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Can the NHS be a learning healthcare system in the age of digital technology? 
 
Abstract 

Digital health technology, and predictive analytics can disrupt healthcare delivery. 
From direct-to-consumer genetic testing to mobile phone-based apps for prediction of 
heart attacks, the impact of big data is forecast as transformative for our ability to 
diagnose and treat our patients with personalised healthcare. With this abundance of 
opportunity, are healthcare systems ready for big data? The definition and scope of 
‘big data’ remains unclear. The UK’s National Health Service (NHS) is an example of 
a system caught between the promises and pitfalls of big data for healthcare and a 
deeper investigation may inform debate and implementation in other countries. In his 
recent review of health information technology in England, Professor Bob Wachter 
issued a reality check to the NHS: 
“While there is great enthusiasm for using ‘big data’ to develop personalised 
approaches for individual patients (‘precision medicine’), provide customised decision 
support to both clinicians and patients, and create ‘learning healthcare systems (LHS)’, 
today all these goals are more promise than reality.”(1) 
What is the gap between promise and reality in the NHS? Can the NHS face these 
challenges and deliver on the promises of big data? What will it take to develop LHS 
and provide better care? Can patient trust be gained to allow physicians and 
policymakers to deliver the potential of big data in a patient-centred healthcare model? 
Concomitance of “evidence-based healthcare”, “right care” and “learning health 
systems” frameworks are required to drive high-quality, data-driven healthcare. 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Introduction 

“Big data” is defined by the “7-V’s”: volume (most frequently cited(2)), velocity, 
veracity, variety, volatility, validity and value. In healthcare, “big data” is associated 
with a step-change in the way information is gathered, analysed and used to facilitate 
disease management and prevention. With greater electronic data capture, there is 
enthusiasm for increased safety, efficiency and effectiveness in health and social care 
through machine learning, artificial intelligence(AI) and augmented intelligence. 
However, factors maintaining and widening the gap between the promise and the 
reality need to be addressed.  
 
Can ‘big’ be evidence-based? 

Current best practice has its foundation in evidence-based healthcare, with growth in 

publications, but poorly managed scientific insights, poor recording of care and poor 

use of evidence(3). Big data could improve the status quo and support learning health 

systems(4).  

Computational methods can contribute to evidence management with automation of 

literature searching, critical appraisal and guidelines(5, 6). Similarly, big data already 

contributes to aetiologic, diagnostic, prognostic and therapeutic research, from -omics  

to electronic health records (EHR) trials(7). Critics emphasise lack of quality and 

validation of routinely collected clinical data, and risk of bias in observational studies, 

where scale cannot compensate for poor design(8). Conversely, data-driven 

approaches could transform a predominantly retrospective into a prospective or real-

time paradigm, across disease boundaries. 

Infrastructure and analytic tools are necessary but often poorly understood and 

underdeveloped. Automated extraction of necessary data fields in 

pseudonymised/anonymised format into curated warehouses is required with robust 

metadata catalogues and understanding of clinical context. Extraction, cleaning and 

processing of data in real-time are prerequisites for point-of-care information available 

to clinicians.  

Preventing excesses and addressing deficiencies 

Medicine grapples with conflicting challenges of over-diagnosis and over-treatment, 

as well as under-diagnosis and under-treatment. Widening inequalities also manifest 

across many health systems, despite improving medications and technologies. Efforts 

to optimise healthcare delivery have culminated in “right care”(9), which may be 

facilitated by big data methods and outputs.  

Decision aids could help clinicians to optimise patient management, supported by 

large-scale EHR data. For example, among individuals who meet “appropriateness of 

use criteria” (AUC) for diagnostic coronary angiography, only 52.9% have obstructive 

coronary disease(10). Similarly, among elective surgery patients, routine tests of blood 

coagulation are unnecessary in over 94% of cases, with implications for cost and false 

positives(11). It is plausible that AUC for tests could be continuously evaluated using 

EHR, quality improvement initiatives and new trials. In this way, “an ideal system would 

be evidence-based, use uniform and comprehensive clinical data, provide point-of-



care decision support, and aim to improve quality by reducing overuse and 

underuse”(12). The medical ‘Internet of Things’ describes the growing number of apps 

and devices which, through big data analytics, are linking patients and health 

professionals(13). An example of its use in tackling under-diagnosis is in screening 

and diagnosis of atrial fibrillation, although proper evaluation is required(14).  

Similarly, AI, the mimicking of human cognition by computers, could change data use, 

analysis and interpretation in radiology, pathology, oncology and several other 

specialties(15). For example, AI may predict the grade and stage of lung cancer better 

than pathologists(16). A barrier to adoption may stem from fear of job loss and 

concerns around accountability, but people may be freed to work on the aspects which 

only humans can conduct(15). Machine learning has promise, particularly in tackling 

over- and under-diagnosis (17), with advantages of increased efficiency, 

reproducibility and scalability, e.g. diabetic retinopathy(18).  

Risk prediction is of direct relevance in the era of personalised medicine. Both AI and 

machine learning aid not only in prediction of real-time risk, but also in the visualisation 

and communication of those risks. Risk scores can be automated within EHRs and 

multiple risk scores may be deployed in the same patient simultaneously, whether in 

primary care or intensive care. Moreover, risk prediction can be incorporated into data-

driven management such as personalised radiotherapy for prostate cancer. However, 

there are only a handful of exemplars(19-21) and models that appear efficacious are 

yet to be applied(22, 23). 

As Wachter says, there is currently “more promise than reality” and more hype than 

evidence. For example, intelligence augmentation is currently receiving much 

attention, but before widespread adoption, not only is evidence required; the pace and 

scale at which the research is conducted must keep up, i.e. big data methods are 

required in evidence generation(24). Moreover, there are primary research barriers 

related to implementing AI and machine learning into medicine, including: appropriate 

and secure access to patient data; platforms to collate personal and healthcare data, 

and linkage required to develop the models; missing, incomplete and unvalidated 

data(25); or development of interfaces to place predictive algorithms within EHR. 

There are scenarios where big data and associated issues are compounding rather 

than solving problems. For example, direct-to-consumer genetic testing cannot yet 

provide genetic information which is useful to patients or clinicians for most complex 

diseases and may create more anxiety than health. Moreover, lack of integration of 

such services into disease management pathways may lead to high costs, confusion 

and inappropriate use of resources.  The rise in patient use of wearables is currently 

not related with improved patient outcomes and may increase pressures on health 

services(26), thus adding to over-diagnosis and over-treatment. Inattention to “digital 

divides” may worsen health inequalities. 

Big data, machine learning and AI all need to be used more intelligently for the 

individual and the health system. There is a trend towards piecemeal use of big data, 

which may partly be due to patchy availability of EHR and digital technologies across 

the NHS or patchy infrastructure for harnessing these data. The direction of travel 

should be throughout a patient pathway if use is to become widespread or universal. 



This will require appropriate, secure, linked infrastructure that can collate, link, protect, 

anonymise and present data to the analyst for research, with capacity to be 

implemented back into the healthcare setting. 

 

Learning healthcare systems 

Health informatics describes the best use, albeit promise, of (big) data to improve 
health at the individual and population level, health care and biomedical research. 
Recognition of big data in healthcare has led to many related terms/disciplines, 
including “digital medicine”, “precision medicine” and “personalised medicine”, which 
overlap and inter-connect with different branches of informatics (Figure 1), but may 
confuse discussions. Taken collectively, health informatics would support a “learning 
healthcare system”, a framework proposed by the National Institute of Medicine in 
2006 to capture the possibility of data from science, evidence and care feeding into 
one another in a “virtuous” cycle (3)(Figure 2). In his review, Wachter’s comments are 
timely and far-sighted:    
“In particular, the data processing, analytics, and informatics research workforce must 

not be forgotten, particularly since the UK has an enormous opportunity to bring the 

promise of big data to life. Working through ambitious entities such as the Farr 

Institute, the UK could be the first nation to take data science to scale and build a truly 

national learning health system”(1).  

However, “high-level” terminology stifles operationalisation. Many consider the LHS to 

be a “platform” of infrastructure, human resources, software and other inter-related 

components, and “learning health cycles” to describe the science-evidence-care 

relationship. Regardless, the wastage throughout the pathway from science through 

evidence to delivery of care is matched by strains on resources in every sector, from 

human and infrastructural to financial and managerial. Big data methods can aid in 

organisation of healthcare and public health services as well as research, education 

and training, but at least five major paradigm shifts are required at system level.  

First, research and “service” remain two parallel and relatively unconnected activities 

in the NHS, despite the work of NIHR and other funders to create a research-active 

clinical environment throughout the NHS. An important consequence is under-

performance by many hospitals in terms of research. Lack of academic activity in 

hospitals was correlated with poor quality care in the review of under-performing 

hospitals conducted by Bruce Keogh(27) and was also highlighted by the Francis 

report(28). The long timescale from research to impact as well as perceived and real 

gaps in translational research which truly changes acute care design and delivery are 

also barriers to research-driven care. In LHS, the provenance of data at the point-of-

care encourages patient-centred research and patient-centred clinical care at the 

same time. On the other hand, the overall possibilities of precision medicine, whether 

in terms of diagnostics or therapeutics, are likely to be tested and used to their full 

potential in a patient-centred and data-centred environment, rather than a researcher-

centric model.    

Second, quality improvement and audit have been generally viewed as separate to 

clinical research and the overlap between the two is sub-optimally managed. LHS can 



make research scaleable and quality improvement a real-time activity. Issues such as 

workforce planning and predicting bed capacity are examples of particular needs 

where reframing as research questions may be of mutual benefit to clinicians and 

academics. Audit at scale could be continuous and go beyond government 

performance targets. There would be implications for development of the optimal 

metrics for patient outcomes, monitoring of burden of disease and service need, 

optimisation of care pathways, as well as design and implementation of EHR-based 

trials to test service-level interventions.  

Third, the capacity in health informatics among clinicians and non-clinicians is a rate-

limiting step. Undergraduate and postgraduate curricula are currently largely ignoring 

the impact of big data on healthcare delivery, and therefore the future workforce may 

not be adequately prepared for data-driven healthcare. Leadership, participation and 

long-term vision at the national and local level are required from both academia (e.g. 

Farr Institute of Health Informatics Research, independent health informatics 

researchers) and the NHS (e.g. the Chief Clinical Informatics Officer, CCIO, network) 

to ensure that the rich and overlapping tapestry of quality improvement, 

implementation science, translational research and audit can be realised through LHS. 

Within the NHS, extra efforts to support co-creation of capacity between academic and 

NHS sectors will be critical to keep up with University-owned hospitals internationally. 

Fourth, the trust of patients and the public in the use of their data is central to 

developing a LHS where routine health data are optimally used. There have been 

historic challenges in developing large-scale IT programmes in the NHS, whether 

Connecting for Health, or more recently, care.data, and lack of public trust in 

secondary use of data played a significant role(29). Currently, Google DeepMind is 

working with the Royal Free Hospitals NHS Trust to develop risk prediction tools for 

acute kidney injury, but there have been concerns from regulatory bodies, clinicians 

and public regarding ethical and data security implications for this research model. A 

new framework for public understanding of science and trust, with involvement and 

co-creation at the centre, is  required to make sure that these concerns are allayed 

before implementation so that research, innovation and care delivery are not 

prevented(30). 

Fifth, investment and engagement from patient-facing healthcare professionals (HCP) 

is essential for maximising LHS. Assessment of data can only be as good as the data 

used. Continuous feedback and improvement in how data are recorded, captured and 

standardised is necessary to ensure that the results of assessments provide the most 

pertinent information for continuous improvement. This will only come from sharing 

evaluations with HCP and discussing where, how, and why inconsistencies and 

missing data persist and empowering HCP to take responsibility for continuous 

improvement in both healthcare provision and the recording of that provision. 

 

These five and other barriers to LHS implementation in the NHS are highlighted in Box 

1. Scale-up is limited by a lack of examples of LHS in the published literature and 

therefore, publication, education and dissemination regarding successful projects are 

crucial, especially from within the NHS (Box 2), rather than trying to emulate examples 



from other health systems which may not be completely transferable or relevant to the 

NHS and the UK. The costs of not implementing LHS in terms of human resources, 

patient safety and patient-centred outcomes have not been quantified in existing 

research and represent a powerful tool for engaging and convincing policymakers. 

 

Conclusions 

The learning health system is a natural progression if the full potential of the wealth of 

big data throughout the health sector is to be realised. Clinicians, academics, citizens 

and private sector can align to develop a patient-centred, data-driven model of care 

but multiple barriers exist in the NHS at present, including infrastructure, workforce, 

training and culture. Trust and evidence will be important levers for patients, public 

and health professionals and need be addressed urgently, along with the other barriers 

in the NHS. Without the learning health system approach, big data is likely to remain 

an entity used in discrete projects rather than across the NHS. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Box 2. Examples of real world opportunities for learning healthcare systems in the 

NHS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Key messages 

 

 

• Big data has big potential 

• The definition and the focus of big data need to be clear 

• Evidence needs to be gathered before and after data-driven interventions in health  

• Research should be embedded within healthcare continuously 

The 100 000 Genomes Project: Genomics England are sequencing 100,000 genomes 
from 70,000 people with a rare disease, plus their families, as well as patients with 
cancer. A new genomic medicine service for the NHS is being delivered via this project. 
https://www.genomicsengland.co.uk/the-100000-genomes-project/  
 
Connected Care in Berkshire: Using Graphnet’s CareCentric™ software, 17 health and 
social care organisations across Berkshire will share the care records of 855,000 
patients, enabling shared EHR which will allow care professionals to create and update 
care plans for patients. 
http://www.digitalhealth.net/shared_care_records/47246/berkshire-to-share-patient-
records-with-graphnet  
 
East London Genes and Health: A long-term study of 100,000 people of Bangladeshi 
and Pakistani origin, linking genomic data with EHR to study disease and treatments. 
http://www.genesandhealth.org/  
 
Hospital Electronic Prescribing and Medicines Administration systems in Scotland: The 
implementation of e-prescribing and medicines administrations will enable 
improvements in care and in the secondary use of data for research. Comprehensive 
stakeholder analysis has led to early identification of barriers and facilitators to a 
learning health system approach.  
https://www.ncbi.nlm.nih.gov/pubmed/28059691    
 
Royal Free NHS Trust/Google DeepMind collaboration: 
Artificial intelligence company, Google Deepmind and the Royal Free NHS Trust are 
working together on real-time EHR data to develop apps for use by health professional 
in the early detection of patient deterioration.  
http://www.bbc.co.uk/news/health-38055509  

https://www.genomicsengland.co.uk/the-100000-genomes-project/
http://www.digitalhealth.net/shared_care_records/47246/berkshire-to-share-patient-records-with-graphnet
http://www.digitalhealth.net/shared_care_records/47246/berkshire-to-share-patient-records-with-graphnet
http://www.genesandhealth.org/
https://www.ncbi.nlm.nih.gov/pubmed/28059691
http://www.bbc.co.uk/news/health-38055509
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