem cell transplant (ASCT) and who were predicted to benefit from 

bortezomib-based therapy (n=58; broken line) or from RD therapy (n=85; solid line) by the 

seven-gene signature following training in PADIMAC. The p-value and hazard ratios (HRs) 

are those obtained from Cox regression analysis. (B) Kaplan-Meier plot showing the overall 

survival (OS) of patients who received PAD within the HOVON-65/GMMG-HD4 study 

(n=143) prior to ASCT and who were predicted to benefit from bortezomib-based therapy 

(n=58; broken line) or RD therapy (n=85; solid line) by the seven-gene signature following 

training in PADIMAC. The p-value and HRs are those obtained from Cox regression 

analysis. 












