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SUMMARY (150 WORDS) 41 

Glutamine synthetase (GS) converts glutamate and NH4
+ to glutamine. GS is expressed by 42 

endothelial cells (ECs), but surprisingly shows negligible glutamine synthesizing activity at 43 

physiological glutamine levels. Nonetheless, genetic loss of GS in ECs impairs vessel sprout-44 

ing during vascular development, while pharmacological GS blockade suppresses angiogen-45 

esis in ocular and inflammatory skin disease, only minimally affecting healthy adult quiescent 46 

ECs. This relies on inhibition of EC migration but not proliferation. Mechanistically, GS knock-47 

down (GSKD) reduces membrane localization and activation of the GTPase RHOJ, while acti-48 

vating other Rho GTPases and Rho kinase (ROCK), thereby inducing actin stress fibers and 49 

impeding EC motility. ROCK inhibition rescues the GSKD EC migratory defect. Notably, GS is 50 

auto-palmitoylated and interacts with RHOJ to sustain RHOJ palmitoylation, membrane local-51 

ization and activation. These findings highlight a novel molecular activity for GS, in addition to 52 

its glutamine synthesizing activity, in EC migration during pathological angiogenesis.  53 

INTRODUCTION 54 

Endothelial cells (ECs) line the lumen of blood vessels. Emerging evidence reveals that EC 55 

metabolism controls vessel sprouting (angiogenesis)1-3. While glutamine catabolism in ECs 56 

was recently characterized4, it remains undetermined if glutamine anabolism controls angio-57 

genesis in vivo. Glutamine is a carbon and nitrogen donor for biomolecule production and is 58 

involved in redox homeostasis. Most cells take up glutamine (the most abundant amino acid 59 

in the blood) and thus do not need to synthesize it. Nonetheless, certain cell types express 60 

glutamine synthetase (GS; also called glutamate-ammonia ligase; GLUL), the enzyme capa-61 

ble of de novo glutamine production from glutamate and ammonia in an ATP and Mg2+/Mn2+ 62 

requiring reaction. GS serves also another biochemical function, i.e. ammonia clearance, but 63 
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this is best described for hepatocytes, astrocytes and muscle. ECs also express GS5, though 64 

its role and importance in angiogenesis remain unknown. Since ECs are exposed to high 65 

plasma glutamine levels, it is puzzling why these cells express GS. Global GS deficiency 66 

causes embryonic lethality, presumably due to the inability to detoxify ammonia6. GS defi-67 

ciency in humans is extremely rare and leads to multi-organ failure with infant death7. If and 68 

how GS affects angiogenesis has never been analyzed. Here we characterized the role and 69 

importance of GS in vessel sprouting.  70 

RESULTS 71 

VESSEL SPROUTING REQUIRES ENDOTHELIAL GS 72 

We checked GS expression in endothelial cells of the retinal microvasculature with a genetic 73 

GS reporter mouse (GS+/GFP mice with a nucleus-targeted GFP-lamin A fusion reporter 74 

transgene in the GS ORF of one allele6). GFP tracing in the postnatal day 5 (P5) retinal plex-75 

us, co-stained with the endothelial cell marker Isolectin B4 (IB4; red), revealed endothelial ex-76 

pression of GFP (and thus of GS) in the microvasculature (Fig. 1a).  77 

Human umbilical venous endothelial cells (further referred to as “ECs”) expressed GS 78 

to similar levels as human colon ECs, liver ECs, human umbilical arterial ECs and blood out-79 

growth ECs (BOECs), but to a lower level than lung ECs (Extended Data Fig. 1a). However, 80 

GS expression in ECs or isolated mouse liver ECs (mLiECs) was lower than in HEPG2 hepa-81 

tocellular carcinoma cells or astrocytes (Extended Data Fig. 1a-c), known to highly express 82 

GS. Glutamine withdrawal (below physiological concentration of 0.6 mM) increased GS pro-83 

tein levels in ECs (Fig. 1b; Extended Data Fig. 1b), as previously documented for other cell 84 

types8.  85 
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 We intercrossed GSlox/lox mice with two different EC-specific tamoxifen inducible Cre 86 

driver lines, i.e. VE-cadherin(PAC)-CreERT2  and Pdgfb-CreERT2  mice to obtain respectively 87 

GSvECKO and GSpECKO mice. Correct recombination of the loxed GS allele was confirmed (Ex-88 

tended Data Fig. 1d-e) and caused an average 84% reduction of GS mRNA levels in mLiECs 89 

isolated from GSvECKO mice (Fig. 1c). In the neonatal retina, vascular plexi in P5 GSvECKO mice 90 

showed hypobranching and reduced radial expansion, whereas vessel coverage by NG2+ 91 

pericytes and vessel regression (number of empty collagen IV+ sleeves) were unaffected 92 

(Fig.1d-h, Extended Data Fig. 1f,g). However, the number of filopodia at the vascular front 93 

and of distal sprouts with filopodia, both parameters of EC migration, was lower in GSvECKO 94 

pups (Fig 1i-j). Furthermore, the complexity of the vasculature at the utmost leading front of 95 

the plexus was decreased as determined by counting the number of branches in distal 96 

sprouts (Extended Data Fig. 1h). In contrast, quantification of IB4+ EdU+ cells revealed no dif-97 

ference in the number of proliferating ECs (Fig. 1k-m; Extended Data Fig. 1i). Hypobranching 98 

was also observed in the dorsal dermal blood vasculature in E16.5 GSvECKO embryos (Fig. 1n-99 

r). A similar retinal phenotype was observed in GSpECKO mice (Extended Data Fig. 1j-m). 100 

Thus, loss of endothelial GS causes vascular defects by impairing EC migration but not prolif-101 

eration. 102 

The retinal vascular defect restored over time (Extended Data Fig. 1n-u) and at 6 103 

weeks, GSvECKO animals (with GS deleted in ECs at P1-P3) did not show overt vascular de-104 

fects (Extended Data Fig. 1v-ag). GSvECKO animals gained normal body weight, and blood bi-105 

ochemistry and hematological profiles were normal at 6 weeks (Extended Data Table 1). Vas-106 

cular restoration may relate to the possibility that homozygous mutant ECs were outcompeted 107 

over time by residual wild type ECs, in which recombination did not occur (as documented in 108 

mice with endothelial loss of other key metabolic genes9) or because of other compensatory 109 
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adaptations. Alternatively, the results raise the question if the effect of endothelial GS loss 110 

may be larger in growing (motile) ECs during vascular development than in quiescent (non-111 

motile) ECs during adulthood in healthy conditions. 112 

We then explored if pharmacological blockade of GS with methionine sulfoximine 113 

(MSO), which irreversibly blocks its catalytic activity, reduced pathological angiogenesis. First, 114 

in the oxygen-induced model of retinopathy of prematurity (ROP)2,3, treatment of pups with 115 

MSO reduced the formation of pathological vascular tufts (Fig. 2a-c), while modestly increas-116 

ing the vaso-obliterated area (Fig. 2d and Extended Data Fig. 1ah-ai). Second, we used the 117 

corneal micro-pocket assay (CPA) in mice with slow-release basic fibroblast growth factor 118 

(bFGF) containing pellets as a model of corneal neovascularization. Inclusion of MSO in the 119 

pellet reduced formation of new CD31+ blood vessels in the otherwise avascular cornea (Fig. 120 

2e-g). Finally, we used the imiquimod-based mouse model of inflammation-driven skin psori-121 

asis and found a remarkable dose-dependent reduction of the CD105+ EC area upon topical 122 

treatment of the affected skin with MSO (Fig. 2h-l). Thus, pharmacological GS blockade inhib-123 

its pathological angiogenesis in the inflamed skin and in several eye disorders. 124 

SILENCING GS REDUCES EC MIGRATION 125 

We then used GS knockdown (GSKD) ECs (shRNA-mediated; >80% silencing; Extended Data 126 

Fig. 2a) in in vitro spheroid sprouting assays to assess vessel sprouting. GSKD reduced the 127 

number of sprouts per spheroid and the total sprout length (Fig. 3a,b,e,f). Re-introduction of a 128 

shRNA resistant GS (rGSOE) rescued the sprouting defect (Extended data Fig. 2b-c). The 129 

sprouting defect in GSKD spheroids was maintained upon mitotic inactivation of ECs with mi-130 

tomycin C (MitoC) (Fig. 3c-f), further suggesting an EC motility defect. In agreement, at phys-131 

iological glutamine levels, GSKD did not affect EC proliferation (Fig. 3g). The sprouting defect 132 
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was also not due to reduced EC viability or increased oxidative stress, or to changes in ener-133 

gy charge, glutathione or NADPH levels, glycolysis, glucose or glutamine oxidation, or oxygen 134 

consumption (Extended Data Fig. 2d-m). 135 

 GSKD impaired migration in scratch-wound and Boyden chamber assays, even upon 136 

MitoC treatment, an effect that was rescued by re-introducing a shRNA-resistant GS (rGSOE) 137 

(Fig. 3h-i). Furthermore, sparsely seeded GSKD ECs had a reduced velocity of random 138 

movement (Fig. 3j; Supplemental movies 1 and 2) and a decreased lamellipodial area (Fig. 139 

3k-m). Comparable results were obtained with a second non-overlapping shRNA and a GS-140 

specific siRNA (Extended Data Fig. 2a; Extended Data Fig. 3a-e).  141 

 The migration defects suggested that GSKD perturbed the remodeling of the actin cyto-142 

skeleton, necessary for cellular motility. Notably, we detected an increase in F-actin levels in 143 

GSKD ECs (Fig. 3n). A role of GS in cytoskeletal remodeling was further suggested by analyz-144 

ing repolymerization of the actin cytoskeleton upon disruption with the F-actin polymerization 145 

inhibitor latrunculin B and subsequent wash-out. Latrunculin B perturbed the normal morphol-146 

ogy of control and GSKD ECs (Fig. 3o-r). After wash-out, when control cells had rebuilt a nor-147 

mal actin cytoskeleton, GSKD ECs still had higher F-actin levels, mainly originating from in-148 

creased numbers of stress fiber bundles (Fig. 3s-u). GSKD did not alter α-tubulin levels (Fig. 149 

3v; Extended data Fig. 4a-h).  150 

The increase in F-actin levels was also present in ECs, freshly isolated from MSO-151 

treated mice (Extended data Fig. 4i-k), and in confluent GSKD ECs aligning a scratch wound in 152 

vitro (Extended data Fig. 4l-n). Confluent monolayer GSKD ECs displayed compromised junc-153 

tional integrity (Extended data Fig. 4o-v). Functionally, this corresponded to a decrease in 154 

trans-endothelial electrical resistance (TEER) of GSKD ECs in vitro (Extended data Fig. 4w) 155 
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and increased leakiness of inflamed (but not healthy) vessels in vivo (Extended data Fig. 4x-156 

z).  157 

 158 

GLUTAMINE PRODUCTION BY ENDOTHELIAL GS  159 

To explore whether the migration defect was attributable to reduced de novo glutamine syn-160 

thesis, we measured the glutamine synthesizing activity of GS by supplementing ECs with 161 

15NH4Cl (Extended Data Fig. 5a). At a physiological concentration of 0.6 mM glutamine or 162 

higher, the glutamine producing activity of GS was negligible, approximating the level ob-163 

served in ECs treated with MSO; it slightly increased only upon glutamine withdrawal, pre-164 

sumably to compensate for the lack of available glutamine (Fig. 4a). Similar results were ob-165 

tained in medium containing dialyzed serum (Extended Data Fig. 5b). For further details see 166 

Supplementary Discussion 1 and Extended Data Fig. 5c-n. 167 

To determine if the GSKD phenotype relied on the catalytic site of GS, we used previ-168 

ously reported concentrations of MSO10, which competes with glutamate in the catalytic site of 169 

GS and irreversibly blocks GS. MSO reduced EC spheroid sprouting, impaired EC migration 170 

in scratch-wound assays upon MitoC treatment, decreased lamellipodial area, while increas-171 

ing F-actin levels after latrunculin B wash-out but without affecting EC proliferation (Extended 172 

Data Fig. 5o-t). Even though other (off-target) effects of pharmacological GS inhibition cannot 173 

be formally excluded, MSO phenocopied the GS knockdown, suggesting that the catalytic site 174 

of GS is indispensable to control EC cytoskeletal homeostasis. 175 

GS INHIBITION AFFECTS RHOJ ACTIVITY 176 
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Small GTPases and their effectors control F-actin levels and motility11, thus we explored if 177 

Rho GTPases were downstream targets of GS. We focused on RHOJ, since it is EC-178 

enriched12, and blocking endothelial RHOJ was proposed to be a novel anti-angiogenesis ap-179 

proach13. Of note, RHOJKD ECs fully phenocopied GSKD ECs in terms of decreased mobility 180 

and barrier function (data not shown). 181 

Since RHOJ localizes to plasma and organelle membranes to become activated14 and 182 

RHOJ is almost exclusively detected in the membrane fraction15, we explored if GS levels 183 

regulated RHOJ’s membrane localization and activity. Immunoblotting revealed that RHOJ 184 

was only detectable in the membrane fraction of ECs (consistent with previous findings15), 185 

and that GSKD decreased the amount of RHOJ in the membrane fraction (without concomitant 186 

increase in the cytosolic fraction, possibly because of proteasomal degradation16) as well as 187 

the levels of active RHOJ (Fig. 4b,c). GSKD did not overtly affect RHOJ transcript levels (rela-188 

tive mRNA levels: 0.99 ± 0.03 in control vs 0.85 ± 0.05 in GSKD; n=3, p<0.05).  189 

We also explored if GSKD affected other Rho GTPases in ECs. We focused on the 190 

RHOA/B/C – Rho kinase (ROCK) – myosin light chain (MLC) axis, as silencing of endothelial 191 

RHOJ increases signaling of this pathway and induces aberrant F-actin stress fiber formation 192 

through an as yet undefined mechanism13,17 (Fig. 4d). Standard GST-Rhotekin pull-down as-193 

says showed that GSKD increased the activity of RHOA and RHOC, but not of RHOB (Fig. 4e-194 

g). Of note, GSKD, much like other stimuli, increased total RHOB levels. We confirmed the in-195 

crease in RHOA activity at the individual cell level with a DORA-RHOA-FRET biosensor (Fig. 196 

4h; Extended Data Fig. 6a), and observed that the abnormally elevated RHOA activity in re-197 

tracting lamellipodia in GSKD ECs evoked more numerous, but smaller and more short-lived 198 

lamellipodia (Fig. 4i), which could contribute to the motility impairment. As suggested previ-199 

ously18, increased RHOA activity in lamellipodia locally leads to actomyosin contraction 200 



5/13/2018 9

through ROCK and pMLC, thereby prematurely retracting the lamellipodium. Combining GSKD 201 

and RHOJKD did not further increase RHOA activity (data not shown) confirming that RHOJ 202 

silencing by itself increased RHOA activity and suggesting that GS indeed primarily acts via 203 

RHOJ to control RHOA signaling. 204 

Downstream of Rho GTPases, GSKD and MSO-treated ECs had elevated ROCK1 and 205 

ROCK2 protein levels (Fig. 4j), and enhanced ROCK activity, as determined by pMLC protein 206 

levels, which were similarly induced in GSKD and RHOJKD ECs (Fig. 4k; Extended Data Fig. 207 

6b-n). In agreement, ROCK inhibitors (Y27632, fasudil hydrochloride and H1152 dihydrochlo-208 

ride (not shown)) rescued the GSKD phenotype (Fig. 4l-o; Extended Data Fig. 6o-w) whereas 209 

myosin light chain kinase (MLCK) inhibitors (ML7; peptide 18) did not (Extended Data Fig. 6x-210 

aa), suggesting that MLC phosphorylation through ROCK rather than MLCK is more important 211 

in mediating the GSKD phenotype in ECs. Thus, GSKD lowers membrane localization and ac-212 

tivity of RHOJ, while activating RHOA, RHOC, and ROCK.  213 

We explored with which of these Rho GTPases GS interacted, assuming that such an 214 

interaction might facilitate / be necessary for their activation, nonetheless keeping in mind that 215 

RHOJ can negatively regulate the activity of the RHOA/ROCK/MLC axis13,17 and hence that 216 

loss of a primary interaction of GS with RHOJ could indirectly explain the elevated levels of 217 

RHOA/ROCK/MLC upon GSKD. First, co-immunoprecipitation (co-IP) assays showed interac-218 

tion between endogenous RHOJ and GS (Fig. 5a). Such co-IP was not observed for RHOA 219 

and RHOC (most abundant in ECs) (Extended Data Fig. 7a). Second, deletion of the first 20 220 

N-terminal amino acids in RHOJ (ΔN20-RHOJ), mediating RHOJ’s plasma membrane locali-221 

zation19, reduced the interaction with GS (Extended data Fig. 7b). Third, immunoblotting 222 

showed that only RHOJ, but not RHOA or RHOC, was predominantly membrane localized 223 

(Extended data Fig. 7c). Fourth, we confirmed the GS-RHOJ interaction with a bimolecular 224 
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fluorescence complementation approach (BiFC) (Extended Data Fig. 7d,e). Based on the 225 

above data, we focused on RHOJ as most likely interacting partner of GS.  226 

To interact with membrane-localized (active) RHOJ, GS should be membrane localized 227 

as well. Indeed, cell fractionation studies revealed that a fraction of GS was membrane local-228 

ized (Fig. 5b). Further evidence derives from single particle tracking data, acquired by photo-229 

activated localization microscopy imaging (SPT-PALM), combined with total internal reflection 230 

fluorescence microscopy (TIRF). We traced the movement of single GS proteins tagged with 231 

the photoswitchable fluorescent protein (PSFP) mEOS (GS-mEOS). Single GS-mEOS parti-232 

cles had a lower diffusion coefficient (DF) in the TIRF region (comprising the plasma mem-233 

brane and the immediately adjacent cytoplasm) than free mEOS, indicative of an association 234 

of GS with membrane structures (Fig. 5c; Extended Data Fig. 7f).  235 

PALMITOYLATION OF GS AND RHOJ 236 

Membrane localization often requires post-translational palmitoylation. We thus hypothesized 237 

that GS could be palmitoylated to allow plasma membrane localization and interaction with 238 

RHOJ. Therefore, we performed click chemistry with biotin-azide (Extended Data Fig. 7g) on 239 

lysates from HEK293 cells overexpressing GS and treated with the clickable palmitoylation 240 

probes 16C-BYA or 16C-YA. Streptavidin pull-down showed clear palmitoylation of GS, as 241 

both probes labeled GS. The labeling was reduced by MSO, consistent with the presumed 242 

dependency of the phenotype on the enzyme’s catalytic site (Fig. 5d). 243 

GS was anecdotally reported previously to be palmitoylated, however without any fur-244 

ther in-depth molecular / functional characterization20. To determine if GS undergoes auto-245 

palmitoylation, we incubated purified GS21 with palmitoyl-alkyne CoA (a substrate for pal-246 
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mitoylation) in a cell-free system without any other proteins present, to demonstrate a direct 247 

effect. Click chemistry revealed that increasing the dose of palmitoyl-alkyne CoA resulted in 248 

increased autopalmitoylation of GS (Fig. 5e). Importantly, autopalmitoylation of GS was 249 

achieved with physiological concentrations of palmitoyl-CoA (1-10 µM) at neutral pH, suggest-250 

ing physiologically relevant autopalmitoylation. An independent cell-free assay, relying on the 251 

detection of CoA, released from palmitoyl-CoA during autopalmitoylation, confirmed these 252 

findings (α-ketoglutarate dehydrogenase uses CoA to convert α-ketoglutarate + NAD+ into 253 

succinyl-CoA + NADH; NADH fluorescence is quantified) (Extended Data Fig. 7h-i). Further 254 

confirmation was obtained using a cell-free affinity-chromatography-based binding assay with 255 

palmitoyl-CoA immobilized on agarose beads. Recombinant GS was captured in a highly effi-256 

cient manner on these beads as evidenced by the relatively low levels of unbound protein in 257 

the flow-through and the high protein amounts recovered in the SDS eluate (Extended Data 258 

Fig. 7j).  259 

 Palmitoylation of target proteins by palmitoyl-acyl transferases (PATs) is a two-step re-260 

action, requiring first autopalmitoylation of the PAT, and thereafter, transfer of the palmitoyl 261 

group to the target protein, though the precise molecular details of the latter step remain un-262 

clear (and could even occur non-enzymatically). We hypothesized GS to have a similar activi-263 

ty profile (Supplementary Discussion 2) and therefore explored if GS was involved in pal-264 

mitoylation of RHOJ. Even though RHOJ contains cysteine residues that are in silico predict-265 

ed to be high fidelity palmitoylation sites (screened with SwissPalm22, data not shown), pal-266 

mitoylation of RHOJ has been poorly documented (except in a few studies23,24). Interestingly, 267 

RHOJ’s membrane localization and activity were reduced by treatment of ECs with the pan-268 

palmitoylation inhibitor 2-bromopalmitate (2BP) (Fig. 5f; Extended Data Fig. 7k-n), providing 269 

initial evidence that RHOJ can be palmitoylated in ECs. Using the palmitoylation probe 17-270 
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ODYA (Fig. 5g) or an acyl-resin-assisted capture (acyl-RAC; Extended Data Fig. 7o), we in-271 

deed found a reduction in the levels of palmitoylated RHOJ upon blocking GS, consistent with 272 

a model whereby GS sustains palmitoylation of RHOJ.  273 

DISCUSSION 274 

Surprisingly, we found a glutamine synthesizing-independent activity for GS in regulating EC 275 

motility, even though we cannot formally exclude a possible contribution of minimal levels of 276 

glutamine production by GS to the observed phenotype. Indeed, GS regulates RHOJ signal-277 

ing in cell motility as shown by several lines of evidence. First, a fraction of GS is present in 278 

EC membranes, where active RHOJ resides. Second, GS interacts with RHOJ in ECs in co-279 

IP experiments (though this interaction can be direct / indirect). Third, GSKD reduces RHOJ’s 280 

palmitoylation, membrane localization and activity in ECs. Thus, since RHOJ promotes EC 281 

motility13,17, the impaired migration of GSKD ECs could be attributed to the reduced RHOJ ac-282 

tivity.  283 

However, RHOJ likely also indirectly contributes to promoting EC motility through con-284 

trolling the activity of the RHOA/ROCK/MLC signaling pathway, known to regulate EC motility 285 

by affecting stress fiber formation13,17. Indeed, by lowering RHOJ’s activity, GS silencing could 286 

also indirectly increase RHOA/ROCK/MLC signaling, consistent with reports that RHOJ inhib-287 

its this pathway13,17 (even though the precise molecular link between RHOJ and 288 

RHOA/ROCK/ MLC signaling remains unknown, and a possible effect of GSKD on other small 289 

GTPases or motility regulators cannot be excluded). Increased RHOA/ROCK/MLC signaling 290 

would be expected to result in the accumulation of F-actin stress fibers and induction of a less 291 

motile phenotype. Since a decrease in ROCK activity and myosin II contraction are necessary 292 

to allow vessel branching25, the increased stress fiber content, the impaired lamellipodia for-293 
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mation and the reduced motility of GSKD ECs can explain the observed in vivo vessel sprout-294 

ing defect (Extended Data Fig. 7p).  295 

 Because purified GS seems capable of autopalmitoylation (a trademark of PAT en-296 

zymes), and GS silencing lowers RHOJ palmitoylation, our data support a model, whereby 297 

GS first autopalmitoylates itself and thereafter transfers the palmitoyl group to RHOJ, though 298 

we cannot formally exclude that transfer of the palmitoyl group from GS to RHOJ occurs via 299 

additional partners or even non-enzymatically. A possible model for GS palmitoylation is de-300 

scribed in Supplementary Discussion 3 and Extended Data Fig. 8. Also, whether the GS-301 

RHOJ partnership is exclusive or GS interacts with other players (eg other palmitoylated 302 

RhoGTPases such as RAC1, CDC42, RHOU or RHOV) to mediate this effect on EC motility, 303 

remains outstanding. In any case, RHOJ seems to be a critical target of GS, given that its si-304 

lencing completely phenocopies GS inhibition in ECs. 305 

Finally, GS is critical for EC motility / migration, contributing to the formation of new 306 

vessels in development and disease. In contrast, ECs do not migrate when they are quiescent 307 

in healthy adults, explaining why GS inhibition has no observable effects on the vasculature in 308 

healthy adult mice. This renders GS an attractive disease-restricted target for therapeutic in-309 

hibition of pathological angiogenesis. In agreement, the pharmacological GS blocker MSO 310 

reduced pathological angiogenesis in blinding eye and psoriatic skin disease (Fig. 2), which 311 

warrants further exploration of GS targeting in anti-angiogenesis.  312 

 313 

 314 

 315 
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LEGENDS TO FIGURES  449 

FIGURE 1: EC-SPECIFIC DELETION OF GS CAUSES VASCULAR DEFECTS IN VIVO 450 

a, GS expression (arrowheads) in the retinal microvasculature (co-stained with isolectin B4 451 

(IB4)) of five day-old (P5) chimeric pups obtained by injection of GS+/GFP ES cells into wild 452 

type (WT) C57Bl/6 blastocysts (white boxed region is magnified in right panel). b, GS protein 453 

levels in primary human umbilical vein ECs under different extracellular glutamine levels 454 

(densitometric quantification of GS/ß-actin levels in % of 0 mM glutamine is shown on top). c, 455 

GS mRNA levels upon activation of VE-cadherin-CreERT2. d-g, IB4 staining of P5 retinal vas-456 

cular plexi from WT (d) and GSvECKO (e) mice (pictures with zoom-in insets, A=artery, V=vein) 457 

and quantification of branch points at the front of the plexus (f) and radial expansion of the 458 

plexus (g). h, Vessel regression quantified as area of collagen IV (Col IV)+ IB4- vessel sleeves 459 

(% of total Col IV+ area) in retinas from P5 WT and GSvECKO pups. i-j, Number of distal sprouts 460 

(i) and filopodia (j) per unit length of the retinal vascular front. k-m, Representative pictures for 461 

IB4 (gray)/EdU (cyan) double staining of P5 WT (l) and GSvECKO
 (m) retinas (arrowheads in 462 

zoom-in insets denote EdU+ ECs) and quantification (k) of EdU+ ECs at the front of the plex-463 

us. n-r, CD31-stained dermal dorsal blood vasculature in E16.5 WT (n,o) and GSvECKO (p,q) 464 

mice with boxed regions  magnified in (o) and (q) and quantification of number of branch 465 

points per mm2 (r). All data are mean±s.e.m; n=2 for densitometric quantification (b); n-466 

numbers (individual mice) for WT and GSvECKO are: 3 and 3 (c); 11 and 10 (f); 10 and 7 (g); 4 467 

and 6 (h); 17 and 20 (i,j); 12 and 22 (k); 5 and 15 (r), from 2 (g,h,r), 3 (f) or 4 (i,j,k) litters. 468 

NSp>0.05, *p<0.05 according to Student’s t test (c,g,h,i,k,r) or mixed models R statistics (f,j). 469 

Scale bars: 10 µm (a right), 50 µm (a left), 100 µm (l,m), 200 µm (d,e,n,p). For gel source im-470 

ages, see Extended Data Fig. 9. 471 
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 472 

FIGURE 2: GS INHIBITION MITIGATES PATHOLOGICAL ANGIOGENESIS 473 

a-d, Retinal flat-mounts of retinopathy of prematurity (ROP) mice treated with vehicle (a) or 20 474 

mg kg-1 d-1 MSO (b). Quantification of vascular tuft (c) and vaso-obliterated area (d) in control 475 

and MSO-treated ROP pups. e-g, Quantification (e) of CD31+ (green) neo-vessels in corneal 476 

flat-mounts from mice in corneal pocket assays (CPA) with bFGF pellets (demarcated by dot-477 

ted white line) additionally containing vehicle (f) or MSO (g). h-l, CD105 staining of untreated 478 

skin (h), IMQ-treated skin (i), IMQ + low dose MSO-treated skin (j), IMQ + high dose MSO-479 

treated skin (k), and corresponding quantification of CD105+ area (l). All data are 480 

mean±s.e.m.; n-numbers (individual mice) for control and MSO-treated are: 7 and 6 (c,d), 10 481 

and 11 (e) from 3 litters (c,d) and 2 experiments (e). In (l) n=15 for control, n=22 for IMQ, 482 

n=18 for IMQ + MSO (low; indicated by +) and n=6 animals for IMQ + MSO (high; indicated by 483 

++) from 3 experiments. NSp>0.05, *p<0.05 according to Student’s t test (c,d,e) or ANOVA 484 

with Dunnett’s multiple comparisons vs IMQ (l). bFGF: basic fibroblast growth factor; CD31: 485 

cluster of differentiation 31; IMQ: imiquimod; MSO: methionine sulfoximine. Scale bars: 100 486 

µm (a,b), 200 µm (f,g), 75 µm (h-k). 487 

 488 

FIGURE 3: LOSS OF GS IMPAIRS EC MIGRATION THROUGH PERTURBED ACTIN DYNAMICS 489 

a-f, Control (a,c) and GSKD (b,d) EC spheroids without (a,b) and with mitomycin C (MitoC) 490 

(c,d) treatment and quantification of number of sprouts per spheroid (e) and total sprout 491 

length (f). g, [3H]-Thymidine incorporation into DNA in control and GSKD ECs. h, Wound clo-492 

sure upon MitoC-treatment of control and GSKD monolayers using the scratch assay. i, 493 
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Boyden chamber migration for control, GSKD and GSKD + rGSOE (overexpression of a shRNA-494 

resistant GS mutant) ECs, all under MitoC-treatment. j, Velocity measurement using sparsely 495 

seeded control and GSKD ECs. k-m, Phalloidin (F-actin) staining of control (k) and GSKD (l) 496 

ECs (arrows and white dotted lines indicate lamellipodia) and quantification of lamellipodial 497 

area (m). n-p, Quantification of F-actin/G-actin ratio in phalloidin (F-actin) – DNAse I (G-actin) 498 

double-stained control and GSKD ECs (n), and representative images of the phalloidin staining 499 

of control (o) and GSKD (p) ECs. q-u, Phalloidin staining of latrunculin B-treated control (q,s) 500 

and GSKD (r,t) ECs at timepoint 0 (q,r) and at 1 h after latrunculin wash-out (s,t) and quantifi-501 

cation of F-actin levels after wash-out (u). v, Quantification of α-tubulin levels in GSKD and 502 

control ECs. All data are mean±s.e.m.; n-numbers (independent experiments) are: 4 (e,f), 9 503 

(g,j), 5 (h), 6 (i,u), 7 (m) and 3 (n,v). NSp>0.05, *p<0.05 according to mixed models R statistics 504 

(e,f), Student’s t test (g,h,j,m,n,u,v) or ANOVA with Dunnett’s multiple comparison vs control 505 

(i).  AU, arbitrary units. Scale bars: 100 µm (a-d), 10 µm (k,l) and 20 µm (o-t). 506 

 507 

FIGURE 4: ENDOTHELIAL GS REGULATES RHOGTPASE ACTIVITY  508 

a, Glutamine-producing activity at different extracellular glutamine levels measured as label 509 

contribution of 15NH4
+ to intracellular glutamine (% isotope enrichment in glutamine m+1 and 510 

glutamate m+1 at 30 min after adding 15NH4
+; MSO (1 mM) was used to block GS activity). b, 511 

Immunoblots for RHOJ, NaK ATPase (NaK; membrane marker) and GAPDH (cytosol marker) 512 

in cytosolic (c) and membrane (m) fractions with densitometric quantification c, Immunoblot 513 

for active and total RHOJ with densitometric quantification (with inclusion of RHOJKD, beads 514 

only and irrelevant biotinylated peptide as negative controls) d, Schematic diagram displaying 515 

RHOJ’s pivotal, though yet not fully understood (as highlighted by the question mark) role in 516 
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EC migration and stress fiber formation. e-g, Immunoblots for pull-down RHOA (e), RHOB (f) 517 

and RHOC (g) activity assays with densitometric quantifications. h, Control and GSKD ECs, 518 

expressing the DORA RHOA biosensor, with quantification of whole-cell FRET startratio 519 

(mean±s.e.m.; n=12 individual control ECs and n=9 GSKD ECs). Look-up table (LUT) (color 520 

bar) on the left denotes relative RHOA activities (ranging from blue=low to red=high). i, Ky-521 

mography analysis of DORA RHOA biosensor expressing ECs, showing abnormally short-522 

lived lamellipodia in GSKD ECs and spatio-temporal deregulation of RHOA activity, with red 523 

arrowheads indicating increased RHOA activity in the retracting lamellipodium of GSKD ECs 524 

(kymograph representative of 13 individual control and GSKD cells analyzed). Look-up table 525 

(LUT) (color bar) in the bottom left corner denotes relative RHOA activities (ranging from 526 

blue=low to red=high). j, Immunoblots for ROCK1, ROCK2 and α-tubulin with densitometric 527 

quantification. k, Immunoblots for pMLC, total MLC and α-tubulin (loading control) with densi-528 

tometric quantification. Both pMLC and total MLC levels were quantified densitometrically and 529 

first corrected for their corresponding α-tubulin. Then the ratio of the corrected (c) 530 

(c)pMLC/(c)MLC was calculated. l, Quantification of phalloidin-stained F-actin stress fibers 531 

after latrunculin B wash-out in ECs pre-treated with the ROCK inhibitor Y27632. Values are 532 

expressed relative to untreated non-silenced control (horizontal dotted line) m-o, Effect of 533 

Y27632 pre-treatment on: spheroid sprouting defect in GSKD spheroids (m), migration defect 534 

of GSKD ECs in scratch wound assay (n), and lamellipodial area (o). Values in n,o are ex-535 

pressed relative to untreated non-silenced control (horizontal dotted line). An effect of this in-536 

hibitor on baseline vessel formation has been documented previously26. pMLC: phosphory-537 

lated myosin light chain; Y27632: (1R,4r)-4-((R)-1-aminoethyl)-N-(pyridin-4-538 

yl)cyclohexanecarboxamide, ROCK inhibitor. Scale bar is 25 µm in (h). All data are 539 

mean±s.e.m.; n-numbers (independent experiments) are: 3 (a,e,f,m,n), 4 (c(MSO),h,k,l), 5 (o), 540 
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6 (b), 7 (j), 8 (c(GSKD), g). NSp>0.05, *p<0.05; ANOVA with Dunnett’s multiple comparisons vs 541 

4 mM (a), one sample t test (b,c,e,f,g,j,k), Student’s t test (h,l,n,o) or mixed models R statistics 542 

(m). For gel source images, see Extended Data Fig. 9. 543 

 544 

FIGURE 5: GS (AUTO)-PALMITOYLATION 545 

a, Co-immunoprecipitation (Co-IP) of endogenous RHOJ and GS in ECs. Upper panel: im-546 

munoprecipitation (IP) of RHOJ, followed by immunoblotting (IB) for GS. Lower panel: IP for 547 

GS, followed by IB for RHOJ. b, Immunoblot for GS and RHOJ in cytosolic (c) and membrane 548 

(m) fractions in ECs with NaK ATPase (NaK) and GAPDH as membrane and cytoplasmic 549 

fraction markers respectively. c, Quantification of the diffusion coefficient (DF, in µm2 s-1) of 550 

single photoswitchable fluorescent protein mEOS and mEOS-fused GS (mEOS-GS) particles 551 

in the plasma membrane region of ECs acquired by SPT-PALM under TIRF illumination (DFs 552 

were calculated for 41 cells expressing mEOS and 37 expressing mEOS-GS) d, GS im-553 

munoblotting after streptavidin pull-down of biotin-azide clicked lysates from HEK-293T cells 554 

(with or without GS overexpression and MSO treatment) for the indicated palmitoylation 555 

probes. Input shows levels of GS overexpression. e, Dose-effect of palmitoyl-alkyne CoA on 556 

autopalmitoylation of purified GS; biotin-azide clicking and subsequent HRP-streptavidin blot-557 

ting; input control on Coomassie-stained gel. f, Immunoblotting for RHOJ, NaK and GAPDH in 558 

membrane (m) and cytosolic (c) fractions of control- and 2BP-treated ECs with densitometric 559 

quantification. g, Palmitoylation of RHOJ in GSKD and MSO-treated ECs. In gel fluorescence 560 

for TAMRA-azide 17-ODYA (palmitoylation probe)-clicked FLAG-RHOJ is shown. FLAG de-561 

tection serves as loading control. 2BP, 2-bromopalmitate, pan-palmitoylation inhibitor. All data 562 

are mean±s.e.m.; n-numbers (independent experiments) are: 3 (a,b,c,d,f,g), 2 (e). NSp>0.05, 563 
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*p<0.05; Student’s t test (c); one sample t test (f,g). For gel source images, see Extended Da-564 

ta Fig. 9. 565 

 566 

 567 

 568 

LEGENDS TO EXTENDED DATA FIGURES  569 

EXTENDED DATA FIGURE 1: GS KNOCK-OUT IMPAIRS VESSEL SPROUTING 570 

a, GS mRNA levels in human umbilical vein ECs (HUVEC; n=9 donors), lung ECs (n=5), co-571 

lon ECs (n=4), liver ECs (n=3), human umbilical arterial ECs (HUAEC; n=2) and human blood 572 

outgrowth ECs (BOEC (n=2); (mean±s.e.m.; *p<0.05 vs HUVEC, Student’s t test) and in 573 

HEPG2 cells (mean±s.e.m.; n=3; *p<0.05 vs HUVEC, Student’s t test). b-c, Western blot of 574 

GS protein levels in HUVECs and HEPG2 cells in medium containing 0.6 mM glutamine (+) or 575 

0.025 mM glutamine (-) (b), and in isolated mouse liver ECs (mLiECs) and mouse astrocytes 576 

(c) with α-tubulin as loading control (representative immunoblots of two independent experi-577 

ments are shown). d-e, Genomic organization of the loxed GS allele before and after Cre-578 

mediated excision (d) and correct recombination of the lox allele (L) in GSvECKO and GSpECKO 579 

mice upon tamoxifen (tam) treatment, as assessed by genomic DNA PCR (e; the PCR to am-580 

plify the loxed GS allele (lox) or to amplify the Cre-recombined allele (∆) were run in separate 581 

reactions but loaded in the same lane). f, Quantification of branchpoints at the rear of the 582 

plexus in GSvECKO mice (mean±s.e.m.; n=10 animals for GSvECKO and 11 for wild-type (WT) 583 

controls from 3 litters; *p<0.05 vs WT littermates, mixed models R statistics). g, Pericyte cov-584 

erage of retinal microvessels in WT and GSvECKO littermates determined by NG2 staining and 585 

shown as NG2+ area as % of vessel area (mean±s.e.m.; n=4 animals for WT and 3 for 586 



5/13/2018 26

GSvECKO from 1 litter; NSp>0.05 vs WT, Student’s t test). h, Reduced complexity of the retinal 587 

vascular front in P5 GSvECKO vs WT animals determined by the number of branches on distal 588 

sprouts (mean±s.e.m.; n=13 animals for WT and 21 for GSvECKO from 5 litters; *p<0.05 vs WT, 589 

Student’s t test). i, Quantification of EdU+ ECs at the rear of the plexus (mean±s.e.m.; n=12 590 

animals for WT and 22 for GSvECKO from 4 litters; NSp>0.05 vs WT littermates, Student’s t 591 

test). j-m, Isolectin B4 staining of P5 retinal vascular plexi from WT (j) and GSpECKO (k) mice 592 

(representative pictures with zoom-in insets, A=artery, V=vein) and quantification of branch 593 

points at the front (l) and the rear (m) of the plexus (mean±s.e.m.; n=10 animals for WT and 594 

18 for GSpECKO from 4 litters; *p<0.05 vs WT littermates, Student’s t test). n-u, Isolectin B4 595 

staining of the retinal microvasculature of 3 week (P21)-old (n,o) and 6 week (P42)-old (r,s) 596 

WT and GSvECKO littermates (A=artery, V=vein). Lower left insets display higher magnification 597 

of IB4-stained superficial plexus, whereas lower right insets display higher magnification of 598 

the deep plexus. Also shown is the corresponding quantification of the vascular area (p,t) and 599 

the branch point density (q,u) in the superficial and the deep layer  (mean±s.e.m.; n=8 ani-600 

mals for WT and 8 for GSvECKO at P21, from two litters; n=10 animals for WT and 14 for 601 

GSvECKO at P42, from four litters; NSp>0.05 vs WT, Student’s t test). v-ag, Representative mi-602 

crographs of heart (v,z), liver (w,aa) and kidney (x,ab) sections from WT and GSvECKO litter-603 

mates immunostained for the EC marker endoglin and of lung (y,ac) sections immunostained 604 

for the EC marker CD34 and corresponding quantifications of endoglin+ (ad, heart; ae, liver; 605 

af, kidney) or CD34+ (ag) vascular area (mean±s.e.m.; n=5 animals (4 for heart) for WT and 7 606 

(6 for heart) for GSvECKO, from two litters, NSp>0.05 vs WT, Student’s t test). ah-ai, Repre-607 

sentative images of flat-mounted retinas from control (ah) and MSO-treated (ai) ROP mice 608 

(vaso-obliterated area in white). Scale bars are 200 μm in j-k, n-o and r-s, 20 μm in v-ac and 1 609 

mm in ah-ai. HEPG2: hepatocellular carcinoma cells; mLiEC: mouse liver ECs; Tam: tamoxi-610 
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fen; lox: loxed allele; ∆: recombined allele; NG2: chondroitin sulfate proteoglycan 4; Edu: 5-611 

ethynyl-2'-deoxyuridine. For gel source images, see Extended Data Fig. 9. 612 

 613 

 614 

EXTENDED DATA FIGURE 2: EFFECTS OF SILENCING AND PHARMACOLOGICAL INHIBITION OF 615 

GS ON EC VIABILITY AND CENTRAL METABOLISM  616 

a, GS mRNA levels in control ECs and ECs transduced with two different non-overlapping 617 

shRNAs targeting GS (GSKD1 and GSKD2; GSKD1 is used in the experiments in the main manu-618 

script and denoted as GSKD) or transfected with scrambled siRNA (SCR) or siRNA targeting 619 

GS (siGS). Data are expressed as % of the respective control, denoted by the horizontal dot-620 

ted line (mean±s.e.m.; n=28 independent experiments for GSKD1, n=3 independent experi-621 

ments for GSKD2 and n=9 independent experiments for siGS; *p<0.05 vs the respective con-622 

trol; one sample t test). b-c, Quantification of number of sprouts (b) and total sprout length (c) 623 

for spheroid sprouting assays with GSKD ECs and GSKD ECs expressing a shRNA-resistant 624 

GS mutant (rGSOE) (mean±s.e.m.; n=3 independent experiments; *p<0.05 and NSp>0.05 vs 625 

control; ANOVA with Dunnett’s multiple comparison vs control). d, Viability of control and 626 

GSKD ECs as measured by lactate dehydrogenase (LDH) release assay (mean±s.e.m.; n=3 627 

independent experiments; NSp>0.05 vs control, Student’s t test). e, Intracellular reactive oxy-628 

gen species (ROS) levels measured by CM-H2DCFDA staining (mean±s.e.m.; n=3 independ-629 

ent experiments; NSp>0.05 vs control, Student’s t test). f, Energy charge measurement (([ATP] 630 

+ 1⁄2[ADP]) / ([ATP] + [ADP] + [AMP])) in GSKD and control ECs (mean±s.e.m.; n=3 inde-631 

pendent experiments; NSp>0.05 vs control, Student’s t test). g, Ratio of oxidized glutathione 632 

over total glutathione levels (GSSG/(GSH+GSSG)) in GSKD and control ECs (mean±s.e.m.; 633 
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n=4 independent experiments; NSp>0.05 vs control, Student’s t test). h, NADP/NADPH ratio in 634 

GSKD and control ECs (mean±s.e.m.; n=5 independent experiments; NSp>0.05 vs control, one 635 

sample t test). i-k, Effect of GSKD on major metabolic fluxes including glycolysis (i), glucose 636 

oxidation (j) and glutamine oxidation (k) (mean±s.e.m.; n=3 independent experiments for (i), 637 

n=5 for (j) and n=4 for (k); NSp>0.05 vs control, one sample t test). l,m, Oxygen consumption 638 

rate (OCR) in control, MSO-treated and GSKD ECs in basal state and after injection of oligo-639 

mycin, FCCP and antimycin A (l) (mean±s.e.m.; n=3 independent experiments), and calcula-640 

tion of OCRBAS, OCRATP and maximal respiration (m) (mean±s.e.m.; n=3 independent exper-641 

iments). AU: arbitrary units; CM-DCF: 5-(and-6)-chloromethyl-2′,7′-dichlorodihydrofluorescein 642 

diacetate, acetyl ester; FCCP: carbonyl cyanide-4-(trifluoromethoxy) phenylhydrazone; OC-643 

RBAS: basal oxygen consumption rate; OCRATP: ATP-generating oxygen consumption rate; 644 

RFU: relative fluorescence units; MSO, methionine sulfoximine. 645 

 646 

EXTENDED DATA FIGURE 3: GS KNOCK-DOWN REDUCES EC MOTILITY 647 

a, Wound closure in control and GSKD2 EC monolayer scratch assays with or without MitoC-648 

pretreatment (mean±s.e.m.; n=7 and 5 independent experiments for with and without MitoC 649 

respectively; *p<0.05 vs corresponding control; Student’s t test). b, Quantification of lamel-650 

lipodial area (% of total cellular area) in control and GSKD2 ECs (mean±s.e.m.; n=3 independ-651 

ent experiments; *p<0.05 vs control; Student’s t test). c, Wound closure in monolayer scratch 652 

assays with SCR- and siGS-transfected ECs (mean±s.e.m.; n=5 independent experiments; 653 

*p<0.05 vs SCR; Student’s t test). d, Quantification of lamellipodial area (% of total cellular 654 

area) in SCR- and siGS-transfected ECs (mean±s.e.m.; n=5 independent experiments; 655 

*p<0.05 vs SCR; Student’s t test). e, [3H]-Thymidine incorporation into DNA in SCR- and 656 
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siGS-transfected ECs (mean±s.e.m.; n=3 independent experiments; NSp>0.05 vs SCR; Stu-657 

dent’s t test). 658 

 659 

 660 

 661 

EXTENDED DATA FIGURE 4: EFFECTS OF GS SILENCING ON CYTOSKELETON AND BARRIER 662 

FUNCTION 663 

a-h, Representative images of control (a,c,e,g) and GSKD (b,d,f,h) ECs after staining for α-664 

tubulin (a,b), F-actin (c,d) and nuclear staining (e,f). i-k, Representative images of phalloidin + 665 

Hoechst-stained liver ECs 6 hours after isolation from control (i) and MSO-treated (j) mice, 666 

and corresponding quantification of F-actin levels (k) (mean±s.e.m.; n=5 mice per group; 667 

*p<0.05 vs control, Student’s t test). l-n, Representative images of phalloidin-stained (F-actin) 668 

confluent monolayer control (l) and GSKD (m) ECs aligning a scratch wound, and quantifica-669 

tion of F-actin levels (n) (mean±s.e.m.; n=5 independent experiments; *p<0.05 vs control, 670 

Student’s t test). o, Quantification of the length of discontinuous and continuous VE-cadherin-671 

stained junctions in control and GSKD ECs (mean±s.e.m.; n=4 independent experiments; 672 

*p<0.05 vs control, Student’s t test). p, Quantification of VE-cadherin gap size index in control 673 

and GSKD EC monolayers (mean±s.e.m.; n=4 independent experiments; *p<0.05 vs control, 674 

Student’s t test). q-v, Corresponding representative images of monolayer control and GSKD 675 

ECs stained for VE-cadherin (q,r,u,v) and F-actin (s,t,u,v). Yellow arrows in (r) point to discon-676 

tinuous VE-cadherin junctions and yellow asterisks indicate intracellular gaps. w, Quantifica-677 

tion of transendothelial electrical resistance (TEER) in control and GSKD EC monolayers 678 

(mean±s.e.m.; n=4 independent experiments; *p<0.05 vs control, Student’s t test at each time 679 
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point). x-z, Quantification (x) of Evans blue dye extracted from the ears of control and MSO-680 

treated mice induced by topical application of mustard oil (n=4 mice for each condition, 681 

*p<0.05; Student’s t test) and representative pictures of the Evans blue leakage into the ear 682 

tissue in control (y) and MSO-treated (z) mice. Scale bar is 20 μm in a-h and in l-m and 10 μm 683 

in i-j and in q-v. AU: arbitrary units. 684 

 685 

EXTENDED DATA FIGURE 5: ENZYMATIC ACTIVITY OF GS AND ITS ROLE IN EC MIGRATION 686 

a, Scheme of 15NH4
+ labeling of glutamate and glutamine with blue circles representing unla-687 

beled carbons and red circles representing labeled nitrogen. b, 15N incorporation into gluta-688 

mine (% isotope enrichment in m+1 and m+2 at 30 min after adding 15NH4
+) in medium with 689 

dialyzed serum and different levels of glutamine (mean±s.e.m.; n=3 independent experiments; 690 

ANOVA with Dunnett’s multiple comparisons vs 4 mM). c, 15N incorporation into glutamate (% 691 

isotope enrichment in m+1) and glutamine (% isotope enrichment in m+1 and m+2) at 30 min 692 

after adding increasing concentrations of 15NH4Cl to the medium (mean±s.e.m.; n=3 inde-693 

pendent experiments). d, Scheme of 13C labeling of glutamine from [U-13C]-glutamate label-694 

ing, with blue circles representing unlabeled nitrogen and red circles representing labeled 695 

carbons. e, Label contribution of [U-13C]-glutamate to intracellular glutamine at various extra-696 

cellular glutamine levels (% isotope enrichment in glutamine m+5 and glutamate m+5 at 30 697 

min after adding the tracer) (mean±s.e.m.; n=3 independent experiments; ANOVA with Dun-698 

nett’s multiple comparisons vs 4 mM). f, Scheme representing contribution of [U-13C]-glucose 699 

carbons to glutamine with red circles representing labeled carbons and blue circles represent-700 

ing unlabeled carbons. Incorporation is shown after one turn of the TCA cycle only. g, Total 701 

contribution of [U-13C]-glucose carbons to α-ketoglutarate, glutamate and glutamine in ECs in 702 
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the presence or absence of glutamine in the medium at 48 h after adding the tracer 703 

(mean±s.e.m.; n=3 independent experiments; *p<0.05 vs total contribution in gln at 0.6 mM 704 

external gln, ANOVA with Dunnett’s multiple comparisons).  h, 15N incorporation into gluta-705 

mine (% isotope enrichment in m+1 and m+2 at 30 min after adding 15NH4
+) in ECs and 706 

HEPG2 cells (mean±s.e.m.; n=4 independent experiments (ND=not detected)). i, 13C-707 

glutamine uptake kinetics in control, MSO-treated and GSKD ECs and kinetics of subsequent 708 

downstream conversion to glutamate. Data are expressed as m+5 isotopomer, as a percent-709 

age of the total intracellular pool of glutamine (gln) or glutamate (glu). The “0” timepoint is the 710 

‘theoretical’ 0 when cells did not receive (and thus did not take up) any tracer; the “0.5 min” 711 

timepoint represents uptake in cells, upon addition and immediate removal again of the tracer 712 

(mean±s.e.m.; n=3 independent experiments; no statistical differences between control, 713 

MSO-treated and GSKD were observed at any of the individual time points for glutamine nor 714 

for glutamate according to ANOVA with Dunnett’s multiple comparison vs control at each time 715 

point). j, Extracellular 14C-glutamine uptake in control and GSKD control ECs (mean±s.e.m.; 716 

n=5 independent experiments; NSp>0.05 vs control, one sample t test). k, Ratio of intracellular 717 

glutamine (gln) over glutamate (glu) levels in control and GSKD ECs (mean±s.e.m.; n=3 inde-718 

pendent experiments; NSp>0.05 vs control, Student’s t test). l, Velocity measurement of con-719 

trol and GSKD ECs at different concentrations of glutamine (gln) in the medium (mean±s.e.m.; 720 

n=4 independent experiments; *p<0.05 vs corresponding control, mixed models R statistics). 721 

m-n, Effect of increased concentrations of external glutamine on the number of sprouts (m) 722 

and total sprout length (n) in control and GSKD spheroids (mean±s.e.m.; n=3 independent ex-723 

periments; *p<0.05 vs corresponding control, mixed models R statistics). o-p, Quantification 724 

of number of sprouts per spheroid (o) and total sprout length (p) in control and MSO-treated 725 

EC spheroids (mean ± s.e.m.; n=3 independent experiments; *p<0.05 vs control, Student’s t 726 
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test). q-s, Effect of MSO-treatment on EC motility parameters: wound closure of MitoC-727 

treated ECs (q) (mean±s.e.m.; n=11 independent experiments; *p<0.05 vs control, Student’s t 728 

test), lamellipodial area (r) (mean±s.e.m.; n=10 independent experiments; *p<0.05 vs control, 729 

Student’s t test) and F-actin levels at 1 hour after latrunculin wash-out (s) (mean±s.e.m.; n=4 730 

independent experiments; *p<0.05 vs control, one-sample t test). t, [3H]-Thymidine incorpora-731 

tion into DNA in control and MSO-treated ECs (mean±s.e.m.; n=3 independent experiments; 732 

NSp>0.05 vs control, Student’s t test). α-keto: α-ketoglutarate; GDH: glutamate dehydrogen-733 

ase; glu: glutamate; GS: glutamine synthetase; gln: glutamine; MSO, methionine sulfoximine; 734 

MitoC: mitomycin C. 735 

 736 

EXTENDED DATA FIGURE 6: RESCUING THE GSKD
 PHENOTYPE IN VITRO 737 

a, Schematic representation of the DORA RHOA FRET biosensor, depicting from N- to C-738 

terminal the circular permutated RHOA effector protein kinase N (cpPKN), the dimeric circular 739 

permutated Venus (dcpVen), the ribosomal protein-based linkers (L9), the dimeric Cerulean3 740 

(dCer3) and RHOA. b-m, Representative images of control (b-d), MSO-treated (e-f), GSKD (h-741 

j) and RHOJKD (k-m) ECs after staining for F-actin (phalloidin) (c,e,f,h,i,k,l,n) and pMLC 742 

(d,e,g,h,j,k,m,n). n, Quantification of the pMLC-immunoreactivity (mean±s.e.m.; n=6 inde-743 

pendent experiments; *p<0.05 vs control, one sample t test). o-t, Representative images of 744 

control (o,q,s) and GSKD (p,r,t) EC spheroids treated with vehicle (o,p) or the ROCK inhibitors 745 

Y27632 (q,r) or fasudil hydrochloride (s,t). u-v, Quantification of the number of sprouts per 746 

spheroid (u) and sprout length (v) (mean±s.e.m.; n=3 independent experiments; *p<0.05 and 747 

NSp>0.05 vs untreated control, ANOVA with Dunnett’s multiple comparisons vs untreated con-748 

trol). w, Quantification of the lamellipodial area in vehicle- or fasudil hydrochloride-treated 749 
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control and GSKD ECs (mean±s.e.m.; n=6 independent experiments; *p<0.05 and NSp>0.05 vs 750 

untreated control, ANOVA with Dunnett’s multiple comparisons vs untreated control). x, 751 

Quantification of the lamellipodial area in vehicle-, ML7- or peptide 18-treated GSKD and con-752 

trol ECs (mean±s.e.m.; n=4 independent experiments of which 3 experiments included the 753 

ML7-treatment; *p<0.05 vs untreated control, ANOVA with Dunnett’s multiple comparisons vs 754 

untreated control). y, Scratch wound closure in vehicle-, ML7- or peptide 18-treated GSKD and 755 

control ECs (mean±s.e.m.; n=3 independent experiments; *p<0.05 vs untreated control, 756 

ANOVA with Dunnett’s multiple comparisons vs untreated control). z, Fold-changes (vs un-757 

treated control ECs) in F-actin levels from phalloidin-stained vehicle-, ML7- or peptide 18-758 

treated GSKD ECs (mean±s.e.m.; n=4 independent experiments of which 3 included the pep-759 

tide 18-treatment; *p<0.05 vs untreated control, one sample t test). aa, Fold-changes (vs un-760 

treated control ECs) in pMLC levels from pMLC-immunostained vehicle-, ML7- or peptide 18-761 

treated GSKD ECs (mean±s.e.m.; n=4 independent experiments of which 3 included the pep-762 

tide 18-treatment; *p<0.05 vs untreated control, one sample t test. Fasu., fasudil hydrochlo-763 

ride; pep 18, peptide 18. Scale bar is 20 μm in (b-m) and 100 μm in (o-t). For gel source im-764 

ages, see Extended Data Fig. 9. 765 

 766 

EXTENDED DATA FIGURE 7: RHOGTPASE LOCALIZATION AND INTERACTION WITH GS 767 

a, Co-immunoprecipitation (Co-IP) assays showing no detectable interaction between GS and 768 

RHOA or RHOC (red asterisk indicates a non-specific band, which is present to the same ex-769 

tent in the IgG controls and which is not affected by shRNA mediated knock-down of either 770 

RHOA or RHOC; no band at the correct height (see input) was detected). Picture shown is 771 

representative for 3 independent experiments. b, Co-IP of overexpressed GS and RHOJ-772 
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EGFP or ΔN-RHOJ-EGFP in ECs. Densitometric quantifications of immunoblotted (IB) bands 773 

are mean±s.e.m.; n=4 independent experiments; *p<0.05, one-sample t test vs GS – RHOJ-774 

EGFP Co-IP. In some of the experiments, the expression of the ΔN20-RHOJ-EGFP was low-775 

er than the expression of RHOJ-EGFP. To correct for this possible bias, densitometric quanti-776 

fication of all bands was performed in ImageJ and signals in the IP lanes were normalized to 777 

the input signals. c, Immunoblotting for RHOA and RHOC on cytosolic (c) and membrane (m) 778 

fractions of ECs. Na/K ATPase (NaK) was used as a membrane marker, GAPDH was used 779 

as cytosolic marker. Picture shown is representative for 3 independent experiments. d, 780 

Schematic representation of the bimolecular fluorescence complementation (BiFC) assay with 781 

GS coupled to the N-terminal half of EGFP, and RHOJ coupled to the C-terminal half of 782 

EGFP. Only when GS and RHOJ are in close proximity, the two EGFP half-sites complement 783 

each other and form a functional EGFP. e, Fold-increase in the ratio of HEK cells showing de-784 

tectable EGFP complementation versus cells showing no detectable EGFP complementation; 785 

a construct overexpressing an unfused N-terminal EGFP half-site together with RHOJ cou-786 

pled to the C-terminal EGFP half-site was used as a negative control (mean±s.e.m.; n=4 in-787 

dependent experiments; *p<0.05 vs control, Student’s t test). f, Schematic representation of 788 

SPT-PALM imaging under TIRF illumination with the plasma membrane lipid bilayer depicted 789 

at the top. The TIRF region is shown in bright colors whereas the part of the cell outside of the 790 

TIRF region in grayed out; the TIRF region contains the plasma membrane and its immediate-791 

ly adjacent space, which for the reasons of clearly depicting the principle of this assay are not 792 

shown at their exact relative dimensions. Weight (boldness) and number of arrowheads rep-793 

resent velocity of single particles being either the photoswitchable fluorescent protein (PSFP) 794 

or the PSFP coupled to the protein of interest (GS in this study). The PSFP is activated upon 795 

entry into the TIRF region and is therefore color-coded differently inside vs outside of the 796 
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TIRF region. PSFP-GS displays reduced velocity in the TIRF region, presumably because of 797 

palmitoylation and subsequent membrane association of GS. g, Schematic representation of 798 

in-cell labeling of proteins with clickable alkyne-containing palmitoylation probes and subse-799 

quent biotin-azide clicking. X represents a possible palmitoylated protein, N3
 is the azide 800 

group coupled to biotin. h-i, Rate of CoA release from palmitoyl-CoA as readout for recombi-801 

nant human GS autopalmitoylation while varying either the doses of palmitoyl-CoA (h) or the 802 

amounts of recombinant GS (i) (mean±s.e.m.; n=4 independent experiments for h and n=5 for 803 

i; *p<0.05, ANOVA with Dunnett’s multiple comparisons vs 0 µM palmitoyl-CoA or vs 0.5 µg 804 

recombinant GS). j, Representative GS immunoblot (of 3 independent experiments) for bind-805 

ing of recombinant human GS to palmitoyl-CoA agarose. IF=input fraction; FT=flow through; 806 

W8=wash fraction 8; SDS=eluate. k-m, Effect of treatment with the pan-palmitoylation inhibi-807 

tor 2BP on RHOJ localization in ECs. Representative images of RHOJ-EGFP overexpressing 808 

ECs under vehicle-treatment (k) or 2BP-treatment (l). Red arrowheads indicate EGFP signal 809 

at membrane ruffles, which was quantified as percent of total cellular area (m) (mean±s.e.m.; 810 

n=4 independent experiments; *p<0.05 vs vehicle-treated, Student’s t test). n, RHOJ activity 811 

(CRIB pull-down) in ECs under vehicle- or 2BP-treatment (blots shown are representative of 3 812 

independent experiments; densitometric quantification in arbitrary units (AU) is mean±s.e.m; 813 

*p<0.05, paired Student’s t test vs vehicle-treated). o, Representative RHOJ immunoblotting 814 

for control and GSKD ECs overexpressing RHOJ (RHOJOE) subjected to acyl-RAC. The 815 

cleaved bound fraction (cBF) represents the fraction with palmitoylated RHOJ. IF is the input 816 

fraction, whereas the cleaved unbound fraction (cUF) and the preserved bound fraction (pBF) 817 

are control fractions showing efficient depletion of RHOJ from the thioester cleaving reagent 818 

and near absence of non-specific binding of RHOJ to the resin, respectively (for further detail 819 

see Methods section). Densitometric quantification of cBF/IF is shown (mean±s.e.m; n=3 in-820 
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dependent experiments; *p<0.05, one-sample t test vs control). p, GRAPHICAL ABSTRACT: Left 821 

side: Autopalmitoylation allows endothelial GS to interact directly (or indirectly) with the 822 

RhoGTPase RHOJ and to sustain RHOJ’s palmitoylation, membrane localization and activity 823 

(reflected by GTP binding). RHOJ activity then sustains normal EC migration and lamellipodia 824 

formation, and keeps actin stress fiber formation at levels, promoting normal EC migration 825 

and vessel branching in vivo. Through mechanisms that are incompletely understood at pre-826 

sent (indicated by the question mark), active RHOJ inhibits signaling of the RHOA/B/C – 827 

ROCK – (p)MLC pathway (itself known to promote stress fiber formation and to reduce EC 828 

motility). The relative contribution of a direct effect of RHOJ on migration vs the indirect effect 829 

through RHOA/B/C – ROCK – (p)MLC remains to be determined.  Reduced opacity of 830 

RHOA/B/C, ROCK and (p)MLC indicates reduced signaling of this pathway. GTP: guanosine 831 

triphosphate. Right side: Loss of endothelial GS renders RHOJ less active (visually reflected 832 

by fewer palmitoylated, membrane-bound RHOJ proteins), and weakens the brake on the 833 

RHOA/B/C – ROCK – (p)MLC pathway. The resulting excessive stress fiber formation causes 834 

ECs to lose migratory capacity and reduces vessel branching in vivo. Dashed lines indicate 835 

reduced activity; red X indicates GS blockade; the question mark indicates unknown mecha-836 

nisms. Scale bar is 200 μm in k-l. For gel source images, see Extended Data Fig. 9. 837 

 838 

EXTENDED DATA FIGURE 8: POSSIBLE MOLECULAR MODEL OF GS AUTOPALMITOYLATION 839 

a. Structure of human GS and of its bifunnel-shaped catalytic site. Schematic representation 840 

of the GS decamer in top and front view with individual subunits A and B labeled and colored 841 

gray and green, respectively. Close-up of the bifunnel catalytic site which is formed between 842 

subunits A and B. The GS decamer has 10 active sites, each located at the interface of two 843 
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adjacent subunits. ATP enters from the top whereas glutamate enters from below; Manga-844 

nese ions (Mn2+) are shown as metalic spheres. b. Molecular dynamics (MD) simulation of 845 

palmitoyl-CoA in the catalytic cleft of GS predicts that, while the head of palmitoyl-CoA is 846 

tightly bound to the adenine binding site, the tail can point in opposing directions with respect 847 

to the protein’s principal axis. The most representative structures of the two alternative poses 848 

observed during the long MD simulations for palmitoyl-CoA binding to GS (in blue, seen from 849 

two different perspectives) are shown in red (A, tail bending upwards) and green (B, tail bend-850 

ing downwards). c. Detailed view on the main conformation – conformation A – is shown in 851 

more details. The sulfur atom of palmitoyl-CoA (which is immediately adjacent to the carbon 852 

on which the nucleophilic attack occurs) (colored yellow) approaches the highly conserved 853 

C209 (also colored yellow), with an interatomic distance (S-S) that during the simulations re-854 

versibly fluctuates between 3 and 8 Å. The hydrophobic tail positions itself along grooves 855 

characterized by the presence of hydrophobic residues. Color coding: carbons are grey, ni-856 

trogens blue, phosphorous golden and oxygens red. Cysteines and serines within 5 Å from 857 

the palmitoyl tail are highlighted in yellow and orange, respectively. The hydrophobic residues 858 

around the tail are shown in green. d. Detailed view on conformation B where the tail is found 859 

in a buried hydrophobic cleft, with the sulfur at a distance of 5 Å or less from the conserved 860 

serines 65 and 75 and the tail occupying the site of the GS inhibitor MSO. Details are shown 861 

of the extensive steric clash between MSO and the secondary binding pose (B) observed in 862 

palmitoyl-CoA MD simulations. Palmitoyl-CoA is represented as sticks with standard atomic 863 

colours. MSO is shown in cyan and its position is taken from the 2QC8 entry in the protein 864 

databank. Cysteines and serines within 5 Å from the palmitoyl tail are highlighted in yellow 865 

and orange, respectively. The hydrophobic residues around the tail are shown in green. e. GS 866 

immunoblotting after streptavidin pull-down of biotin-azide clicked lysates from 16C-YA (pal-867 
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mitoylation probe) labeled HEK-293T cells overexpressing wild type GS or GS point-mutated 868 

for C209. The input shows the level of GS overexpression. Representative blot for 4 inde-869 

pendent experiments is shown. f-g. Quantification of total sprout length (f) and number of 870 

sprouts per spheroid (g) for control and GSKD ECs with or without overexpression of shRNA 871 

resistant C209A-point mutated GS (rGSC209A-OE) (mean ± s.e.m.; n=4 independent experi-872 

ments; *p<0.01 vs control, ANOVA with Dunnett’s multiple comparison vs control). h. Sche-873 

matic representation of protein autopalmitoylation. Upon binding of palmitoyl-CoA to the pro-874 

tein, free CoA (gray oval) is released and can be detected. i. Recombinant wild-type (WT) and 875 

point-mutated (R324C and R341C) GS were incubated with different doses of palmitoyl-CoA 876 

in a cell-free system at physiologcial pH. Release of CoA per minute was determined as a di-877 

rect readout for protein autopalmitoylation. j. Different amounts of recombinant WT, R324C 878 

and R341C GS were incubated with a fixed amount of palmitoyl-CoA (40 μM) and CoA re-879 

lease per minute was determined as readout for autopalmitoylation. Data are mean ± s.e.m. 880 

of at least 3 independent experiments. NSp>0.05; *p<0.05 according to two way ANOVA com-881 

paring the entire dose-response to the dose-response of WT GS. The data for WT GS from 882 

panels (i) and (j) are also included in Extended Data Fig. 7 as stand-alone data, but are in-883 

cluded here too for comparison purposes. k. Boyden chamber migration for control, GSKD, 884 

GSKD + rGSOE (r = shRNA-resistant; OE = overexpression), GSKD + rGSR341C-OE and GSKD + 885 

rGSR324C-OE ECs, all under mitomycin C-treatment (mean ± s.e.m.; n=3 independent experi-886 

ments; NSp>0.05; *p<0.05, ANOVA with Dunnett’s multiple comparison vs control). For gel 887 

source images, see Extended Data Fig. 9. 888 

 889 

EXTENDED DATA FIGURE 9: UNCROPPED GEL PICTURES AND BLOTS WITH SIZE MARKERS 890 
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 891 

 892 

 893 

 894 

 895 

METHODS 896 

CHEMICALS AND REAGENTS: The GS inhibitor L-methionine sulfoximine (MSO), mitomycin C, 897 

latrunculin B, oligomycin, antimycin A, carbonyl cyanide-4-(trifluoromethoxy) phenylhydrazone 898 

(FCCP), 2-bromohexadecanoic acid (2-bromopalmitic acid, 2BP), tamoxifen, palmitoyl-CoA 899 

agarose and α-ketoglutarate dehydrogenase were from Sigma-Aldrich. 17-Octadecynoic acid 900 

(17-ODYA) was purchased from Cayman Chemical. The use and/or synthesis of the other 901 

palmitoylation probes 15-hexadecynoic acid (16C-YA; a palmitate-based probe that binds a 902 

broader spectrum of proteins than 16C-BYA (here below), including both PATs and PAT tar-903 

get proteins) and 2-bromooctadec-15-yonic acid (16C-BYA; a 2-bromopalmitate-based activi-904 

ty-based probe that labels but also inhibits palmitoyl acyltransferase (PAT) enzymes) has 905 

been described previously27. The ROCK kinase inhibitor Y27632 was from BioVision, fasudil 906 

hydrochloride and H1152 dihydrochloride are from Tocris. The MLCK inhibitors ML7-907 

hydrochloride and peptide 18 were from Tocris. Collagen type 1 (rat tail) was obtained from 908 

Merck Millipore. [5-3H]-glucose, [3H]-thymidine, [U-14C]-glutamine  were from Perkin Elmer; [6-909 

14C]-D-glucose was from ARC. [U-13C]-glucose, [U-13C]-glutamine, [U-13C]-glutamate and 910 

15NH4Cl were purchased from Cambridge Isotope Laboratories. The following primary anti-911 

bodies or dyes were used: Griffonia simplicifolia (GS)-IB4-Alexa 488, isolectin GS-IB4-Alexa 912 

568, isolectin GS-IB4-Alexa 647, phalloidin-Alexa 488, deoxyribonuclease I-Alexa 594 (Mo-913 
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lecular Probes), anti-collagen IV (2150-1470) (Bio Rad), anti-GS (MAB302) and anti-NG2 914 

Chondroitin Sulfate Proteoglycan (AB5320) (Millipore), anti-FLAG (clone M2), anti-GS (clone 915 

2B12), anti-RHOJ (clone 1E4), anti-ROCK1 (HPA007567), anti-α-tubulin (T6199) (Sigma-916 

Aldrich), anti-β-actin (13E5), anti-phospho-Myosin Light Chain 2 and anti-Myosin Light Chain 917 

2 (9776), anti-Na,K-ATPase (3010), anti-RHOA (67B9) and anti-RHOC (D40E4) (Cell Signal-918 

ing Technology), anti-CD105/endoglin (AF1320), anti-VE-cadherin (AF1002) (R&D Systems), 919 

anti-GS (ab176562) (Abcam), anti-ROCK2 (A300-047A-T) (Imtec Diagnostics), anti-CD31 920 

(MEC13.3), anti-CD34-biotin (#553732) (BD Biosciences). Secondary Alexa-405, -488, -568 921 

or -647 conjugated antibodies were from Molecular Probes; other secondary antibodies and 922 

IgG controls were from Dako. The Click-iT® 5-ethynyl-2´-deoxyuridine (EdU) Alexa Fluor® 555 923 

Imaging Kit was from Invitrogen. Purified bacterial GS was a kind gift from Rod Levine (Be-924 

thesda, MD, USA).  925 

CELL CULTURE: HUMAN UMBILICAL VEIN ENDOTHELIAL CELLS (HUVECS) AND HUMAN UMBILICAL AR-926 

TERY ENDOTHELIAL CELLS (HUAECS) obtained under protocol S57123 (Commission Medical 927 

Ethics of UZ/KU Leuven) after written consent of the donors, were isolated as previously de-928 

scribed 1,2 and were routinely cultured in M199 medium (Invitrogen) containing 20% FBS, 0.6 929 

mM L-glutamine, heparin (10U ml-1; Sigma)), penicillin (100U ml-1), streptomycin (100μg ml-1) 930 

and endothelial cell growth factor supplements (EGCS; 30 mg l-1; Sigma). Cells were only 931 

used between passages 1 and 4 and all experiments were performed in HUVECs from at 932 

least three different donors unless stated otherwise. Also except when stated otherwise, the 933 

use of the abbreviation EC in the text refers to HUVEC. ISOLATION OF ENDOTHELIAL CELLS FROM 934 

HUMAN LUNG/LIVER/COLON MUCOSA: Lung/liver/colon mucosa specimens were obtained under 935 

protocol S57123 (Commission Medical Ethics of UZ/KU Leuven) and were washed several 936 

times with phosphate buffer solution (PBS) and minced with scissors prior to enzymatic diges-937 
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tion for 45 min. at 37 °C with collagenase/dispase/DNase solution (Gibco, Life Technologies). 938 

The resulting suspension was passed through a 100 ߤm nylon mesh (BD Biosciences 939 

Pharmingen) to remove aggregates. The harvested cells were washed, seeded on gelatine 940 

pre-coated 6-well plates and cultured in complete endothelial growth medium (EGM-MV; Lon-941 

za) supplemented with antibiotics. After 5-7 days, when cells reached confluency, a positive 942 

CD31 magnetic bead selection was performed (CD31 MicroBead, #130-091-935, Miltenyi Bio-943 

tech) according to the manufacturer’s guidelines and purified cells were further cultured in 944 

EGM medium. PERIPHERAL BLOOD OUTGROWTH ENDOTHELIAL CELLS (BOECS) were established 945 

and cultured as previously described 28. In brief, blood samples (obtained under protocol 946 

S57123 (Commission Medical Ethics of UZ/KU Leuven) were diluted with PBS prior to Ficoll 947 

PaquePLUS (GE Healthcare) density-gradient centrifugation at 1,000 g for 20 min at room 948 

temperature. The mono-nuclear cell layer was collected, washed with PBS and resuspended 949 

in EGM2 medium (PromoCell). Cells were plated in collagen-coated flasks and medium was 950 

replaced every 2 days. From day 7 onwards, cells were checked for the formation of colonies, 951 

which were allowed to grow up to approximately 1 cm2. BOEC colonies were then trypsinized 952 

and subcultured. HEK293A AND HEPG2 CELLS (ATCC) were grown in DMEM, supplemented 953 

with 10% fetal bovine serum (FBS), 100 U ml-1 penicillin and 100 μg ml-1 streptomycin. When 954 

HEPG2 cells were compared directly to ECs in short term stable isotope tracing experiments, 955 

they were incubated in exactly the same medium as the ECs to rule out possible bias coming 956 

from the difference in media formulation. MOUSE LIVER ENDOTHELIAL CELLS (MLIECS) were iso-957 

lated from perfused healthy livers of control or GSECKO mice. Prior to perfusion, the mice were 958 

anesthetized with Nembutal (60 mg kg-1). Mice were perfused with 5 ml of a water based per-959 

fusion buffer containing 1.7 M NaCl, 84 mM KCl, 120 mM HEPES and 1 mM NaOH followed 960 

by 5 ml of a PBS-based digestion buffer containing 0.1% collagenase II (Life Technologies), 961 
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collagenase I (Life Technologies), 2 mM CaCl2, 1% antibiotic-antimycotic (Life Technologies) 962 

and 10% FBS (Biochrome, Berlin, Germany) at a perfusion rate of 1 ml min-1. Perfusion was 963 

considered complete when the liver and mesenteric vessels were blanched and the desired 964 

amount of digestion buffer (≥ 5ml) had passed through the circulatory system. Livers were 965 

dissected, placed into a 50 ml conical tube with 3 ml of digestion buffer and incubated at 37 966 

°C for approximately 30 min, with regular shaking of the tubes every 5 min. After digestion, 967 

the tissue was homogeneously dissociated and the reaction was stopped with 10 ml of isola-968 

tion buffer containing PBS + 0.1% BSA (Sigma-Aldrich). Subsequently, the cell suspension 969 

was filtered through a 100 μm cell strainer and cells were washed twice with isolation buffer. 970 

Finally, the ECs were isolated by magnetic bead sorting with Dynabeads (CELLectionTM Biotin 971 

Binder Kit, Life Technologies, Ghent, Belgium) coated with anti-mouse CD31 (eBioscience, 972 

Anti-Mouse CD31 Clone 390), according to the manufacturer’s instructions. Briefly, the cell 973 

suspension was incubated with the beads at room temperature for 30 min in HulaMixer® 974 

Sample Mixer (Life Technologies, Ghent, Belgium). Next, CD31+ ECs were collected by put-975 

ting the tubes on a DynaMagTM-50 Magnet (Life Technologies) and removing the supernatant. 976 

The procedure was repeated twice to remove cells debris. Finally, cells were resuspended in 977 

EGM2 medium (PromoCell) and plated at the desired density on cell culture plates pre-coated 978 

with 0.1% gelatin, and grown to confluency. MOUSE ASTROCYTES were prepared as described 979 

previously with minor changes 29. Briefly, spinal cords were dissected from 13-day old 980 

C57BL/6J mouse embryos. Meninges and dorsal root ganglia were removed and a single cell 981 

population was obtained by digestion with 0.05% trypsin in combination with gentle trituration. 982 

The cell suspension was layered on a 6.2% OptiPrep™ (Axis-Shield, Oslo, Norway) cushion 983 

and centrifuged at 500g for 15 min. The pellet was resuspended and the cells were plated 984 

(12,000 cells cm-2) in L15 medium supplemented with glucose (3.6 mg ml-1), sodium bicar-985 
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bonate (0.2%), penicillin 100 IU ml-1), streptomycin (100 μg ml-1) and fetal bovine serum 986 

(10%). After reaching confluency, cell division was halted by treatment with cytosine arabino-987 

side (10 µM, 3 days). After 4 weeks, more than 95% of cells stained positive for glial fibrillary 988 

acidic protein (GFAP; not shown). 989 

PLASMID CONSTRUCTIONS AND LENTIVIRAL PARTICLE PRODUCTION: cDNA for human GS was ob-990 

tained from Origene. Silent mutations were introduced to make the GS cDNA resistant to the 991 

GS-specific shRNA (see below, TRCN0000045628). Point-mutated constructs were generat-992 

ed with Stratagene’s QuickChange site-directed mutagenesis kit following manufacturer’s 993 

guidelines. The cDNA for RHOJ-EGFP (GFP-TCL) was a gift from Channing Der (Addgene 994 

plasmid # 23231) 23 and was used as a template to generate the N-terminal truncated ΔN20-995 

RHOJ-EGFP, lacking the first 20 amino acids and FLAG-tagged RHOJ. Standard cloning 996 

techniques were used to fuse GS to the photoswitchable fluorescent protein mEOS (pRSETa-997 

mEos2 was a gift from Loren Looger; Addgene plasmid # 20341)30. The BiFC vector allowing 998 

simultaneous expression of two separate cDNAs fused to EGFP subfragment 1 (N-terminal; 999 

containing amino acids 1 to 158) or subfragment 2 (C-terminal; containing amino acids from 1000 

159 onwards) respectively was a kind gift of Prof. Hideaki Mizuno (KU Leuven). GS was fused 1001 

to the N-terminal subfragment of EGFP and RHOJ was fused to the C-terminal EGFP sub-1002 

fragment to generate GS-EGFP1/2, RHOJ-EGFP2/2. Lentiviral expression constructs were ob-1003 

tained by cloning the respective cDNAs into pRRLsinPPT.CMV.MCS MM WPRE-vector. Vali-1004 

dated GS-specific (TRC clones TRCN0000045628 (used in the majority of the experiments 1005 

and indicated as GSKD1 in Extended Data Fig. 2a) and TRCN0000045631 (indicated as GSKD2 1006 

in Extended Data Fig. 2a and only used to confirm the migration and lamellipodial defect in 1007 

Extended Data Fig. 3a-b) and RHOJ-specific (TRCN0000047606) shRNAs were either used 1008 

in the pLKO.1 vector  or subcloned into the pLVX-shRNA2 vector (No. PT4052-5; Clontech, 1009 



5/13/2018 44

Westburg BV, Leusden, the Netherlands). Scrambled shRNAs or the empty vectors were 1010 

used as negative controls (both with the same outcome). All constructs were sequence veri-1011 

fied. Lentiviral particles were produced in 293T cells as previously described 2. 1012 

RECOMBINANT PROTEIN PRODUCTION: Template vectors pRRLhGS, pRRLhGSR324C and 1013 

pRRLhGSR341C containing the gene encoding wild type or point mutated human GS were 1014 

used as templates for PCR-based cloning. Recombinant constructs were expressed in the 1015 

Escherichia coli strain BL21 codon + pICA2 that was transformed with pLH36-hGS in which 1016 

expression is induced by isopropyl b-D-1-thiogalactopyranoside under control of a pL-1017 

promotor developed by the Protein Core of VIB (WO 98/48025, WO 04/074488). The pLH36 1018 

plasmid is provided with a His6-tag followed by a murine caspase-3 site. The murine caspase-1019 

3 site can be used for the removal of the His6-tag attached at the N-terminus of the protein of 1020 

interest during purification. The transformed bacteria were grown in 200 ml Luria Bertani me-1021 

dium supplemented with ampicillin (100 µg ml-1) and kanamycin (50 µg ml-1) overnight at 28°C 1022 

before 1/100 inoculation in a 20 l fermenter provided with Luria Bertani medium supplemented 1023 

with ampicillin (100 µg ml-1) and 1 % glycerol. The initial stirring and airflow was 200 rpm and 1024 

1.5 l min-1, respectively. Further, this was automatically adapted to keep the pO2 at 30 %. The 1025 

temperature was kept at 28°C. The cells were grown to an optical density of A600nm = 1.0, 1026 

transferred at 20°C, and expression was induced by addition of 1 mM isopropyl b-D-1-1027 

thiogalactopyranoside overnight. Cells were then harvested and frozen at -20°C. After thaw-1028 

ing, the cells were resuspended at 3 ml g-1 in 50 mM Hepes pH 7.5, 500 mM NaCl, 20mM im-1029 

idazole, 1 mM phenyl-methylsulfonyl fluoride, 10 % glycerol, 5 mM β-mercaptoethanol, 1 mg 1030 

per 100 ml DNAseI (Roche) and 1 tablet per 100 ml Complete Protease Inhibitor (Roche). 1031 

The cytoplasmic fraction was prepared by using the Emulsiflex followed by centrifugation. All 1032 

steps were conducted at 4°C. The clear supernatant was applied to a 20 ml Ni-Sepharose 6 1033 
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FF column (GE Healthcare), equilibrated with 50 mM Hepes pH7.5, 500 mM NaCl, 20mM im-1034 

idazole, 10 % glycerol, 5 mM β-mercaptoethanol and 1 mM phenyl-methylsulfonyl fluoride. 1035 

The column was eluted with 50 mM Hepes pH 7.5, 500 mM NaCl, 400 mM imidazole, 10 % 1036 

glycerol, 5 mM β-mercaptoethanol and 1 mM phenyl-methylsulfonyl fluoride after an interme-1037 

diate elution step with 50 mM imidazole in the same buffer. Finally, the elution fraction was 1038 

injected on a HiLoad 26/60 Superdex prep grade with 20 mM Hepes pH 7.5, 300 mM NaCL, 1039 

10 % glycerol and 0.5 mM TCEP as running solution. The obtained elution fractions were 1040 

analyzed by SDS-PAGE. Recombinant protein concentration was determined using the Mi-1041 

cro-BCA assay (Pierce). 1042 

IN VITRO KNOCK-DOWN/OVEREXPRESSION STRATEGIES: To minimize off-target effects and other 1043 

silencing artifacts, key findings were confirmed with at least two independent and validated 1044 

GS-specific shRNAs (see above) and appropriate controls or with a GS-specific siRNA duplex 1045 

(5’-GGAAUAGCAUGUCACUAAAGCAGGC-3’) and scrambled control (TriFECTaTM, IDT). For 1046 

lentiviral transduction of shRNAs or overexpressing constructs an MOI of 10 or 5 was used, 1047 

respectively. In case of simultaneous transduction of 2 different shRNAs, a MOI 7.5 was used 1048 

for each individual shRNA. In case of simultaneous transduction of a shRNA in combination 1049 

with an overexpression construct, the shRNA was transduced at MOI 10 and the overexpres-1050 

sion construct at MOI 5, except for overexpression constructs for shRNA-resistant GS which 1051 

were transduced at MOI 2.5. Transductions were performed on day 0 in the evening, cells 1052 

were refed with fresh medium on day 1 in the morning and experiments were performed from 1053 

day 3 or 4 onwards. siRNA transfection mixtures (in a total volume of 500 μl) were prepared in 1054 

Opti-MEM containing GlutaMAX-I (Invitrogen) with Lipofectamine RNAi Max transfection rea-1055 

gent (Invitrogen, Belgium) according to the manufacturer’s instructions. The mixtures were 1056 

added to the cells (150,000 cells in 6 well-format plate) together with 2 ml EBM2 without anti-1057 
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biotics for overnight transfection after which the medium was changed back to the regular 1058 

M199 culture medium. siRNA transfection was done at least 48 h prior to functional assays. 1059 

BiFC plasmids were transfected into HEK293A cells with Fugene® HD transfection reagent 1060 

following the manufacturer’s guidelines. KD efficiency and overexpression levels were closely 1061 

monitored for each experiment either on mRNA (QRT-PCR) or protein level.  1062 

RNA ISOLATION AND GENE EXPRESSION ANALYSIS: Total RNA was extracted with Invitrogen’s 1063 

PureLink RNA mini kit according to the manufacturer’s instructions; quality and quantity were 1064 

measured on a Nanodrop (Thermo Scientific). cDNA synthesis was performed with the iScript 1065 

cDNA synthesis kit (BioRad). Quantitative RT-PCR analyses were performed as previously 1066 

described 1 on an Applied Biosystems 7500 Fast device with in house-designed primers and 1067 

probes or premade primer sets (Applied Biosystems or Integrated DNA Technologies) for 1068 

which sequences and/or primer set ID numbers are available upon request. ENOX2 or HPRT 1069 

were used as housekeeping genes.  1070 

WESTERN BLOTTING AND (CO-)IMMUNOPRECIPITATION: Proteins were extracted in Laemmli buffer 1071 

(125 mM Tris-HCl (pH 6.8), 2% SDS,10% glycerol) or in RIPA buffer (25 mM Tris-HCl (pH 1072 

7.6), 150 mM NaCl, 1% NP-40, 1% sodium deoxycholate, 0.1% SDS) containing protease 1073 

and phosphatase inhibitor mixes (Roche Applied Science). After shearing of genomic DNA, 1074 

proteins in the lysates were separated by SDS-PAGE, transferred to nitrocellulose or polyvi-1075 

nylidene difluoride membranes and detected with specific antibodies and HRP-conjugated 1076 

secondary antibodies in combination with ECL or SuperSignal Femto Western blotting sub-1077 

strate (Thermo Scientific). Densitometric quantification was done with ImageJ. For MLC and 1078 

pMLC immunoblotting, each sample was loaded on two separate gels. One gel was used to 1079 

detect MLC and the second was used to detect pMLC. Both gels had their own loading con-1080 
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trol, namely α-tubulin. pMLC/MLC was quantified as follows: (pMLC/α-tubulin)/(MLC/α-1081 

tubulin). Membrane versus cytosolic protein fractions were purified with the Plasma Mem-1082 

brane Protein Extraction Kit (101Bio) according to the manufacturer’s guidelines and using 1083 

proprietary buffers. For co-immunoprecipitation (co-IP) of endogenous or overexpressed pro-1084 

teins, ECs were lysed by rotating at 4°C during at least 4 h in co-IP lysis buffer (20 mM Tris-1085 

HCl pH8, 137 mM NaCl, 10% glycerol, 1% nonidet NP-40 and 2 mM EDTA). Equal amounts 1086 

of protein were incubated overnight with specific antibodies or matching isotype control IgGs 1087 

at 4 °C. Subsequently, 20 μl of protein A/G-Sepharose beads was added to the immune com-1088 

plexes for 4 h at 4°C under gentle rotation. The beads were pelleted, washed three times with 1089 

ice-cold co-IP lysis buffer and boiled for 5 min in reducing agent and loading buffer prior to 1090 

SDS-PAGE. To determine the impact of deleting RHOJ’s first 20 N-terminal AAs on the inter-1091 

action with GS, co-IPs were done as above on ECs simultaneously overexpressing GS and 1092 

RHOJ-EGFP or ΔN20-RHOJ-EGFP. In some of the experiments the expression of the ΔN20-1093 

RHOJ-EGFP was lower than the expression of RHOJ-EGFP. To correct for this possible bias, 1094 

densitometric quantification of all bands was performed in ImageJ and signals in the IP lanes 1095 

were normalized to the input signals. The amount of GS IP’ed was the same in the RHOJ-1096 

EGFP and ΔN20-RHOJ-EGFP condition (data not shown). 1097 

BIOCHEMICAL AND METABOLIC ASSAYS: BICINCHONINIC ACID (BCA) ASSAY (Pierce) was used to 1098 

determine protein content. LDH RELEASE as a measure for cell survival was determined with 1099 

the Cytotoxicity Detection Kit (Roche Applied Science). INTRACELLULAR REACTIVE OXYGEN SPE-1100 

CIES (ROS) LEVELS were determined by CM-H2DCFDA dye (Invitrogen) labeling following 1101 

manufacturer’s guidelines. GLUTAMINE SYNTHETASE ACTIVITY in living cells. The enzyme activity 1102 

in living cells was determined by pulse-labeling the cells for 30 min with 2 mM 15NH4Cl and 1103 

subsequent determination of 15N incorporation in intracellular glutamine by gas chromatog-1104 
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raphy - mass spectrometry GC-MS (see below). Similarly, GS activity was measured by 1105 

pulse-labeling for 30 min with 0.5 mM [U-13C]-glutamic acid and subsequent tracing of 13C in-1106 

to glutamine by GC-MS. The 0.025 mM glutamine condition was added to this assay for the 1107 

sole purpose of having a positive control – lowering external glutamine levels should increase 1108 

GS activity – and are not in any way reflecting maximal GS activity.  Background signals were 1109 

determined by pre-incubating the cells with the GS inhibitor MSO. As an independent manner 1110 

(not relying on labeling one of the immediate substrates (NH4
+ or glutamate)) to determine GS 1111 

activity, we performed steady state labeling of ECs with [U-13C]-glucose (5.5 mM) and deter-1112 

mined carbon contribution to α-ketoglutarate, glutamate and glutamine (for labeling scheme 1113 

see Extended Data Fig. 5f). Prior to derivatization for GC-MS analysis, cells were washed 1114 

with ice-cold 0.9% NaCl and extracted in ice cold 80/20 methanol/water. GLUTAMINE UPTAKE 1115 

ASSAY: Dynamic [U-13C]-glutamine uptake assays were performed as follows: 2.5 x 105 1116 

cells/well were seeded in 6 well plates and pulse-labeled for 0, 10, 20 and 30 min with the 1117 

regular M199 culture medium containing 0.6 mM [U-13C]-glutamine instead of the regular 0.6 1118 

mM unlabeled glutamine. The 0 min time point represents an absolute negative control for 1119 

which extracts were made from ECs that were never treated with tracer-containing medium. 1120 

For the 0.5 min time point, the labeled medium was put on the cells and immediately aspirat-1121 

ed (all together taking 0.5 min). At all time points, cells were thoroughly washed twice with 1122 

ice-cold 0.9% NaCl to ensure complete removal of tracer-containing medium. Cellular extracts 1123 

were then made in ice-cold 80/20 methanol/water, prior to derivatization for GC-MS meas-1124 

urements. Alternatively, cells were incubated with 0.5 μCi ml-1 [U-14C]-L-glutamine for 10 min 1125 

after which they were washed at least three times with ice-cold PBS. The last PBS wash was 1126 

collected and checked for residual radioactivity. Cells were then lysed with 200 μl 0.2 N NaOH 1127 

and lysates were neutralized with 20 μl 1N HCl and used for scintillation counting. [3H]-1128 
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THYMIDINE INCORPORATION: Proliferation was determined by labeling the cells with 1 μCi ml-1 1129 

[3H]-thymidine for 2 h, followed by fixation in 100% ethanol for 15 min, precipitation with 10% 1130 

trichloroacetic acid and finally lysis in 0.1 N NaOH. Scintillation counting was used to assess 1131 

the amount of [3H]-thymidine incorporated into the DNA. ENERGY CHARGE ASSESSMENT: 1.5 x 1132 

106 cells were collected in 100 µl ice cold 0.4 M perchloric acid containing 0.5 mM EDTA. pH 1133 

was adjusted with 100 µl of 2 M K2CO3. 100 µl of the mixture was subsequently injected onto 1134 

an Agilent 1260 HPLC with a C18-Symmetry column (150 x 4.6 mm; 5 mm; Waters), thermo-1135 

stated at 22.5 °C. Flow rate was kept constant at 1 ml min-1. A linear gradient using solvent A 1136 

(50 mM NaH2PO4, 4 mM tetrabutylammonium, adjusted to pH 5.0 with H2SO4) and solvent B 1137 

(50 mM NaH2PO4, 4 mM tetrabutylammonium, 30% CH3CN, adjusted to pH 5.0 with H2SO4) 1138 

was accomplished as follows: 95% A for 2 min, from 2 to 25 min linear increase to 100% B, 1139 

from 25 to 27 min isocratic at 100% B, from 27 to 29 min linear gradient to 95% A and finally 1140 

from 29 to 35 min at 95% A. ATP, ADP and AMP were detected at 259 nm. SEAHORSE EXTRA-1141 

CELLULAR FLUX MEASUREMENTS: ECs were seeded at 1.5 x 105 cells per well on Seahorse 1142 

XF24 tissue culture plates (Seahorse Bioscience Europe). Oxygen consumption (OCR) 1143 

measurements were performed at 6 min intervals (2 min mixing, 2 min recovery, 2 min meas-1144 

uring) in a Seahorse XF24 device. Consecutive treatments with oligomycin (1.2 μM final), 1145 

FCCP (5 μM final) and antimycin A (1 μM final) were performed to allow quantification of ATP-1146 

coupled OCR (OCRATP) and maximal respiration, next to basal OCR (OCRbas). GLYCOLYTIC 1147 

FLUX: ECs were cultured for 6 h in medium containing 0.4 mCi ml-1 [5-3H]-D-glucose (Perkin 1148 

Elmer) after which supernatant was transferred into glass vials sealed with rubber stoppers. 1149 

3H2O was captured in hanging wells containing a Whatman paper soaked with H2O over a pe-1150 

riod of 48 h at 37 °C to reach saturation 1. Then the paper was used for liquid scintillation 1151 

counting. 14C-GLUCOSE OXIDATION: ECs were incubated for 6 h in medium containing 0.55 mCi 1152 
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ml-1 [6-14C]-D-glucose. After that, 250 μl of 2 M perchloric acid was added to each well to stop 1153 

cellular metabolism and to release 14CO2, which was captured overnight at room temperature 1154 

in 1x hyamine hydroxide-saturated Whatman paper. The radioactivity in the paper was deter-1155 

mined by liquid scintillation counting 1. 14C-GLUTAMINE OXIDATION: ECs were incubated for 6 h 1156 

with medium containing 0.5 mCi ml-1 [U-14C]-glutamine. 250 ml of 2 M perchloric acid was 1157 

added to the cells to stop cellular metabolism and release 14CO2. Trapping of 14CO2 occurred 1158 

as described above for glucose oxidation 1. 1159 

PROTEIN (AUTO)PALMITOYLATION DETECTION: IN VITRO PALMITOYLATION (CLICK REACTION-BASED): 1160 

Purified bacterial GS protein was incubated with the indicated concentration of palmitoyl al-1161 

kyne-coenzyme A (Cayman Chemical) for 6 h at room temperature. The GS protein was then 1162 

denatured by the addition of SDS. A click reaction with azide-biotin was performed to label the 1163 

palmitoylated proteins 27. Palmitoylated proteins were detected by SDS-PAGE followed by 1164 

blotting with streptavidin-horseradish peroxidase. FLUORESCENCE-BASED COA RELEASE DETEC-1165 

TION: During autopalmitoylation of proteins, palmitate is transferred from palmitoyl-CoA to the 1166 

protein thereby releasing reduced CoA. α-Ketoglutarate dehydrogenase can use CoA to con-1167 

vert α-ketoglutarate to succinyl-CoA, a reaction that features reduction of NAD+ to fluorescent 1168 

NADH31. In brief, recombinant human GS was incubated with palmitoyl-CoA in MES buffer at 1169 

physiological pH for at least 1 h at 30 °C. The volume was then adjusted to 200 µl in 50 mM 1170 

sodium phosphate buffer (pH 6.8) containing 2 mM α-ketoglutaric acid, 0.25 mM NAD+, 0.2 1171 

mM thiamine pyrophosphate, 1 mM EDTA, 1 mM DTT and 32 mU α-ketoglutarate dehydro-1172 

genase. NADH levels were measured at 20 min after initiation of the reaction on a VICTOR 1173 

plate reader (340 nm excitation – 465 nm emission). The experiment was performed in two 1174 

directions: either with varying doses of palmitoyl-CoA for a fixed amount of recombinant GS or 1175 

with varying amounts of recombinant GS for a fixed concentration of palmitoyl-CoA (40 µM). 1176 
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AFFINITY CHROMATOGRAPHY: A previously published protocol was used to determine cell-free 1177 

binding of recombinant human GS to palmitoyl-CoA agarose32. A total of 50 μl of immobilized 1178 

palmitoyl-CoA-agarose was equilibrated with 20 mM Tris·HCl (pH 8.4)/120 mM NaCl. The 1179 

beads were incubated with 40 μg of recombinant human GS in a final volume of 200 µl for 2 h 1180 

at room temperature on a rotatory system. Beads were pelleted and 20 µl of the supernatant 1181 

was collected as the flow through (FT) fraction. Beads were then washed eight times with 500 1182 

µl of 20 mM Tris·HCl (pH 8.4)/120 mM NaCl buffer. 20 µl of the last wash fraction was col-1183 

lected as fraction W8. Beads were then eluted with SDS loading buffer and heated for 15 min 1184 

at 60 °C. 2 µg of recombinant protein was used as input fraction (IF).  IF, FT, W8 and SDS-1185 

eluate were analysed by immunoblotting for GS.  IN CELL LABELING: In cell labeling experi-1186 

ments were performed essentially as described previously 27. HEK-293T cells were transfect-1187 

ed with the indicated expression plasmids. Twenty-four h after transfection, the medium was 1188 

replaced with DMEM + 10% dialyzed FBS containing the indicated probes (50mM 16C-YA or 1189 

50 mM 16C-BYA). After 18 h, cell lysates were collected by incubation of the cells on ice for 1190 

15 min in lysis buffer (50 mM TEA-HCl (pH=7.4), 150 mM NaCl, 1% Triton X-100, 0.5% sodi-1191 

um deoxycholate, 0.1% SDS and 5 mM PMSF) followed by centrifugation for 10 min at 1192 

15,000 g.  Equal amounts of protein were then used for a click reaction with azide-biotin. For 1193 

labeling with 17-ODYA, FLAG-RHOJ overexpressing ECs were incubated overnight with 17-1194 

ODYA (50 µM) in M199 supplemented with 3.6% fatty acid free BSA, 10% dialyzed FBS and 1195 

5 mM sodium pyruvate. Cells were washed with ice-cold PBS and lysed in NaP lysis buffer 1196 

(0.2 M Na2HPO4.2H2O, 0.2 M NaH2PO4.2H20, 1 M NaCl, 10% NP40). 2 µg of anti-Flag anti-1197 

body was conjugated to 20 µl of dynabeads protein G (Thermofisher) for 1 h at RT. After 1198 

washing the beads twice with NaP lysis buffer, at least 500 µg of protein was added to the 1199 

beads for 3 h at 4°C. Then beads were washed 3 times with NaP lysis buffer and resuspend-1200 
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ed in 20 µl of resuspension buffer (4% SDS, 50 mM TEA, 150 mM NaCl). The click reaction 1201 

was initiated by adding 0.5 μl of 5 mM tetramethylrhodamine azide (TAMRA) (Lumiprobe), 0.5 1202 

μl 50 mM tris (2-carboxyethyl)phosphine hydrochloride (TCEP-HCl), 0.5 μl 10 mM tris (1-1203 

benzyl-1H-1,2,3-triazol-4-yl) methyl]amine (TBTA) and 2,4 µl of 5 mM freshly made ascorbic 1204 

acid. Samples were then incubated for 1 h at 37°C in the dark. Sample buffer (9.4 µl) and re-1205 

ducing agent (3.7 µl) were added to stop the reaction. After 10 min at room temperature in the 1206 

dark, samples were frozen at -80°C or run on a 10% Bis-TRIS gel in MES buffer. STREPTAVI-1207 

DIN-PULLDOWN: After click reaction with azide-biotin, free azide-biotin was removed from the 1208 

samples by centrifugal filtration column (Millipore). The samples were then incubated with 1209 

streptavidin-conjugated beads for 1 h at room temperature. After washing with PBS-T, pro-1210 

teins were eluted from the beads by incubation in elution buffer (95% formamide, 10 mM 1211 

EDTA (pH=8.0)) at 95°C for 5 min. ACYL-RESIN-ASSISTED CAPTURE (ACYL-RAC) in which free 1212 

cysteine thiols are chemically blocked and palmitoylated cysteines are exposed and captured 1213 

by a resin, was performed with the CAPTUREomeTM S-Palmitoylated Protein Kit (Badrilla) 1214 

with minor adaptations to the manufacturer’s guidelines. 500 µg of protein were incubated for 1215 

4 h in 500 µL of thiol blocking reagent (to block free thiols). Proteins were precipitated with 1216 

ice-cold acetone and afterwards solubilized with 300 µL of binding buffer and spun down. Af-1217 

ter protein quantification, 30 µg was kept as total input fraction (IF), and equal amounts of pro-1218 

tein were incubated for 2.5 h with (or without to obtain the negative control preserved bound 1219 

fraction (pBF)) a thioester linkage specific cleavage reagent to cleave the thioester bond. 1220 

Newly liberated thiols were captured with CAPTUREomeTM resin. The resin was spun down 1221 

and the supernate was collected as the cleaved unbound fraction (cUF) to check if the pro-1222 

teins of interest were indeed completely depleted from the thioester cleavage reagent (mean-1223 

ing efficient capture of the free thiols by the resin). After thorough washing of the resin, cap-1224 
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tured proteins (cleaved bound fraction (cBF)), were eluted with reductant and analyzed to-1225 

gether with the IF, cUF and pBF by SDS-PAGE followed by immunoblotting.  1226 

 1227 

GC-MS ANALYSIS:  Metabolites from cells were extracted in 800 µl 80% methanol (at -80 °C). 1228 

Next the extracts were centrifuged at 4°C for 15 min at 20,000 x g and the supernatants were 1229 

dried in a vacuum centrifuge. 25 µl of a 2% methoxyamine hydrochloride solution (20 mg dis-1230 

solved in 1 ml pyridine) was added to the dried fractions which were then incubated at 37 °C 1231 

for 90 min. Then 75 μl of N-tert-butyldimethylsilyl-N-methyltrifluoroacetamide with 1% N-tert-1232 

butyldimethyl-chlorosilane (Sigma-Aldrich) was added and the reaction was carried out for 30 1233 

min at 60°C. Reaction mixtures were centrifuged for 15 min at 20,000 x g at 4°C in order to 1234 

remove insolubilities and the supernatant was transferred to a glass vial with conical insert 1235 

(Agilent). GC-MS analyses were performed on an Agilent 7890A GC equipped with a HP-5 1236 

ms 5% Phenyl Methyl Silox (30 m - 0.25 mm i.d. - 0.25 μm; Agilent Technologies) capillary 1237 

column, interfaced with a triple quadrupole tandem mass spectrometer (Agilent 7000B, Ag-1238 

ilent Technologies) operating under ionization by electron impact at 70 eV. The injection port, 1239 

interface and ion source temperatures were kept at 230 °C. Temperature of the quadrupoles 1240 

was kept at 150°C. The injection volume was 1 μl, and samples were injected at 1:10 split ra-1241 

tio. Helium flow was kept constant at 1 ml min-1. The temperature of the column started at 100 1242 

°C for 5 min and increased to 260 °C at 2 °C min-1. Next, a 40 °C min-1 gradient was carried 1243 

out until temp reached 300 °C. After the gradient, the column was heated for another 3 min at 1244 

325 °C. The GC-MS analyses were performed in Single Ion Monitoring (SIM) scanning for the 1245 

isotopic pattern of metabolites. 1246 

LC-MS ANALYSIS: POLAR METABOLITES were extracted using 250 μL of a 50-30-20 (methanol-1247 

acetonitrile-10 mM ammonium acetate pH 9.3 containing 2 μM of deuterated (d27) myristic 1248 
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acid as internal standard) extraction buffer. Following extraction, precipitated proteins and in-1249 

solubilities were removed by centrifugation at 20,000 x g for 20 min at 4 °C. The supernatant 1250 

was transferred to the appropriate mass spectrometer vials. Measurements were performed 1251 

using a Dionex UltiMate 3000 LC System (Thermo Scientific) in-line connected to a Q-1252 

Exactive Orbitrap mass spectrometer (Thermo Scientific). 15 μl of sample was injected and 1253 

loaded onto a Hilicon iHILIC-Fusion(P) column (Achrom). A linear gradient was carried out 1254 

starting with 90% solvent A (LC-MS grade acetonitrile) and 10% solvent B (10 mM ammonium 1255 

acetate pH 9.3). From 2 to 20 minutes the gradient changed to 80% B and was kept at 80% 1256 

until 23 min. Next a decrease to 40% B was carried out to 25 min, further decreasing to 10% 1257 

B at 27 min. Finally, 10% B was maintained until 35 min. The solvent was used at a flow rate 1258 

of 200 μl min-1, the column’s temperature was kept constant at 25 °C. The mass spectrometer 1259 

operated in negative ion mode, settings of the HESI probe were as follows: sheath gas flow 1260 

rate at 35, auxiliary gas flow rate at 10 (at a temperature of 260 °C). Spray voltage was set at 1261 

4.8 kV, temperature of the capillary at 300 °C and S-lens RF level at 50. A full scan (resolu-1262 

tion of 140,000 and scan range of m/z 70-1050) was applied. For the data analysis, we used 1263 

an in-house library and metabolites of interest were quantified (area under the curve) using 1264 

the XCalibur 4.0 (Thermo Scientific) software platform.  1265 

IN VITRO ASSAYS: ENDOTHELIAL SPHEROID CAPILLARY SPROUTING was performed following estab-1266 

lished protocols 1,2. To form the spheroids, ECs were cultured overnight in hanging drops in 1267 

EGM-2 medium with methylcellulose (Sigma-Aldrich; 20 %volume of a 1.2% solution of 1268 

methylcellulose 4000 cP). Spheroid sprouting entails both EC proliferation and migration. To 1269 

have a ‘clean’ view on the migration aspect in sprouting, we also included conditions in which 1270 

we blocked EC proliferation prior to sprout formation. More in particular, mitotic inactivation 1271 

was achieved by adding mitomycin C (1 μg ml-1) to the medium. To induce sprouting, sphe-1272 
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roids were embedded in a collagen gel and incubated for 20 h. If required, chemical com-1273 

pounds (Fasudil at 10 μM, H1152 at 1 μM and Y26732 at 10 μM) were added during the col-1274 

lagen gel incubation step. Spheroids were then fixed with 4% paraformaldehyde and imaged 1275 

under phase contrast illumination with a Motic AE 31 microscope (Motic Electric Group Co 1276 

Ltd) or a Leica DMI6000B microscope (Leica Microsystems). Phase contrast images were 1277 

used to quantify the number of sprouts per spheroid and the total sprout length (cumulative 1278 

length of all sprouts on a spheroid). Spheroid body circumference was measured to correct 1279 

for differences in size of the spheroid. Per experiment (ie per individual HUVEC isolation) at 1280 

least 10 spheroids per condition were analyzed.  SCRATCH WOUND ASSAYS: 75,000 HUVECs 1281 

were seeded in 24-well format and were allowed to reach confluency over the next 24 h. At 1282 

time T0 the confluent monolayer was scratched with a 200 μl pipet tip and photographed. The 1283 

cells were further incubated for the indicated times and photographed again at time point Tx. 1284 

Gap area at T0 minus gap area at Tx was measured with ImageJ and expressed as % migra-1285 

tion distance. Per well, three non-overlapping regions along the scratch were analyzed. Much 1286 

like the spheroid sprouting, scratch wound healing is a combined readout for EC migration 1287 

and proliferation. Therefore, we also included conditions in which the ECs were pre-treated 1288 

with mitomycin C (1 μg ml-1) to rule out the effect of proliferation. BOYDEN CHAMBER ASSAYS: 1289 

50,000 HUVECs were seeded on 0.1% gelatin-coated tranwells and allowed to adhere. Then, 1290 

the transwells were washed and refed with medium containing only 0.1% FBS and placed in 1291 

bottom wells containing medium with 5% FBS as a pro-migratory stimulus. 16 h later, 1292 

transwells were processed and analysed for numbers of migrated cells. Pre-treatment with 1293 

mitomycin C (see above) was applied. VELOCITY OF RANDOM MOVEMENT was assessed on HU-1294 

VECs that were sparsely seeded on glass bottom 24-well plates. Time-lapse movies were 1295 

generated by confocal image acquisition at 4 min intervals. Velocity of movement was deter-1296 
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mined by tracking nucleus position in function of time (μm h-1) (Tracking Tool TM, Gradi-1297 

entech AB, Uppsala, Sweden). Per condition, on average 2 or 3 individual cells were traced in 1298 

each biological repeat. LAMELLIPODIAL AREA was measured on sparsely seeded phalloidin-1299 

stained ECs with Leica MM AF morphometric analysis software (Leica Microsystems, Mann-1300 

heim, Germany) with in-house developed journals and is expressed in percent of total cell ar-1301 

ea. Treatment with MSO (1 mM), Y27632 (10 μM), Fasudil (10 μM), H1152 (1 μM), ML7 (15 1302 

μM) and peptide 18 (15 μM) were done 24 h prior to analysis of the cells. Per experimental 1303 

condition, a minimum of ten individual cells was analyzed. STAINING AND QUANTIFICATION OF 1304 

VE-CADHERIN JUNCTIONS: VE-cadherin staining and quantification of junctional length and gap 1305 

index was performed as previously described 33. First, the total junctional length (100%) was 1306 

determined by summing up all segments, then the sum of all continuous segments was calcu-1307 

lated as the percentage of total junctional length. The percentage difference between total 1308 

and continuous represents the discontinuous length. Gap size index (intercellular gap ar-1309 

ea/cell number) was determined with the formula ([intercellular gap area/total cell area] 1310 

×1,000)/cell number. Junctional lengths, intercellular gap area, and total cell area were de-1311 

fined manually with ImageJ. For each condition, a minimum of 10 fields was quantified (10-15 1312 

cells per field on average) per experiment, and data shown represent the mean of at least 3 1313 

independent experiments. TRANS ENDOTHELIAL ELECTRICAL RESISTANCE (TEER): 50,000 ECs 1314 

were seeded on 6.5 mm 0.1% gelatin-coated polyester transwells, 0.4 μm pore size (Costar 1315 

ref. 3470, Sigma-Aldrich). The electrical resistance was measured with an Endhome-6 elec-1316 

trode (World Precisions Instruments) connected to an EVOM2 voltohmmeter (World Preci-1317 

sions Instruments). Gelatin-coated wells without cells were used to measure the intrinsic elec-1318 

trical resistance of the inserts for background subtraction. Measurements were performed 1319 

every day for 4 consecutive days, with at least 2 measurements per condition. 1320 
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ACTIN DYNAMICS AND RHO (KINASE) ACTIVITY ASSAYS: LATRUNCULIN WASH-OUT: ECs were treated 1321 

with latrunculin B (100 ng ml-1) for 30 min and were then washed three times with culture me-1322 

dium. The cells were fixed at the indicated time points and stained with phalloidin to visualize 1323 

actin stress fibers. THE F-/G-ACTIN RATIO in GSKD vs control ECs was determined in 4% para-1324 

formaldehyde-fixed cells which were permeabilized for 10 min in PBS with 0.2% Triton X-100 1325 

and stained with phalloidin-Alexa 488 and deoxyribonuclease I-Alexa 594 (1:200) 34. Fluores-1326 

cence intensities were quantified with ImageJ and were based on gray values. On average, 1327 

ten individual cells were analyzed per experimental condition. For RHOJ ACTIVITY measure-1328 

ments, cells were lysed in buffer containing 50 mM Tris, pH 7.6, 150 mM NaCl, 1% Triton X-1329 

100, 0.5 mM MgCl2, protease inhibitors and 0.1 μg μl-1 biotinylated CRIB-peptide. After spin-1330 

ning down for 4 min at 14,000 rpm at 4°C, 50 μl streptavidin-coated beads were added to the 1331 

lysates. Subsequently, samples were rotated for 30 min at 4°C, beads were washed 4 times 1332 

in the above buffer after which they were boiled for 5 min in reducing agent and loading buffer 1333 

35. As negative controls in this assay, we used lysates from RHOJKD ECs, a streptavidin 1334 

beads only-condition and lysates in which the biotinylated CRIB-peptide was replaced by an 1335 

irrelevant biotinylated protein (Fig. 4c). RHOA/B/C ACTIVITY was determined with GST-1336 

Rhotekin pull down assays following previously established protocols 36. ROCK ACTIVITY was 1337 

assayed by determining phosphorylation of the ROCK target myosin light chain 2 (MLC2) on 1338 

Western Blot or by immunostaining. Fluorescence intensities from immunostainings were 1339 

quantified with ImageJ and were based on gray values. 1340 

CONFOCAL AND HIGH RESOLUTION IMAGING: CONFOCAL IMAGING was performed on a Zeiss LSM 1341 

510 Meta NLO or Zeiss LSM 780 confocal microscope (oil objectives: x 40 with NA 1.3, x 63 1342 

with NA 1.4, x 100 with NA 1.3) with ZEN 2011 software (Carl Zeiss, Munich, Germany). With-1343 

in individual experiments, all images across different experimental conditions were acquired 1344 
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with the same settings. DORA RHOA BIOSENSOR FRET IMAGING: RHOA activity was measured 1345 

in living HUVECs by monitoring yellow fluorescent protein (YFP) FRET over donor cyan fluo-1346 

rescent protein (CFP) intensities as described previously 37. In brief, a Zeiss Observer Z1 mi-1347 

croscope, with a Chroma 510 DCSP dichroic splitter, two Hamamatsu ORCA-R2 digital CCD 1348 

cameras and an attached dual camera adaptor (Zeiss) controlling a 510 DCSP dichroic mir-1349 

ror, was used for simultaneous monitoring of CFP and YFP emissions using filter sets ET 1350 

480/40 and ET 540/40m (Chroma Technology, Rockingham, USA), respectively. To excite the 1351 

CFP donor, ET 436/20x and 455 DCLP dichroic mirror was used (Chroma). For FRET/CFP 1352 

ratiometric processing, CFP and YFP images were processed using the MBF ImageJ collec-1353 

tion. The images were background-subtracted, aligned and a threshold was applied. Finally, 1354 

the FRET/CFP ratio was calculated and a custom lookup table was applied to generate a col-1355 

or-coded image, in which white and red colors illustrate high and blue colors illustrate low 1356 

RHOA activities. BIFC IMAGING AND QUANTIFICATION: BiFC was evaluated using a laser scan-1357 

ning microscope (Fluoview FV1000, Olympus, Tokyo, Japan) equipped with a UPLSAPO 60x 1358 

Oil objective (NA1.35). Before imaging cells were fixed with 4 % (v/v) paraformaldehyde and 1359 

stained with DAPI (1/1,000 dilution, Invitrogen). A 488-nm laser was used for exciting EGFP 1360 

while DAPI was excited using a 405-nm laser. A DM405/488/559/635 polychroic mirror was 1361 

used to guide the excitation lasers to the sample. Fluorescence images of fixed cells were 1362 

acquired using a sampling speed of 4 μs pixel-1. Emission light was collected at 430-470 and 1363 

500-550 nm, for DAPI and PAGFP, respectively. The images were acquired with a pixel size 1364 

of 207 nm (1024 x 1024 pixels). Quantification of expression efficiency was done using a 1365 

home-built routine in Matlab®. TIRF MICROSCOPY: A home build setup based on an inverted 1366 

microscope (IX83, Olympus) was used to detect single molecules under total internal reflec-1367 

tion (TIRF) mode. The setup was equipped with an Electron Multiplying-CCD cameras (Im-1368 
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agEM C9100-13; Hamamatsu Photonics, Hamamatsu, Japan) and an APON 60XOTIRF ob-1369 

jective lens (NA 1.49, Olympus). The GS-mEos3.2 molecules were excited with a 561-nm line 1370 

from a DPSS laser (200 mW; Coherent Inc., Santa Clara, California) and converted with a 1371 

405-nm line from a diode laser (Cube, 100 mW; Coherent Inc., Santa Clara, California). Be-1372 

fore being expanded, the laser lines were combined using a 405bcm dichroic mirror. The la-1373 

ser lines were guided onto the sample by a dichroic mirror, z488/561/633rpc. The fluores-1374 

cence of the red of mEos3.2 form was detected through a long pass filter 572 (HQ572LP), in 1375 

combination with a band pass filter HQ590M40-2P. All the filters were purchased from Chro-1376 

ma Inc. Time-lapse fluorescence images were recorded with continuous illumination at a 62.5 1377 

Hz acquisition rate (16ms per frame). SINGLE PARTICLE TRACKING (SPT): For calculation of sin-1378 

gle molecule coordinates the program 'Localizer' running from Matlab was used 38. After local-1379 

ization, the positions of a molecule detected in consecutive frames are connected to recon-1380 

struct a trajectory using home-developed software in Matlab. Coordinates presented in con-1381 

secutive frames are linked to form a single trajectory when they uniquely appear in a distance 1382 

smaller than 856 nm (corresponding to 8 pixels). Trajectories with at least 3 steps were ana-1383 

lyzed using variational Bayes single particle tracking analysis (vbSPT), a software package 1384 

for analysis of single particle diffusion trajectories, where the diffusion constants switch ran-1385 

domly according to a Markov process 39.  1386 

MICE:  GSECKO
 MICE: To obtain inducible EC-specific GS knock-out mice, GSlox/lox mice 40 were 1387 

intercrossed with VECadherin-CreERT2 41 or with Pdgfb-CreERT2 42 mice and named GSvECKO 1388 

and GSpECKO respectively. Correct Cre-mediated excision of the loxed GS segment in tamoxi-1389 

fen-treated GSECKO mice was confirmed via PCR analysis of genomic DNA (Extended Data 1390 

Fig. 1d-e). GENERATION OF GS+/GFP
 CHIMERAS : Blastocysts were collected from superovulated 1391 

C57BL/6 females at post-coital day 3.5 and were cultured for 5-8 days in ES cell culture me-1392 
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dium consisting of Knockout DMEM medium (Invitrogen), with 2 mM L-glutamine, fetal bovine 1393 

serum (Hyclone, ThermoScientific), MEM non-essential amino acids 100X (Invitrogen), 0.01 1394 

mM β-mercaptoethanol (Sigma-Aldrich), 1 mM sodium pyruvate (Invitrogen), 100U ml-1 peni-1395 

cillin, 100μg ml-1 streptomycin, and 2,000 U ml-1 Leukemia Inhibitory Factor (Merck, Millipore). 1396 

Afterwards, the inner cell mass was selectively removed from the trophectoderm, trypsinized 1397 

and replated on a Mitomycin C-arrested MEF feeder monolayer. ES cells were fed every day 1398 

and passaged every 2-4 days onto new feeder cells. GS+/GFP ES cells (E14IB10 ES cell line) 6 1399 

were injected into C57BL/6 blastocysts and high chimeric pups were killed at P5 for detection 1400 

of GFP in the retinal microvasculature. 1401 

IN VIVO MODELS: ANALYSIS OF DORSAL DERMAL BLOOD VESSEL NETWORK: From E11.5 to E13.5 af-1402 

ter vaginal plug, GSvECKO pregnant dams were treated with tamoxifen (50 mg kg-1) by oral ga-1403 

vage. At E16.5 they were euthanized by cervical dislocation after which embryos were dis-1404 

sected from the uterus. Yolk sacs were collected, washed with PBS and used for genotyping 1405 

of the embryos. The embryos were fixed for 10 min in 1% PFA prior to dissection of the dorsal 1406 

skin. The epidermal and dermal layers were separated under a dissection microscope. Dis-1407 

sected back skins were permeabilized overnight (0.5% Triton X-100, 0.01% sodium deoxy-1408 

cholate, 1% bovine serum albumin, 0.02% sodium azide) prior to whole-mount immunostain-1409 

ing with CD31. To systematically analyze the same region for each embryo, 1 rectangular 1410 

confocal image (1700 x 1100 μm) was taken at the anterior side of the skin specimen with the 1411 

upper longer side of the rectangle placed on the midline. Within each rectangular picture the 1412 

number of branch points was determined with the cell counter tool in ImageJ in 6 ROIs (250 x 1413 

250 μm), 3 in the top half and 3 in the bottom half of the rectangle, not overlapping with the 1414 

larger arteries and veins. NEONATAL RETINAL ANGIOGENESIS: EC-specific GS deletion was ob-1415 

tained by IP administration of tamoxifen (Sigma; 10 mg kg-1; dissolved in 1:10 EtOH:oil solu-1416 
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tion) once daily from P1 to P3 in GSvECKO
 or once at P2 for GSpECKO. For in vivo proliferation 1417 

quantification, EdU (5-ethynyl-2´-deoxyuridine; Invitrogen) was injected IP 2 h before sacri-1418 

fice. Unless stated otherwise, retinas were isolated at P5 as previously described 43 and fixed 1419 

in 2% PFA for 2 h. Isolectin B4 (IB4), EdU, NG2 and ColIV stainings were performed as pre-1420 

viously described 1,2. Radial outgrowth of the vascular plexus, vascular area, branch points, 1421 

number of filopodia and number of distal sprouts were analysed on isolectin IB4-stained reti-1422 

nas (see below) with Image J. Numbers of branch points and EdU+ ECs were quantified in 1423 

200 x 200 μm ROIs; per retina 12 ROIs were placed at the front of the vascular plexus and 8 1424 

ROIs were placed more towards the center of the plexus.  Filopodia and distal sprouts were 1425 

quantified on ten high magnification (63x) images per retina, each representing approximately 1426 

200 μm of utmost vascular front. For analysis of the retinal vasculature at P21 (3 week-old) 1427 

and P42 (6 week-old) mice underwent the same tamoxifen treatment regimen as for analyses 1428 

at P5. In addition, different tissues were collected from P42 mice for endoglin and CD34 stain-1429 

ing to study blood vessels in different vascular beds. OXYGEN INDUCED RETINOPATHY: Oxygen 1430 

induced retinopathy (ROP) was induced by exposing C57BL/6 pups to 70% oxygen from P7-1431 

P12. Pups were then returned to normoxia and injected daily with 20 mg kg-1 MSO. At P17, 1432 

pups were euthanized and eyes were enucleated, fixed in 4% PFA and retinal flatmounts 1433 

were stained for isolectin B4 2,3. MSO-treated animals retained normal behavior notwithstand-1434 

ing observable weight loss. Mosaic tile images were captured using the inverted Leica 1435 

DMI6000B epifluorescence microscope (Leica, Manheim, Germany) and analysis of the vas-1436 

cular tuft area (the complete retina was analyzed, no ROIs were used) and the vaso-1437 

obliterated area was performed with NIH Image J software and are expressed as percentage 1438 

of the total retinal area. CORNEAL (MICRO-)POCKET ASSAY (CPA) to induce neovascularization of 1439 

the avascular cornea was performed as previously described 44. In brief, in the eyes of 8 1440 
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week-old C57BL/6 mice, a lamellar micropocket was dissected toward the temporal limbus to 1441 

allow placing of basic fibroblast growth factor (bFGF)-containing pellet on the corneal surface. 1442 

Five days after implanting the pellets, the mice were sacrificed, the eyes were enucleated and 1443 

the corneas were excised and fixed in 70% ethanol prior to CD31 antibody staining. After 1444 

staining, the corneas were flat-mounted and imaged on a Zeiss LSM 780 confocal micro-1445 

scope. CD31+ area was measured in ImageJ after thresholding the signal and is expressed as 1446 

% of total cornea area. Production of the pellets was done as previously described 44. The 1447 

pellets contained 20 ng bFGF and the concentration of MSO in the initial solution from which 1448 

the pellets were made was 10 mM. IMIQUIMOD-INDUCED SKIN INFLAMMATION: Ten week old fe-1449 

male Balb/C mice received a daily topical dose of 5% imiquimod cream (62.5 mg) on their 1450 

shaved backs for four days to induce skin inflammation 3. 1 h after each administration of the 1451 

cream, the same skin area was treated either with Vaseline® jelly or Vaseline® jelly containing 1452 

MSO (low dose: 20 mg kg-1; or high dose: 40 mg kg-1). The MSO treatment did not affect bod-1453 

yweight of the mice. Skins and spleens were collected and fixed in 4% PFA. Paraffin sections 1454 

of skins were stained for CD105 (R&D Systems) and H&E. Images were captured with a 1455 

Leica DMI6000B microscope (Leica microsystems, Mannheim, Germany). Per animal, ten 1456 

images representing different locations along the total length of the skin specimen were ana-1457 

lyzed for CD105+ area. MILES VASCULAR PERMEABILITY ASSAY: 8 week old female Balb/c mice 1458 

were treated for 3 consecutive days with 20 mg kg-1 day-1 MSO or with vehicle prior to injec-1459 

tion with 300 μl 0.5 % Evan’s blue dye. The inflammatory irritant mustard oil (0.25 ml allyl 1460 

isothiocyanate in 4.75 ml mineral oil) was applied on one of the ears with a cotton swab to in-1461 

duce vascular permeability. Mineral oil as a control was applied on the other ear. After 15 min, 1462 

again mustard oil/mineral oil was applied on the ear for 30 min, after which the circulation was 1463 

flushed with saline for 3 min and mice were perfused with 1 % PFA in 50 mM citrate buffer 1464 



5/13/2018 63

(pH=3.5) for 2 min. Ears were cut and minced in formamide and incubated at 55°C overnight 1465 

to extract the Evan’s blue from the tissue. Quantification of the dye was performed by a spec-1466 

trophotometrical optical density measurement at 620 nm. HEMATOLOGICAL PROFILING IN 6 1467 

WEEK-OLD MICE was performed with a Cell Dyn 3700 device (Abbott Diagnostics) according to 1468 

the manufacturer’s guidelines. Plasma measurements for different liver/inflammation parame-1469 

ters were performed in the clinical laboratory of the university hospital of Leuven. Prior ran-1470 

domization was not applicable for any of the above mouse models given that all animal treat-1471 

ments were done in baseline conditions. No statistical methods were used to predetermine 1472 

the sample size. For all mouse experiments, data analysis was done by researchers blinded 1473 

to the group allocation. All animal procedures were approved by the Institutional Animal Care 1474 

and Research Advisory Committee of the University of Leuven. 1475 

IN SILICO SCREENING FOR PALMITOYLATION SITES: The human RHOJ protein sequence was 1476 

screened for putative palmitoylation sites on the SwissPalm website 22 entering ‘RHOJ’ as the 1477 

protein name. 1478 

MODELING AND SIMULATIONS: The GS models were built starting from X-ray crystallographic 1479 

structures retrieved from the Protein Data Bank (entry 2OJW for human GS and 1FPY for 1480 

bacterial GS). All simulations were run with Gromacs 5.1.445 and the  Amber FF14SB46 force 1481 

field, while palmitoyl-CoA was parametrized with GAFF and the point charges were calculated 1482 

with Gaussian 0947 at the Hartree-Fock level with a 6-31G* basis set. The different models 1483 

were then embedded in a TIP3P water box, counter ions were added to ensure the overall 1484 

charge neutrality. An initial 2,000 steps of steepest descent and 500 steps of conjugated gra-1485 

dient were applied to minimize the geometry and remove steric clashes, followed by 10 ns of 1486 

isothermal-isobaric (NPT) equilibration. The Berendsen barostat was applied to keep the 1487 



5/13/2018 64

pressure around 1 atm, while the temperature of 300K was maintained throughout all the 1488 

simulations with the V-rescale algorithm48. 500 ns long molecular dynamics production runs 1489 

were carried out for all the systems in the canonical (NVT) ensemble, for a cumulative total of 1490 

2.5 μs. The particle mesh Ewald (PME)-Switch algorithm was used for electrostatic interac-1491 

tions with a cut-off of 1 nm, and a single cut-off of 1.2 nm was used for Van der Waals interac-1492 

tions. Four simulations for human GS and two for Salmonella typhimurium’s GS were run by 1493 

placing the CoA moiety close to the adenosine binding site and allowing different initial posi-1494 

tions for the palmitoyl tail. The CoA head invariably docked and remained tightly bound to the 1495 

adenine binding site in all simulations. Among these, two favorable alternative arrangements 1496 

(Extended Data Fig. 8b) for the tail were identified in both systems. In one of these confor-1497 

mations, the beginning of the palmitate tail (from the point of view of the CoA moiety) ap-1498 

proaches very closely the conserved CYS209 (human residue numbering, Conformation A in 1499 

Extended Data Fig. 8b, details in Extended Data Fig. 8c), and in the other conformation (Con-1500 

formation B in Extended Data Fig. 8b, details in Extended Data Fig. 8d) it approaches the 1501 

conserved Ser65 and 75. 1502 

STATISTICAL ANALYSIS: Data represent mean±s.e.m. of pooled experiments unless otherwise 1503 

stated. Scatters in bar graphs represent the values of independent experiments or individual 1504 

mice. In case individual values are highly alike, scatter points overlap and may no longer be 1505 

visible as individual points. n values represent the number of independent experiments per-1506 

formed or the number of individual mice phenotyped. Statistical significance between groups 1507 

was calculated with one of the following methods. For comparisons to point-normalized data, 1508 

a two-tailed one-sample t-test was used in GraphPad Prism7. For pairwise comparisons, two-1509 

tailed unpaired t-tests were used in GraphPad Prism7. For multiple comparisons within one 1510 

data set, one-way ANOVA with Dunnett’s multiple comparison (comparing every mean with 1511 

fgervasi
Inserted Text
The models and trajectories are available on Figshare (DOI: 10.6084/m9.figshare.6575438)
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the control mean rather than comparing every mean with every other mean) was used in 1512 

GraphPad Prism7. Mixed model statistics (this test does not assume normality or equal vari-1513 

ance) was used with the experiment as random factor only in case confounding variation in 1514 

baseline measurements between individual EC isolations (for each experiment, ECs were 1515 

freshly isolated from individual human umbilicals) or mouse litters precluded the use of the 1516 

above described statistical tests. For this, R and the lme4 package were used; p-values were 1517 

obtained with the Kenward-Roger F-test for small mixed effect model datasets. The variation 1518 

in baseline precluded meaningful scattering of individual datapoints in corresponding bar 1519 

graphs. Sample size for each experiment was not pre-determined. A p-value <0.05 was con-1520 

sidered significant.  1521 

DATA AVAILABILITY: Fig.1, Fig. 4, Fig. 5, Extended Data Fig. 1, Extended Data Fig. 7 and Ex-1522 

tended Data Fig. 8 have associated raw data (uncropped blots and/or gel pictures) in Extend-1523 

ed Data Fig. 9. Any additional information required to interpret, replicate or build upon the 1524 

Methods or findings reported in the manuscript is available from the corresponding author up-1525 

on request. 1526 
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