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Abstract

Studying a subject is central to understanding its behavior and what it has learned.

In this thesis, we study specific aspects of five representation learning systems for

natural language processing tasks. Representation learning systems are a type of

machine learning system dedicated to learn representations of data suitable for other

machine learning systems, such as classifiers, to operate upon them. Thus, under-

standing the behavior of and the abilities learned by representation learning systems

is crucial for improving the results on the tasks they are used.

The aspects on which we focus are interpretability, robustness, and abilities

learned. We are interested in obtaining explanations that allow us to understand how

a system makes a decision, what factors from the data and internal to the system

affect its robustness, and to what extent it has learned a linguistic ability. To do

so, we propose to carry out three types of analyses, namely functional, behavioral,

and internal analyses which we link with work on the cognitive science, behavioral

science, and neuroscience.

We present three case studies. In the first study, we provide a functional expla-

nation of a matrix factorization system that allow us to understand how this system

makes a prediction. In our second study, we investigate how robust are three sys-

tems when the input data suffers a simple transformation and how certain external

and internal factors influence their behavior; these systems are trained for the task of

natural language inference. Finally, our third study shows that we are able to extract

hypernymy from the word embeddings of a popular ReLe system, while studying

the influence that the choice of hypernymy dataset plays in the task.

In summary, we advance towards better understanding ReLe systems by pro-
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viding explanations of their predictive behavior and investigating abilities learned

by these systems.



Impact Statement

Our research has a direct impact not only on the fields of machine learning (ML) and

natural language processing (NLP), but also on the social contexts where such sys-

tems may be used. In this thesis, we propose both experimental frameworks where

there is an appropriate control of confounding factors and a proper evaluation of

the systems’ behavior with statistical guarantees of the results obtained. These two

contributions may help to pinpoint when the systems have captured possible biases

from data and thus take an action in order to avoid the systems exploiting these

biases, such as gender or ethnicity biases, which may have serious connotations in

society.

Another of our contributions may also help to mitigate the problem mentioned

above by designing better datasets; even though we provide analysis of datasets

for a particular task, we show what are basic elements to consider when designing

a dataset, such as having a background theory of the phenomena under study, or

controlling for certain factors. Thus, these basic elements may help to design better

datasets that avoid biases such as those mentioned above.

Thus, we hope that the ML and NLP communities will look at this thesis in

order to use our methods to a) design better experimental frameworks, b) better

evaluate and understand machine learning systems’ behavior, and c) design better

datasets.

Furthermore, our research may contribute towards linking the fields of machine

learning and natural language processing with other scientific disciplines, such as

cognitive science, behavioral science, or neuroscience. The fields of ML and NLP

can benefit from the research questions, methods, and motivation of these disci-
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plines since they share similar objectives, namely to explain certain phenomena

occurring in a subject, natural or artificial, and thus to better understand it.



Acknowledgements

I am very grateful to both CONACYT and UCL for the scholarship and studentship

respectively provided to me. I thank my supervisor, Sebastian Riedel, for sharing

his knowledge and time with me, for guiding me through out all the PhD, and for

his patience. I also thank Anthony Hunter for the meetings we had that helped me

to see what is the goal of a PhD. I thank so much John Dowell and Anna Korhonen

for reviewing this thesis, being my examiners, and providing such a great feedback.

I am very happy to have been part of the Machine Reading Group and to have

shared good moments with all their members. I’m happy to have shared my PhD

journey with my PhD mates Marzieh Saeidi, Matko Bosnjak, Tim Rocktaschel,

George Spithourakis, Johannes Welbl, Juan Echeverria, Manal Adham, Manisha

Verma, Hugo Lopez, and Marios Constantinides. I thank a lot to Jason Naradowsky,

Andreas Vlachos, Guillaume Bouchard, Ivan Vladimir Meza Ruiz, Jeff Mitchell,

Pontus Stenetorp, and Pasquale Minervini for all the questions they answered to me,

the great discussions we had, and the time they spent to do all of this. Special thanks

to Jeff, Pontus (thanks for proposing the term ReLe), and Pasquale for providing

feedback of this thesis. I thank my family with whom I’m in debt for giving me all

their support during all these years. Finally, I thank Nan Jiang for all her love and

support.





Contents

1 Introduction 29

1.1 Objectives and Research Questions . . . . . . . . . . . . . . . . . . 36

1.2 Scope and Limitations . . . . . . . . . . . . . . . . . . . . . . . . 37

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

1.4 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2 Background 43

2.1 Representation Learning . . . . . . . . . . . . . . . . . . . . . . . 44

2.1.1 Representation Learning Models . . . . . . . . . . . . . . . 44

2.1.2 Representations of Words . . . . . . . . . . . . . . . . . . 49

2.2 Machine Learning Models . . . . . . . . . . . . . . . . . . . . . . 52

2.2.1 Logistic Regression . . . . . . . . . . . . . . . . . . . . . . 53

2.2.2 Support Vector Machines . . . . . . . . . . . . . . . . . . . 53

2.2.3 Decision Trees . . . . . . . . . . . . . . . . . . . . . . . . 55

2.3 Probabilistic Graphical Models . . . . . . . . . . . . . . . . . . . . 59

2.3.1 Bayesian Networks . . . . . . . . . . . . . . . . . . . . . . 60

2.4 Symbolic Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

2.4.1 First-order Horn Clauses . . . . . . . . . . . . . . . . . . . 67

3 Literature Review 71

3.1 Representation-level Analysis and Interpretability of Black-Box

Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.1.1 Marr’s Levels of Analysis . . . . . . . . . . . . . . . . . . 72



12 Contents

3.1.2 Functional and Mechanistic Analyses . . . . . . . . . . . . 75

3.1.3 On a Comparative View Between Marr’s Levels of Analysis

and Functional-Mechanistic Analyses . . . . . . . . . . . . 79

3.1.4 Interpretability . . . . . . . . . . . . . . . . . . . . . . . . 82

3.2 Behavior Analysis and Evaluation of Robustness . . . . . . . . . . 91

3.2.1 Behavior Analysis . . . . . . . . . . . . . . . . . . . . . . 91

3.2.2 Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . 101

3.3 Internal Analysis and Extraction of Abilities Learned . . . . . . . . 105

3.3.1 Internal Analysis . . . . . . . . . . . . . . . . . . . . . . . 105

3.3.2 Abilities Learned . . . . . . . . . . . . . . . . . . . . . . . 109

4 Representation-Level Analysis of Model F: Explaining Predictions 115

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.1.1 Interpretable Proxy Models As an Equivalent of Representation-

Level Analysis . . . . . . . . . . . . . . . . . . . . . . . . 120

4.2 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . 123

4.3 Research Questions and Hypotheses . . . . . . . . . . . . . . . . . 124

4.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

4.5 Scope and Limitations . . . . . . . . . . . . . . . . . . . . . . . . 125

4.6 System Under Study . . . . . . . . . . . . . . . . . . . . . . . . . 126

4.6.1 Training Data . . . . . . . . . . . . . . . . . . . . . . . . . 127

4.6.2 Model F . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

4.7 Methods and Materials . . . . . . . . . . . . . . . . . . . . . . . . 130

4.7.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

4.7.2 Choice of Proxy Models . . . . . . . . . . . . . . . . . . . 133

4.7.3 Learning Proxy Models . . . . . . . . . . . . . . . . . . . . 135

4.7.4 Measurements and Analyses . . . . . . . . . . . . . . . . . 140

4.8 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . 143

4.8.1 Fidelity and Generalization . . . . . . . . . . . . . . . . . . 144

4.8.2 Interpretability . . . . . . . . . . . . . . . . . . . . . . . . 146

4.9 Discussions and Conclusions . . . . . . . . . . . . . . . . . . . . . 151



Contents 13

4.9.1 On The Interpretability-Fidelity Trade-Off of Proxy Models 153

4.9.2 On Explanations of Predictions of Model F . . . . . . . . . 155

4.9.3 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . 156

5 Behavior Analysis of ESIM, DAM, and CE: Evaluating Robustness 159

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

5.2 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . 164

5.3 Research Questions and Hypotheses . . . . . . . . . . . . . . . . . 164

5.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

5.5 Scope and Limitations . . . . . . . . . . . . . . . . . . . . . . . . 166

5.6 Systems Under Study . . . . . . . . . . . . . . . . . . . . . . . . . 167

5.6.1 Natural Language Inference . . . . . . . . . . . . . . . . . 167

5.6.2 Stanford Natural Language Inference Dataset . . . . . . . . 168

5.6.3 CE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

5.6.4 DAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

5.6.5 ESIM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

5.7 Methods and Materials . . . . . . . . . . . . . . . . . . . . . . . . 172

5.7.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

5.7.2 Evaluation of Robustness . . . . . . . . . . . . . . . . . . . 183

5.7.3 Factors Under Analysis . . . . . . . . . . . . . . . . . . . . 184

5.7.4 Statistical Analyses . . . . . . . . . . . . . . . . . . . . . . 187

5.8 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . 188

5.8.1 Evaluation of Robustness . . . . . . . . . . . . . . . . . . . 189

5.8.2 Influence of Target Factors . . . . . . . . . . . . . . . . . . 191

5.9 Discussions and Conclusions . . . . . . . . . . . . . . . . . . . . . 205

5.9.1 On Systems’ Robustness on Transformed Instances Con-

taining Antonym Word Pairs . . . . . . . . . . . . . . . . . 206

5.9.2 On Systems’ Robustness on Transformed Instances Con-

taining Hypernym-Hyponym Word Pairs . . . . . . . . . . 208

5.9.3 On the Accuracy on Transformed Instances vs. Accuracy

on SNLI Development Set . . . . . . . . . . . . . . . . . . 209



14 Contents

5.9.4 On Common Behavioral Patterns Across the Systems . . . . 211

5.9.5 On the Limitations of This Work . . . . . . . . . . . . . . . 211

6 Internal Analysis of GloVe: Predicting Hypernymy 213

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

6.2 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . 216

6.3 Research Questions and Hypotheses . . . . . . . . . . . . . . . . . 217

6.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

6.5 Scope and Limitations . . . . . . . . . . . . . . . . . . . . . . . . 219

6.6 System Under Study . . . . . . . . . . . . . . . . . . . . . . . . . 219

6.6.1 Wikipedia and Gigaword Data . . . . . . . . . . . . . . . . 219

6.6.2 GloVe: Global Vectors . . . . . . . . . . . . . . . . . . . . 220

6.7 Methods and Materials . . . . . . . . . . . . . . . . . . . . . . . . 221

6.7.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

6.7.2 Cross-test Evaluation . . . . . . . . . . . . . . . . . . . . . 229

6.7.3 Dataset Analysis . . . . . . . . . . . . . . . . . . . . . . . 233

6.8 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . 238

6.8.1 Cross-test Evaluations . . . . . . . . . . . . . . . . . . . . 238

6.8.2 Dataset Analysis . . . . . . . . . . . . . . . . . . . . . . . 241

6.9 Discussions and Conclusions . . . . . . . . . . . . . . . . . . . . . 246

6.9.1 On the Cross-Test Evaluation of Hypernymy Datasets From

the Literature . . . . . . . . . . . . . . . . . . . . . . . . . 247

6.9.2 On the Analysis of Hypernymy Datasets Along Generality

and Similarity Patterns . . . . . . . . . . . . . . . . . . . . 249

6.9.3 On Limitations in This Work . . . . . . . . . . . . . . . . . 250

7 Conclusions 253

7.1 A summary of Our Three Case Studies . . . . . . . . . . . . . . . . 254

7.1.1 First Case Study: Explaining Predictions of Model F . . . . 254

7.1.2 Second Case Study: Evaluating Robustness of ESIM, DAM,

and CE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256



Contents 15

7.1.3 Third Case Study: Extracting Hypernymy From GloVe . . . 259

7.2 Answering Our Research Questions . . . . . . . . . . . . . . . . . 261

7.3 Summary of Major Contributions . . . . . . . . . . . . . . . . . . . 264

7.4 Limitations and Future Work . . . . . . . . . . . . . . . . . . . . . 266

7.4.1 First Case Study from Chapter 4 . . . . . . . . . . . . . . . 269

7.4.2 Second Case Study from Chapter 5 . . . . . . . . . . . . . 270

7.4.3 Third Case Study from Chapter 6 . . . . . . . . . . . . . . 270

Bibliography 272





List of Figures

2.1 A matrix factorization model. Matrix X is a matrix of data used as

training data for learning the factors U and V. . . . . . . . . . . . . 46

2.2 A decision tree representation for the concept Go to party. The

feature Closest deadline splits the input space at different levels,

given its importance. All the splits are binary. The feature Weather

does not contribute with an information gain (except in the split ≥

12.5 where it could have been substituted the node Closest deadline

for the node Weather). . . . . . . . . . . . . . . . . . . . . . . . . 56

2.3 Input space divided by the decision tree in Figure 2.2. Blue squares

represent class Yes, green diamonds represent class No. . . . . . . . 57

2.4 Training data division before and after first split on feature Closest

deadline from example in Figure 2.2. Green diamonds represent

class No, blue squares represent class Yes. Note that the entropy on

the left branch is zero, due to the homogeneity of the data. . . . . . 59

2.5 A simple Bayesian network consisting of only one parent node (ni)

and one child node (n j). . . . . . . . . . . . . . . . . . . . . . . . . 60

2.6 Examples of a DAG and not a DAG. . . . . . . . . . . . . . . . . . 61

2.7 Basic configurations for conditional independence. In Figures 2.7a,

2.7c, and 2.7b, if nodenk is observed then ni is separated from node

n j, i.e., the influence is blocked. Opposite, in Figure 2.7d if node nk

is observed then nodes ni and n j can influence each other. . . . . . . 63

2.8 Example of a Bayesian network tree. The number of parents of a

node is restricted to be at most 1. . . . . . . . . . . . . . . . . . . . 63



18 List of Figures

4.1 Example of a matrix of relational data. 1 indicates an observed fact,

? indicates missing value (unobserved fact.) . . . . . . . . . . . . . 129

4.2 Example of reconstruction of a matrix of relational data where all

cells are populated. Each cell indicates the probability of a pre-

dicted fact to be true. . . . . . . . . . . . . . . . . . . . . . . . . . 129

4.3 Freebase relations used as target variables to test the proxy models. . 131

4.4 Measures of fidelity of proxy models from a classification perspec-

tive: Accuracy and F1 scores. . . . . . . . . . . . . . . . . . . . . . 145

4.5 Measure of fidelity of proxy models from a ranking perspective:

Precision-recall curves. . . . . . . . . . . . . . . . . . . . . . . . . 145

4.6 Generalization performance of Model F and proxy models on test

data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

4.7 Explanation for the prediction reviewMovie(Daniel Kahneman,Nobel)=

True using a Bayesian network tree. (a) Excerpt from the sub-graph

that spans local influences from the observed variables to the pre-

dicted variable. Blue circle indicates observed variable, red arrow

indicates a wrong influence over the variable predicted, denoted by

a dotted circle. (b) Conditional probability table of the sub-graph. . 148

4.8 Explanation for the prediction arenaStadium(Philadelphia Eagles,Canton)=

True using a Bayesian network tree. (a) Excerpt of the sub-graph

that spans local influences from the observed variables to the pre-

dicted variable. Blue circle indicates observed variable, red arrow

indicates a wrong influence over the variable predicted, denoted by

a dotted circle. (b) Conditional probability table of the sub-graph. . 149

4.9 Explanation for the prediction personCompany(Michael Lynton,Penguin)=

True using a decision tree. . . . . . . . . . . . . . . . . . . . . . . 151



List of Figures 19

4.10 Explanation for the prediction restaurantAt(Chilean,Washington)=

True using a Bayesian network tree: Excerpt of the sub-graph that

spans local influences from the observed variables to the predicted

variable. Blue circle indicates observed variable, red arrow indi-

cates a wrong influence over the variable predicted, denoted by a

dotted circle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

5.1 Process to obtain in situ instances. Instance i corresponds to a con-

trol instance, while i’ corresponds to a transformed instance. . . . . 173

5.2 Process to obtain ex situ instances. Instance e corresponds to a con-

trol instance, while e’ corresponds to a transformed instance. . . . . 173

6.1 Distribution of positive and negative instances of the Baroni training

set along generality and similarity levels. . . . . . . . . . . . . . . . 243

6.2 Distribution of positive and negative instances of the Bless training

set along generality and similarity levels. . . . . . . . . . . . . . . . 243

6.3 Distribution of positive and negative instances of the Kotlerman

training set along generality and similarity levels. . . . . . . . . . . 243

6.4 Distribution of positive and negative instances of the Levy training

set along generality and similarity levels. . . . . . . . . . . . . . . . 244

6.5 Distribution of positive and negative instances of the Turney train-

ing set along generality and similarity levels. . . . . . . . . . . . . . 244

6.6 Distribution of positive and negative instances of the Weeds training

set along generality and similarity levels. . . . . . . . . . . . . . . . 244





List of Tables

4.1 Description of the training datasets used for learning the descriptive

models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.1 Average sentence length and standard deviation in both premise and

hypothesis sentences from the training set. . . . . . . . . . . . . . . 169

5.2 Average sentence length and standard deviation in both premise and

hypothesis sentences from the development set. . . . . . . . . . . . 169

5.3 Average word overlap in premise and hypothesis sentences per class

label in both training and development sets. . . . . . . . . . . . . . 169

5.4 Examples of control and transformed instances in the In situ con-

dition when transformation Tsub is used. Label of control instance:

contradiction; label of transformed instance: neutral. In bold text,

the word pair where Tsub was applied to. No ex situ condition exists

for this Tsub. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

5.5 Examples of control and transformed instances in both In situ and

ex situ conditions when transformation Tswap is used. Labels of in

situ control and transformed instances: contradiction; labels of ex

situ control and transformed instances: contradiction. In bold text,

the word pair where Tswap was applied to. . . . . . . . . . . . . . . 178



22 List of Tables

5.6 Examples of control and transformed instances in both In situ and

ex situ conditions when transformation Tswap is used. Labels of

in situ control and transformed instances: neutral and entailment,

respectively; labels of ex situ control and transformed instances:

neutral and entailment, respectively. In bold text, the word pair

where Tswap was applied to. . . . . . . . . . . . . . . . . . . . . . . 179

5.7 Details of the samples used to test the robustness of the models.

Word Pairs: Type of word pair contained in the instances of the cur-

rent sample. Type: Type of sample. Transformation: Transforma-

tion used to obtain the current sample. Size: Number of instances in

the current sample. Labels: class labels found in the current sample.

Labels Changed: Percentage of instances that have different class

label with respect to their control instances counterpart. Unseen

Pairs: Whether the current sample contains instances with unseen

word pairs. Diverse={synonymy, hypernymy, hyponymy}. . . . . . 183

5.8 Correlations between the systems’ response and confounding fac-

tors in terms of χ2 (chi-square) values. Degrees of freedom are

shown next to each correlation value in a parenthesis. All corre-

lations are measured at at p-value of p < 0.0001, unless otherwise

stated. Other p-values: 1 p = 0.21, 2 p = 0.67, 3 p = 0.32, 4 p = 0.98,
5 p = 0.06, 6 p = 0.03, 7 p = 0.66, 8 p = 0.11, 9 p = 0.55. . . . . . . . 188

5.9 Accuracy scores of all systems. Exp: experiment number. Whole

sample: accuracy scores on the whole sample indicated by the sec-

ond column, namely sample. Subset 1: subset of instances from the

whole transformed sample that have different label with respect to

the control instances they were generated from. Subset 2: subset

of transformed instances that contain word pairs unseen at training

time. Subset 3: subset of control or transformed instances contain-

ing word pairs whose polarity does not match the instance’s gold

label. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189



List of Tables 23

5.10 Contingency table for ESIM (Experiment 1): Predictions of class

labels distributed according to matching or not the gold labels. Only

transformed instances that have gold labels different from those of

their control instances counterpart are used. . . . . . . . . . . . . . 193

5.11 Contingency table for DAM (Experiment 1): Predictions of class

labels distributed according to matching or not the gold labels. Only

transformed instances that have gold labels different from those of

their control instances counterpart are used. . . . . . . . . . . . . . 193

5.12 Contingency table for CE (Experiment 1): Predictions of class la-

bels distributed according to matching or not the gold labels. Only

transformed instances that have gold labels different from those of

their control instances counterpart are used. . . . . . . . . . . . . . 193

5.13 Contingency table for ESIM (Experiment 1): Predictions of class

labels distributed according to whether they contain a seen or an

unseen antonym word pair. . . . . . . . . . . . . . . . . . . . . . . 194

5.14 Contingency table for DAM (Experiment 1): Predictions of class

labels distributed according to whether they contain a seen or an

unseen antonym word pair. . . . . . . . . . . . . . . . . . . . . . . 194

5.15 Contingency table for CE (Experiment 1): Predictions of class la-

bels distributed according to whether they contain a seen or an un-

seen antonym word pair. . . . . . . . . . . . . . . . . . . . . . . . 194

5.16 Excerpt of contingency table for ESIM (Experiment 1): Predictions

of class labels distributed according to the word pair polarity they

match with. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

5.17 Excerpt of contingency table for DAM (Experiment 1): Predictions

of class labels distributed according to the word pair polarity they

match with. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

5.18 Excerpt of contingency table for CE (Experiment 1): Predictions

of class labels distributed according to the word pair polarity they

match with. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196



24 List of Tables

5.19 Contingency table for ESIM (Experiment 2): Predictions of class

labels distributed according to whether they contain a seen or an

unseen antonym word pair. . . . . . . . . . . . . . . . . . . . . . . 197

5.20 Contingency table for DAM (Experiment 2): Predictions of class

labels distributed according to whether they contain a seen or an

unseen antonym word pair. . . . . . . . . . . . . . . . . . . . . . . 197

5.21 Contingency table for CE (Experiment 2): Predictions of class la-

bels distributed according to whether they contain a seen or an un-

seen antonym word pair. . . . . . . . . . . . . . . . . . . . . . . . 197

5.22 Excerpt of contingency table for ESIM (Experiment 2): Predictions

of class labels distributed according to the word pair polarity they

match with. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

5.23 Excerpt of contingency table for DAM (Experiment 2): Predictions

of class labels distributed according to the word pair polarity they

match with. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

5.24 Excerpt of contingency table for CE (Experiment 2): Predictions

of class labels distributed according to the word pair polarity they

match with. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

5.25 Contingency table for ESIM (Experiment 3): Predictions of class

labels distributed according to matching or not the gold labels. Only

transformed instances that have gold labels different from those of

their control instances counterpart are used. . . . . . . . . . . . . . 199

5.26 Contingency table for DAM (Experiment 3): Predictions of class

labels distributed according to matching or not the gold labels. Only

transformed instances that have gold labels different from those of

their control instances counterpart are used. . . . . . . . . . . . . . 199

5.27 Contingency table for CE (Experiment 3): Predictions of class la-

bels distributed according to matching or not the gold labels. Only

transformed instances that have gold labels different from those of

their control instances counterpart are used. . . . . . . . . . . . . . 200



List of Tables 25

5.28 Contingency table for ESIM (Experiment 3): Predictions of class

labels distributed according to whether they contain a seen or an

unseen antonym word pair. . . . . . . . . . . . . . . . . . . . . . . 200

5.29 Contingency table for DAM (Experiment 3): Predictions of class

labels distributed according to whether they contain a seen or an

unseen antonym word pair. . . . . . . . . . . . . . . . . . . . . . . 200

5.30 Contingency table for CE (Experiment 3): Predictions of class la-

bels distributed according to whether they contain a seen or an un-

seen antonym word pair. . . . . . . . . . . . . . . . . . . . . . . . 201

5.31 Excerpt of contingency table for ESIM (Experiment 3): Predictions

of class labels distributed according to the word pair polarity they

match with. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

5.32 Excerpt of contingency table for DAM (Experiment 3): Predictions

of class labels distributed according to the word pair polarity they

match with. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

5.33 Excerpt of contingency table for CE (Experiment 3): Predictions

of class labels distributed according to the word pair polarity they

match with. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

5.34 Contingency table for ESIM (Experiment 4): Predictions of class

labels distributed according to matching or not the gold labels. Only

transformed instances that have gold labels different from those of

their control instances counterpart are used. . . . . . . . . . . . . . 202

5.35 Contingency table for DAM (Experiment 4): Predictions of class

labels distributed according to matching or not the gold labels. Only

transformed instances that have gold labels different from those of

their control instances counterpart are used. . . . . . . . . . . . . . 203

5.36 Contingency table for CE (Experiment 4): Predictions of class la-

bels distributed according to matching or not the gold labels. Only

transformed instances that have gold labels different from those of

their control instances counterpart are used. . . . . . . . . . . . . . 203



26 List of Tables

5.37 Contingency table for ESIM (Experiment 4): Predictions of class

labels distributed according to whether they contain a seen or an

unseen antonym word pair. . . . . . . . . . . . . . . . . . . . . . . 203

5.38 Contingency table for DAM (Experiment 4): Predictions of class

labels distributed according to whether they contain a seen or an

unseen antonym word pair. . . . . . . . . . . . . . . . . . . . . . . 204

5.39 Contingency table for CE (Experiment 4): Predictions of class la-

bels distributed according to whether they contain a seen or an un-

seen antonym word pair. . . . . . . . . . . . . . . . . . . . . . . . 204

5.40 Excerpt of contingency table for ESIM (Experiment 4): Predictions

of class labels distributed according to the word pair polarity they

match with. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

5.41 Excerpt of contingency table for DAM (Experiment 4): Predictions

of class labels distributed according to the word pair polarity they

match with. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

5.42 Excerpt of contingency table for CE (Experiment 4): Predictions

of class labels distributed according to the word pair polarity they

match with. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

6.1 Summary of datasets. Training Set Size: Number of instances (pos-

itive and negative). . . . . . . . . . . . . . . . . . . . . . . . . . . 227

6.2 Cross-test performance: Mean AUC ROC scores over 20 samples.

Self-test score in bold. Max SE: maximum standard error of the

mean across all means in a row. Mean: mean of the means in a row. 240

6.3 Cross-test performance: Mean accuracy scores over 20 samples.

Self-test score in bold. Max SE: maximum standard error of the

mean across all means. Mean: mean of the means in a row. . . . . . 241

6.4 New hypernymy datasets: Mean AUC ROC scores over 20 samples.

Max SE: maximum standard error of the mean across all means in

a row. Mean: mean of the means in a row. . . . . . . . . . . . . . . 246



List of Tables 27

6.5 New hypernymy datasets: Mean accuracy scores over 20 samples.

Max SE: maximum standard error of the mean across all means in

a row. Mean: mean of the means in a row. . . . . . . . . . . . . . . 246

6.6 Distribution of instances (mean percentage across 20 samples) in

the B2, No-rules, and K2 datasets according to the source of origin. . 247





Chapter 1

Introduction

Studying a target subject is the intellectual and scientific task of both posing ques-

tions about phenomena concerning to the subject itself and to seeking answers for

such questions. Common questions across scientific disciplines, about a subject,

concern the behavior manifested under specific circumstances and the knowledge it

may have learned: What are the reasons for the subject’s behavior? Is the subject af-

fected by any external factor in the environment? What are possible internal factors

influencing its behavior? What is a cognitive mechanism involved in the observed

behavior? Has the subject learned any ability? Different disciplines seek to exper-

imentally answer one or more of these questions. Each discipline targets different

levels of abstraction of the same phenomena. Cognitive science works at the repre-

sentation and functional levels;1 behavioral science works at the stimulus-response

level; neuroscience works at the neural level. For example, cognitive science seeks

to build a functional model of how long-term memory works based on behavior

observed from people in laboratory tasks (Barrett, 2014), and also aims to propose

plausible algorithms of how vision works (Marr, 2010); thus, some questions it

aims to answer are: What is a cognitive model that explains how the information is

processed by the long-term memory? What is a plausible algorithm that explains

behavioral data of human vision? As another example, behavioral science seeks

to explain why people buy more items (and spend more) when using a credit card

instead of paying by cheques (Soman, 2001); thus, it seeks to answer the question:

1In Section 3.1.3, we propose a close relationship between these two types of analysis in the
psychology and cognitive science communities.
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How does the choice of payment instrument influence the spending behavior of

people? As a final example, neuroscience seeks to decode information from neural

activity in the brain of a person, such as whether a person is thinking in a living or a

non-living object (Chan et al., 2011); hence, one target question to be answered is:

Is it possible to extract information from the brain activity of people?

Methodologies to answer the above questions vary from discipline to disci-

pline, and the explanations provided as an answer to the questions vary in form.

These explanations, ultimately, are the vehicle to either gain an understanding of

the target subject2 –why/how does the subject behave in the observed way?– or gain

knowledge about a specific aspect –is the ability X within the knowledge repertoire

of the subject?

Thus, answering the questions from the examples above will allow us to better

understand the subjects under study. In this way, we will understand how the spend-

ing behavior of people is affected by specific factors; how the long-term memory is

organized and how it functions, and what is a possible model explaining how vision

mechanisms process information; to what extent we can decode the neural activity

from the brain and extract meaningful information. However, the above questions

and examples were specific to living subjects. Then, we pose the question: Can we

study, in a similar way, machine learning systems?

More concretely, we are interested in a type of machine learning system,

namely representation learning systems. Then, is it possible to formulate similar

questions for studying representation learning systems? For example, can we pro-

vide a representation-level explanation of the behavior of a representation learning

system? Can we know what external and internal factors influence the predictive

behavior of a system? Can we extract information from the internal components of

a system? In order to answer these questions, can we borrow methodology from

cognitive science, behavioral science, or neuroscience? Is it possible to draw sim-

ilar explanations to those from such disciplines in order to better understand these

systems? In this work, we will seek answers to these questions.

2As it has been argued in the philosophy of science (Grimm, 2010).
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In this thesis, we study specific instances of machine learning models dedicated

to learning a representation of information. The representation of information deals

with ways of encoding information from the real world so that a machine learning

system can understand this information and operate upon it for a task. A field in

machine learning –representation learning– has proposed both new representations

and new ways of learning such representations. The new representations proposed

are called vector representations, or embeddings, which distribute the information

learned along several dimensions, i.e. they are representations in the form of con-

tinuous vectors. One of the proposed ways to learn the vector representations is

via end-to-end machine learning systems; such systems are called representation

learning systems (ReLe systems). Representation learning systems are widely used

in several Natural Language Processing (NLP) tasks for learning the representation

of words, sentences, or objects; for example, in question answering (Weissenborn

et al., 2017), natural language inference (Chen et al., 2017), and knowledge base

population (Riedel et al., 2013).

The use of ReLe systems in these tasks has contributed to achieving state-of-

the-art results. The performance of ReLe systems has motivated further develop-

ment of both representation learning systems and vector representations. However,

the complexity of the proposed ReLe systems and the opaqueness of the represen-

tations have inhibited the understanding of the behavior of these systems and the

phenomena being captured in the representations learned. Thus, actions such as an-

ticipating how a change in a variable of the system affects other variables, knowing

what the system has captured from the data, validating that the behavior observed

is correct and not an abnormal behavior, or knowing the direction to take in order to

improve the system becomes difficult without a proper understanding of the system.

Therefore, not fully comprehending and knowing the phenomena occurring in ReLe

systems and their learned representations may inhibit scientific progress in the right

direction.

Previous work has analyzed both ReLe systems and vector representations in

order to understand qualitative aspects of both that are not easy to see at a simple
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glance. In particular, it has focused on three main aspects: Interpretability: How to

explain predictions of ReLe systems in terms of interpretable models? Robustness:

How robust ReLe systems are to alterations in the input domain? And abilities

learned: What phenomena, specially linguistic, has been learned by ReLe systems?

Research on interpretability has sought ways of extracting the knowledge en-

coded in an ReLe system in the form of a proxy model that is interpretable to a hu-

man in order to explaining its predictive behavior (Murdoch and Szlam, 2017; Yang

et al., 2015; Ribeiro et al., 2016; Lei et al., 2016; Craven and Shavlik, 1995). Anal-

yses on robustness of ReLe systems have evaluated the response of these systems

to challenging instances crafted with the objective to measure their generalization

ability under difficult circumstances. These analyses have been done for the tasks

of reading comprehension (Jia and Liang, 2017), syntactic parsing (B. Hashemi and

Hwa, 2016), and machine translation (Isabelle et al., 2017). In addition, previous

work has investigated whether ReLe systems are able to capture certain linguistic

phenomena, for example hypernymy (Weeds et al., 2014; Roller et al., 2014; Vy-

lomova et al., 2016; Fu et al., 2014; Roller and Erk, 2016), despite the fact that

this semantic relation was not explicitly part of the loss function for training the

systems.

We claim, however, that there are still open problems to be solved in the task of

understanding ReLe systems. One problem is the suitability of previous methodolo-

gies for analyzing other types of ReLe systems: It is not clear to what extent we can

apply such methodologies to interpret the predictions of, for example, a matrix fac-

torization system (MF), a type of system not considered before in the literature. The

main challenges stem from structural and design characteristics of the MF system,

which are different to the characteristics of previous ReLe systems studied. Other

challenges stem from the scalability and expressiveness of previous interpretable

models since these models were used, mainly, for explaining the predictive behav-

ior of simpler ReLe systems. Another open problem is the analysis of the behavior

of natural language inference ReLe systems. There is little research on evaluating

how robust these systems are to meaningful alterations in the input space, i.e. how
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well they can cope with challenging instances. Advancing from this front can help

to shed light on what are possible abnormal behaviors, or biases, that a system has

captured, and what are the factors that influence the decisions of such systems. A

third open problem is the analysis of ReLe systems to encode linguistic phenomena,

for example hypernymy. Previous work has provided some evidence for word em-

beddings capturing this semantic relation; however, it still remains unclear, due to

confounding factors in previous experimental frameworks, to what extent it is pos-

sible to extract this semantic relation from the representations learned by a ReLe

system.

In this thesis, we aim to advance research in intepretability, robustness, and

abilities learned by addressing the open problems described above, and thus to

better understand the behavior of ReLe systems and the abilities they have learned.

We propose to do so via three different types of analysis, namely representation-

level, behavioral, and internal. We choose these three types of analysis motivated

by work in cognitive science, behavioral science, and neuroscience. In this way,

each type of analysis is devoted to one problem under study.

More concretely, we present three case studies; in our first study, we aim to

propose a plausible model that explains the input-output process by which a specific

matrix factorization system arrives at an observed decision, i.e. we aim to explain

the predictions of this system. We do so by learning an interpretable proxy model

that faithfully captures the knowledge of the target ReLe system. Furthermore, we

show that this proxy model is a type of an explanation at the representation level that

describes the decision process of the ReLe system, tying the task of interpretability

to that of representation-level analysis from the cognitive science (Marr, 2010).3

(We note that we are not the first to propose an interpretability analysis to machine

learning systems, but we are the first to tie this type of analysis with an analysis

from cognitive science.)

In our second study, we evaluate the robustness of three ReLe systems (one

3This notion of explanation goes also in accordance to previous work in the philosophy of science
and cognitive science. Our proxy model is a type of graphical model which has been considered as
an appropriate device to explain how certain phenomena occur (Pacer et al., 2013; Woodward, 2008);
in our case, our target phenomenon is the predictive behavior of a matrix factorization system.
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of them being a state-of-the-art system) for the task of natural language inference.

We analyze to what extent the systems are able to generalize to purposely-crafted

instances ranging from easy to those that represent a challenge to the system. To do

these analyses, we borrow methodology from the behavioral science; we compute

statistical relations between stimulus and response variables and we offer an account

of what these relations mean in terms of robustness, i.e. we test whether certain

external and internal factors influence the behavior of the systems impacting on their

robustness. In this way, we provide explanations4 of why the systems behave as

observed in terms of external and internal factors. Furthermore, we investigate any

behavioral patterns in common among the three systems that arise due to the factors

under analysis. (We note that, in this case and to the best of our knowledge, we are

the first to analyze ReLe systems using methods from the behavioral science.)

In our final case study, we analyze to what extent a specific (and widely used)

ReLe system can learn a linguistic relation between two concepts without any ex-

plicit signal in its training regime. The level of analysis we are interested in this

study is internal, where we open up the system and directly work on specific parts

of it, regardless of any stimulus. This study is analogous to work in neuroscience

where the study of a phenomenon is carried out via analysis of internal, basic com-

ponents of the subject under study that give rise to the phenomenon, namely neu-

rons. The outcome of our study is thus not an explanation of how our target system

has learned the linguistic relation, but rather we gain knowledge of whether our

ReLe system has acquired the linguistic ability suspected. More specifically, we

train supervised classifiers that use the parameters of the ReLe system as features

in order to figure out if it is possible to find hypernymy as a pattern encoded in

these parameters. Even though these classifiers do not work as a proper explanation

of how hypernymy is encoded in the ReLe system under study, we do provide an

4Statistical associations as a type of explanation in the natural and social sciences has been a
central point of debate in the philosophy of science. For example, Turner (2013) claims that such
a statistic, along with a description of itself, works as a part of an explanation, but not as a final
endpoint for understanding a target phenomenon. In contrast, Strevens (2013) claims that such a
setup counts as a complete explanation since an account of a relationship between a proposition
(stimulus) and the explanandum (response) is given, it is just the case that the relationship is in a
statistical rather than in a deductive form.
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explanation of other aspect inherent to our experimental design, namely why some

data used to train the classifiers are not useful and why other data are useful. (We

note that we are not the first to propose an analysis for extracting hypernymy from

the embeddings of a ReLe system, but we are the first to draw a parallel of this type

of analysis with analyses from neuroscience.)

Moreover, our findings across our case studies will provide pieces of evidence

for demystifying certain capacities and abilities of ReLe systems while corroborat-

ing others. More concretely, our results show that ReLe systems seem to predict

based on correlations and biases found in the data, compromising their general-

ization ability; and when we test ReLe systems with challenging instances, they

significantly lose accuracy; in this way, we show that performance from a test set

is not a clear indication of generalization abilities. Also, we find it unclear to what

extent ReLe systems encode the capacity to understand language when trained for a

task that requires to do so, namely natural language inference, since the systems that

we study predict based on factors that have nothing to do with language. Neverthe-

less, our analyses indicate that ReLe systems seem to be able to encode some type

of semantic information, such as hypernymy, based on two different experiments,

thus corroborating previous hypothesis from the NLP community.

Finally, we propose to present these three case studies in an isolationist way.5

As we stated before, studying a target subject can be done at different levels of ab-

straction. Each level is usually owned by a different discipline, and hence different

goals, methods, research questions, and perspectives govern in such a level. Inter-

wining the results derived from each level of analysis is such a complex task that

remains as an open problem. Thus, we opt for not integrating the results that we

obtain into an unified explanation. Furthermore, we choose to study various ReLe

systems at three different levels, namely functional, behavioral, and internal in order

to provide a wide understanding of this class of machine learning system instead of,

for example, providing either a wide understanding of a single system or a single

5An isolationist view of explanations provided by different disciplines is one where each ex-
planation, by itself, adds understanding of certain phenomena and cannot be integrated with other
explanations into an unified explanation (Gijsbers, 2016).
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perspective of various systems. Hence, this thesis aims to contribute in the scientific

understanding of ReLe systems and build more ties with other disciplines.

1.1 Objectives and Research Questions
In this thesis we aim to better understand the behavior of ReLe systems and certain

phenomena captured by them; to do so, we aim to investigate both methods for

studying the systems and ways of explaining the target behavior. These objectives

lead us to global research questions that we will answer through out the thesis:

1. What instruments (research questions, methods, analysis) can we borrow

from other disciplines?

2. What type of explanations can we provide to understand the behavior of ReLe

systems?

3. In our first case study, what is a good proxy model to represent the decision

process of a specific ReLe system?

• Can we inspect our target ReLe system using methods from previous

work?

• Are interpretable models from the literature suitable for capturing the

predictive behavior of the ReLe system?

• What class of interpretable model may be an equivalent of the ReLe

system?

• Is it possible to view work on interpretability of machine learning sys-

tems as a type of a representation-level analysis?

4. In our second case study, how robust are the ReLe systems under analysis to

challenging instances and what are possible factors affecting their predictive

behavior?

• What type of analysis can help us discover associations among the re-

sponse of the systems and the factors?
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• Are the systems able to generalize to our challenging instances as well

as test accuracy indicates?

• Are there any common behavioral patterns emerging from the systems?

• To what extent work from behavioral science aids in the understanding

of the predictive behavior of ReLe systems?

5. In our third study, can we extract linguistic information from a ReLe system?

• How well can we extract hypernymy relations from the ReLe system

under study?

• How does different hypernymy datasets influence the analysis?

• What are important characteristics that an useful dataset should fulfill?

• To what extent work on internal analysis from neuroscience aligns to

work on extracting linguistic information from ReLe systems?

1.2 Scope and Limitations
The scope of this thesis is the study and explanation of qualitative aspects of differ-

ent ReLe systems, such as behavior and abilities learned. We do not aim to improve

either the ReLe systems or the representations learned by the systems; however, we

believe that our results may help for improving the systems, the representations, and

the ways of evaluating their qualities.

A limitation of this work is the restricted number of ReLe systems under study.

We study five systems in total, one system in Chapter 4, three systems in Chapter 5,

and one system in Chapter 6. Thus, the results that we obtain are specific to those

systems and they may not generalize to other ReLe systems. Furthermore, we focus

only on three NLP tasks, namely knowledge base population (Chapter 4), natural

language inference (Chapter 5), and hypernymy prediction (Chapter 6). Studying

these ReLe systems on other NLP tasks may help to better understand them. In

addition, as we just said, our ReLe systems are NLP systems; we did not study any

ReLe system outside this field, such as computer vision systems, or multi-modal
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systems that learn based on both language and visual features. Finally, another

limitation is the fact that we present the results from each study in an isolationist

way; we do not integrate these results to form a unified explanation of ReLe systems

due to the difficulty of such an endeavour.

1.3 Contributions
Our main contributions are analytic since we aim for a better understanding of both

the knowledge learned by and the behavior of ReLe systems. Thus, we contribute

with new types of explanations; one of them is a graphical model as an equiva-

lent of a representation-level explanation, and the other one is a frame that encom-

passes statistical correlations along with their descriptions as a type of behavioral

explanation. We also contribute with providing a better experimental framework

to elucidate whether a linguistic relation is encoded in a system. More specific

contributions are the following.

1. First case study:

• We show that symbolic approaches are not suitable for describing the

decision process of a specific matrix factorization system.

• We provide strong evidence for a Bayesian network being an equivalent

of the matrix factorization system under study. Thus, with this Bayesian

network we are able to visualize the decision process of the ReLe system

and to understand how the system made a prediction.

• By showing that a Bayesian network is a plausible model to explain

behavioral data from the matrix factorization system under study, we

provide a piece of evidence for the MF system learning (and possibly

predicting based on) correlations among features found in the data.

• We tie the class of interpretable models with representation-level anal-

ysis from cognitive science; i.e., we show that the former analysis can

be seen an equivalent of the latter analysis. (We clarify, however, that

interpretability analysis is not our contribution; we contribute with tying
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the two types of analysis.)

2. Second case study:

• We provide an account of how the behavior of some ReLe systems is af-

fected by both slight alterations in the input domain and internal/external

factors. These analyses provide strong evidence against the picture por-

trayed, in term of generalization abilities, by over-optimistic test accu-

racy scores; in other words, our analysis show that the ReLe systems

under study are not as robust as previously thought.

• With the above account, we provide a piece of evidence for ReLe sys-

tems classifying instances based on confounding factors that have noth-

ing to do with the task. This evidence may work against the idea of

ReLe systems understanding the semantics of the instances. (However,

this is only a piece of evidence, and in order to thoroughly and clearly

prove any hypothesis about the capabilities of ReLe systems, more stud-

ies should be done.)

• We borrow a methodology and an experimental framework from the

behavioral science in order to provide the explanations that show how

the systems are influenced by certain factors that act as confounding

factors. By borrowing such elements, we provide internal validity of

our results; i.e., we provide (statistical) confidence that the response of

the systems is affected by the factors under study in the way shown

by the corresponding explanation. We believe to be the first to borrow

methods from the behavioral science to analyze ReLe systems at the

stimulus-response level.

3. Third case study:

• We provide evidence for the ability of a ReLe system to capture hy-

pernymy despite not being explicitly trained to do so. This piece of

evidence seems to show that a ReLe system is able to capture a type of
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semantic information from a corpus. (However, we abstract away from

any claims that ReLe systems are able to capture the semantics of con-

cepts. It is not clear whether our piece of evidence works towards the

idea that hypernymy is captured due to the semantics learned by a ReLe

system or just due to statistical patterns in the corpus. In order to prove

any theory, more studies should be done.)

• We contribute with an analysis of hypernymy datasets crafted for the

task of extracting hypernyms. We show that out of six datasets only

one is useful for this task given two key characteristics in its design.

Furthermore, we show how these two key characteristics are important

for building new hypernymy datasets.

• We also show that the selection of scoring function is an important factor

in order to interpret the results.

• Even though we borrow the methodology we use to extract hypernymy

from the NLP literature, we contribute with drawing a parallel between

this type of analysis from NLP with that from neuroscience (brain de-

coding), and we show how both types of analysis are similar in both

objectives and methods.

1.4 Publications
We show the publications derived from these studies:

Chapter 4:

Ivan Sanchez, Tim Rocktaschel, Sebastian Riedel, Sameer Singh. Towards Ex-

tracting Faithful and Descriptive Representations of Latent Variable Models. AAAI

Spring Symposium on Knowledge Representation and Reasoning. March 2015.

Ivan Sanchez Carmona, Sebastian Riedel. Extracting interpretable models from ma-

trix factorization models. COCO’15 Proceedings of the 2015th International Con-

ference on Cognitive Computation: Integrating Neural and Symbolic Approaches.

December 11 - 12, 2015. Montreal, Canada.
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Chapter 5:

V. Ivan Sanchez Carmona, Jeff Mitchell, Sebastian Riedel. Behavior Analysis of

NLI Models: Uncovering the Influence of Three Factors on Robustness. North

American Chapter of the Association for Computational Linguistics: Human Lan-

guage Technologies (NAACL). 2018. Association for Computational Linguistics.

Chapter 6:

V. Ivan Sanchez Carmona, Sebastian Riedel. How Well Can We Predict Hypernyms

from Word Embeddings? A Dataset-Centric Analysis. Proceedings of the 15th Con-

ference of the European Chapter of the Association for Computational Linguistics:

Volume 2, Short Papers. 2017. Association for Computational Linguistics.





Chapter 2

Background

In this chapter, we explain the background concepts required to understand the rest

of the thesis. We divide this chapter in four sections: We first briefly describe what

is representation learning, and then we describe the representation learning models

upon which our ReLe systems under study are built on, namely matrix factoriza-

tion (MF), long short term memory network (LSTM), and bidirectional long short

term memory network (Bi-LSTM). We also describe the representations that some

NLP systems learn, namely word embeddings; understanding this representation is

a requisite before we study another of our target systems. (We describe our sys-

tems under study in the corresponding chapters where we describe our research.) In

the subsequent sections, we describe some machine learning models, such as deci-

sion trees, logistic regression, and support vector machines; as well as probabilistic

models, namely Bayesian networks; and symbolic models, such as logic rules upon

which we build our research in the next chapters.

We require the understanding of the above mentioned models for the following

reasons. In Chapter 4, we use three models that will help us to understand the

predictions of a matrix factorization system, namely logic rules, decision trees, and

Bayesian networks. Thus, it is relevant to study in this chapter how we induce

(learn) an MF model and each of the models that will serve to understand the MF

under study; also, we explain how we use these models once learned, i.e., how we

make predictions using the trained models. In Chapter 5, we analyze the robustness

of ReLe systems built on LSTMs and bidirectional LSTMs; thus, in this chapter
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we explain the architectures of both types of models and the set of the equations

that characterize them. Finally, in Chapter 6, we extract semantic information from

the parameters of a ReLe system; these parameters are commonly known as word

embeddings, and they are a way of representing words (concepts). Therefore, in

this chapter we explain in detail what are word embeddings, how they are learned,

and ways of evaluating their usefulness. Furthermore, in Chapter 6, in order to

decode information from word embeddings, we use two classifiers, namely logistic

regression and support vector machines, which we also explain in this chapter.

2.1 Representation Learning
The term representation learning refers to learning an encoding of data in a form

suitable for a machine learning system to operate upon it; such an encoding is the

representation learned. And the system learning such representation is what we call

a representation learning system (ReLe) (Bengio et al., 2013).

A common way a ReLe system learns the representation of input data is by

minimizing a loss function for either a downstream task, such as knowledge base

population or natural language inference, or a language model task. The represen-

tations learned are encoded in some of the parameters of the system; these repre-

sentations may correspond to words, sentences, or other objects depending on the

task the ReLe system is trained for.

2.1.1 Representation Learning Models

In this section, we explain three representation learning models widely used in the

NLP community, namely matrix factorization, long short term memory network

(LSTM), and bidirectional long short term memory (Bi-LSTM). These models have

been implemented into several NLP systems; however, understanding their predic-

tions have become a difficult task. In Chapters 4 and 5, we analyze ReLe systems

built using the mentioned models, thus it is important to explain the basics of these

models to better understand those chapters. More concretely, we explain what are

each of these models; i.e., we explain the equations that form these models, what are
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they used for, how we can learn them,1 and how we can use them to predict. Nev-

ertheless, we leave the details of the systems under study to the above chapters; in

this section, we describe the characteristics of the models, not the implementations

to study.

2.1.1.1 Matrix Factorization

A matrix factorization (MF) is a type of representation learning model whose ob-

jective is to populate, or approximate, a matrix of data Xm×n by learning low-

dimensional2 representations of rows and columns of this matrix.3 According to

(Singh and Gordon, 2008), the mathematical form of an MF model is:

Xm×n ≈ f (Um×kV′k×n) (2.1)

We can re-write Equation 2.1 as Y=Um×kV′k×n, where the matrix Y is a recon-

struction, or approximation, of the matrix X. In Y, all the cells have been populated

by means of the factors U and V.4 Function f is particular for the task where the

MF model is going to be applied. For example, in Chapter 4, our system under

study uses a sigmoid function.

The factors U and V contain the low-dimensional representations learned for

each row and column of the matrix X; i.e., each row vector of both U and V cor-

responds to a low-dimensional embedding. Figure 2.1 shows a graphical depic-

tion of an MF model; in this figure, a row Xi is represented by the 2-dimensional

embedding Ui, and similarly, the representation of a column X j is encoded in the

2-dimensional vector V j.

Learning the matrix Y can be done by minimizing a loss function that computes

1We succinctly explain learning methods, but we do not aim to go to a fine-grained detailed since
our main goal is to understand pre-trained systems, as we will study them in Chapters 4 and 5; thus,
we prefer to focus more on the characteristics of the models, rather than on learning algorithms.

2The term low-dimensional is used to denote that the size of the representation learned (in the
form of a continuous vector) is lower than the size of a one-hot vector representation of the same
object.

3In this matrix of data, each row and each column represent an object. For example, suppose X
is a dataset of recommendations for users, then a row Xi represents a user useri while a column X j
represents an item item j.

4The notation V′ indicates the transpose of the matrix V.
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Figure 2.1: A matrix factorization model. Matrix X is a matrix of data used as training data
for learning the factors U and V.

the distance between the matrix of data X and its approximation:

∑
i, j
(xi j− yi j)

2 (2.2)

This loss function is minimized by an optimization algorithm, such as gradient

descent. The parameters learned are the factors in which the matrix Y is decom-

posed, namely U and V.

Inference in an MF model accounts for populating the cells of the matrix Y

and is done via a dot product between the factors learned, as shown in Equation 2.3,

where function f is the same function as in Equation 2.1. We note that inference

can only be done for rows and columns of Y for which factors U and V were learned

at training time.

yi j = f (〈Ui,V′j〉) (2.3)

2.1.1.2 Long Short-Term Memory

A Long Short-Term Memory (LSTM) (Hochreiter and Schmidhuber, 1997) is an-

other type of representation learning model widely used in several NLP tasks. This

model learns the embeddings of both words and sentences in an end-to-end fashion.

And it is able to keep track of long-term dependencies in a sentence while avoiding

a common problem found in other models, namely the vanishing gradient (Good-
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fellow et al., 2016). This problem occurs as a side of effect of the learning algorithm

–backpropagation– that tries to propagate an error signal through the many layers

of the model; this signal diminishes its intensity as it passes through the layers up

to the point where it becomes negligible. An LSTM solves this problem through

the use of gates that control the flow of information allowing the error signal to be

fully propagated through all the layers. Furthermore, the architecture of an LSTM

allows for an end-to-end, joint learning of both the parameters of the gates and the

input embeddings using a single loss function.

The architecture of an LSTM is that of a recurrent neural network (RNN), i.e.

it receives self-feedback. At each time step t ∈ 1, ..,T the LSTM receives an input

embedding xt , and the previously computed hidden state ht−1 and memory cell ct−1,

then it computes the current hidden state ht and memory cell ct through the set of

gates it (input), ot (output), and ft (forget). The recurrence comes from both the

hidden state and memory cell. If a classification output is required, then a softmax

layer is placed on top of the last hidden state hT .

it = sigmoid(wxixt +whiht−1 +bi) (2.4)

ot = sigmoid(wxoxt +whoht−1 +bo) (2.5)

ft = sigmoid(wx f xt +wh f ht−1 +b f ) (2.6)

gt = tanh(wxgxt +whght−1 +bg) (2.7)

ct = ft� ct−1 + it�gt (2.8)

ht = ot� tanh(ct) (2.9)

The set of Equations 2.4-2.9 form the structure of a cell, a complex structure by

itself. The memory cell (Equation 2.8) acts as a memory by receiving information

from the past memory cell (ct−1). This memory is regulated (controlled) by the

forget gate which decides to what extent the past information is going to be stored.

The forget gate is a feed-forward neural network that based on the input vector xt

and the past hidden state ht−1 learns the degree, ft ∈ [0,1]n, to which the past cell
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state information should be forgotten or remembered. In addition, the information

coming from the past memory cell is combined with the information coming from

the neural network gt controlled by the input gate it which regulates the extent to

which the information is read. The output gate ot controls the flow of information

that is going to be passed to the next cell in the LSTM. This gate is also a feed-

forward network, similar to the forget and input gates.

It is important to note that in a cell each gate has its own set of parameters

`x (input weights), `h (recurrent weights), and b (biases), all of them learned by

backpropagation. And these parameters are shared through time; i.e., the cell ct

uses the same parameters as the cell ct−1. Another set of parameters also learned

are the input vectors X. In an NLP task, one input vector xk is usually a sentence,

and it is formed by a set of words, xk
1, ...,x

k
T , each of which is represented by a word

embedding, i.e. a vector xk
t ∈ Rn. Altogether, the number of parameters is usually

around the hundred of thousand, or even in the millions, depending on the task and

the size of the dataset.

2.1.1.3 Bidirectional LSTM

A bidirectional LSTM (Bi-LSTM) is simply the union of two LSTMs in order to

capture more information than a single LSTM can do. Each LSTM in a Bi-LSTM,

LSTM1 and LSTM2, reads the input in a different way. One LSTM reads the input

forwards and the other reads the same input backwards (Goodfellow et al., 2016).

For example, an LSTM1 will encode the sentence The cat eats into a sentence

embedding by reading the words in the following order: The, cat, eats, whereas an

LSTM2 will process the same sentence following the opposite order, eats, cat, The.

The embeddings learned by the two LSTMs summarizing the whole input sequence

are then used in different contexts, such as transfer learning or classification. If the

target task is classification then a softmax layer is fed with the outputs from the two

LSTMs and it outputs class-label probabilities.

Learning the parameters of the two LSTMs is done jointly via an optimization

algorithm, such as gradient descent. For a classification task the most common loss

function to minimize is the cross-entropy loss where the output from the soft-max
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is compared against the gold class label.

2.1.2 Representations of Words

In this section, we describe word embeddings, which are representations of words

learned by some ReLe systems. We explain some methods of how these vector

representations can be learned and evaluated. We also, explain how they encode

some semantic information, such as similarity. Word embeddings are highly used

in recent NLP systems, due to their usefulness in encoding similarity which allows

NLP systems to improve accuracy on tasks such as question answering or natural

language inference. For example, knowing that the concept of dog is similar to

the concept of animal may help a system to do an entailment. However, it is not

clear if this type of representation can encode more information than just similarity,

a research question which we will answer in Chapter 6. Thus, in this section, we

review the fundamentals of word embeddings required to understand the analysis

of a particular set of word embeddings obtained from a pre-trained ReLe system in

Chapter 6.

2.1.2.1 Word Embeddings

Word embeddings, also known as low-dimensional vectors or distributed represen-

tations, are dense vectors that represent the meaning of words; i.e., each word wi in

a vocabulary V is associated with a continuous vector wi of dimensionality d = k

(Goodfellow et al., 2016). For example, the word cat is represented by a word

embedding in Rk, such as wcat .

Representing words using embeddings has an advantage with respect to using

symbolic representations where a word is associated with a one-hot vector (Good-

fellow et al., 2016):5 semantically similar words are close in the embedding space

in comparison to semantically different words. For example, the embedding of cat

is closer6 to the embedding of dog than to the embeddings of unrelated concepts,

5An example of a one-hot vector for the word cat is the vector vcat : [0 0 ... 0 1 0 ... 0], where
the size of vcat is the number of elements in the vocabulary V ; i.e., each word in the vocabulary is
represented by a position in the vector representation.

6The notion of distance between embeddings can be quantified using a metric, being the cosine
and Euclidean distances two of the most popular.
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such as moon or train. The rationale behind this statement is based on the distri-

butional hypothesis (Harris, 1954; Firth, 1957). The main idea of this hypothesis

states that if two words in a text occur along with same contextual words, then they

have similar meaning. For example, cat and dog may occur with the words pet, vet-

erinary, or animal, all of them characteristic of the concept domestic animal; then,

the vectors of cat and dog are more similar to each other than to vectors of other

concepts outside the category domestic animal.7 One question that may arise at to

this point is how do we get similar concepts to be close in vector space?

Each dimension of a word embedding corresponds to one parameter of a rep-

resentation learning system. As we saw in Sections 2.1.1.1 and 2.1.1.2, we learn

embeddings by minimizing a loss function for solving a task. There are two types

of tasks in which we can learn word embeddings, downstream and auxiliary.

Learning word embeddings via a downstream task, such as machine transla-

tion, may require more resources than learning them via an auxiliary task. The

main bottlenecks reside in the corpus and the time required to train. Usually, the

final use of word embeddings are as features in downstream tasks; in this sense, it

is reasonable to simply use such tasks to learn the embeddings. However, such pre-

trained embeddings, specific to a task, may not be of use as off-the-shelf features

for another different task, due to the domain information that they captured from the

downstream corpus. For example, embeddings learned using a machine translation

objective may capture linguistic information probably not required for the task of

question answering, and information that is necessary for QA may not be present

in the MT corpus. Of course, one may train embeddings specific for QA using

the corpus of the task of interest. However, there is evidence for the usefulness of

using pre-trained word embeddings in downstream tasks: when the corpus of the

target task is small, embeddings can transfer information learned from the task they

were optimized for; furthermore, they help to reach local minima not reachable by

a random initialization of the parameters.

7We may speculate that the characteristics shared by two concepts in a text are captured by the
word embeddings along the k dimensions. Previous work has successfully extracted some informa-
tion from pre-trained embeddings, but it is still an open question to what extent embeddings can
capture semantic, syntactic or other type of information.
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A common auxiliary task for learning word embeddings is a variant of lan-

guage modelling (Goldberg, 2016). The task is either to predict a focus word wi

given a context ci,8 p(wi|ci), or a context given a focus word, p(ci|wi). Advantages

of this auxiliary task over downstream tasks are a) the abundance of text corpus,

since documents in plain language, such as Wikipedia articles, serve as a training

corpus; b) the task is unsupervised in the sense that no labels (and therefore no

manual annotations) are required; c) usually less training time is required; d) the

word embeddings are not specific to a downstream task, but rather to the domain

of the corpus, and the bigger the corpus the more information it can capture.9 In

addition, some works in NLP have found useful using word embeddings obtained

from auxiliary tasks (Weissenborn et al., 2017; Chen and Manning, 2014; Parikh

et al., 2016).

Evaluating word embeddings can be done in two ways: in a downstream task

(extrinsic evaluation) or in a proxy sub-task (intrinsic evaluation.) A proper eval-

uation of embeddings in a downstream task requires an adequate control of the

components of the NLP system that may have an effect on the global accuracy;

therefore, this type of evaluation has a certain degree of difficulty depending on the

complexity of the NLP system. On the other hand, in an intrinsic evaluation, we can

evaluate, to some extent, how well the embeddings have captured desired aspects;

this type of evaluation is performed in a sort of laboratory conditions and is usually

easier to control for, given a properly crafted dataset.

Two common intrinsic tasks are similarity and analogy. In the similarity task,

it is measured if the similarity of two concepts, according to human judgment, is

captured in the corresponding word embeddings. For example, in the wordsim353

dataset10 tiger and cat are similar by 7.35 points (in the scale of 0 to 10), while

plane and car are so by 5.77 points; therefore, if the distance of wtiger to wcat ,

in vector space, is closer than that of wplane to wcar, then we assert that the em-

beddings have captured some notion of similarity. On the other hand, the analogy

8A set of surrounding words to the left and right of the focus word if the context is symmetric.
9However, if the corpus is specific to a domain, such as news, then it may not contain a broad

class of linguistic phenomena, but only those pertinent to the domain.
10http://www.cs.technion.ac.il/ gabr/resources/data/wordsim353/wordsim353.html
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task of Mikolov et al. (2013) measures, to some extent, if the embeddings have

captured a sense of hypernymy: king is to man as x is to woman; it has been

claimed that if the embedding of wqueen can be recovered via the vector operation

wking−wman +wwoman = wqueen then the embedding space learned has captured a

sense of hypernymy.

2.2 Machine Learning Models
In this section, we explain three machine learning models that we use as classifiers,

namely logistic regression, support vector machines, and decision trees.

Two of these models will help us to decode information from a set of word

embeddings in Chapter 6, namely logistic regression and support vector machines.

Here, we explain the fundamentals required to understand how we will use them

in the mentioned chapter; i.e., we explain how these models classify an instance

as pertaining to one out of two classes. More concretely, we will use these two

classifiers to predict if two word embeddings fall in the relation of hypernymy or

not; in this way, the classifiers will work as decoders and will allow us to extract

hypernymy information from the embeddings.

On other hand, we will use decision trees (DT) in Chapter 4 in order to under-

stand the predictions of a ReLe system; i.e., we will learn decision trees that will

mimic the predictive behavior of the target ReLe system. Due to the easiness in

understanding the predictions from a decision tree, we use this model as a proxy to

understand a more complex system. Thus, we consider important to understand the

characteristics of decision trees, how we can induce a DT, and how we can use it to

make predictions.

We decided to use these three machine learning models due to their popularity

in the literature. Logistic regression and support vector machines have been widely

used in the NLP literature to extract different types of semantic information from

word embeddings, such as hypernymy and meronymy. Moreover, they have been

used to a great extent in the neuroscience also to extract semantic information from

readings of neural activity of people. On the other hand, decision trees are a classic
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model in the literature of interpretability of complex systems.

2.2.1 Logistic Regression

Logistic regression is a binary, linear classifier which given an input vector x ∈ Rd

outputs a number f (x) ∈ [0, 1] interpreted as the probability of the input pertaining

to a certain class, i.e. f (x) = p(y = 1|x), where y indicates the class value expected

(Murphy, 2012; Mohri et al., 2012; Shalev-Shwartz and Ben-David, 2014). Since

logistic regression is a binary classifier, there are only two possible classes, y = 0

and y = 1. The mathematical form of this classifier is shown in Equation 2.10,

where w ∈ Rd and b ∈ R are the parameters to be learned.

f (x) = sig(wT x+b) =
1

1+ exp(−(wT x+b))
(2.10)

Learning the parameters of a logistic regression classifier requires a labelled

dataset D, where each instance is of the form (x,y), and a cross-entropy loss func-

tion. This loss function, shown in Equation 2.11, can be seen as a maximum like-

lihood estimator of the parameters, and can be minimized by an optimization algo-

rithm, such as gradient descent.

L(w,b) =
N

∑
i=1

(yi)log( f (xi))+(1− yi)log(1− f (xi)) (2.11)

Inference by this type of classifier is done in a straightforward way by applying

the function 2.10 on an input vector xi and obtaining a probability estimate p(y =

1|x). This probability value is thresholded at threshold α = 0.5 in order to obtain a

class value, though different threshold values can be used.

2.2.2 Support Vector Machines

SVMs are another type of binary, linear classifiers. This type of classifiers seeks

to maximize the distance between training instances and a hyperplane separating

these instances by class label. A key addition to this classifiers is that of a kernel

function, K, which allows to learn a non-linear decision boundary in the input space

(Mohri et al., 2012; Shalev-Shwartz and Ben-David, 2014). This function provides
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the dot product of two instances in a higher-dimensional feature space F ,11 as

shown in Equation 2.12 where the function φ , intrinsically computed by K, maps

from the input space to the feature space. An example of a common kernel function

is the Gaussian kernel (Equation 2.13). Computing this dot product in a higher

dimensional space facilitates learning a linear hyperplane to separate the instances

by class label. Thus, the resulting decision boundary learned is linear in the feature

space F and non-linear in the input space X .

K(xi,x j) = 〈φ(xi)),φ(x j))〉 (2.12)

k(xi,x j) = exp(−1
2
(xi−x j)

T
Σ
−1(xi−x j)) (2.13)

Learning the decision boundary in the feature space F accounts for minimiz-

ing the following quadratic program:

L(a) =
N

∑
n=1

an−
1
2

N

∑
n=1

N

∑
m=1

anamynymK(xn,xm) (2.14)

Subject to the conditions:

0≥ an ≤C (2.15)

N

∑
n=1

anyn = 0 (2.16)

Where each an is a Lagrange multiplier, and each instance is of the form (x,y)

where y is a label.

Predicting the label f (xi) of a given test instance xi is done using Equation

2.17; however, this output is not a probability. In order to estimate such a probabil-

ity, a logistic regression is fitted using a subset of instances labelled with predictions

of the SVM learned (Platt, 1999).
11This feature space can even be infinite dimensional.
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f (xi) =
N

∑
n=1

anynK(xi,xn) (2.17)

2.2.3 Decision Trees

Decision trees (DT) are hierarchical classification models, where given an instance

xi (a vector of features), a class label yi is output after analyzing each of the features

x j. A decision tree consists of two basic elements: Internal (decision) nodes and

leaf (classification) nodes. An internal node represents a test on the value of a

specific feature of an instance. If a feature x j, from the input domain, has a Boolean

domain then its corresponding decision node, namely d j, will test, for any instance

xi to be classified, the value xi j and depending on this value (0 or 1) will be the

next decision node to try. If feature x j ∈ {1, ...,m} is a categorical variable then the

number of splits in d j can be either m (one split for each possible value), or 2 (a

binary split): xi j = categoryk, xi j = any other category. In the case of continuous

features, a binary split is applied: xi j < t j, xi j ≥ t j, where t j is a learned threshold

(Murphy, 2012; Shalev-Shwartz and Ben-David, 2014).

2.2.3.1 Classifying an instance

A leaf node classifies a particular instance: Any instance xi that falls into a leaf

node lk will be assigned a class label yi = k. So, classifying a particular instance

accounts for an ordered test of the values of the features for such instance; in this

way, a decision tree is a hierarchical model given that there is a hierarchy in the

order of the nodes, starting from the root node (first node of the tree) and ending in

a leaf node. See Figure 2.2 for an example of a decision tree.

2.2.3.2 Inducing a tree

Inducing a decision tree from training data accounts for building the hierarchical

structure of the nodes. In other words, learning a decision tree is the recursive func-

tion of structuring the features from the input space in a hierarchical tree structure.

Since each node in a decision tree makes a split on the training data, we can say

that learning a decision tree accounts for learning hyperplanes in the input space

that separates instances from different classes, where the first node in the hierarchy
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No. Assignments Closest deadline (days) Weather Go to party?
2 9 Sunny Yes
5 7 Sunny No
6 15 Rainy Yes
1 1 Rainy No
5 10 Sunny No
3 8 Rainy Yes

(a) Table with training instances for the concept Go to party.

 
No 

≥ 12.5 

Closest deadline 

< 7.5 ≥ 7.5 

No. assignments 

< 4 ≥ 4 

Closest deadline Yes 

No Yes 

< 12.5 

(b) A decision tree for the training data above. Internal nodes test for the
value of features Closest deadline and No. Assignments. Leaf nodes
label an instance as class Yes or No for the concept Got to party.

Figure 2.2: A decision tree representation for the concept Go to party. The feature Closest
deadline splits the input space at different levels, given its importance. All the
splits are binary. The feature Weather does not contribute with an information
gain (except in the split ≥ 12.5 where it could have been substituted the node
Closest deadline for the node Weather).

imposes the first margin on the input space. See Figure 2.3 to see an example of the

margins induced for the example in Figure 2.2.

An algorithm for learning a decision tree is shown in Algorithm 1. Given that

inducing a decision tree from data is an NP-complete problem, the learning algo-

rithms are usually greedy. The algorithm shown here selects in a greedy way the

nodes to add to the hierarchy. This selection method usually relies on two mea-

sures, information gain and squared error. C4.5 and CART (Murphy, 2012), two

of the most popular learning algorithms for decision trees, use these node-selection

measures while inducing the hierarchical structure in a similar fashion as the algo-



2.2. Machine Learning Models 57

 

0

1

2

3

4

5

6

7

0 2 4 6 8 10 12 14 16

Closest Deadline 

No. Assignments 

Figure 2.3: Input space divided by the decision tree in Figure 2.2. Blue squares represent
class Yes, green diamonds represent class No.

rithm shown here.

x j: feature j
initialize: x j← Null, D← training dataset
learnDecisionTree(portion of data Di) {
if Entropy of output variable y in Di == 0 then

if y == 0 ∀(x,y) ∈ Di then
return leafNode(y← False)

else
return leafNode(y← True)

end
else

choose best feature x j and create its node
Dle f t ← (xi,yi)∀i s.t.xi j = 0
learnDecisionTree(Dle f t)
Dright ← (xi,yi)∀i s.t.xi j = 1
learnDecisionTree(Dright)

end
Algorithm 1: Algorithm for learning a binary decision tree. Each internal node
has a binary split, and the class label in a leaf node is also binary (True, False).
The entropy in a split measures the homogeneity of the data, if the entropy is 1
(maximal entropy) it means we have 50% of chance of classifying correctly an
instance, if entropy is 0 then all the data instances falling in the leaf are from the
same class.

Information gain (IG) is probably the most popular score for node selection.

It measures the mutual information between a candidate feature x j and the class

variable y:
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IG(y,x j) = H(y)−H(y|x j) =−E[log2 p(y)]+E[log2 p(y|x j)] =

−∑
k

p(y = k)log2 p(y = k)+∑
m

p(x j = m)H(y|x j = m)
(2.18)

In equation 2.18, H is the entropy of a variable.

Mutual information is a measure of the strength of statistical dependence be-

tween two variables in [0,1]; the higher the mutual information, the more dependent

the two variables are. In terms of data, we can interpret information gain as a mea-

sure of the homogeneity of the data after feature x j induces a margin in the input

space. For example, consider Figure 2.4 where training data is split after adding the

root node from example in Figure 2.2. By adding the feature Closest deadline we

get the following information gain:

IG(y,Closest deadline) = H(y)−H(y|Closest deadline) (2.19)

Where

H(y) =−(1
2

log2
1
2
+

1
2

log2
1
2
) = 1 (2.20)

H(y|Closest deadline) =−(2
6
(0log20+1log21))− (

4
6
(
1
4

log2
1
4
+

3
4

log2
3
4
)) = 0.5408

(2.21)

Thus

IG(y,Closest deadline) = 0.4592 (2.22)

This means that by splitting on the feature Closest deadline, the uncertainty in

the classification of the data is reduced by 0.4594 bits. As we see from Figure2.4,

on the left split we are able to correctly classify class No, given that the entropy

(uncertainty) is zero. On the right branch we are able to classify class Yes 3 out of 4
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≥7.5 

Closest deadline 

<7.5 

Figure 2.4: Training data division before and after first split on feature Closest deadline
from example in Figure 2.2. Green diamonds represent class No, blue squares
represent class Yes. Note that the entropy on the left branch is zero, due to the
homogeneity of the data.

times correctly.

2.2.3.3 Probability Estimation

An important characteristic of a decision tree is its capability of estimating class

probabilities. Estimating the probability that an input instance xi pertains to a class

y = k, p(y = k|xi), is done at any leaf node lm by means of maximum likelihood

estimation:

p(y = k|xi) =
number of instancesx j ∈ lm s.t.class(x j) = k

Total number of instances ∈ lm
(2.23)

2.3 Probabilistic Graphical Models
In this section we describe a model that will help us to explain predictions of a ReLe

system in Chapter 4. In a similar way as we will use decision trees, from Section

2.2.3, we will use a probabilistic model to mimic the predictive behavior of the

target ReLe system; more concretely, we will use a Bayesian network. To the best

of our knowledge, we are the first to use this model in order to explain predictions

of a ReLe system. Thus, we devote this section to describe and characterize this

model, explain how we can learn it, and how we can make predictions.
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𝑛𝑖 𝑛𝑗 

Figure 2.5: A simple Bayesian network consisting of only one parent node (ni) and one
child node (n j).

2.3.1 Bayesian Networks

A Bayesian network (BN) is a graphical representation of a factorized joint prob-

ability distribution over a set of random variables x1, ...,xn. Each factor in a BN is

called a family and it encodes a local conditional probability distribution of a child

node given its parent nodes. Thus a node ni is a graphical representation of a ran-

dom variable xi, and it has a direct influence over a node n j if there is a direct link

from the former node the latter node (see Figure 2.5). This influence is associated

to a conditional probability distribution: p(x j|xi) (a factor); this conditional proba-

bility, graphically represented in Figure 2.5, can be interpreted as node ni being the

parent of node n j, and consequently n j being a child node. In a general Bayesian

network there is no restriction for a node to have more than one parent, though a

node it is not allowed to be its own parent (Koller and Friedman, 2009; Murphy,

2012).

2.3.1.1 General Bayesian networks

Every Bayesian network is characterized by a) a graphical structure (the set of nodes

and their links) and b) a set of parameters (the set of local conditional probability

distributions). Two restrictions imposed in the structure of a Bayesian network are

acyclicity and directionality: The structure of a BN cannot have cycles and each

link between nodes must have a direction; for these reasons, the structure of a BN is

called a DAG (Directed Acyclic Graph). In Figure 2.6 we can see both an example

of a DAG and an example of a graph with a cycle.

An important probabilistic assumption that a BN encodes is conditional inde-

pendence. Two random variables, xi and x j, are conditionally independent given
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𝑛𝑖 𝑛𝑗 

𝑛𝑘 𝑛𝑙 

𝑛𝑚 𝑛𝑜 

(a) A Directed Acyclic Graph.

 
𝑛𝑖 𝑛𝑗 

𝑛𝑘 𝑛𝑙 

𝑛𝑚 𝑛𝑜 

(b) A graph with a cycle made up by
nodes ni,nk,nl .

Figure 2.6: Examples of a DAG and not a DAG.

a third random variable xk, denoted by xi⊥x j|xk, if and only if p(xi,x j|xk) =

p(xi|xk)p(x j|xk). From a graphical perspective, this is represented by the absence

of a link between the nodes ni and n j, where both nodes have a connection to, or

from, the node nk. This configuration allows an indirect influence between ni and n j

through node nk. In both the causal12 and evidential forms of influence, the node nk

blocks the influence between ni and n j if it is observed, i.e. if the random variable

xk is realized to a value A. In this way, nodes ni and n j have no influence over each

other (see Figures 2.7a and 2.7c).

A broader concept of conditional independence is d-separation, where the

nodes ni and n j are separated in the DAG by a set of nodes d between them. And the

influence of one node on the other is blocked if at least one node in d is observed.

Basic configurations of d-separation are shown in Figure 2.7. We can identify four

basic types of d-separation. In a causal influence graph the flow of influence starts

from the node with the highest hierarchy in a sub-graph and descends through a

single path until it reaches a leaf node. We can say that the former node causally

influences all nodes in the path to the leaf node. The flow of influence is broken at a

12The term causal refers to the direction of flow of influence between nodes, from parent to child,
rather than to a causal Bayesian network structure which is created with the purpose of taking into
account possible external interventions.
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node nk if this node is observed, and thus all descendents of nk are no longer under

the influence of the root node of the sub-graph.

A similar setting to the causal flow is found in an evidential influence graph.

In this scenario the flow of influence starts in a child node and propagates upwards

to its ancestors in a single path until it reaches the highest node in the sub-graph.

Another type of d-separation is called common cause; in this configuration, a node

nk accounts for the cause of two or more nodes by acting as a parent node for

all of them. A restriction is the lack of links among child nodes. If node nk is

observed then the influence among its child nodes is blocked, making these nodes

conditionally independent of each other given their parent node.

The last type of separation is the so-called v-structure or explaining away. In

this structure a node nk has at least two parents. If node nk is observed then it al-

lows a flow of influence among its parents; thus each of the parent nodes becomes

dependent of each other given that each of these is a possible explanation for the ob-

servation of node nk. In this way, each parent explains away the rest of the possible

causes.

We note that d-separation in a DAG does not necessarily imply conditional

independence, as in a v-structure. We also note that if no node is observe in DAG,

it might be possible that two nodes ni and n j can influence each other.

2.3.1.2 Tree-structured Bayesian networks

A special case of a Bayesian network is a tree-structured BN where the DAG is

in the form of a tree. An example of a BN tree is provided in Figure 2.8. The

restriction in the structure of the graph is that any node can have at most one parent,

i.e., parents(ni)|≤ 1, where size zero is left exclusively to the root node. Another

characteristic of this type of BN is that no node remains without a link. On the

other hand, the number of descendents of a node is unrestricted. In the case that the

number of descendents is fixed to be at most 2 then we say it is a binary tree.

2.3.1.3 Learning Bayesian networks

Learning a Bayesian network from data implies both inducing the structure (DAG)

and learning its parameters (local conditional probabilities) (Koller and Friedman,
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𝑛𝑖 𝑛𝑘 𝑛𝑗 

(a) Causal indirect influence between nodes
ni and n j through node nk. The flow of in-
fluence goes from node ni to node n j pass-
ing through nk.

 

𝑛𝑖 𝑛𝑗 

𝑛𝑘 

(b) Common cause
indirect influence
between nodes ni and
n j through node nk.

 

𝑛𝑖 𝑛𝑘 𝑛𝑗 

(c) Evidential indirect influence between
nodes ni and n j through node nk. The flow
of influence goes from node ni to node n j
passing through nk.

 

𝑛𝑖 𝑛𝑗 

𝑛𝑘 

(d) V-structure indirect in-
fluence between nodes
ni and n j through node
nk (also known as
explaining-away).

Figure 2.7: Basic configurations for conditional independence. In Figures 2.7a, 2.7c, and
2.7b, if nodenk is observed then ni is separated from node n j, i.e., the influence
is blocked. Opposite, in Figure 2.7d if node nk is observed then nodes ni and n j

can influence each other.

 𝑛𝑖 

𝑛𝑗 𝑛𝑘 

𝑛𝑙 𝑛𝑚 𝑛𝑜 

Figure 2.8: Example of a Bayesian network tree. The number of parents of a node is re-
stricted to be at most 1.
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2009). A training instance for this task is on the form x = (x1,x2, ...xn), where x de-

notes a vector of independent features (random variables). Thus learning a Bayesian

network accounts for inducing a factorized joint probability function where each

factor corresponds to a local conditional probability distribution.

Two of the most common approaches for learning the structure are conditional

independence tests and structure search. The first approach usually initializes a

fully connected graph and then removes links between nodes that are proved to be

statistically independent. A problem with this approach is the difficult to faithfully

detect independencies if the size of the sample data is small due to possible random

correlations between the variables.

In the second approach, a search in the space of the DAGs is performed by a

greedy method, such as hill-climbing, using an scoring function based on informa-

tion theory, such as mutual information (MI), Bayesian information criterion (BIC),

or Akaike Information Criterion (AIC). Maximizing a mutual information criterion

has been proved to be equivalent to maximizing the likelihood of the data given a

candidate model; however, overfitting arises due to a positive correlation between

the number of edges in the candidate model and the mutual information score. On

the other hand, BIC and AIC are two model selection measures that alleviate the

overfitting problem by penalizing complex structures. In either case, scoring a

Bayesian network is done through the decomposability property: The total score

of a BN can be decomposed as the sum of the local scores for each family, as seen

in Equation 2.24:

score(DAGk) = ∑
i∈N

score(xi|parents(xi)) (2.24)

Where N is the set of nodes in the candidate DAG and score(xi|parents(xi)) is

the mutual information between a node and its parents.

Once a structure has been selected, learning the parameters accounts for (in-

dependently) estimating a local conditional probability function for each family by

means of either maximum likelihood estimation (MLE):
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p(xi|parents(xi)) =
#(xi, parents(xi))

#(parents(xi))
(2.25)

Where we define the operator # as the number of times its argument its seen in

a dataset D:

#[x] = ∑1{x ∈ D} (2.26)

Therefore, the term #(Xi, parents(Xi)) in Equation 2.25 indicates the number of

times the random variable xi is seen along with its parents in the dataset D; similarly,

the term #(parents(Xi)) indicates the counts of the parent nodes of xi in the dataset.

Another approach to learn the parameters is by means of maximum a poste-

riori (MAP), where suitable priors are either a Laplacian smoothing or a Dirichlet

function:

p(xi|parents(xi)) =
#(xi, parents(xi))+α

#(parents(xi))+α(|domain(xi)|)
(2.27)

Where α is a constant indicating an arbitrary number of pseudo-counts.

2.3.1.4 Inference in Bayesian networks

Variable elimination is an algorithm for exact inference of the type p(y|x), where

the set of random variables y is called query variables and x is called the evidence

(Koller and Friedman, 2009; Murphy, 2012). This algorithm marginalizes out any

variable z that are neither query or evidence in order to compute the inference of the

query variables. The mathematical notation for computing such inference is given

in Equation 2.28:

p(y|x) = p(y,x)
p(x)

=
∑z p(y,x,z)

∑z,x p(y,x,z)
(2.28)

As an example, consider the DAG tree in Figure 2.8. Suppose the inference

problem is p(no|ni = I), where ni is realized by the value I. The computation of the

joint marginal p(y,x) is as follows:
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p(no,ni = I) = ∑
n j,nk,nl ,nm

p(ni = I,n j,nk,nl,nm,no) (2.29)

p(no,ni = I) = ∑
n j,nk,nl ,nm

p(ni = I)p(n j|ni = I)p(nk|ni = I)p(nl|n j)p(nm|n j)p(no|n j)

(2.30)

We can marginalize out factor by factor:

p(no,ni = I) = ∑
n j,nk,nl

p(ni = I)p(n j|ni = I)p(nk|ni = I)p(nl|n j)p(no|n j)∑
nm

p(nm|n j)

(2.31)

Where the factor ∑nm p(nm|n j) sums up to 1. We can continue marginalizing

out:

p(no,ni = I) =∑
n j

p(ni = I)p(n j|ni = I)p(no|n j)∑
nk

p(nk|ni = I)∑
nl

p(nl|n j) (2.32)

p(no,ni = I) = p(ni = I)∑
n j

p(n j|ni = I)p(no|n j) (2.33)

We can re-state the last factor from Equation 2.33 as the factor τ(no) which

depends only on the query variable. At the end we obtain:

p(no,ni = I) = p(ni = I)τ(no) (2.34)

Computing the marginal probability for the evidence is now straightforward

and simple. The complexity of this algorithm depends on the biggest factor of the

Bayesian network. In our case, since we only deal with BN trees, every conditional

probability distribution has at most four entries since each node has at most one

parent.
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2.4 Symbolic Models
In this section, we explain the fundamentals of a symbolic model, namely first-

order Horn clauses. This type of logic rule has been widely used in the literature of

artificial intelligence and data mining.13 For example, in the construction of expert

systems, or more generally, in the construction of knowledge from databases. Also,

Horn clauses have been widely used in explaining predictions of black-box systems,

which is precisely our target. We will use Horn clauses in order to explain the

matrix factorization system from Chapter 4. Logic rules are so easy to follow when

predicting new information, that they have gained a highly respected position in

many communities. Thus, in this section we explain the basics we need in order to

understand their role in Chapter 4; we explain fundamental aspects such as syntax

and semantics, and how we can use logic rules to predict new information. We

leave the learning procedure to Chapter 4, where we explain a particular algorithm

to induce Horn clauses from data.

2.4.1 First-order Horn Clauses

First-order and propositional logic rules have been widely used in applications such

as expert systems (Buchanan and Feigenbaum, 1978), where a set of logic rules

comprises a knowledge base used by an inference algorithm in order to produce an

answer to a query in a given domain. In data mining applications, such as market

basket analysis, a type of logic rules called association rules (Agrawal et al., 1993)

are mined from a database (usually a purchase one) in order to discover implications

between the item sets.

First-order Horn clauses is a formal model characterized by three aspects: Syn-

tax, semantics, and inference (Russell and Norvig, 2003). In what follows we de-

scribe each of these aspects.

2.4.1.1 Syntax

The first aspect of first-order Horn clauses is syntax, which refers to the elements

of the model and the structure of the rules. The alphabet consists of operators

13In the data mining community, this type of model is better know as associative rules.
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(¬,∧,∨,∀,=), variables, brackets, function symbols and predicate symbols. The

grammar elements are terms (constant symbols, variables, functions) and formulas

(composition of atomic formulas by means of connectives). An atomic formula

is an n-ary predicate symbol, i.e., a relation between n arguments; for example,

cityOf(London, England).

A Horn clause is a universally quantified disjunction of literals (an atomic ex-

pression or its negation) of the form: ∀x1∀x2...∀xn(¬A1∨¬A2∨ ...∨¬Ak∨B), which

is equivalent to the implication ∀x1∀x2...∀xn(A1∧A2∧...∧Ak)→B, where A1, ...,Ak

are the body of the implication and B is the head (note that both, body literals and

head literal are positive literals). In this work, we restrict Horn clauses to be of

the form: ∀x1∀x2 A(x1,x2)→ B(x1,x2), where the clauses are range restricted (ar-

guments of the body predicate necessarily occurs in head predicate), and the body

of the clause is of size one.

As part of the syntax, the valid connectives in first-order Horn clauses are

negation (¬), conjunction (∧), disjunction (∨), and implication (→) (the use of these

connectives is restricted to the structure of a valid clause as defined above). Unlike

first-order logic where a clause can be either universally quantified (∀), existentially

quantified (∃), or both, Horn clauses are only universally quantified, which means

that a literal Ai having as argument any of the universally quantified variables x j

will be applied to any object that bounds x j. An example of a Horn rule is ∀x1∀x2

fatherOf (x1,x2)→ parentOf (x1,x2).

2.4.1.2 Semantics

The semantics of a logic statement Ai(x1, ...,xn) is related to the interpretation I(Ai)

of such statement in a given domain D. By interpretation we mean a function I

in D that returns 1 if the binding of the arguments of Ai, (x1 = a, ...,xn = u), is a

valid assignment in D. In other words, an interpretation function maps a) constant

symbols to specific objects in D, b) n-ary predicate symbols to relations over n

objects holding in D, c) function symbols to functional relations in D.

An interpretation I with variable assignment α under domain D is said to be

a model M of a formula Ai if I |= Ai, i.e., model M satisfies expression Ai. In
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other words, we say that a logical expression Ai is satisfiable if there exists a truth

assignment αi of its arguments that makes Ai true. A logical expression Ai(x1, ...,xn)

is true (valid) if the interpretation of each argument I(xi) refers to an object oi in

domain D and the interpretation of the predicate symbol I(Ai) maps to a relation

Ri in D over all the objects oi corresponding to the arguments xi. A universally

quantified formula ∀xP(x) is true if the interpretation of the predicate I(P) holds for

any interpretation I(x), i.e., if I(P) holds in D for any object bound variable x.

2.4.1.3 Inference

Inference in Horn clauses is done by the transitive closure of ground literals, i.e., by

successively applying modus ponens to substituted Horn clauses. Modus ponens is

an inference rule of the type:

A(a,b), ∀x1∀x2 A(x1,x2)→ B(x1,x2)

B(a,b)
(2.35)

Where the universal quantifier is eliminated by substitution α:

∀x1∀x2 A(x1,x2)

A[x1/a][x2/b]
(2.36)

In this way the fact B(a,b) is derived from the Horn clauses in the knowledge

base.





Chapter 3

Literature Review

In this chapter, we explore previous work and approaches in the literature on both

the types of analysis we propose for studying ReLe systems and the studies done in

the natural language processing and machine learning communities. In this way, we

have three sections. The first section is devoted to representation-level analysis and

interpretability, since in Chapter 4 we will use methodology from previous work

on interpretability of machine learning systems and we will frame it as an analysis

at the representation level according to Marr’s levels of analyses of information-

processing systems in cognitive science (Marr, 2010). In the second section we

describe previous work on behavioral analysis and robustness, since in Chapter 5

we will use methods from the behavioral science to evaluate robustness of ReLe

systems. Finally, in the third section we describe both works on internal analysis

from neuroscience literature for inspecting abilities learned by people and works

done in the NLP community to study linguistic phenomena learned by ReLe sys-

tems (such as hypernymy), and we draw a parallel between the two lines of work in

order to show elements in common in both types of studies.

3.1 Representation-level Analysis and Interpretabil-

ity of Black-Box Systems
In this section, we describe some types of explanations from both psychology and

cognitive science used to give an account of certain cognitive phenomena. First, we

describe Marr’s three levels of analysis of information-processing systems (Marr,
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2010), namely computational (first level), representation and algorithm (second

level), and implementation (third level). The representation and algorithm level is

of particular interest to this work since we will provide an equivalent of analysis

in Chapter 4. Furthermore, we also describe another type of analysis widely used

to give an account of how cognitive competences emerge from a complex system,

namely functional analysis. At the end, we provide a connection between Marr’s

levels of analysis and functional analysis in order to better situate our work of ex-

plaining a ReLe system. Also, we describe a similar line of analysis done in the

machine learning community to explain predictions of machine learning systems,

namely interpretability. We note that we are not the first to propose to do an inter-

pretability analysis to machine learning systems; however, we contribute with tying

together interpretability analysis with representation-level analysis in Chapter 4.

3.1.1 Marr’s Levels of Analysis

Marr (2010) suggested three types of analysis in order to thoroughly study

information-processing systems, such as the brain and artificial intelligence sys-

tems (Marr, 1977); each of these analyses lie in different levels of abstraction. The

first level, the computational level, is actually not intended to study any aspect of

the system under analysis, but rather is intended to formulate both the principles and

theory of the task that the system carries out. The second level, the representation

and algorithm level,1 tries to provide a model of how the system maps inputs to out-

puts; this is done via a two-fold analysis: On the one hand, one goal of this analysis

is to provide a suitable representation of input and output variables for realizing the

task described at the previous level; on the other hand, another goal is to be provide

a plausible process, in the form of an algorithm, that describes the mapping from

input to output. Finally, the third level of analysis, the implementation level, ac-

counts for a description of the mechanisms (hardware) found in the system. As we

can see, each of these levels has a different purpose in order to deeply understand

the working of the target system, while complementing to each other.

1In the following, we refer to this level as representation-level analysis.
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Marr (2010) proposed these levels in the hierarchy mentioned above (from

first to third level) in order to better study a system.2 Let us put in other words

each of the levels to better see his point. The computational level theorizes what

is to be computed and why such a theory is correct (plausible) for the task that the

system executes3 (Marr, 1977); the representation and algorithm level provides a

way to represent inputs and outputs and describes how is the process carried out by

the system to transform from a specific input to its associated output, i.e. this level

proposes a suitable representation and an algorithm to carry out the theory described

at the computational level; the third level describes the implementation details of

the system, i.e. it accounts for the physical mechanisms that realize (implement)

the algorithm from the previous level and give rise to the observed behaviors. Thus,

according to David Marr in (Marr, 1977, 2010), studying an information-processing

system following the order described above leads to a deep and organized way of

understanding it: First, analyzing the task to be computed by the system allows us

to understand both the goal and the logic of the computation (Giosuè et al., 2014);

once we have characterized and formalized the task, then we are able to propose a

suitable representation and an algorithm to implement the task based on behavioral

data of the target system, i.e. we implement a model that carries out the target

task constrained by the input-output behavior of the system;4 finally, once we have

understood what is a plausible process by which the system maps inputs to outputs,

we can analyze the physical mechanisms that produce such transformations.

However, as Marr noted in (Marr, 2010), the three levels of analysis are loosely

connected and the enterprise of their integration should not be taken as a rule of

thumb; i.e., the study of a particular system may only require one or two of these

2The main type of explanation in neuroscience, the field David Marr pertained to, was (arguably,
still is) mostly at the implementation level, ignoring any other type of explanation of the system’s
working that could be independent from its physical components; in other words, people tended to
ignore computational and functional aspects of the systems under study, while Marr realized that
an explanation exclusively at the implementation level serves more as a description of the physical
arrangement of the components than as both an explanation of the function of each of the components
and why the system behaves as observed in terms of its functioning objectives (Marr, 2010; John,
2015).

3Or the task to be executed by the system, if we are designing and implementing the system.
4As Marr noted in (Marr, 2010), the choice of both a representation and an algorithm may be

also constrained by the physical mechanism of the system.
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levels, depending on the objective of the study (usually dictated by the field’s phi-

losophy) and the level of understanding targeted. (As it will be our case in Chapter

4 where we choose to study a ReLe system only at the representation level.)

An example of how Marr’s levels of analysis can be applied to study a system

can be found in Marr’s book Vision (Marr, 2010) where he proposes the study of

a cash register in a supermarket. At the computational level, we analyze what is

the task the machine is intended to be used for; in this example, the cash regis-

ter will do sums to add up prices, thus the task is that of arithmetic. The theory

behind arithmetic tells us of some properties to be considered to properly imple-

ment addition. First, a sum is commutative, which means that the order in which

two elements (products’ prices in this case) are added up is irrelevant for the total

price, i.e. a+b = b+a; second, a sum is associative, which means that how we

arrange the sum of some elements in an expression is also irrelevant for the total

price, i.e. a+(b+ c) = (a+b)+ c; third, there exists an element which does not

alter the total sum when added up, namely zero, i.e. a+0 = a; fourth, there exists

the inverse of an element such that when added up to its inverse it results in zero, i.e.

a+(−a) = 0. Besides formalizing the logic of the task, we are required to provide

the reason why this particular setting is the correct one and not another one. In this

case, it is easy to see that a cash register should perform sums and not, say, multipli-

cations because the total amount to pay in a transaction at the supermarket reduces

to counting all the pounds to be paid across all the products, and an addition is the

operation that let us do this count; furthermore, the organization or arrangement of

the products to be paid should not modify the final bill; and should a product be re-

turned, we should get back the amount of money paid, i.e. the cash register should

perform an addition using the inverse element of the price paid.

At the second level of the study of the cash register –the representation and

algorithm level– we pick both a representation of the input and output of the system

and an algorithm that maps input to output. In this example, it seems convenient

to pick an Arabic representation and to operate upon it (any user may be well ac-

quainted with this representation); the algorithm of the sum could be the usual pro-
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cess of adding up from the rightmost digit (least significant digit) to leftmost one

(most significant digit) and carry if the sum of any two digits goes equal or above

10. At this level of explanation, we can see how the task can be realized via a plausi-

ble process that manipulates a representation of input and output variables. Notice,

however, that up to this point this process is independent (in this particular example)

of any physical mechanism which corresponds to the third level of analysis.

In the implementation level, we seek to describe which physical device may

implement the algorithm provided in the previous level. Without going to irrelevant

details for the objective of our work, we can propose to implement the cash register

via electronic circuits or via mechanical gears (way much complicated but possible).

If the cash register happens to be already implemented, then here it is our duty to

open up the system and to describe all of its elements and the way they work when

given an input.

3.1.2 Functional and Mechanistic Analyses

In psychology,5 functional analysis seeks to explain how a capacity6 of a particular

system leads to the system’s current behavior; i.e. it seeks to explain how the system

functions (Cummins, 1975; Block, 1990; Barrett, 2014; Roth and Cummins, 2014).

This explanation accounts for the organization of sub-capacities of the system that

when properly assembled give rise to the target capacity. For example, in order

to explain how long-term memory works, it is necessary to describe it in terms

of its sub-components, namely memory encoding, storage, and retrieval (Barrett,

2014). The analysis will describe how long-term memory processes information by

virtue of the organization of its sub-components. This analysis is taken as a type

of functional explanation; the explanation obtained describes a cognitive process

for which we do not need to involve any parts of the brain, such as neurons; rather

the explanation is based on capacities. This explanation, thus, is able to provide

an account of behavioral data collected when the phenomenon under consideration

5As well as in other disciplines such as biology or engineering (Cummins, 1975; Roth and Cum-
mins, 2014).

6Also called disposition (Cummins, 1975), competence (Block, 1990) ,or effect (Roth and Cum-
mins, 2014).
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occurs.

In general, any functional analysis of a system can be represented as a block-

diagram (also called box-arrow diagram) or as a flow-diagram (Roth and Cummins,

2014). In this model, each component within the system is ascribed with a function,

i.e. this component has a well-defined structure, with clear boundaries, that allows

it to perform a well-defined input-output process. The objective of this model is to

show how the information is processed by the system in order to produce the target

capacity, i.e. it shows how the information goes through a certain path, or flow, and

not through other possible paths in the state space of possible configurations (Roth

and Cummins, 2014). A toy example of a functional analysis is the explanation of

how a multiplier works taken from (Block, 1990). Let us suppose that the algorithm

for carrying out a multiplication a×b is to simply add b to itself a times; thus,

we can propose the following sub-components of the system. First, we propose a

counter that starts from 0 and increments by 1 each time-step; also, we propose a

component that checks whether the counter has arrived to the value of a, in which

case a halter will stop the process; if the counter has not arrived to a then an adder

will sum the value b to itself. The organization of these components is almost

fully described; at each step, the checker will check if the counter has arrived to

the number a, if so the checker sends a signal to the halter to stop; otherwise, the

adder sums the number b to itself and the counter proceeds to count. This is how

multiplication functionally arises from a set of components. Thus, a functional

analysis allows us to see why the information is processed as such, i.e. why we

observe the behavior we observe in terms of the internal functioning of the system

as a decomposition of its internal sub-capacities.

From a further inspection of the above example, we notice two things in the

analysis. First, we do not provide any physical consideration of how each functional

component of the system can be implemented (through mechanical gears, or elec-

tronic circuits, or biological means) as we only care about the functions that each

component carries out and the organization of such components. Second, we see

that each component of the multiplier may be a complex system, such as the adder;
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depending on the complexity of a component, it may be a candidate to have in its

own right a functional analysis in order to explain its own capacity. This situation

leads to questioning what are the boundaries of a functional analysis, i.e. what is the

correct level of abstraction sought in such an analysis? In some cases, even though

the answer may depend on the objectives of the researcher, in general, the bound-

ary of a functional analysis lies when a primitive processor is reached out in the

explanation of the target system (Block, 1990). A primitive processor is an artifact

whose working is no longer a matter for the psychologist to explain; i.e., a prim-

itive processor is a low-level component that when assembled, or organized with,

other primitive processors realizes (implements) a capacity. Therefore, a primitive

processor is to be found at the lowest-level of analysis, namely the implementation

level (Marr, 2010) (as we saw in Section 3.1.1) or the mechanistic level (Kaplan,

2017); in this level, a psychologist is no longer required to provide any sort of de-

scription, or explanation, of how the component works since such a component is

no longer ascribed with any capacity, but rather it is ascribed with a mechanistic

functioning.7 For example, we could further explain the capacity of the adder to

perform additions, and we would do this by further decomposing this component

into sub-components, and we could proceed to decompose further sub-components

until we reach out an elementary circuit, such as an and gate whose inputs are two

voltages and its output is a single voltage;8 to this primitive component, we attach

no cognitive capacity since it does not carries out a high-level function, i.e. it does

not perform any meaningful competence.

As we have seen, functional analysis provides an abstract explanation, in terms

of functions, of how a system works. As such, it is independent of the hardware that

may implement the system under study. Also, we saw that primitive processors lie

in the hardware level; these elementary components implement the system and thus

7This mechanistic function, as already mentioned, is not to be understood as a function in the
sense of a cognitive capacity, but rather as an operation that by itself has no semantic interpretation
(Block, 1990). However, it may be the case (though possibly unlikely) that a single primitive pro-
cessor accounts for the whole capacity of a component, according to the analysis proposed by the
researcher.

8This circuit simply outputs around 7 volts if both inputs are the same level of voltage, or around
4 volts if the inputs have different levels of voltage.
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give rise to the observed behavior. But, if a psychologist works at the functional

level, who is then responsible to explain the organization and working of the prim-

itive processors? Are functional explanations truly independent from the physical

level? Is a functional explanation self-contained in its own right? These philosophi-

cal questions have been addressed by both philosophers and psychologists (Barrett,

2014; Kaplan, 2017), and there are advocates of different sorts of theories. Before

succinctly describing these theories, we answer the first and easiest question; there

are disciplines whose objective is mainly to characterize, study, and describe phys-

ical components, such as neuroscience or physiology. These disciplines, in contrast

to psychology, aim to discover the properties, functions, and organization of what

we have called primitive processors, which are defined according to the theories and

laws in such disciplines.9 Thus, an explanation in a field such as neuroscience aims

to describe the physical mechanism in a brain that gives raise to a behavior Barrett

(2014); this low-level explanation is not concerned with ascribing a high-level func-

tion to a component (or group of components) under study, such as ascribing a hand

detection function to a group of neurons in the part of the brain responsible for vi-

sion in a human.10 Thus, this type of explanation concerned only with descriptions

of physical entities is called mechanistic explanation. With regard to the second and

third questions from above, there are opposing views, as well as integrative views,

on the autonomy of functional analysis from mechanistic analysis. For example,

there is a widely-accepted theory among psychologists (and rejected by some neu-

roscientists) that claims that a functional analysis is independent (autonomous) from

a mechanistic analysis; i.e. explaining the capacity of a system can be done without

knowing anything about its hardware (Barrett, 2014; Kaplan, 2017). On the other

hand, there is the view that a functional analysis is rather a complement to a mech-

anistic analysis, i.e. it serves as a first approach towards understanding the physical

mechanism of the target system, and when both functional and mechanistic analy-

ses are provided then a complete (multi-level) explanation of the system is obtained

9For example, a primitive component in neuroscience is a neuron.
10Even though this claim is true in many neuroscience research programs, is not true in fields such

as cognitive neuroscience where the objective is to actually discover functional properties (capaci-
ties) encoded in groups of neurons (Geary, 2005).
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(Piccinini and Craver, 2011; Kaplan, 2017). However, given that our objective is

not to comprehensively describe these views, but to rather describe the role of a

functional analysis in explaining a system, we leave the description of these view

as future work.

3.1.3 On a Comparative View Between Marr’s Levels of Analy-

sis and Functional-Mechanistic Analyses

In order to better situate our work in Chapter 4 in the grounds of psychology and

cognitive science, we aim to provide a succinct view on the relationship between

Marr’s levels of analysis of information-processing systems and the explanations of

complex systems obtained via functional analysis.

As we saw in Section 3.1.1, Marr structures the analysis of systems into a

hierarchy of three levels, namely the computational level, the representation and

algorithm level, and the implementation level. The first level is targeted to define

and describe the theory of the task to be computed by the system; in the second

level, the researcher proposes both a plausible way of abstracting –representing–

the inputs and outputs and a model –process– of how an input is mapped to an out-

put; the third level is a description of the whole physical device that implements the

system in a component by component basis and their relationships. On the other

hand, we saw in Section 3.1.2 that a functional analysis provides an explanation of

a target capacity of a system in terms of the sub-capacities of the system’s com-

ponents; however, this explanation is totally independent of any physical artifact,

since it concerns only the high-level functioning of the system, not the mechanical

working, which is left for a mechanistic analysis.

At a first glance, there is a clear correspondence between the objectives of

Marr’s implementation level of analysis and mechanistic analysis. Both analyses

seek to understand how the low-level components of a system give rise to the sys-

tem’s behavior. Thus, the explanations obtained via the two analyses correspond to

the description of the mechanistic working of the physical devices that compose the

system.

There also seems to be a correspondence between the other two levels of anal-
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ysis proposed by Marr and functional analysis, since apparently these types of anal-

ysis work independently of the system’s hardware; besides, these analyses try to

explain, in a high-level view, how the system functions, i.e. they try to account

for how the system processes information. However, in a deeper inspection, we

claim that there is no bidirectional correspondence between Marr’s first two levels

of analysis and functional analysis, but rather an unidirectional correspondence: On

the one hand, every functional analysis corresponds to an analysis at the represen-

tation and algorithm level; on the other hand, an analysis at the representation and

algorithm level corresponds to a functional analysis if and only if it fulfills the fol-

lowing requirements. A functional explanation provides the design of a system in

terms of sub-components where each of them is ascribed with a particular function;

this functional design can be easily put in the form of an algorithm along with an

appropriate representation, and as such is able to explain how the system processes

the information from input to output while explaining a target capacity (language,

vision, etc.). However, an algorithm that explains the input-output process of a sys-

tem is not necessarily equivalent to the system’s design provided by a functional

explanation (Roth and Cummins, 2014); an algorithm shows a process that not nec-

essarily explains a capacity of the system under study via a decomposition into its

sub-components while explicitly accounting for the sub-capacities encoded in such

a system (as it is our case in Chapter 4.) Put under another view, if and only if we

can deduce the functional design of a system’s capacity via a proposed algorithm

coming from Marr’s second level of analysis, then we claim that such algorithm

accounts as a functional analysis.

Finally, we claim that an analysis at the computational level is outside the scope

of a functional analysis, and thus is not to be expected in a functional explanation.

An analysis at the computational level describes the task to be computed by a sys-

tem and provides an account of the theory and principles of such a task; thus, this

analysis does not involve any aspect of the system, whether functional, algorithmic,

or mechanistic. On the other hand, as explained before, a functional analysis is a

functional account of a system’s behavior with regard a capacity; as such, a func-
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tional explanation does not aim to explain the theory and principles that the system

is implementing or realizing, but rather it aims to explain the functional properties

of the system.

Overall, there is a difference between Marr’s framework of explanation and the

functional-mechanistic framework of analysis which stems mainly from the back-

ground where the two frameworks originated from. David Marr, as a neuroscien-

tist,11 seemed to be more concerned with the practical use of an explanation rather

than with any philosophical implication (John, 2015; Kaplan, 2017); thus, under

this view and leaving aside some philosophical matters,12 Marr (2010) suggested

some relationships among his three levels of analysis, as we mentioned in Section

3.1.1, where the most significant relationship for our discussion is that between the

representation level and the implementation level. Marr (2010) argued for the im-

plementation level to possibly constrain the choice of algorithm and representation;

i.e., not any possible algorithm and representation are good candidates to explain the

input-output process carried out by a system, unless the system’s hardware is able to

execute such algorithm. For example, a system whose hardware runs in serial mode

would not be able to implement an algorithm that runs in parallel. Thus, the choice

of algorithm and representation may be influenced by physical constraints from

the system’s hardware. On the other hand, some advocates of functional analysis

(in particular philosophers) put much emphasis on the philosophical implications

of this type of analysis (Cummins, 1975; Barrett, 2014). These advocates defend

the view that functional analysis is totally autonomous from any mechanistic anal-

ysis (as oppose to Marr’s view with regard to his levels of analysis.) Thus, if a

proposed model obtained via functional analysis is able to explain behavioral data,

11Some neuroscientists seem to be agree with David Marr that in an explanation of an information-
processing system, the algorithmic level is not fully independent from the implementation level, but
complementary (Smith and Kosslyn, 2007).

12Marr briefly mentions the argument of multiple realizability in (Marr, 2010), though he did not
elaborate on this argument as much as some advocates of functional analysis have done (Barrett,
2014; Kaplan, 2017). Multiple realizability is an argument in favor of the autonomy of functional
analysis with respect to mechanistic analysis; it claims that the same input-output behavior can be
observed from different types of information-processing systems where the difference lies on their
physical implementation. Therefore, if all the systems exhibit the same behavior, this means that it
is possible to model the functional working of any of these systems independently of their hardware,
and thus a functional explanation serves as a faithful model of any of these systems.
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then this model is accepted as a valid explanation Kaplan (2017); Barrett (2014), in-

dependently of the physical mechanism that gave rise to such data. Therefore, even

though there is a clear correspondence between the analysis done at the implemen-

tation level and the analysis carried out by a mechanistic analysis, these two types of

analysis differ in a philosophical aspect, namely how people embodies them within

an explanatory framework, either as a complement to constrain the other levels of

analysis or as an independent type of explanation.

3.1.4 Interpretability

Interpretability characterizes the degree to which machine learning (ML) systems

are understandable for a human: If a person is able to understand the reasons why

an ML system predicted an output yi, then we deem such a system as interpretable.

By the term reasons we mean the relationship among a subset of independent vari-

ables xi,x j, ...,xm from the input domain and the output (dependent) variable yi. For

example, if the task is that of classifying if a house is cheap or expensive based on

its attributes (location, number of rooms, when it was built, and so on) we could

build a classifier (a type of ML system) that either is interpretable, and thus we

would be able to know that a house is cheap because it has less than 3 rooms, it is

older than 50 years, and it is located in neighbourhood XYZ; but we could also build

a classifier that is a black-box where the output is related to the attributes in unclear

ways for us.

An example of an interpretable ML model is a classifier that linearly relates in-

put and output variables, for example a logistic regression classifier (Section 2.2.1).

This model is considered to be understandable since it is clear to see the weighted

contribution (influence) of each independent variable to the final decision. When-

ever an interpretable relation among input and output variables is given by the struc-

ture and/or the parameters of the ML model, we consider such a relation to be a

type of explanation of the predictive behavior of the classifier. We note that an in-

terpretable ML model does not necessarily needs to be linear. Other common types

of interpretable models are decision trees and logic rules.

The importance of interpretability has been widely acknowledged in the ma-
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chine learning community as a way of validating the knowledge learned by the

model (Taylor and Darrah, 2005; Andrews et al., 1995; Tickle et al., 1998; Ribeiro

et al., 2016). In addition, in practical domains where machine learning models are

deployed into systems to be used by a user non-expert in machine learning, it is

important to have an explanation of each prediction; this explanation serves as a

support of the system’s decision that provides the user with confidence of the sys-

tem (Druzdzel, 1996). Domains where explanations of ML system’s predictions are

sought are medicine (Wall et al., 2003; Kim et al., 2006; Lisboa et al., 2008), finance

(Baesens et al., 2003; Verbeke et al., 2011), and biology (Liu et al., 2014), among

others.

An explanation not only serves for understanding the predictions of an ML sys-

tem, it may also fit other objectives. For example, verifying the knowledge learned

by the ML system, or as a way for understanding what phenomena the system has

captured from the dataset. For example, suppose the problem of predicting the

presence of a disease based on the symptoms of a person. Both the disease and the

symptoms are grounded in output and input variables y and x1, ...,xn, respectively.

Having an interpretable model that explains how the symptoms relate with the dis-

ease may shed light on new relationships previously unknown, which in turn may

help to build new symptom-disease theories.

However, a large portion of interpretable systems are linear, which fail to ac-

curately fit high-dimensional datasets. Notable exceptions, in specific domains, are

the works of Caruana et al. (2015) and Letham et al. (2015); nevertheless, it is un-

clear to what extent linear models can scale to other domains (higher dimensional

or more complex.) A solution to accurately learn high-dimensional datasets, is to

use more complex13 ML models, such as neural networks, support vector machines,

and matrix factorizations.

Complex ML models have been widely used for classification tasks due to their

ability to learn high-dimensional datasets, and thus accurately separating instances

from different classes. However, due to their complex nature, it is difficult to ex-

13We define the complexity of a model in terms of either its size (number of parameters) or the
relation among parameters (non linear.)
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plain a prediction14 (d’Avila Garcez et al., 2001; Choi et al., 2016). These models

can be seen as black-boxes,15 because their structure and parameters, per se, do not

provide an understandable explanation of how the inputs relate to the output; this

happens because either the input data is transformed using non-linear functions and,

therefore, its relation with the output variable becomes intricate, or the size of the

model prohibits a clear and simple analysis of the input-output relation. A classic

example in the literature of a black-box is a neural network (NN), where the in-

put data is distributed among neurons (processing units) which linearly combine it

and non-linearly transform it.16 Therefore, understanding why an NN predicted an

output yi, in terms of its intricate internal machinery, is difficult for a human.

Previous work in the machine learning community has tackled the problem

of providing explanations for the predictions of black-box models (Baehrens et al.,

2010). The main idea is to learn a proxy or descriptive model, that is interpretable

and mimics the predictive behavior of the black-box model; this means that the

proxy model encodes in its parameters and structure, to some extent, the knowledge

learned by the complex model. How faithfully can the proxy model capture the

knowledge of the black-box model? This is a natural question that arises up to this

point, and the answer may depend on several factors: The form of the black-box

model, the selection of the proxy model, the approach to learn the proxy model, the

scope of explanation sought for a prediction, and the way to operationalize fidelity.17

In the following sections, we describe how previous works have tackled the

problem of interpretability by looking at it from three main angles: The choice of

descriptive model, the approach for learning the descriptive model, and the type

of explanation sought. In Chapter 4 we will provide a critical appraisal of how

previous work may or may not be helpful to understand the decision process of the

14Some of moderately complex models are easier to understand, such as decision trees.
15We will indiscriminately use the concepts complex and black-box to refer to a machine learning

model, or system, for which is difficult to understand its predictions and the knowledge it has learned.
16Except when no hidden layers are present, and the neurons do not have non-linear functions

(except for the output neuron), in which case the NN is analogous to a logistic regression model.
17This concept is commonly operationalized as how close is the predictive behavior of the proxy

model to that of the complex model in terms of an accuracy metric. We will show in Chapter 4 that
the choice of this metric is crucial for a proper evaluation of fidelity.
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ReLe system we aim to analyze.

3.1.4.1 Learning Interpretable Proxy Models: Decompositional vs.

Pedagogical Approaches

Learning an interpretable proxy model from a black-box model is often termed

knowledge extraction since it is intended that all the knowledge encoded in the

complex model is transferred to the proxy model. There are two main approaches

for learning a proxy model: Decompositional (Towell and Shavlik, 1993) and ped-

agogical (Craven and Shavlik, 1995). In a decompositional setting, the internal

machinery –parameters and structure– of the black-box model is inspected in order

to build an interpretation of the logic of how the complex model makes a prediction

(Martens et al., 2009). In this setting, the black-box model is not really treated as

such since the functioning of each internal component is analyzed. And sometimes a

thorough delineation of the internal components is provided (d’Avila Garcez et al.,

2001). In contrast, in a pedagogical approach, the complex system is seen com-

pletely as a black-box and the way to extract its knowledge is to treat it as an oracle

by observing its input-output behavior (Thrun, 1994).18

An example of a decompositional approach, in the ML community, to learn a

proxy model for ReLe systems is the work of (Yang et al., 2015). In this work, sets

of horn rules are extracted from two tensor factorization systems. The form of each

rule is B1(a,b)∧B2(b,c) =⇒ H(a,c) where predicates B1, B2, and H are associated

to relations over entity types, and arguments a, b, and c are associated to types of

entities; therefore, each predicate and argument is represented by an embedding.

An example is the rule BornIn(personA,cityB) ∧CityO f (cityB,countryC) =⇒

Nationality(personA,countryC). The method to construct the logic rules is to

search, in relation space, for relations such that the form of the rule described above

is fulfilled.19 This search may lead to several candidate rules; then, in order to prune

candidates, the predicates in the body of each candidate rule are composed into a

single vector (the embeddings are summed or multiplied), and a k-nearest neighbor

18These two approaches have been mainly used in the machine learning community.
19Yang et al. (2015) take advantage of the fact that the entities are typed, which reduces the search

space considerably.
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algorithm selects the closest (and most relevant) rules to the head predicate H. At

the end, the remaining set of rules comprise the knowledge encoded in the tensor

factorization systems.

In general, decompositional methods are ad hoc to the black-box model, which

makes it hard to extrapolate to other models. And most of the previous work is

applied to neural networks for machine learning problems (Vaughn, 1999; Tsopze

et al., 2011; Murdoch and Szlam, 2017; Odajima et al., 2008). For these reasons, a

more generic approach –pedagogical– is sometimes preferred.

The pedagogical approach sees the complex model as a black-box and has no

intention of inspecting any of its internal components (Saad and Wunsch, 2007;

Domingos, 1998). The methodology is to observe input-output relations of the

black-box and to use these observations to learn the interpretable proxy model.

More concretely, the black-box model is used as an oracle in order to re-label

instances from a dataset:20 For each input instance xi, the black-box produces a

class label ŷi. These new pair (xi, ŷi) becomes a training instance for learning the

proxy model. The objective is to have the proxy model behaving like the black-box,

i.e. mimicking its predictive behavior. Learning the proxy model via a training set

avoids the need of taking into consideration the internal mechanisms of the black-

box model; therefore, this approach is easier to extrapolate to a wider set of models

than the decompositional approach.

An example of a pedagogical approach in the ML community is the work of

Craven and Shavlik (1995). The target black-box system is a neural network classi-

fier which is given input data in order to produce labels and build a training set for

a proxy model. Then, decision trees are induced using the training set derived from

the black-box system. This proxy model accurately mimics the predictive behavior

of the neural network and thus serves to explain its predictions. We note that an

advantage of the pedagogical approach, as it is used in the work of (Craven and

Shavlik, 1995), is the possibility of manipulating the input data to produce more

instances to be labeled by the neural network.

20This dataset is usually the same used for training the black-box model.
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3.1.4.2 Explanations: Global vs. Local

There are two types of explanations in terms of their scope: Global and local. In a

global explanation, a proxy model captures all the knowledge encoded in the black-

box model; therefore, the proxy model is able to explain any prediction. On the

other hand, a local explanation only serves to explain a particular prediction, i.e.

the proxy model is learned just for a single input-output instance (xi,yi).21

Each approach has its own advantages and disadvantages. The main advantage

of learning a global interpretable model is two-fold: We train once a model that

explains any prediction, and we are able to observe in a cohesive way all the knowl-

edge encoded in the black-box model. The advantage of learning local explanations

is training a simpler proxy model, since the number of training instances is con-

siderably fewer than those required for learning a global explanation. On the other

hand, obtaining a global proxy model that faithfully resembles the complex model

may be unfeasible, or even NP-hard (Jacobsson, 2005), depending on the selection

of proxy model. But, if we aim to have a complete picture of the logic underlying

the black-box model, then a local model may fail to do so.

Two relevant examples are the works of Craven and Shavlik (1995) and Ribeiro

et al. (2016) (from the machine learning and data mining communities.) First,

Craven and Shavlik (1995) build decision trees as global proxy models for neu-

ral networks. The method used for learning the proxy models is pedagogical, the

NNs re-labels training instances. The decision trees faithfully capture the knowl-

edge of the NNs in four different domains, while generalizing to unseen instances

almost as accurately as the NNs itself. Second, Ribeiro et al. (2016) build linear

models for explaining single predictions ŷi. In order to do this in a pedagogical

way, a perturbation is applied to the input instance corresponding to the prediction

to be explained, namely xi. This perturbation consists of altering a feature value x j

of the instance. After that, a new instance xk, derived from the perturbation, is given

as input to the black-box to produce a label. In this way, a new training instance

21Even though the proxy model serves to explain only a single prediction, it is necessary to obtain
a sample of instances in the neighborhood of xi in order to build a training set for learning the
interpretable proxy model.
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(xk, ŷk) is obtained in order to learn the proxy model. This procedure is applied

several times in order to get a training set of the desired size. Depending on the

objectives of a research project, a global explanation may be preferred over a local

one since it gives a wider view of the black-box system under analysis.

3.1.4.3 Selection of Interpretable Proxy Model

Previous work in the ML and AI communities has proposed a variety of inter-

pretable proxy models. While the most common model is logic rules (Thrun, 1994;

Setiono et al., 2009; Lehmann et al., 2010; d’Avila Garcez et al., 2001), other mod-

els have been used, such as decision trees (Craven and Shavlik, 1995), linear models

(Ribeiro et al., 2016), and state machines (Jacobsson et al., 2007). Logic rules have

been used mainly in decompositional approaches for neural networks, since describ-

ing input-output relations in neuron units can be easily done with a logic rule. The

rest of the models have been used in pedagogical approaches, since learning them

from data produced by the black-box model reduces to a usual machine learning

setting.

Several factors are considered when choosing a proxy model. The first factor

is the complexity of training. Learning logic rules of arbitrary size from data is

NP-hard; therefore, learning them requires heuristic approaches that may impact on

the fidelity.22 A second factor is the ability of the proxy model to serve as a global

explanation in the case where the black-box system outputs a vector instead of a

single value (a multi-label prediction problem (Murphy, 2012)). Logic rules and

state machines are able to fit this purpose, but other models, such as decision trees

and linear models, are able to fit only a single target variable; therefore, it is required

to learn one decision tree, or one linear model, for each of the output variables in

the black-box system.

A third factor in consideration is the expressiveness of the proxy model to

faithfully capture the knowledge of the complex model. Logic rules, decision trees,

and state machines faithfully capture small neural networks (usually, the input size

22In the case of state machines, it is unclear the overall complexity of learning as claimed in
(Jacobsson, 2005).
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is less than a 100 features), but it is unclear to what extent they can generalize to

bigger input spaces. The last aspect to consider is how comprehensible (under-

standable) the proxy model is for people. Huysmans et al. (2011) provide evidence

towards small23 graphical proxy models being easier to understand than both non-

graphical ones, such as logic rules, and bigger graphical models, such as decision

trees or state machines.

3.1.4.4 Other Approaches Of Interpretability

There are other approaches in the literature to understand predictions of black-box

models: Visualizations and pattern extraction. The main similarity between these

two approaches is the form of the explanation; in both cases, meaningful patterns

that give a hint of either how the complex system is working or what are the most

important variables for the prediction are given to the user. The main difference with

the approaches previously described is the definition of explanation. While previ-

ous works in interpretability seek to recover a structure that resembles the logic of

the inner working of the black-box system, these two lines of work only provide

patterns, such as activation of neurons (for NNs), distance between representations

learned (for ReLe systems), or words (for NLP systems), that show statistical regu-

larities but lack any sort of structure.

For example, in the work of Lei et al. (2016) (from the NLP community), in

order to explain a prediction, the set of input patterns most relevant for the output are

extracted. Lei et al. (2016) evaluate this approach on the task of sentiment analysis,

where input patterns correspond to words in a text (a review of a product from a

user), and the prediction is the sentiment of the user (towards the product). In that

work, no interpretable model is learned, but rather a bag of features is extracted.

This approach does not account for a structured explanation of how each of the

features is related to the output.

Visualizations are another method for either obtaining a rationale for a sin-

gle prediction, visualizing the phenomena that has been captured by the black-box

model in its internal machinery, or measuring how close are the representations of

23In the number of parameters.
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objects in a semantic space. Work in the computer vision community is the best ex-

ample for the first case, where a saliency or heat map is obtained in order to explain

a prediction (Lapuschkin et al., 2016; Zintgraf et al., 2017; Selvaraju et al., 2016).

In this map, the pixels that contribute the most to the prediction are highlighted

with brighter colors than those pixels that contribute less or do not contribute. In

this way, it is visually easy to recognize which pixels are the most influential in the

prediction.

Visualizations, as said before, also serve to show what neural networks have

captured by visualizing the activation of neurons in different layers. When this

visualization is applied to image classifiers, it is possible to observe some kind of

building-block features that the NNs disentangle from the input images, as it is

done by works in the machine learning and computer vision communities (Yosinski

et al., 2015; Bau et al., 2017; Simonyan et al., 2013; Zeiler and Fergus, 2014),

for example, edges, or basic shapes. When the visualization is applied to NLP

classifiers, phenomena particular to the discourse structure can be extracted; for

example, Karpathy et al. (2016) discover that a specific unit of an NN, trained on

text, keeps track of the length of a phrase while generating it, while other units keep

track of other discourse referents, such as quotation marks, and opening and closing

parenthesis for source code. In the NLP work of Li et al. (2016), it is displayed how

much a unit, in an NN, contributes to the composition of a sentence. Another type

of visualization is introduced in the ML work of Van der Maaten and Hinton (2008),

namely tSNE, where semantically related embeddings are clustered in a sub-region

of the 2-dimensional Euclidean space. In this way, it is possible to visualize how

close related objects are to each other; for example, in an NLP application, such as

sentiment analysis, it is expected that the embedding of the concept terrible is close

to that of negative and distant to the embedding of the word lovely.

A disadvantage of some visualization methods is their decompositional char-

acter. These methods are not likely to be easily extrapolated to other models due

to the difference in architectures. Besides, these methods provide explanations for

single predictions. Compared to explanations provided by symbolic models such as
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logic rules, state machines, or decision trees, the explanations obtained from visual-

izations do not contain a chain of logical steps, one step derived from another, where

the last step is the prediction of the black-box system; in such a multi-step expla-

nation, a series of possible reasons for a prediction are logically assembled. Some

visualization methods may account for a multi-reason explanation but no logical

structure is provided.

3.2 Behavior Analysis and Evaluation of Robustness
In this section, we focus on the methodology and analyses from the behavioral sci-

ence that seek to understand the behavior of animals and people in terms of environ-

mental and internal factors, namely behavioral analysis. We also describe analyses

done in the natural language processing and machine learning communities that

seek to understand how the behavior of machine learning systems is affected by

external factors, such as biases in the data; thus, these analyses seek to evaluate the

robustness of the systems. To the best of our knowledge, we are the first to use

behavior analysis from the behavioral science to study ReLe systems (see Chapter

5).

3.2.1 Behavior Analysis

Behavior analysis, a type of study from the behavioral science, seeks to provide

an account of the role that different factors may play in the response (behavior)

of subjects under study; these factors are treated as independent variables while

the response is the dependent variable. Accounting for such influence is usually

portrayed in the form of correlation measures. In order to ensure internal validity,

the experiments are performed under controlled conditions; i.e., in order to validate

that changes in the dependent variable are only due to changes in the independent

variable under study, the experimenter has to isolate the former factor from possible

confounding factors (Epling and Pierce, 1986). When an isolation from possible

confounding factors is not possible, then a statistical control is applied in order to

analyze the effect of such factors on the dependent variable (McDonald, 2014).

Besides internal validity, external validity is also desirable. This concept refers



92 Chapter 3. Literature Review

to the extent to which results can be extrapolated to other groups of subjects differ-

ent from the subjects studied. Usually, there is a trade-off between internal and ex-

ternal validity. While internal validity is fully achieved under laboratory conditions

where all (or most of) the possible confounding factors can be controlled, external

validity can be achieved only through real-world experiments where the subject be-

haves in its own environment with no restrictions imposed by the experiment. This

type of study aligns to a type of observational study where the subject under study

keeps his behavioral patterns unchanged and an observer collects behavioral data.

In a comparative view between experimental frameworks seeking for internal

or external validity, we note that data collected from laboratory experiments may

not be representative of real-world conditions, and data collected from real-world

experiments may be plagued of confounding factors. Although achieving a balance

between the two types of validity is an open problem, there are previous sugges-

tions. For example, Epling and Pierce (1986) suggests to address applied research

questions, such as human aggression, in order to motivate the required change in

the laboratory experimental setup that can throw results generalizable to conditions

outside the laboratory.

In the following sections we explore both types of experimental frameworks

since both are relevant to our study in Chapter 5. We focus mainly in experiments

from animal behavior since these type of studies have a long tradition in the behav-

ioral science and their methods have shown to be rigorous and well designed (Smith

and Kosslyn, 2007); also, experiments conducted on animals are non-verbal, as op-

posed to experiments on humans whom can verbally reply any inquiry from the

researcher, which means that the researcher has to design ways of ensuring that the

behavior observed was due to the target stimulus and not due to a confounding fac-

tor;24 this experimental setup is very similar to ours since ReLe systems have no

way of producing verbal reports.

24Though some of the experimental frameworks applied to study animal behavior are similar to
the frameworks used to study human behavior.
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3.2.1.1 Animal Behavior Analysis

Animal behavior may be caused by several factors, such as genetic, physiological,

environmental, and psychological (Hager, 2010; Dawkins, 2003). As Hager (2010)

exemplifies, ants who were born with the role of defending their colony, show the

predisposition to be aggressive. On the other hand, stress in animals can be a cause

to release corticosteroids, chemicals that suppress some behaviors and promotes

others such as escaping from a predator. Environment, also plays an important role

in the behaviors of animals; for example, an environment where there is plenty of re-

sources may cause an animal to not to fight for food. However, investigating exactly

and precisely why an animal behaves as observed from a genetic, physiological, en-

vironmental, and psychological perspectives is such a difficult endeavour. Thus,

different disciplines study the effects of different factors on behavior. We devote

this section to describe the experimental methods used to study animal behavior

from both environmental and psychological perspectives.25

We start our review of previous work with two works that study psychologi-

cal processes of animals through behavior analysis, namely the works of Hampton

(2001) and Loukola et al. (2017). These two works possess similar experimen-

tal frameworks, where the subjects under study are placed in a laboratory in order

to control for possible confounding factors that may account for the observed be-

havior. The researchers seek to understand if the observed behavior is due to a

psychological capacity of the animals when these are engaged in a task, or is due

to a confounding factor. Therefore, these two works seek for internal validity of the

experiments and do not care about the natural environment of the animals.

Hampton (2001) investigated whether rhesus macaque monkeys knew if they

remembered a stimulus; that is, the objective of the study was to figure out if rhe-

sus monkeys were aware (conscious) of their recent memories. To investigate this,

Hampton (2001) designed a controlled experiment in a laboratory with two rhesus

monkeys as subjects under study. The experimental setup was as follows: Each

monkey sat down in front of a touch screen where a stimulus appeared, in this case

25The literature on this subject is vast, and thus we focus only on a set of works that we believe to
be representative of the field and to be related to our work.
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the stimulus was a random image from a collection of images; the image was dis-

played for a certain amount of time and then it was removed from the screen. After

an interval of time, the screen displayed two options for the monkey to select one of

them; the first option was a button inviting the monkey to do a memory test where

he has to remember the image displayed at the beginning,26 and the second option

was a button allowing the monkey to reject the memory test. If the monkey chooses

to reject the test, a tiny reward is given to him. On the other hand, if the monkey

chooses to do the memory test and fails, no reward is given, but if he succeeds then

a significantly good reward is given. This experiment was repeated several times

in a single session.27 This experiment design tests for the awareness capacity of

the monkeys, via behavioral tests, by encouraging them to do a memory test if the

monkeys are sure that they will be able to remember the stimulus shown at the be-

ginning of the test. In the case that the monkeys are aware that they will not be able

to remember the stimulus, then it is expected that they will reject the test. In order to

control for a possible unadvertised behavior of the monkeys, such as a lazy behavior

where they chose the easiest option (reject the test) despite remembering the stim-

ulus, a forced test was randomly introduced from time to time where the monkeys

where not given the option to reject the test and they had to do the memory test.

In the experiments, Hampton (2001) allowed for a long time interval between

the appearance of the stimulus and the choice of accept or reject the memory test

such that the monkeys were likely to forget the stimulus and thus reject the test if

they were aware that they could not remember the image. When comparing the

results, in terms of accuracy scores, of the memory tests when the monkeys chose

to do the tests against when they were forced to do them, the results indicated a

substantially higher mean accuracy28 on freely-chosen memory tests. This result

seems to indicate that when monkeys knew that they were able to remember the

26In this memory test, four randomly-placed images are displayed on the screen and the monkey
has to select the image shown at the beginning of the experiment. The monkeys were pre-trained to
do this type of test.

27The monkeys were tested for 10 sessions.
28Paired t-tests on the mean of the accuracy scores of each monkey were computed. Accuracy

scores of both monkeys on freely-chosen tests were around 84%, and accuracy scores of both mon-
keys on forced-tests were around 70%.
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stimulus, they consequently chose to do the test, thus effectively rejecting the test

when they knew they could not remember the image.

One possible confounding factor causing the monkeys to reject the tests, how-

ever, may be some spurious stimulus from the environment (such as a noise), or

probably some internal factors (for example, a lack of motivation). Thus, in order

to control for these possible confounding factors, in a new series of experiments,

Hampton (2001) introduced a slightly modified test where the screen displayed no

image in order to simulate a forgotten image; that is, the hypothesis was that mon-

keys would treat the lack of an image as a stimulus that could not be remembered,

and thus every time this test was presented to the monkeys, they would reject the

test. This modified test was randomly intermixed with the normal memory tests

as described above.29 Surprisingly, the monkeys rejected the modified test signif-

icantly more often than normal memory tests.30 This systematic behavior of the

monkeys shows evidence that the monkeys were aware that they did not have the

stimulus on their memory, and thus they would not be able to pass the memory test.

Finally, in order to measure the effect of the time interval between the ap-

pearance of the stimulus (image) and the choice of doing or not doing the test,

Hampton (2001) varied this factor from small intervals of time to large ones. As

expected, both monkeys rejected significantly more often those tests occurring after

large time intervals than those tests that occurred after short time intervals. This

figure was also observed on forced tests but in the form of successful outcomes; the

monkeys performed significantly better at those tests that were forced after a short

time interval than at those forced tests occurring at large time intervals.31 These last

experiments also throw evidence, via behavioral tests, towards the hypothesis that

rhesus monkeys were aware (conscious) of the items present in their memories, and

they behaved as such in most of the tests.

We now describe the work of Loukola et al. (2017), which has a similar ex-

perimental framework as that of Hampton (2001), namely the subjects under study

29From a session of 96 tests, 10 of these were the modified memory test.
30A paired t-test was computed for each monkey between the mean accuracy of normal tests and

the mean accuracy of modified tests.
31F-tests were computed for each monkey to compare accuracy means.
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are situated on a controlled environment in order to see the effect of an indepen-

dent variable on the behavior of the subjects. Furthermore, in the work of Loukola

et al. (2017) the experiments also try to test cognitive capacities of animals. More

precisely, Loukola et al. (2017) tested the cognitive and behavioral flexibility of

bumblebees in an artificial task using an artificial object. A set of experiment bees

was trained to move a ball from the edge of a platform (two platforms of different

sizes were used) to the center of the platform.32 When a bee failed to carry out

the task, the experimenter showed the bee how to move the ball using an artificial

bee moved using a transparent stick; after this demonstration, the bee would obtain

the reward. A group of control bees33 were given the same task; however, when a

control bee failed a trial, the experimenter did not show how to solve the task, but

provided the bee with a reward. On a test phase consisting of 10 trials, both groups

were tested on the same task using the biggest platform. The results unmistakably

show that experiment bees were better able to perform the task than the control

bees.34

On another round of experiments, Loukola et al. (2017) investigated the effect

of different types of learning on bees, namely social learning, ghost learning, and

no demonstration. To do so, a group of bees was pre-trained to move a ball from the

edge of a platform35 as in the experiment described in the paragraph above. Latter,

a new group of bees was split into three groups and each group was trained using

one of the three types of learning mentioned. The materials used in each of these

types of learning was the same, a rounded platform and three balls on different

distances from the platform’s center. In a social learning setup, a pre-trained bee

showed a trainee bee how to move the furthest ball to center of the platform. Simi-

larly, in a ghost learning setup, a ghost demonstrator, namely a magnet operated by

a researcher, showed the trainee bee how to move the furthest ball to the platform’s

32All bees were pre-trained to find a reward (sucrose solution) when the ball was on the center of
the platform.

33Also pre-trained in the same way as the group of experiment bees.
34In fact, all the bees from the experiment group were able to successfully carry out the task in all

the trials, i.e. they got a 100% accuracy score, compared with a less than a 10% accuracy score from
the control group. A paired t-test was computed to compare the accuracy means of both groups.

35In this pre-training phase, a square platform was used.
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center. Finally, in a no-demonstration learning, a trainee bee was shown the ball al-

ready at the platform’s center. In all the setups, a reward was given to all bees when

the ball reached the platform’s center. After training, a test phase followed where a

bee could choose from any of the three balls in the platform to move to the center.

Results show that bees trained using social learning achieved a much better accu-

racy score (around 99%) on the test phase than the other two groups. Similarly, bees

trained using a ghost demonstrator had a better accuracy score (around 78%) than

bees with no demonstrator (around 34%). Surprisingly, bees successfully solving

the task, from the three groups, used much more frequently the closest ball to the

center of the platform36 despite the fact that during learning the demonstrator used

the farthest ball. This result seems to show evidence towards a cognitive flexibility

in bees by not copying a previous solution from a demonstrator, but rather learning

a more abstract conceptualization of how to solve the task.

In a final test phase, the same bees were given the same experimental setup as

described above, but the ball that was closest to the platform’s center was from a

different color. Bees chose the closest ball to the center, indicating that they were not

paying so much attention to this characteristic, but rather conceptualizing the task in

a more functional way. Overall, these results seem to show that, indeed, bumblebees

have cognitive and behavioral flexibility in order to learn artificial tasks. These

experimental setups are not likely to be found in the normal environment of bees.

Therefore, bees could not have learned this previously by genetic predisposition or

from other bees outside the laboratory. This throws light on the complex cognitive

and behavioral capacities of bees and motivates to do further studies.

The two works we just described above proved psychological capacities of

bumblebees and monkeys. Given that animals are not able to verbalize, these two

works used behavioral analysis as a tool to correlate behavior with a cognitive ca-

pacity. As we saw, both works used controlled environments in order to guarantee

an internal validity. Moreover, statistical tests were used in order to guarantee a

correlation between independent and dependent variables, or to compare a property

36Chi-square statistics were computed in order to correlate the use of the closest ball with the
success rate of the bees.
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from two groups.

If we see behavioral analysis from the angle of researchers advocating for ex-

ternal validity in an experimental setup, we find that controlling for all possible

confounding factors is not a plausible endeavour given the environment where the

subjects are analyzed, namely the environment where the subjects operate37 (or an

environment similar to the operative environment), which is exactly the aim of these

researchers, to understand the subject’s behavior in situ (Dawkins, 2003; Epling and

Pierce, 1986). Goals in particular for studying animal’s behavior in such a type of

environment is mainly related to welfare matters(Mench, 1998). Farm and zoo an-

imals have a substantial change with respect to their natural habitats, which may

greatly impact on their psychological and physiological systems. In the following

paragraphs, we describe two works where farm and zoo animals are studied in their

operating environments.

Birkett and Newton-Fisher (2011) studied the behavior of zoo-living chim-

panzees in order to find any possible abnormal behaviors (abnormal when compared

to the behaviors of wild chimpanzees living in their natural environment.) To do so,

Birkett and Newton-Fisher (2011) observed the behavior of 40 chimpanzees dis-

tributed across 6 zoos. Since this type of study is done in situ, it is more similar to

an observational study since controlling for confounding factors is very difficult.38

However, Birkett and Newton-Fisher (2011) statistically studied the effect of pos-

sible confounding factors such as age, prior housing,39 rearing history,40 and sex.

Furthermore, the behavior of the zoo-living chimpanzees was compared to that of

wild chimpanzees. A list of abnormal behaviors was first collected; this list in-

cluded 37 behaviors, such as bite self, drink urine, pluck hair, or poke eye, among

others. Also, four measures of abnormal behavior were proposed in order to bet-

ter characterize the chimpanzees’ level of abnormality: Prevalence (proportion of

chimpanzees, per group, displaying a certain behavior), frequency (how many times

37Lives in or works at.
38To control for any possible confounding factor, the experimenter would need to disrupt the

environment of the subject under study, which by itself would be a confounding factor.
39For example, chimpanzees coming from a laboratory, from the wild, from another zoo, or from

the entertainment industry.
40Such as mother-reared, hand-reared, and wild-born.
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a behavior was displayed), duration (for how long a behavior was displayed), and

diversity (number of behaviors per chimpanzee).

Birkett and Newton-Fisher (2011) found that all the chimpanzees under study

displayed at least two abnormal behaviors, where the most prevalent behavior was

eat faeces. They also discovered five more abnormal behaviors across all groups,

namely rock,41 groom stereo-typically,42 pat genitals,43 regurgitate,44 and fumble

nipple. In average, the number of abnormal behaviors displayed per group was

n = 18 and no correlation was found with the number of chimpanzees integrating

each group. In a per-group comparison, Birkett and Newton-Fisher (2011) found

no significant difference of diversity and frequency (as defined above) in the abnor-

mal behaviors displayed.45 Similarly, Birkett and Newton-Fisher (2011) found no

difference in the total duration of display of behaviors across groups.46 In a per-

chimpanzee analysis, however, Birkett and Newton-Fisher (2011) found significant

differences in the frequency and duration of display of abnormal behaviors across

groups: From 30 hours of observation, the median number of displayed behaviors

was 1.45 behaviors per hour in a range of [0.13/hour-13.5/hour], while the median

duration of an abnormal behavior was 1.32 hours in a range of [0.03-18.7].

As for possible confounding factors, Birkett and Newton-Fisher (2011) found

no effect of sex, age, prior housing, and rearing history on frequency, diversity, and

duration of the abnormal behaviors displayed by the chimpanzees across groups.47

Furthermore, when the behaviors of the zoo-living chimpanzees were compare with

those of wild-living chimpanzees, it was found that 17 out of the 37 abnormal be-

haviors displayed by the zoo-living chimpanzees were by far much more often than

41Sway from side to side either the whole body or just the head.
42Self-groom repetitively without any apparent goal.
43Self-touch genitals followed by licking hand.
44Voluntarily regurgitate usually followed by ingesting the vomit.
45Kruskal-Wallis H tests were computed for both measures, namely diversity and frequency, in

order to compare differences across groups.
46Kruskal-Wallis H test was computed.
47Mann-Whitney U tests were computed to compare two samples and Kruskal-Wallis H tests

were computed to compare more than two samples. For example, in order to compare if there is
a difference between the samples of chimpanzees when divided by sex (male or female), a Mann-
Whitney U test suffices to do so, while comparing if the samples of chimpanzees divided by rearing
history (wild-born, mother-reared, or hand-reared) come from the same population then a Kruskal-
Wallis H test suffices to do so.
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from those conspecifics living in the wild.

Finally, these results show evidence that zoo-living chimpanzees are affected

(presumably in a psychological way) when captive in an environment significant

different from their natural habitat. Despite the fact that all chimpanzees under

study were engaged in a social group, all of them displayed at least two abnormal

behaviors. These abnormalities could not be explained by other factors, such as

age, sex, rearing history or previous housing. Overall, it seems that the welfare of

zoo-living chimpanzees is compromised despite the amenities provided by the zoos.

In a similar line or work as that of Birkett and Newton-Fisher (2011), Regan

et al. (2014) studied the behavior of working donkeys with the aim of better char-

acterize existing donkey ethograms. As Regan et al. (2014) noted, there exist equid

ethograms, but these focus more on horse behavior than on donkey behavior. The

importance of thoroughly characterizing in a systematic and ordered way donkey

behaviors is to better understand, via behavior observation, when donkeys show

pain, tiredness, distress, or discomfort, specially donkeys living or operating in en-

vironments other than their natural habitats. To work towards this goal, Regan et al.

(2014) conducted an observational study of behavior of 21 working donkeys (12

females and 9 males); these donkeys were taken to a pen where they were given an

18 hrs. acclimatization period in order to get rid of possible confounding factors,

such as tiredness, stress, fear, etc. After that, an observer recorded two types of be-

havior, namely postural behaviors (ear position, ear level, head carriage, and so on)

and event behaviors (walking, pawing, eating, etc.); these observations were taken

for two days.48 In order to better characterize the behaviors observed, Regan et al.

(2014) studied the effects of factors such as sex, time of the day when the behavior

was observed, and period of observation across the two days (i.e. day 1 and day

2). Furthermore, an avoidance test was done where the observer approached each

donkey and scored the level of proximity she was able to reach.

Regan et al. (2014) found that the behavior of standing was observed, in the

48The observations were recorded in the form of a count in the behavior space; that is, if a behavior
A was observed for 10 minutes, then a variable indicating the number of times behavior A was
observed was incremented by 1.
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median, 78.4% of the time. Behaviors such as walk and lie were observed, in the

median, 5.7% and 12.3% of the time, respectively. On the other hand, rolling,

self-grooming, and stretching were rarely observed behaviors. Regan et al. (2014)

discovered that sex played a crucial role in some of the behaviors observed.49 Males

usually positioned their head in a higher level than females, probably indicating a

vigilant posture. On the other hand, males were more prone to bite than females,

and females shacked their heads much more frequently than males. Behaviors unaf-

fected by sex were standing, walking, lying, among others. Regan et al. (2014) also

found that the time of the day influenced the donkeys to perform certain behaviors.50

For example, some positions of both tail and ears differed by the time of the day;

also, lying, rolling, and head shacking had different patterns across time. As for

behaviors differing across periods of observation, only some positions of the ears

changed from day 1 to day 2.51 Finally, Regan et al. (2014) found that proximity

levels of the observer towards the donkeys significantly differed by sex.52

These results throw light on how working donkey’s behavior may differ ac-

cording to sex, time of the day, and from day to day. Taking into account this

variations may help clinicians to better assess behavioral patterns related to fatigue,

pain, stress, and other illnesses. Moreover, this study has opened up the way for

more research to be done on donkeys; the results obtained in this study may not

generalize to donkeys working in different environments, or to donkeys who do not

work.

3.2.2 Robustness

Robustness can be seen as the generalization ability of a machine learning system

in difficult or challenging scenarios not commonly found at neither training nor test

time. It has been tackled from different angles in the literature. In an adversarial

setting, the objective is to fool a classifier, i.e. to make a system wrongly classify
49Mann-Whitney U tests were computed in order to find a difference in the two samples, namely

the sample of observation from males and that from females.
50Friedman with chi-square tests were computed in order to find any correlation between the time

of the day and the observed behaviors.
51Wilcoxon Signed Rank tests were computed in order to compare if the medians of the data from

day 1 differ from the medians of the data from day 2.
52A Mann-Whitney U test was computed.
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an instance; this is a way of exposing a weakness or a backdoor of a system. An

example of an adversarial instance for an image classifier is the picture of an object,

like a car, that had changed specific pixels so that the classifier is mislead into

classifying it as other object, like a computer. These changes are so fine-tuned and

small that for a human they are imperceptible yet for a classifier they are substantial.

In the case of a parser (an NLP system), it would be desirable that this system is

robust against a slightly wrong order of the words in a sentence that would remain

understandable and close to a grammatical form for a human.

A second angle to probe a system is by measuring how well it avoids biases

from the training data. For example, if an image classifier is trained with images

where certain objects, such as a car or a washing machine, appear most frequently

with either a man or a woman, it is desirable that given new pictures the system

does not learn to predict the presence of a man just because a car appears there, and

similarly in the case of predicting the presence of a woman given the presence of a

washing machine.

A third angle has rather investigated how well NLP systems have captured

certain linguistic phenomena relevant for the task they were trained for; therefore,

in this type of work, an evaluation of the ability of a system to correctly handle

difficult test instances is provided. In the following sections, we describe the three

approaches in more detail.

3.2.2.1 Adversarial Instances

An adversarial instance is one that fools a classifier; the system assigns a wrong

label to the instance by confusing the features of the instance to be from a differ-

ent class. Previous works in the computer vision and machine learning communi-

ties have fooled representation learning systems (and other types of classifiers) to

show weaknesses, for example, when recognizing images53 (Nguyen et al., 2015;

Szegedy et al., 2014), or when populating a knowledge base via transitive rules

53For example, a system may wrongly classify the image of a car as that of a panda; this can be
done by adding some noise to the instance. However, the noise is imperceptible by a human, whom
would correctly classify the image as being in the category car. Another way to fool a system is
in the reverse direction, by transforming noise until the classifier recognizes it as the image of an
object, but still being noise for a human.



3.2. Behavior Analysis and Evaluation of Robustness 103

(Minervini et al., 2017). The use of adversarial instances thus helps both to expose

problems in robustness in systems and to formulate hypothesis of the reasons of

these failures, as the hypothesis of Goodfellow et al. (2015), from the ML commu-

nity, who attribute a lack of robustness to the linear nature of the systems. Other

works have provided theoretical analysis for the upper bounds on the robustness of

linear and quadratic classifiers (Fawzi et al., 2017); also, previous works have pro-

posed formal measures in order to quantify robustness (Bastani et al., 2016), and

has shown that there is room for further investigation (Carlini and Wagner, 2017).

However, most of the works have been done on computer vision systems and

few work has been devoted to NLP systems. A relevant work in the NLP domain is

the work of Jia and Liang (2017) where the vulnerability of reading comprehension

systems is exposed. A reading comprehension system is a ReLe NLP system that

answers a question regarding a specific paragraph of text. Jia and Liang (2017)

added spurious sentences to paragraphs that did not change their semantics, but

made the systems to output an incorrect answer. An interesting finding is that the

systems have a hard time recognizing a spurious sentence as such. This behavior

derives from the fact that words in the spurious sentence overlaps with the sentence

containing the answer; i.e., the systems get confused. On the other hand, having an

exact overlap of n words (n-gram) between a question and the sentence containing

the answer allowed the systems to ignore the spurious sentence; also, having short

questions helped the systems to be robust against adversarial instances. Overall,

this work exposes a vulnerability in representation learning systems, and opens the

door for further research on other NLP systems.

3.2.2.2 Bias Identification

Previous work has shown that representation learning systems are prone to cap-

ture biases from datasets, which may compromise generalization abilities by learn-

ing, for example, gender stereotypes in word embeddings (Bolukbasi et al., 2016)

(from the ML community). From the NLP community, Zhao et al. (2017) showed

that some ReLe systems capture spurious correlations among output variables, in a

structured prediction task, based on the frequency of co-occurrence of the variables.
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One example of this is wrongly predicting a woman in an image, instead of a man,

based on the context surrounding the person, a kitchen. In a given dataset, it is more

frequent to find pictures of women in the kitchen than those of men in the same

context. Furthermore, Zhao et al. (2017) showed that ReLe systems amplify the

bias found when predicting on test instances which may compromise the robustness

of these systems.

3.2.2.3 Evaluation of NLP systems

Evaluating how well NLP systems capture specific phenomena of interest54 is an-

other way of testing the robustness and deficiencies of systems. This evaluation is

complementary to the standard test set evaluation, which only provides an accuracy

number that by itself does not inform what phenomena a system is good at and what

types of errors it has made (Kummerfeld et al., 2012).

Previous work in the NLP community has investigated the robustness of both

parsing (Bender et al., 2011; Rimell et al., 2009; B. Hashemi and Hwa, 2016) and

machine translation (Isabelle et al., 2017) systems (including ReLe systems) where

the common methodology is to focus on specific linguistic phenomena required for

the task and then creating a test set with instances of such phenomena. This evalua-

tion leads to a fine-grained analysis of how well the systems can deal with important

linguistic constructions and what type of errors are found. In turn, this analysis can

lead to the improvement of the systems, or the datasets, by identifying shortcom-

ings. Common discoveries across the literature are, first, a new perspective of the

system’s abilities to perform the task at hand: The systems usually perform poorly

in at least one phenomena; this is a perspective that arises only with the help of a

dedicated evaluation and analyses. The second discovery, and a consequence of the

first one, is the need for more evaluations and analysis that can help to disentangle

the system’s capabilities at different phenomena to better understand them.

54We make a difference to other line of work, as in (Linzen et al., 2016; Kuncoro et al., 2017) that
is close to measuring robustness, but it may have a different objective. In this line of work, the re-
search question is whether a ReLe system can learn certain linguistic phenomena, rather than asking
how well it can capture the phenomena. This subtle difference leads to the creation of different types
of datasets: In the first case, a dataset for training the system to learn the phenomena is built, while
in the second case only a test set is built.



3.3. Internal Analysis and Extraction of Abilities Learned 105

3.3 Internal Analysis and Extraction of Abilities

Learned
In this section, we describe both how internal analysis in the neuroscience commu-

nity aims to decode information from neuronal activity of people, and, in a similar

vein, how experimental analysis done in the natural language processing commu-

nity aims to extract abilities learned, such as hypernymy, from ReLe systems. Here,

we will see how the analysis done to extract such abilities share many similarities

with those studies from neuroscience. Even though we are not the first to propose

the type of analysis done to ReLe systems to extract hypernymy, we contribute with

drawing a parallel between this analysis and that from neuroscience. In Chapter 6,

we will describe in a fine-grained detail how we are able to extract hypernymy from

a ReLe system.

3.3.1 Internal Analysis

This type of analysis refers to studying the internal components of the subject un-

der study. For example, studies in neuroscience answer research questions about

what knowledge, memories, or abilities, humans have learned and are encoded in

the neurons. More concretely, previous work in neuroscience has analyzed to what

extent it is possible to decode information from brain readings from humans, i.e. to

extract symbolic information from their neuronal activity. The basic methodology

consists in obtaining readings from the brain via sensors, such as fMRI (functional

magnetic resonance imaging), EEG (electroencephalogram), or MEG (magnetoen-

cephalogram), which deliver a representation of neural activity.55 This neural ac-

tivity is read while the subject obtains a stimulus, such as an image (Schoenmakers

et al., 2013; Sudre et al., 2012; Chan et al., 2011; Naselaris et al., 2009; Yargholi

and Hossein-Zadeh, 2016), or a word (Sudre et al., 2012; Chan et al., 2011); for

example, a person reads, or listens to, the word dog while sensors connected to the

head read the activity from the brain. In this way, it is possible to obtain data where

55While fMRI provides a coloured representation of active brain areas due to the oxygenated
blood passing by, EEG and MEG provide a representation of brain activity in terms of electric and
magnetic fields respectively (Smith, 2013; Lopes da Silva, 2013).
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the representation of the neural activity is associated with the stimulus. This data

will then serve to train a decoder (usually a supervised classifier) that will extract

patterns in order to predict at test time what is the stimulus a person is receiving

just by looking at her neural activity. This methodology has been applied to de-

code different types of information besides words or images, such as movie clips

(Nishimoto et al., 2011) and dreams (Horikawa and Kamitani, 2017).

One goal of decoding neural activity is to understand brain organization by

identifying which parts of the brain encode which type of information, such as

motor or cognitive information (Naselaris et al., 2011; Smith, 2013). More con-

cretely, decoding neural activity –brain reading– is a method to better understand

specific regions of the brain, previously unreachable or investigated using invasive

mechanisms, via non-invasive mechanisms, such as fMRI. For example, Naselaris

et al. (2011) propose some research questions answerable by decoding fMRI read-

ings, such as investigating if certain types of semantic information can be found in

specific regions of the brain, or if the information encoded in a specific region is

correlated with some behavioral patterns. Naselaris et al. (2011) claim that it is pos-

sible to answer such questions with this methodology given that a) decoding models

can be trained on different regions of the brain and it is just a matter of comparing

decoding accuracy of the different decoding models to know which region encodes

more information about certain task or stimulus, and b) a decoding model can be

trained to predict behavioral patterns instead of images or words thus correlating

fMRI readings with behavior. In the following paragraphs, we review some works

in order to better exemplify and ground this area of research.

Chan et al. (2011) investigated whether it is possible to train a classifier to pre-

dict (decode) semantic information from EEG and MEG data; i.e., they investigated

whether it is possible to decode the category of a stimulus presented to a subject (a

person) from living and non-living categories.56 Also, Chan et al. (2011) trained

classifiers to decode a specific word that the subject was thinking of.57 Chan et al.

56The stimulus was presented as both auditory and visual formats.
57To do this, Chan et al. (2011) asked the participant to press a button if the image of the object

presented as stimulus was bigger than 1 foot; this allowed the participant to think of characteristics
of such an object, which were recorded in EEG and MEG data.
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(2011) trained one decoder, a support vector machine, for each subject under study

for each of the two tasks from above.58 Chan et al. (2011) acknowledged differences

between brains and thus trained different classifiers for each person; however, part

of the experiments was to investigate to what extent it is possible to train a universal

classifier able to decode information for any of the participants.59

Results show that in both experiments decoders were able to extract meaning-

ful information. When data from EEG and MEG readings were combined to train

a living vs. non-living object classifier, accuracy scores went from 61% up to 91%

and from 63% to 86% in auditory and visual modalities, respectively. On the other

hand, accuracy scores for predicting a word ranged from 32% to 79% and from 66%

to 97% in visual and auditory modalities, respectively, when using, again, a combi-

nation of EEG and MEG data. Furthermore, Chan et al. (2011) found that specific

regions respond to specific types of information;60 bilateral anterior temporal and

inferior frontal regions seem to be correlated with information from non-living ob-

jects, while the left inferior temporal-occipital region seems to correlate with living

objects. In the case of a decoder predicting words, the inferior occipital, inferior

temporal, and bilateral anterior temporal regions seem to be more involved than

other regions, i.e. they seem to contain more relevant information than other parts

of the brain. Finally, Chan et al. (2011) showed that a universal classifier seems a

plausible model for the participants of the study; accuracy scores for such a classi-

fier were 30.2%, using visual information, and 41.3% when using auditory informa-

tion; moreover, when compared to a random classifier with an accuracy of 20%, the

trained classifiers seem to extract information that generalizes across participants.

Another example of brain decoding is the work of Sudre et al. (2012). Sudre

et al. (2012) learned multiple output linear regression models as decoders in order to

extract semantic features from a stimulus (a concept); for example, if the stimulus

is the concept of bird, then a possible feature is it flies. The neural activity of

58One classifier was trained for distinguishing between living and non-living objects, and a multi-
class classifier was trained for recognizing a specific word among a set of words.

59To answer this question, a classifier was trained using data from all subjects except for one, and
tested on the data of the participant who was left out.

60This was done via an analysis of parameters of the classifiers learned.



108 Chapter 3. Literature Review

nine subjects was recorded via MEG readings in order to learn the decoders. Each

subject was presented with 60 concepts via a drawing and via a written word, and

was asked some questions about that concept, for example is it man-made? in order

to record neural activity of the subject when thinking about the semantic features. In

this way, the input of the decoder was the MEG data recorded for a target concept

and the output was a vector where each dimension contained an intensity value

corresponding to each of the semantic features being contained in the target concept.

In order to evaluate how accurate were the features extracted from the MEG data,

Sudre et al. (2012) compared, for each participant, the output vectors containing

extracted features of two different novel concepts61 in order to see if each of the two

predicted vectors corresponded with the true features of the two novel concepts; for

example, given the novel concepts bird and car, in the form of MEG data, along

with their true vectors of features v1 and v2,62 the decoder would predict the vectors

p1 and p2 and would compare if p1 is closer to v1 than to v2 in the feature space

(and similarly for p2 with v2 and v1), which would mean that the decoder accurately

predicted the semantic features corresponding to bird and car. Results show that

it is possible to discriminate between two unseen concepts by extracting semantic

features of each of them from MEG data, with an average accuracy of 91% across

participants. Moreover, Sudre et al. (2012) found that the left inferior-parietal cortex

and the left lateral occipital were relevant areas of the brain for decoding semantic

information.

In a similar vein, Schoenmakers et al. (2013) proposed a decoding framework

to reconstruct handwritten images of characters from fMRI data. Schoenmakers

et al. (2013) implemented a probabilistic model, a linear Gaussian model, in order to

decode the most likely image from neural activity, where a prediction is of the form

x̂ = arg maxx{p(x|y)}, where x is a handwritten image and y is a fMRI reading. To

do this, three participants were shown 60 instances of six handwritten characters (B,

R, A, I, N, S) in order to record fMRI data. Schoenmakers et al. (2013) trained six
61These concepts were not part of the training data.
62For example, consider the vector v1=[it flies, it is an animal, it has wings, ...] in the case of bird,

and the vector v2=[it has wheels, it is man-made, it has windows, ...] in the case of car.
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different types of decoders per participant; one decoder for one character, another

decoder for two characters, and so on until the last decoder which used data from

the six characters. In order to evaluate the quality of the decoded images, statistical

correlation measures were computed between the original and the decoded images.

These correlations were compared against the correlations between the original im-

ages and randomly-constructed images. Results show that correlations between the

original images and those decoded from fMRI data are significantly higher than

those between the original images and the randomly-constructed images,63 which

means that the information encoded in the neural activity was relevant for decoding

the images shown to the participants.

3.3.2 Abilities Learned

Previous works in the Natural Language Processing community have focused

on extracting linguistic abilities learned by ReLe systems, such as hypernymy,

meronymy, or other types of information, such as referential information. We de-

vote this section to describe work on these phenomena.

3.3.2.1 Hypernym Extraction

The vector representations (embeddings) learned by ReLe systems are opaque and

thus it is difficult to know what information they have captured. Previous work has

tackled this problem by extracting certain linguistic phenomena from them, such as

hypernymy.64 There are two main methodologies for extracting hypernymy from

word vectors, unsupervised and supervised, which we explain below.

Unsupervised Prediction of Hypernymy In an unsupervised setting, a directional

measure of entailment65 between two word embeddings is proposed (Lenci and

Benotto, 2012; Santus et al., 2014a; Weeds et al., 2004; Rei and Briscoe, 2014).

These measures are based on two types of features. On the one hand, the measures

use features important for hypernymy that are assumed to be captured by the embed-

dings; for example, the concept dog shares features with the concept animal, such

63Average correlation coefficients for the decoded images were in the range of ρ ∈ [0.4,0.5).
64An example of two concepts holding in the hypernym relationship is dog and animal, since the

former is a type of the latter.
65Hypernymy is a special case of entailment.
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as lives, eats, and procreates. On the other hand, features that are not shared by the

two concepts are also used because they can provide information of how different

the concepts are and thus help to infer which concept is more abstract; for example,

barks is specific to dog and is not a feature of animal which means that dog is a less

abstract concept. In this way, a directional measure would consider such features

to decide if the entailment relation holds in the vector space; i.e. given the vector

representations of animal and dog, a classifier can predict that animal is a hypernym

of dog. However, most of the directional measures were originally hand-crafted for

distributional vectors and not for word embeddings. In a distributional vector it is

clear whether a particular feature is captured from the data, since each dimension

in the vector represents the presence of a feature. This intuition is not clear in word

embeddings, since it is unknown if any of the features are captured in any of the

dimensions.

Supervised Prediction of Hypernymy In a supervised setting, a classifier is trained

to detect whether the hypernym relation between two concepts holds based solely

on their word embeddings, i.e. the input to the learner are the representations of

the concepts in embedding space. Therefore, the classifier is trained to predict that

animal is a hypernym of dog. More concretely, the problem of extracting hyper-

nymy from word embeddings is posed as a binary classification task. The input to

a classifier is a transformed pair of word embeddings Tk(wi,w j),66 where each em-

bedding corresponds to a concept; for example, wi may represent the concept dog

and w j may represent the concept animal. The two most common transformations

are vector difference Tk(wi,w j) = w j−wi, which we call diff, and vector concate-

nation, Tk(wi,w j) = wiw j, which we call concat. The output of the classifier is the

probability that the concept represented by the embedding wi is a hyponym of the

concept represented by the embedding w j.

The experimental setting of this classification task can be viewed as a type of

laboratory setting, since it takes place outside any downstream task, and a rigor-

66We use the notation wi to refer to a concept and wi to refer to the embedding representation of
that concept. For example, cat is the concept to be represented and wcat is the embedding of the
concept.
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ous control of the experimental conditions should be done in order to ensure that

the decision of the classifier is only due to the word embeddings and not due to a

confounding factor. We can see that the supervised approach to extract hypernymy

from word embeddings is similar to the internal analysis from neuroscience. In this

scenario, the analogous of a representation of neural activity (such as fMRI or MEG

readings) in a ReLe system are its internal parameters, the word embeddings, and

the stimulus are the two concepts to infer whether they hold in a hypernym rela-

tion (such as animal and dog). In other words, when studying a ReLe system, we

try to decode (recover) semantic information, namely hypernymy, based on the in-

ternal representations of two concepts of the system under study; this is similar to

work in neuroscience, where based on the fMRI or MEG readings recorded when

a participant was presented with a stimulus, a decoder tries to recover either se-

mantic features from the stimulus or the stimulus itself. To do this, in both cases,

a decoder, usually in the form of a classifier, is trained to extract information from

the neural representations of the participant’s brain or from the the ReLe system’s

embeddings.

Previous works on the supervised approach have studied different ReLe sys-

tems and have proposed different types of classifiers; these previous works have also

used different score measures and have produced different hypernymy datasets. As

a consequence of combining different levels of these experimental variables, the

experimental setting across the works has become heterogeneous to the point that

the overall results are not clear, i.e. there does not seem to be a clear consensus

of whether word embeddings capture hypernymy, despite the methodology being

the same in all these works (Roller et al., 2014; Roller and Erk, 2016; Weeds et al.,

2014; Vylomova et al., 2016; Levy et al., 2015; Fu et al., 2014; Necsulescu et al.,

2015).

3.3.2.2 Other Abilities

Even though the literature has focused more on hypernymy, there are other abilities

in the form of semantic and referential features that previous works have tried to

decode as well. For example, Necsulescu et al. (2015) trained SVM classifiers
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to decode meronymy, a semantic relation, from pairs of word embeddings; i.e.,

given the representations of two concepts, such as door and house, the classifier

predicted if the former concept is-part-of the latter concept (in this example we see

that a door is indeed a part of a house.) These classifiers were trained using data

from WordNet, excluding concepts with multiple senses. Results greatly varied

depending on both the corpus used for training the ReLe system containing the

embeddings and the way the embeddings are combined when passed as input to the

classifier; for example, when using the British National Corpus, F1 scores ranged

from 40% up to 58.7%, and when using the Wikipedia corpus, F1 scores ranged

from 59% up to 72.9%. These results show some evidence that word embeddings

are able to capture this semantic relation.

Antonymy is another semantic relation considered in previous work. Santus

et al. (2014b) investigated to what extent it is possible to extract antonymy from

pairs of distributional vectors of words. To do so, Santus et al. (2014b) modified a

metric from Information Retrieval, namely Average Precision, which evaluates the

ranking abilities of systems when retrieving documents from a given query; Santus

et al. (2014b) modified this metric in order to measure the relevancy of concepts

that are contexts words67 to the two target concepts; for example, the concept food

is likely to be a common context word of both dog and cat. Santus et al. (2014b)

took into account the ranking of these context words to obtain an estimate of how

dissimilar are the two target concepts, where the ranks are computed based on the

local mutual information of each context word to each target concept; these charac-

teristics gave rise to the new metric called APAnt. Results show that APAnt worked

better than baselines metrics: In a range of [0, 1], where 1 is the best score, APAnt

obtained a score of 0.73, compared to scores of 0.56 and 0.55 of the two base-

lines, thus providing evidence of the relevance of the method and the possibility of

decoding antonymy from distributed representations of concepts.

Another previous work on decoding information from embeddings is that of

Gupta et al. (2015). In this work, Gupta et al. (2015) decoded referential informa-

67A context word is a word that appears to the left or to the right of the target word in sentences
from a corpus.
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tion from word embeddings of countries and cities (trained using word2vec); for

example, population size, latitude and longitude coordinates, fertility rate, and so

on. Gupta et al. (2015) used logistic regression models as decoders trained on data

from Freebase. Since predicting the exact value for each referential attribute is very

difficult due to the fine-grained value required, Gupta et al. (2015) evaluated the pre-

dictions as a ranking task. Information predicted for each referential attribute across

countries was ranked from lower to higher and it was compared to the original rank;

for example, if the countries in the ranked list of fertility rate are Spain, Greecy,

UK, and Italy, and the prediction from the decoder ranked the countries in the same

way, regardless of actual values predicted, then the evaluation of the decoder would

be perfect. We note that the lists of countries (260 countries in total) and cities

(1645 cities in total) were divided into training and test sets without overlap; how-

ever, when evaluating the ranked list of countries, all countries from training and

test sets were taken into account. We also note that some attributes are binary, and

thus an accuracy score suffices for evaluation. The results obtained show that the

word embeddings encoded referential information; accuracy score of decoders of

binary attributes of countries is 90% while that of cities is 99%. On the other hand,

ranking scores are 0.22 and 0.25 (a ranking score of r = 0 is a perfect score) for

countries and cities, respectively. These results seem to confirm the feasibility of

decoding referential information, to some extent, from word embeddings.





Chapter 4

Representation-Level Analysis of

Model F: Explaining Predictions

4.1 Introduction
Matrix factorization models (described in Chapter 2) have been widely deployed

into systems and used in several tasks, such as recommender systems (Koren et al.,

2009), information extraction (or knowledge base population) (Riedel et al., 2013),

learning word embeddings (Levy and Goldberg, 2014; Pennington et al., 2014), and

link prediction (Menon and Elkan, 2011).

There are several reasons for their wide popularity: a) scalability, since they are

able to handle datasets with thousands of variables; b) good performance in terms of

accuracy; c) fast training time; d) the lack of vanishing gradients, a problem present

in other ReLe systems (see Section 2.1.1.2); e) the fact that they learn embeddings

which can be used for transferring the knowledge learned to other tasks.

A popular matrix factorization system in the NLP community is Model F

(Riedel et al., 2013). This system populates a cell in a matrix of relational

data by predicting the likelihood of the truth value of a fact; examples of facts

are capitalOf (London,England) and reviewMovie(Daniel Kahneman,Nobel). For

such facts, Model F computes the likelihood of their truth value. In other words,

Model F predicts the probability that the realization of a pair of entities ei :

(Daniel Kahneman,Nobel) under a relation r j : reviewMovie is true, i.e. p(r j(ei) =
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True),1 or more specifically p(reviewMovie(Daniel Kahneman,Nobel) = True).

However, both the intricate internal mechanism and the complexity of Model F

convert it into a black-box model. Thus understanding the reasons behind a particu-

lar prediction2 yi is difficult for a person. For example, suppose Model F makes the

following prediction: reviewMovie(Daniel Kahneman,Nobel) = True.3 The inter-

pretation of this prediction states that Daniel Kahneman, an economics Nobel prize

winner, reviewed a movie named the same as the prestigious prize; this is, indeed, an

incorrect prediction. How can we know why the MF system made this prediction?

The most straightforward way to explain a prediction is to simply describe

how the internal machinery of the system produced the prediction. The prediction

is obtained by first computing the dot product of two embeddings, the embedding

of the pair of entities (Daniel Kahneman,Nobel) and the embedding of the relation

reviewMovie; then, a sigmoid function is applied to the dot product, i.e. a confi-

dence value is obtained based on the similarity of the two embeddings (see Equation

4.1); the more similar the two embeddings are, the more confident is the prediction.

However, after this mechanistic explanation, do we know why the system predicted

that Daniel Kahneman reviewed a movie named Nobel?

We argue that a mechanistic explanation,4 such as the one above, is not the

correct type of explanation to understand the decision process of Model F. First of

all, the distributed representations (embeddings) have no clear direct interpretation,

i.e. we do not know what information is encoded in each of the dimensions of the

embeddings. Therefore, computing the similarity of the embeddings can only give

us an intuition about a hidden statistical pattern captured from the data. What we

need is an explanation meaningful for a human where the input of the system is

related, in an understandable way, to the prediction.

1If this probability is thresholded then we call it a binary prediction where possible prediction
values are True or False. We indiscriminately use yi or r j(ei) to refer to such a prediction.

2We consider a prediction to be the output of a system. We also refer to a prediction as the
response of a system given that both are the same observable output variable.

3We consider this prediction to be binary after being thresholded at threshold α .
4See Section 3.1.2 for a comparison between a mechanistic explanation and a functional expla-

nation, which is a type of explanation that goes in a similar vein to the explanation we propose for
Model F.
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Hence, we argue that the type of explanation needed is one that stems from an

analysis at the representation and algorithm level5 (see Sections 3.1.1 and 3.1.3).

This type of explanation describes the decision process made by Model F by show-

ing how the mapping from the input to the observed output is done (we elaborate on

this point in Section 4.1.1.) This analysis can be captured by an interpretable proxy

model.6 Our objective is, therefore, to learn an interpretable proxy model that glob-

ally7 captures the knowledge of Model F and it is able to explain any particular

prediction yi, in terms of a decision process, based on the inputs to the system.

At this point, however, one question arises due to the input-output structure

of Model F, which is different from that of most of the black-box systems from

the literature where a set of independent variables x is mapped to a label y (see

Section 3.1.4 for a deeper description); for example, take a common black-box sys-

tem, a neural network, that makes the same incorrect prediction as Model F, i.e.

it predicts reviewMovie(Daniel Kahneman,Nobel) = True. The neural network

would make this prediction based on known (and probably incorrect) facts about

Daniel Kahneman and Nobel, such as likes(Daniel Kahneman,Nobel) = True or

postulatedFor(Daniel Kahneman,Nobel) = True. Nevertheless, Model F does not

work in this way; it makes a prediction based only on the vector representations of

both the relation (reviewMovie) and the pair of entities (Daniel Kahneman,Nobel).

Thus, while the explanation for the neural network would be based on an inter-

pretable relation between the known facts and the prediction, the explanation for

Model F would look like the mechanistic explanation described above. Then, we

pose the following question: How can we obtain an input-output model from Model

F in terms of relations? I.e., how can we relate a prediction r j(ei) with other facts

5We set aside analyses at the computational and implementation level since sketches of both of
them are provided in the original paper where Model F is introduced, i.e. in (Riedel et al., 2013),
where the task carried out by Model F and its internal components are described. Thus, our goal is
not to describe the task nor the internal mechanism of Model F, but rather to understand its decision
process, i.e. to understand how a particular prediction is obtained.

6We will use the terms proxy and descriptive indiscriminately to refer to the concept of a model
that acts as an interface to the user in order to understand a black-box system.

7This term refers to the scope of the explanation. As described in Section 3.1.4.2, a global
explanation captures the whole knowledge encoded in the black-box system and thus it is able to
explain any prediction.
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rk(ei) in order to build an interpretable explanation?

If we consider using a proxy model from the literature, then we need to con-

ceptualize Model F as a multi-label classifier. Thus, in order to explain a prediction

r j(ei) in terms of other facts, we define the input space to be all relations rk ∈ R ap-

plied over the entity pair ei, where R is the set of all relations. Similarly, we define

the output space to be all relations r j ∈ R that are applied to any entity pair. How-

ever, this setting leads to a potential difficulty. There is now a significant difference

in the size of the input domain of Model F with that of black-box classifiers from

the literature; while in previous work the number of variables is usually in the hun-

dreds or less, Model F is trained on around 4000 variables (relations r ∈ R). This

fact impacts on the selection of the interpretable model due to scalability issues; for

example, learning an interpretable model of arbitrary size, suitable to capture the

knowledge of a multi-label classifier, such as logic rules, is NP-hard (Jacobsson,

2005). Then, another question arises. What interpretable model, able to capture a

multi-label classifier, is feasible to learn in polynomial time?

In addition, we pinpoint another dimension to consider for choosing an ad-

equate interpretable descriptive model, namely the expressiveness of the model.

Model F is trained using a ranking loss function, where the objective is to rank true

observed instances (facts) from the training set with a higher probability than false8

ones. A natural question arising now is whether proxy models from the literature

can capture the behavior of Model F.

Aggregating all the questions that have emerged so far, we pose the research

question: What is a good interpretable proxy model for Model F?

As a final discussion on previous work, we consider the decompositional work

of Yang et al. (2015) on learning logic rules from tensor factorization systems, a

generalization of matrix factorization systems (Section 3.1.4.1.) This work is close

to our objective but it is not clear to what extent we can apply their methodol-

ogy for solving our problem. First, there are differences between black-box sys-

8False instances are actually unobserved facts. For example, the fact cityIn(London,USA) does
not exist in the matrix of training data Y, but it is created to be used as a false observed instance,
though it could be a wrong observation.
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tems: The entities in Model F are not typed, thus we cannot distinguish if the entity

Daniel Kahneman is a person, or a company, or something else; Yang et al. (2015)

use this knowledge as a heuristic to learn the logic rules, which ameliorates the com-

plexity of the search of rules. Another difference is the way entities are represented;

embeddings in Model F are learned for entity pairs, as opposed to having a single

embedding for each entity. Finally, we consider the scalability and expressiveness

of their proxy model: Precision scores of the rules extracted in (Yang et al., 2015)

degrade considerably when the number of predictions is in the order of the thou-

sands, which is the same order that Model F handles; such results seem to suggest

that logic rules are not expressive enough to capture the knowledge from a matrix

factorization system. Hence, given that it is not totally clear how to properly adapt

the decompositional approach of Yang et al. (2015) to analyze Model F, we consider

using a variant of their proxy model in a pedagogical approach.

Overall, there is no clear answer to what is a good proxy model for Model F

that allow us to explain its predictions. Thus, in this chapter we seek to answer this

question via a set of experiments. We investigate three interpretable models, two

of them widely used in the literature, logic rules and decision trees, and a third one

that we propose based on its structural and functional characteristics, a Bayesian

network tree (Nielsen et al., 2008; Pacer et al., 2013; Koller and Friedman, 2009).

We use the pedagogical approach to learn the proxy models. Then, we compare

how faithfully they mimic the predictive behavior of Model F and how useful they

are to explain particular predictions. Fidelity tests are carried out by comparing

how similar the predictions of the proxy models are with those from Model F on

unseen instances; i.e. we compare which proxy model’s predictions better align to

the predictions of the target system. In addition, we compare generalization abilities

of the proxy models with respect to that of Model F, the more faithful a proxy model

is to the black-box system the more similar the generalization behavior of the two

systems.

As a final remark, we note that the main objective of this study is to evalu-

ate what is the most suitable interpretable proxy model, among the three models
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proposed above, for explaining predictions of Model F. We clarify that we oper-

ationalize the concept of interpretability as finding a proxy model that is able to

faithfully mimic the predictive behavior of a black-box system. However, we do

not aim to study how well a proxy model serves as an interface to a user in order

to help her understand the black-box system; i.e., we refrain from evaluating our

proxy models with a set of users. Even though we believe this type of evaluation is

a requisite for deploying proxy models as applications into the real world, we leave

this study as future work, due to the complexity imposed by such a study since this

type of study would require methods from both psychology and human computer

interaction disciplines, and it would probably need an entire chapter of its own (as

the work of Huysmans et al. (2011)).

4.1.1 Interpretable Proxy Models As an Equivalent of Representation-

Level Analysis

In this section, we tie the work of interpretability to work in cognitive science

dedicated to the same purpose, namely to understand the inner working of an

information-processing system via an input-output mapping process.

Previous work in machine learning has defined the concept of prediction ex-

planation as explaining the relation between the response of a system and the input

variables that elicited such a response. This relation between the trigger of a pre-

diction and the prediction itself is represented by the structure and/or parameters of

an interpretable descriptive model. This explanation suffices a logical connection

between the system’s response and the input variables. For example, the prediction

yi = cityIn(London,England) = True can be explained based on the observation

capitalOf (London,England) and the rule9 capitalOf (a,b)→ cityIn(a,b), where the

observed fact is part of the input domain and the rule used is part of the interpretable

descriptive model.

We now argue for an interpretable descriptive model to embody an equivalent

9This rule does not necessarily embody a logic rule; it is rather a generic rule that can represent
other types of structure, such as an association rule, an entailment in a Bayesian network, etc. The
function of this rule is to describe a flow of information.
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analysis of representation-level analysis as proposed by David Marr (Marr, 2010).10

As described in Section 3.1, an analysis at the representation and algorithm level

seeks to propose a suitable representation and an algorithm that explain how a sys-

tem transforms an input to an output. On the other hand, a proxy model seeks to

explain how a prediction was made. In both cases, the target is an explanation of

how a decision is made by a system. Therefore, the objectives of an analysis at the

representation-level and those from a descriptive model seem to be in concordance.

But, do these two type of analyses characterize the problem similarly and pro-

pose the same kind of explanation? We believe so. As we described in Section

3.1.1, an analysis at the representation and algorithm level aims to explain how a

system transforms an input to its associated output; this explanation is not propose

in terms of the physical components of the system, but rather it is proposed in terms

of the sequence of steps that the system has to carry out; furthermore, the input

and output of the system need to be represented in a suitable way for the proposed

algorithm. On the other hand, an interpretable model aims to explain how a system

makes a prediction; according to our definition of prediction explanation, we seek

for a structure that associates input factors11 to the response of the system. This

structure is usually a machine learning model that is easy to understand for a per-

son, i.e. a person can understand how the inputs are transformed to the observed

outputs. Thus, an interpretable model is able to show the logic of how inputs are

mapped to outputs, and we claim that this logic is suitable to be approached (ap-

proximated) as an algorithm, even though we may loose certain information. For

example, in the case of a Bayesian network, if we are to fully describe the map-

ping process from input to output, then we are required to explain step by step the

Bayesian network’s probabilistic inference process (see Section 2.3.1); neverthe-

less, this inference procedure is very complex to understand for a user, and the size

of the resulting explanation can be overwhelming. Thus, as we will see in our ex-

10We do not claim that by tying a proxy model with analysis from cognitive science it means that
we intend to describe any mental or some sort of cognitive capacities. Even though some machine
learning models may be viewed as a type of cognitive model (Griffiths et al., 2008), we step aside of
any claim about such capacities.

11Observed variables from the input domain.
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periments, we need to reduce the complexity of the explanation by simplifying the

description of the Bayesian network’s inference process to a simpler logic of how

the inputs are transformed to the outputs, namely as a sequence of entailments.

In a more detailed comparison of an interpretable model with a representation-

level analysis, the structure of an interpretable model serves to define the repre-

sentation for both inputs and outputs; and when this structure is coupled with an

inference process in order to obtain a prediction, i.e. to map an input to an output,

then we are able to obtain an algorithm that explains the mapping process. For ex-

ample, if we learn a set of logic rules as an interpretable model of a system, then

we constrain the representation of inputs and outputs to be within this formalism;

thus, inputs and outputs can be represented as logic predicates. In logic, a common

inference algorithm, i.e. a process for obtaining a prediction, is modus ponens (see

Section 2.4.1), which is applied over the set of logic rules learned. Based on this,

we can obtain an algorithmic approximation that describes how we are able to map

inputs to outputs.12

Furthermore, there are two other similarities between the two types of analysis.

First, the explanations obtained in both cases are distinct from explanations that de-

scribe the physical mechanisms of the system under study. Second, as proposed by

Marr (2010), a representation-level analysis can benefit from having some knowl-

edge of the system (for example, whether it operates in parallel or in serial mode);

in the same way, an interpretable model can benefit from knowing characteristics

of the system, for example, in our case, knowing that Model F was trained using a

ranking loss, can help us propose an interpretable model that is able to rank items,

such as a Bayesian network, and moreover, we are able to propose a more suitable

evaluation for our interpretable model.

Overall, we can see that both types of analysis lead to very similar types of

explanations and both work under very similar schemes; furthermore, both analy-

12For example, the prediction yi = contributesToEconomy(London,England) = True can
be explained by the observed fact capitalOf (London,England), the intermediate factor
cityIn(London,England) and the rules r1 : capitalOf (a,b) → cityIn(a,b), r2 : cityIn(a,b) →
contributesToEconomy(a,b). Thus, by describing the application of modus ponens over this set
of rules and facts in a step-by-step format, we would obtain an explanation of the above prediction
in an algorithmic format.
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ses share some philosophical aspects, such as keeping away from fully describing

physical components (though benefiting from knowing physical aspects of the target

system) and instead restricting their scope to explain a mapping process. Therefore,

we claim that an interpretable model is equivalent to a representation-level analysis.

4.2 Problem Definition
We aim to extract the knowledge encoded in the matrix factorization system Model

F in the form of an interpretable descriptive model, for the purpose of prediction

explanation. We define the problem as: Given the target system Model F : Xm×n =

Um×kV′k×n, where a) the system has been learned in a transductive manner, b) the

learned factors U and V are vector representations (embeddings) of two set of fea-

tures: pairs of entities (for example (London,England)), and relations between en-

tities (for example capitalOf ), and c) a prediction yi j = sigmoid(UiV ′j) has possible

values yi j ∈ {0,1} after being thresholded. Then, our objective is to learn a human-

interpretable descriptive model of the form x→ y that accounts for the reasons that

elicit a particular prediction yi j. In other words, we aim to model the associations

among a set of input and output variables13 that explain the decision process of how

a prediction yi j was obtained by the given matrix factorization system.

This problem can be decomposed into sub-problems. First, we need to treat

Model F as a multi-label classifier instead of a transductive system. A transductive

system14 does not learn a function that maps from input to output, rather it works

in an instance-based manner. Model F can only predict a label15 for those cells ci j

where an embedding for the relation r j and an embedding for the entity pair ei have

been learned. Thus, we need to find a way to treat Model F as a multi-label classifier

in order to define an input and output space for the proxy models. And second, we

need to explore interpretable proxy models that are scalable and expressive enough

to capture the whole knowledge of Model F which has around 4000 relations r j ∈ R

and has been trained using a ranking loss function.

13We consider input and output variables to be the relation types r j ∈ R
14K-nearest neighbors is another type of transductive system. For another example, and some

discussion, of transductive systems we refer to (Gammerman et al., 1998).
15The truth value of a fact.
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4.3 Research Questions and Hypotheses
We consider as proxy models two previous models from the literature, logic rules

(LR) and decision trees (DT), and we propose a new proxy model, namely a tree-

structured Bayesian network (BN tree). This setting leads to the following questions

and hypotheses.

Research Questions

1. How can we treat Model F as a multi-label classifier in order to define both

input and output spaces for learning an interpretable proxy model?

2. How can we produce training data in order to train the proxy models to mimic

the behavior of Model F?

3. Can we train logic rules, decision trees, and a Bayesian network using the

same training regime?

4. How can we evaluate the fidelity of a proxy model? Can we use the metrics

from the literature?

5. What is a good interpretable proxy model that is able to capture the whole

knowledge of Model F?

• What proxy model can faithfully mimic the predictive behavior of

Model F?

• What proxy model is both scalable and expressive enough to capture the

knowledge of Model F while its training regime takes polynomial time?

• Is any of the proposed proxy models an equivalent of Model F in terms

of functional behavior?

6. How can we explain a particular prediction of Model F using a proxy model?

• How does an explanation, from each of the proposed proxy models, look

like?
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Hypotheses

1. We hypothesize that a tree-structured Bayesian network (BN) and decision

trees may be better able to capture the predictive behavior of Model F than

logic rules, given their ability to handle probabilities and given the evidence

in (Yang et al., 2015) for logic rules not fully capturing the behavior of tensor

factorization systems.

2. We hypothesize that previous metrics to measure fidelity, namely F1 and ac-

curacy, may not work properly in our problem since Model F was trained

using a ranking loss function; thus we may need to use an appropriate metric

for measuring a ranking behavior, such as precision-recall curves.

4.4 Contributions
• Our main contribution is that we study a new type of black-box system, Model

F, a transductive matrix factorization system trained as a ranking system,

rather than as a classifier as most of the systems from previous work.

• Also, we propose a new type of interpretable proxy model, a Bayesian net-

work tree, and we compare it with two widely used proxy models from the

literature, logic rules and decision trees.

• In addition, we propose a new evaluation metric of fidelity, namely precision-

recall curves, and we compare this metric with those from the literature,

namely F1 and accuracy.

• Furthermore, we connect this line of work to that from cognitive science –

representation-level analysis– by describing how both share similar objectives

and how an interpretable model leads to a very similar type of explanation.

(see Section 4.1.1.)

4.5 Scope and Limitations
We only study one ReLe system, namely Model F. Thus, our objectives are focused

on understanding this specific system. Analyzing any variant of Model F, or any
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other matrix factorization system, is out of our scope. Hence, both our results and

our findings are only descriptive of and pertinent to Model F and they may not

generalize to any other system. We leave as an open question for future work to

what extent our findings can be indicative of the behavior of other ReLe systems.

As we have described before, we aim to explain the behavior of Model F from

a decision process perspective; i.e., we aim to understand how Model F makes a

decision (a prediction) by describing a plausible way in which it maps an input to

an output. However, we do not aim to explain how other factors contribute to the

behavior of our system under study; i.e., we do not consider in our paradigm how

the internal components of Model F give rise to the behavior observed, we neither

consider how changes in the data may affect its behavior. These types of expla-

nations correspond to different perspectives and different methodologies. Similar

to work in cognitive science, we mainly focus on the representation and the input-

output mapping process suitable for explaining the decision process of the system

under study.

Furthermore, operations such as debugging the system or finding errors in the

data are possible applications for which our work can be helpful, but we leave them

as future work. We are concerned and interested in understanding Model F, and

any possible engineering application derived form this understanding is welcomed

as future research.

Another limitation of our work is that we do not prove whether Model F has

learned any ability, such as a linguistic ability, a hierarchical structure, or phenom-

ena of the sort. The proxy models that we obtain serve to a particular purpose,

namely explaining the decision process of Model F; investigating to what extent

these models can also serve to explore the abilities learned by the system under

study is out of our scope and out of our research framework.

4.6 System Under Study
In this section we describe our target system, Model F, as well as the data used for

training it.
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4.6.1 Training Data

Model F was trained using two sources of data, the NYT corpus (Sandhaus, 2008),

a collection of newspaper articles, and Freebase,16 a structured database with infor-

mation about the world in the form of facts. These two datasets were selected due

to their high coverage of information. The NYT corpus spans throughout 10 years

of news, and Freebase contains 1.9 billion of triples. Furthermore, as explained in

(Riedel et al., 2013), by using data in the form of both natural language sentences

and structured triples, a system is then able to learn and reason in both structured

and unstructured modes.

In order to train and test Model F, a collection of articles were taken from

the NYT corpus as training data, namely those published after the 2000; sim-

ilarly, a collection of facts of the form relation(entitiy1,entity2) were taken

from Freebase (half of the facts from Freebase); an example of a fact is

capitalOf (London,England) where capitalOf is a relation applied to a pair of

entities, namely (London,England). In order to obtain facts of the same form

from the NYT articles, surface patterns between entity1 and entity2 were ex-

tracted using a dependency parser; thus, a fact extracted from the NYT cor-

pus looks in the following way entitiy1 surface pattern entitiy2, for example

London is the capital of England. Each fact from the NYT corpus can be seen

as surface pattern(entitiy1,entity2). Finally, facts from both sources, the NYT cor-

pus and Freebase, are joined together to form a matrix of relational data X which

is the training data (see Figure 4.1 for an example of a relational matrix.) Each

cell xi, j ∈ X indicates if a fact has been observed on either of the two sources. For

example, if capitalOf (London,England) has been observed, then its corresponding

cell is filled with 1, otherwise the cell is filled with the missing-value symbol: ?.

In summary, the matrix of relational data X, which is used as training data for

Model F, encodes facts extracted from both the NYT corpus and Freebase. Each

row of the matrix represents a pair of entities ei : (entitiy1,entity2), for example

(London,England), and each column represents a relation r j between entities, for

16The official website was www.freebase.com but it was shutdown.
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example capitalOf . We indiscriminately use the notation r j to refer to either a

relation or a surface pattern.

4.6.2 Model F

Model F learns a k-dimensional vector representation –an embedding– for each

entity pair ei ∈ E and for each relation r j ∈ R. For example, the pair of

entities (London,England) and the relation capitalOf can be represented with

the k-dimensional vectors [4.34, ...2.45,3.45] and [4.32, ...1.34,6.12], respectively.

Model F then uses these embeddings to obtain a fully-populated matrix Y; the ob-

jective for building this matrix is two fold. First, to recall the information of the

matrix X; second, to predict values for those missing cells in X. In other words, the

matrix Y is an approximation (a reconstruction) of the matrix X.

Thus, in the matrix Y, each cell yi, j ∈ [0,1] can be seen as the prediction of

a fact. This prediction can be interpreted as the probability of obtaining a True

value when a pair of entities ei bounds a relation r j, i.e. p(r j(ei) = True). For ex-

ample, suppose the prediction p(cityOf (London,England));17 this prediction states

the confidence of Model F towards the fact that London is a city of England. Each

prediction yi, j is obtained by applying the sigmoid function to the dot product of

two embeddings; these two embeddings correspond to that of the entity pair ei, and

that of the relation r j, denoted by ui and v j respectively. The mathematical form of

a prediction is:

p(r j(ei)) = sigmoid(uiv′j) =
1

1+ e−(uiv′j)
(4.1)

To see an example of a matrix Y where all cells have been predicted (popu-

lated) see Figure 4.2. This matrix represents the reconstruction of the matrix of data

shown in Figure 4.1. This reconstruction is obtained by applying Equation 4.1 to

predict all cells yi, j ∈ Y.

In order to learn the matrix Y, each row Xi from matrix X is taken as a training

instance; i.e., each row is a vector of i.i.d.18 random variables, and the factors U
17We abandon the use of a truth value for simplification and clarity.
18Independent and identically distributed.
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Matrix X liveIn workIn bornIn diedIn

(John, Spain) 1 ? 1 ?
(Lily, India) ? 1 1 ?
(Carl, India) ? 1 ? ?

(Sarah, USA) 1 ? ? 1

Figure 4.1: Example of a matrix of relational data. 1 indicates an observed fact, ? indicates
missing value (unobserved fact.)

Matrix Y liveIn workIn bornIn diedIn

(John, Spain) 0.99 0.95 0.99 0.70
(Lily, India) 0.78 0.98 0.97 0.49
(Carl, India) 0.80 0.97 0.90 0.35

(Sarah, USA) 0.99 0.95 0.90 0.98

Figure 4.2: Example of reconstruction of a matrix of relational data where all cells are
populated. Each cell indicates the probability of a predicted fact to be true.

and V, the embeddings of all entity pairs and relations, are the parameters to be es-

timated. A canonical loss function to minimize, in order to approximate the matrix

X, is the sum squared error: ∑i, j(xi j− yi j)
2, which is equivalent to minimizing the

Frobenius distance between X and Y, |X−Y|2Frob. However, the matrix of data does

not have any negative instances to learn from, i.e. there are not any facts known to

be False; only positive instances are provided. Therefore, minimizing the squared

distance shown before may lead to overfitting. Then, the optimization function used

to train model F is a logistic loss function:

argmaxU,V ∑
x+i j∈O

∑
x−ik /∈O

log(sigmoid(UiV′j−UiV′k)) (4.2)

Where x+i j and x−ik indicate observed and unobserved instances (cells), re-

spectively. The objective is to obtain parameters that strengthen the inequality

p(x+i j) > p(x−ik); i.e., observed cells receive a higher score than unobserved ones.

In order to minimize the loss function in Equation 4.2, stochastic gradient descent

is applied.
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4.7 Methods and Materials
We learn three types of interpretable proxy models from the matrix factorization

system Model F (Riedel et al., 2013): Logic rules (LR), decision trees (DT), and a

Bayesian network tree (BN tree). As explained in Section 4.1, our objective is to

learn a proxy model that 1) captures all the knowledge of Model F and 2) explains

particular predictions. In order to guarantee fidelity of the proxy model to the pre-

dictive behavior of Model F, we propose precision/recall curves as a scoring metric

of faithfulness.

In this section we explain the setting for learning the descriptive models. We

provide both the methods used for inducing each of the descriptive models and a

description of the data used for learning these models.

4.7.1 Data

In order to learn the descriptive models, we use the predictions from Model F as

training data. We use the embeddings learned by Model F to construct the matrix

of predictions Y where each row corresponds to an entity pair and each column

corresponds to a relation type (see an example of such a matrix in Fig. 4.2). Each

prediction is thresholded at α ∈ [0,1], i.e. we obtain training sets from the cell-wise

thresholded predictions. But, since the training data for learning a Bayesian network

or a set of logic rules (unlabeled data) is in a different regime than the training data

required for learning a decision tree (labeled data), we need to create two different

training datasets, namely DU and DS; therefore, we need to treat Model F as both a

joint model and a local classifier in order to obtain the training data for all the proxy

models. En either case, we define 19 Freebase relations as target variables for test

evaluation (see Figure 4.3 for the complete list of target variables.)

On the one hand, we need a set of unlabeled data for learning both logic rules

and a Bayesian network. A Bayesian network models a joint probability distribu-

tion; thus we need a training set where an instance xi is the joint observation of a

set of random variables x1,x2, ...,xn. This training data can also be used for learning

logic rules: We can frame the task of learning rules from Model F as that of the

market basket analysis (Agrawal et al., 1993). In this task, a matrix of transactions
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Target variables
business/person/company

location/location/containedby
book/author/works written
people/person/nationality
organization/parent/child

people/deceased person/place of death
people/person/place of birth

location/neighborhood/neighborhood of
people/person/parents

business/company/founders
film/film/directed by

sports/sports team/league
sports/sports team/arena stadium

sports/sports team owner/teams owned
broadcast/broadcast/area served
architecture/structure/architect
music/composer/compositions

people/person/religion
film/film/produced by

Figure 4.3: Freebase relations used as target variables to test the proxy models.

is used for discovering rules, where rows corresponds to transactions and columns

to products. Thus, we take the columns of the matrix populated by Model F (vari-

ables x1,x2, ...,xn) as either products (as in the market basket analysis task) in order

to learn logic rules, or as random variables in order to learn conditional probability

distributions for a Bayesian network. On the other hand, decision trees are a dis-

criminative classifier, so we need a supervised training set where each input vector

xi is labeled by Model F. For this purpose, we use input vectors from the training

data used for learning Model F (described in Section 4.6.1); the label yi for each

vector comes from the response of Model F.

We show how an unsupervised and a supervised instance looks like with the

following examples. In Example 4.3 we have a training instance, x, filled with

several facts. A fact r j(ei) is the realization of a relation under an entity pair, such

as capitalOf (London,England). Each fact is a prediction of Model F. Then, we
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take each relation as an independent variable, and each fact as a prediction. Since

this is an example of an unsupervised instance, we do not need to label it. Then, in

order to obtain more instances, we apply the relations to different entity pairs. In

this case, we build an instance as described above because we need to model Model

F as a multi-label classifier, where the output space is all the relations r j ∈ R.

On the other hand, in Example 4.4 the training instance is of the form (x,y)

where, again, x corresponds to the independent variables and y is a label. Nev-

ertheless, the input vector is not filled with predictions from Model F, unlike the

unsupervised instance in Example 4.3; it is rather filled with observations from the

training data used to learn Model F. Then, the label of x, namely y, is a prediction

of Model F. Thus, the prediction of containedBy(London,England) is the only pre-

diction of Model F. The point for building a supervised instance in such a way is

because we are interested in Model F as a binary classifier, where the output space

is a single relation r j.

(4.3) x : [capitalOf (a,b), cityIn(a,b), worksIn(a,b), livesIn(a,b),

containedby(a,b)]

Where a : London and b : England

(4.4) (x,y) : ([capitalOf (a,b), cityIn(a,b), worksIn(a,b), livesIn(a,b)],

containedby(a,b))

Where a : London and b : England

More formally, we construct two different training sets: DU and DS. The first

dataset is used for learning logic rules and a Bayesian network tree. In DU , a vector

of attributes xi = (x1,x2, ...,xn) corresponds to the i-th row of the matrix of predic-

tions of Model F; i.e., a training instance is the set of predicted facts for a single

pair of entities ei across all relation types from r1 to rn. For example, suppose

again the entity pair (London,England) and the relations r1 : capitalOf , r2 : cityIn,

r3 : worksIn, and r4 : livesIn; suppose the thresholded predictions of Model F for

each realization are as follows: [1,1,0,0]. Then, this vector of predictions become

a training instance xi.19 In the case of DS, a training instance is of the form (xi,yi),
19The same training instance has different interpretations depending on the model using it. For
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Dataset Form of Instances Independent Variables Dependent Variables Test variables

DU x columns of Model F none 19 vars. in Fig. 4.3

DS (x,y) columns of NYT corpus 19 vars. in Fig. 4.3 19 vars. in Fig. 4.3

Table 4.1: Description of the training datasets used for learning the descriptive models.

where the input vector xi comes from the i-th row of the original training sets used

for learning Model F, namely the NYT corpus and Freebase. And the label yi cor-

responds to Model F’s prediction of 19 Freebase target variables20 shown in Figure

4.3. The resulting datasets, DU and DS, consist of 4111 and 5007 input variables, re-

spectively. While instances of DU have no class label, each instance of DS contains

19 class labels, the Freebase variables from Figure 4.3; alternatively, we can see

training set DS as a set of 19 training sets. (This is actually how we will use dataset

DS, we will split it into 19 training sets and we will learn one decision tree for each.)

Both datasets contain 39864 training instances. See Table 4.1 for a summary of both

datasets.

The test data to evaluate the proxy models is drawn from a portion of the pre-

dictions of Model F; these cells are not used at training time for training neither

Model F nor the proxy models. We use the Freebase variables shown in Figure 4.3

as test data. Each variable corresponds to a column from Model F. As we described

above, some instances are used at training time in order to learn both their embed-

dings and the proxy models; however, some instances are not used for training and

thus are used as test data.

4.7.2 Choice of Proxy Models

Some of the aspects to take into consideration for choosing a descriptive model are

the interpretability (how understandable is the model for people) (Huysmans et al.,

2011; Freitas, 2014), the fidelity (to what extent it can capture the knowledge of the

target black-box system), and the easiness of training. Another fourth aspect some-

learning a BN, the training instance is seen as a set of realized random variables; when learning logic
rules, the same instance is taken as a set of realized predicates.

20We note that these 19 variables are included in the training instances of DU as independent
variables rather than as class labels.
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times not taken into account is the accuracy of the descriptive model to generalize

to unseen instances; this aspect is often ignored because, usually, the objective of a

proxy model is to explain predictions of a black-box system and not to substitute it.

These aspects lead to two trade-offs that we take into account for selecting a proxy

model: Fidelity vs. interpretability and fidelity vs. generalization.

Fidelity vs. Interpretability Usually, the more faithful is the proxy model to the

black-box system, the less interpretable it is for people. A proxy model that per-

fectly mimics the target black-box is the black-box itself; in this scenario, we loose

all interpretability to gain complete fidelity. On the opposite side, an interpretable

model, such as logic rules or linear regression, will give us near-optimal inter-

pretability at the cost of fidelity (specially for state-of-the-art representation learn-

ing systems.) Thus finding a descriptive model that is able to mimic the decision

process of the black-box system while remaining simple for a person to understand

such process is one of the main objectives in the task of understanding the black-box

system.

We hypothesize that a tree-structured Bayesian network may represent a good

fidelity-interpretability trade-off. Bayesian networks are well known classifiers that

have achieved state-of-the-art performance (Friedman et al., 1997; Janssens et al.,

2004), and have been used in several domains, including ranking (Chapelle and

Zhang, 2009), an ability learned by Model F at training time. This success of BNs

is due to both their interpretable characteristics and their ability to capture joint

probabilities and compute Bayesian probabilities (Pacer et al., 2013; Griffiths et al.,

2008). However, due to the complexity in learning them from data we restricted

ourselves to a simpler structure, namely a tree structure, though this choice may

imply a loss in fidelity. Decision trees, on the other hand, are able to compute

conditional probability estimates, while providing interpretable explanations. But,

we are not sure to what extent they may capture the ranking behavior of Model F,

as previous work has shown their poor ability in ranking problems (Provost and

Domingos, 2003). We hypothesize that DTs may represent a fair trade-off, but not

as good as that of the Bayesian network. Finally, we hypothesize that logic rules
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may not represent a good trade-off. Logic rules are easy to understand, but they are

not probabilistic models; thus, they may not be able to fully capture the behavior

of Model F. It seems, then, that despite being an understandable model (and widely

used in the literature), logic rules are less likely to faithfully mimic Model F’s be-

havior. (See Sections 2.3.1, 2.2.3, and 2.4.1 for background information on each of

these models.)

Fidelity vs. Generalization Fidelity of a descriptive model to a black-box system

is at odds with generalization (Zhou, 2004); i.e., if the descriptive model is able

to faithfully mimic the predictive behavior of the target system then it is expected

to make the same mistakes and have the same hits. Generalization ability of the

proxy model to test instances is thus restricted by the knowledge learned from the

black-box system. Then, if our objective is to have a proxy model that replaces the

black-box system we should consider this trade-off. Since our objective is rather

to explain predictions from Model F, we do not investigate in depth this trade-off,

though we compare the generalization ability of our proposed proxy models to show

their performance on unseen test instances.

4.7.3 Learning Proxy Models

4.7.3.1 Learning Logic Rules

We learn first-order Horn clauses of the form ∀x1∀x2 A(x1,x2)→ B(x1,x2). This

type of definite clause can be seen as a universally quantified implication. Given that

learning logic rules of arbitrary size is NP-hard, we restrict the size of the rules to

be |R|= 1 (one predicate in the body) in order to low-down the complexity to O(n2),

where n is the number of predicates. Each rule is range restricted, i.e., the arguments

x1 and x2 in the body predicate A must be the same as those in the head predicate B.

An example of a logic rule is ∀x1∀x2 capitalOf (x1,x2)→ cityIn(x1,x2).21

We extract logic rules from Model F using its predictions as training data

(dataset DU ). We apply a variant of the A priori algorithm (Agrawal and Srikant,

1994) used for the market basket analysis task. We compute the mutual information

21We recall that predicates A and B correspond to relations (columns) r j, rk from the matrix
reconstructed by Model F.
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(Equation 4.5) between each pair of predicates A and B as a support measure for ac-

cepting a rule. If the statistical dependence between A and B is greater or equal than

a fixed (manually set) threshold then we accept a symmetric implication rule A↔B.

In order to determine the direction of this rule, we compute a confidence value by

comparing conditional probabilities: i f p(A|B) > p(B|A) thenB→ A, elseA→ B.

The algorithm is shown in Algorithm 2.

MI(A,B) = ∑
a∈A,b∈B

p(A,B)log
p(A,B)

p(A)p(B)
(4.5)

A, B: variables corresponding to predicates
D: training data
learnLogicRules(D){
foreach A in D do

foreach B in D where B 6= A do
MIAB=mutual information[A, B]
if MIAB ≥ τ then

if p(A|B)> p(B|A) then
∀x1∀x2 B(x1,x2)→ A(x1,x2)

else
∀x1∀x2 A(x1,x2)→ B(x1,x2)

end
else

not accept rule
end

end
end
}

Algorithm 2: Algorithm for learning a set of logic rules using a variant of the A
priori algorithm. Threshold τ indicates the criterion for accepting an implication
rule between two predicates.

We choose mutual information as a support measure because it assigns mono-

tonically increasing values to more statistically dependent variables. However, one

problem with this measure is its variability with null entries, i.e. the amount of null

entries in the variables A and B may affect the mutual information between the two.

On the other hand, an advantage of mutual information is its suitability for discov-

ering classification rules since it considers the joint distribution of the antecedent

and the consequent of each rule. In previous experiments we tried to use an induc-
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tive logic programming method as a baseline, but due to both scalability issues and

the requirement of negative examples (also noted in (Galárraga et al., 2013)) we

refrained from using it.

4.7.3.2 Learning Decision Trees

We learn CART decision trees using the software Rpart (Therneau et al., 2014). We

learn one decision tree for each of the target variables in Figure 4.3. We use the

dataset DS to do so. As explained in Section 4.7.1, the input variables x1, ..., xn

come from the input space of the data used for learning Model F, i.e. relations from

the NYT corpus and Freebase, while the output variables come from the columns

of the matrix reconstructed by Model F shown in Figure 4.3.

The algorithm for inducing a CART tree is described in Section 2.2.3. How-

ever, this greedy approach of growing a decision tree implies two main problems,

namely data fragmentation (overfitting) and poor probability estimation. The prob-

lem of data fragmentation arises when the splits of the data are too small. Each

node added to the hierarchy implies a split on the training set, and consequently,

this imposes a margin in the input space; in the worst situation we would fragment

the input space as fine as to demarcate each training instance. On the other hand,

the problem of poor probability estimation arises as an effect of data fragmenta-

tion since the number of instances falling at each leaf diminishes with the depth

of the leaf, leading to a poor probability estimation model. Possible solutions to

both problems are either applying a Laplacian smoothing in each leaf (Provost and

Domingos, 2003), constraining the depth of the tree, add a stopping criterion when

the number of instances at split si has reached a minimum number of training in-

stances, or add another stopping criterion when the information gain at split si is

near zero.

We use both of the stopping criterions described above. We set β = 10 (thresh-

old manually chosen) as the minimum number of instances at any split si. We

decided not to use tree depth as a heuristic given that most of the times the trees

induced tend to be shallow (the smallest one has depth d = 2, the largest one has

depth d = 13, and in average the depth is d = 5.57); for the same reason we decided
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not to prune the tree after learning.

4.7.3.3 Learning Bayesian Network Trees

Learning a Bayesian network of unbounded indegree22 is an NP-complete problem

(Chickering, 1996). Thus we opt for a method23 that provides an optimal DAG in

polynomial time (O(n2)) at the cost of expressiveness.24 More concretely, we as-

sume a tree structure for our proxy model where one node can have several children

but only one parent. Choosing a tree structure alleviates both the search in the DAG

space and the problem of overfitting since the structure is sparse. And also relevant

is the fact that this structure only keeps the links between nodes with highest weight.

Since the structure of our proxy model is already known, we are left to learn

both the configuration of each family (sub-trees) in the DAG and the parameters

for such families (local conditional probability functions.) In order to learn the

building blocks of each family, i.e. the link between two random variables xi and x j

(both variables being columns of the matrix reconstructed by Model F), we compute

their mutual information in order to measure their statistical dependence (similar to

the rule selection procedure in Section 4.7.3.1.) This measure can be seen as the

difference between the marginal entropy of xi, namely H(xi), with respect to the

conditional entropy of xi given x j, i.e. H(xi|x j). This difference shows how much

uncertainty in xi is left by knowing x j. If xi is independent of x j, then the conditional

entropy reduces to the term H(xi), and thus the mutual information between the two

random variables is zero. We perform this computation for each possible pair of

variables which leads to a matrix MI of mutual information scores (Algorithm 3.)

Once the symmetric matrix of mutual information between all random vari-

ables is computed (MI), we apply a maximum spanning tree algorithm (Koller and

Friedman, 2009) on top of it (Algorithm 4.) To do so, we define two sets of nodes,25

S and T ; the first set corresponds to nodes in the spanning tree, the second set corre-

22Any node can have any number of links to other nodes.
23We tried heuristic methods, such as hill climbing, to search in the space of DAGs, but neither of

these heuristics resulted in suitable Bayesian networks in terms of fidelity.
24It is difficult to say how much expressiveness we actually lose by applying our prior assump-

tions.
25A node is the graphical representation of a variable.
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sponds to nodes to be added to the tree. First, we arbitrarily select a node to be the

root of the tree, remove it from T and add it to S. After that, we use mutual informa-

tion as the criterion for removing a node from T in order to add it to S: We select the

node ti ∈ T which has the highest mutual information with any of the nodes s j ∈ S

according to matrix MI. This step is applied until T = /0. This algorithm guarantees

to build a tree structure where a link between the nodes ni and n j represents the

maximum mutual information between the variables xi and x j.

After we learn the families, we then learn the parameters by means of maxi-

mum likelihood estimation26 across the rows of the matrix of predictions of Model

F; i.e. we take these rows as instances. Thus each parameter p(xi|parent(xi)) is

shared across instances.

As we mentioned before, an advantage of learning a tree structure is less over-

fitting of the data. In an unbounded BN, as we add more edges, the mutual informa-

tion as a global score (aggregating this score across all families) increases, leading

to a structure that probably will add dependencies found in the data that are just

noise. Besides, as it is pinpointed in (Koller and Friedman, 2009), missing a true

link would lead to incorrect independencies, but the DAG learned could general-

ize better than an unbounded dense DAG where spurious links are added; in this

case, spurious dependencies would be present in the BN increasing the number of

parameters to be learned and leading to overfitting.

D: training data
xi, x j: random variables
computeMI(D){
foreach xi in D do

foreach x j in D do
MIi j = mutual information(xi, x j)

end
end
}

Algorithm 3: Algorithm for computing the matrix of mutual information be-
tween each pair of random variables.

26We also tried a maximum a posteriori approach by using a Laplacian smoothing, but it did not
make a significant difference in terms of fidelity.
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MI: matrix of mutual information
S: set of nodes in the tree
T : set of nodes to be added to the tree
BN: Bayesian network tree
ni, n j, nk: nodes corresponding to random variables xi, x j, xk
maximumSpanningTree(MI){
S← nk ∈ T //arbitrary node
T −nk
while T 6= /0 do

argmaxni∈T,n j∈S MI[ni,n j]
S← S∪ni
T −ni

end
}

Algorithm 4: Algorithm for inducing a Bayesian network tree. The tree struc-
ture is induced by means of a maximum spanning algorithm implemented in the
function maximumSpanningTree.

4.7.4 Measurements and Analyses

We describe the methods to evaluate the proxy models in terms of fidelity and gen-

eralization; we also describe how we use the proxy models to interpret predictions

from Model F. We refrain from evaluating interpretability in a quantitative way

since it is not clear how to properly do such evaluation.27

4.7.4.1 Measuring Fidelity and Generalization

A feasible way to measure fidelity is to observe the proportion of test instances that

a proxy model labels in the same way as the black-box system; i.e., given the same

input, to what extent the behavior of the proxy model agrees with that of Model F?

Previous work has measured fidelity mostly in terms of accuracy (Equation 4.6.)

However, this score may show a misleading picture of fidelity due to the high num-

ber of negative instances. We use two other alternative metrics to measure fidelity,

namely F1 (Equation 4.7) and precision-recall (PR) curves (Manning et al., 2008).

27Previous work has used people to rate different proxy models (Huysmans et al., 2011), or has
used metrics based in characteristics of the model, such as the number of parameters (Freitas, 2014);
but, on the one hand, using people is out of the scope of our work, and, on the other hand, we believe
a qualitative exploration of how the models serve to explain predictions is a more comprehensive
evaluation rather than measuring how big is the model.



4.7. Methods and Materials 141

In particular, we use 11−point PR-curves; for each level of recall we compute the

precision of the proxy models: A perfect performance is observed if precision score

is Precision = 1 for all levels of recall. F1 and PR-curves can deal with the problem

of having a high number of negative instances in the test set. However, we need

to threshold the predictions of the proxy models28 in order to measure F1 (and ac-

curacy), which may impose an arbitrary decision-boundary for the proxy models.

To ameliorate this problem, we compute F1 (and accuracy) for several thresholds.

On the other hand, PR-curves plot a model’s performance across thresholds. Be-

sides, PR-curves show ranking performance of the models, a behavior imposed in

the loss function of Model F, while F1 (and accuracy) measures only classification

performance.

Similarly, we measure how well the proxy models can generalize to test data.

This measure can also be taken as a proof of fidelity: If a proxy model has faithfully

capture the decision process of Model F then we would expect it to generalize in

the same way as Model F (make the same mistakes and the same hits.) We evaluate

generalization abilities with precision-recall curves.

Accuracy =
T P+T N

T P+T N +FP+FN
(4.6)

F1 = 2
(

Precision∗Recall
Precision+Recall

)
(4.7)

Precision =
T P

T P+FP
(4.8)

Recall =
T P

T P+FN
(4.9)

Where T P: true positives, T N: true negatives, FP: false positives, FN: false

negatives.

28Except for the logic rules whose predictions are already binary.
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4.7.4.2 Using Proxy Models for Explaining Predictions

Here we explain how the proxy models can be used to explain the decision process

of Model F for a particular thresholded prediction.29 We define an explanation as

the process by which the black-box system arrives to a decision. This process is

defined in terms of observed variables for a given entity pair. For example, suppose

a pair of entities ei is seen in the dataset to instantiate relations rl , rk, and rm, i.e. the

facts rl(ei), rk(ei), and rm(ei) are observed; let’s also suppose that Model F predicts

the fact r j(ei) as a true fact. Then, a proxy model would take the first three relations

(rl , rk, and rm) as observed input variables in order to explain the prediction of

Model F.30

Then, based on the observed variables given as input, we try to infer which

of them influenced the output variable by building an interpretable relationship be-

tween input and output variables; in other words, we seek for the input variables that

contribute (play a role) to the prediction observed. So, we aim to use a proxy model

to explain a prediction such as capitalOf (London,England) = True, a correct pre-

diction, or reviewMovie(Daniel Kahneman,Nobel) = True, an incorrect prediction,

in terms of observed facts given as input.

Logic Rules In the case of logic rules, we explain the prediction of a fact r j(ei)

by application of modus ponens until the target fact is realized. In other words,

given a pair of entities ei as an argument, we instantiate the antecedent of a rule and

by virtue of the implication of the rule we also instantiate the head; i.e., we apply

the substitution [e/e j] in the body of a rule ri(e)→ rk(e) which in turn instantiates

the head. The realization of the head (rk(ei)) will in turn serve to instantiate the

body and head of another rule, and so on. Thus, by successive application of this

transitivity we expect to instantiate the target relation to be explained, namely r j(ei).

If the target relation is not realized then we have no explanation for the prediction.

29We aim to explain binary predictions rather than explaining how Model F arrives to a particular
probability value since it considerably reduces the complexity of the task.

30Our proxy models need input variables in order to predict the value of the output variable to be
explained; that is why wee need to use known facts as observed variables.
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Decision Trees In a decision tree, the target fact to be explained is expected to lie

in a leaf node. Then, an explanation accounts for the path from the root node to

the leaf node containing the target relation. In this way, such an explanation can be

interpreted as an if-then (implication) rule where the body contains the variables in a

conjunctive form and the head corresponds to the target relation, i.e. if rl∧rk...∧rm

then r j, where r j is the target relation.

Bayesian Network Tree An explanation in a tree-structured Bayesian network ac-

counts for the sub-tree that relates the target relation predicted n j
31 with the vari-

ables that elicited the prediction, i.e. the observed input variables, namely nl , nk,

nm.32 The target variable can be either a child or a parent in the sub-tree, as well

as the input variables. Then, an explanation is seen as a set of variables influencing

the target variable directly or indirectly in either a forward or a backward way. We

note that in a tree-structured Bayesian network, a node has only one parent, thus the

explanation is easier to interpret than if using a more complex structure. We also

note that we use the parameters of the BN tree in an explanation only to give a sense

of how strong is the influence of a variable on another variable since we consider to

be difficult to interpret such a flow of information in a descriptive way.33

4.8 Experiments and Results
We provide an experimental comparison of the three proxy models proposed. We

define our experiments along two dimensions, fidelity (taking generalization as an-

other measure of fidelity), and interpretability. Thus the first set of experiments

compare how well each proxy model mimics the predictive behavior of Model F. In

the second set of experiments we provide explanations of particular predictions in

order to qualitatively assess the explanations from each proxy model.

31n j is the node in the Bayesian network that represents the relation r j
32The terms nl , nk, and nm are the names of the nodes in the Bayesian network that represent the

relations rl , rk, and rm, respectively.
33More concretely, as previous work has shown (Lacave and Dı́ez, 2002; Yap et al., 2008), it is

easy to interpret the structure and the conditional probabilities of a Bayesian network, but it is diffi-
cult to understand the inference process of the BN; i.e. it is difficult to interpret how the information
flows from one variable to another until it reaches the predicted variable at inference time, namely
explaining the computation of p(n j|nl ,nk,nm).
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4.8.1 Fidelity and Generalization

We test how well the proxy models mimic the predictive behavior of Model F

through a set of 19 test variables shown in Figure 4.3. In Figure 4.4 we observe

the performance of the proxy models as classifiers across different threshold val-

ues.34 Figure 4.4a shows that the accuracy of the three models is almost the same,

all of them scoring perfectly in most of the threshold values. This metric misleads

us since it is heavily influenced by the high number of negative instances; thus, a

model predicting everything as negative can achieve an almost perfect score. F1

scores, shown in Figure 4.4b, is independent of the number of negative instances.35

We see that at threshold γ = 0.4 logic rules achieve their best performance, though

still not as good as that of either decision tress or the BN tree. We also see that the

classification performance of decision trees is always upper-bounded by that of the

BN tree, except when γ = 0.8 when both are almost the same and achieve their pick

with a good fidelity score (F1 just above 0.8). Interestingly, the behavior of both

classifiers is very similar through all threshold values.

However, the behavior of the proxy models change drastically when we eval-

uate them as ranking systems. Figure 4.5 shows performance of proxy models for

two thresholds α of Model F’s predictions (the ones where the proxy models scored

the best.) We note that the behavior of a perfect model, in this type of graphs, would

be indicated by a straight line (Precision = 1) across all recall values. Such a be-

havior would indicate that the ranking behavior of the proxy model is identical to

that of Model F. In both Figures, 4.5a and 4.5b, we clearly observe the superior

performance of the Bayesian network tree. Under this ranking measure, decision

trees performance is far from the BN tree’s performance; and even farther is the

performance of logic rules. Specially, in Figure 4.5b we see that the fidelity of the

BN tree is close to optimal, having captured the ranking behavior of Model F.

We also tested the ranking behavior of the proxy models for generalizing to test

instances. Figure 4.6 shows the precision-recall curves of proxy models and Model

34These threshold values are applied to the predictions of the proxy models. The predictions of
Model F were thresholded at α = 0.5.

35The predictions of Model F were thresholded at α = 0.5.
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(a) Accuracy score
 

(b) F1 score

Figure 4.4: Measures of fidelity of proxy models from a classification perspective: Accu-
racy and F1 scores.

 

(a) Predictions of Model F thresholded at α=0.4
 

(b) Predictions of Model F thresholded at α=0.5

Figure 4.5: Measure of fidelity of proxy models from a ranking perspective: Precision-
recall curves.
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Figure 4.6: Generalization performance of Model F and proxy models on test data.

F. We see that only the BN tree has a behavior almost identical to that of Model F,

specially at recall levels higher than Recall = 0.5 where both behaviors are almost

indistinguishable. Decision trees and logic rules fall behind by a huge gap.

4.8.2 Interpretability

We show some explanations of how the Model F arrived to a particular prediction

in terms of our proxy models.

Explanation 1 We first consider the explanation of the prediction showed in Sec-

tion 4.1, reviewMovie(Daniel Kahneman,Nobel) = True; this prediction is incor-

rect since this is a false fact. For this prediction, there are two true facts in

the data that we use as observed input values for our proxy models, namely

receive(Daniel Kahneman,Nobel) and laureate(Daniel Kahneman,Nobel). To ex-

plain how Model F got wrong this instance, we can only resort to the BN tree.

Given that the relation reviewMovie was not one of the 19 Freebase target variables

(Figure 4.3), no decision tree was learned for this variable. As for the logic rules,

we could not find an explanation because neither the input nor the predicted rela-

tions appeared in the set of logic rules learned; this may be due to the low statistical

dependence of these relations with respect to any other relation.

Figure 4.7a shows the active paths of influence from the observed input vari-
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ables (receive and laureate) to the predicted variable (reviewMovie) in the BN

tree. In this explanation, we observe two types of flow of information. First, we

see an evidential flow36 where the observed variable receive influences its parent,

nominateFor, which in turn may influence its parent, winner. Similarly, laureate

influences in a backward way its parent, award, which in turn influences its par-

ent, win. Second, we also see a causal flow37 where the variable win seems

to influence the variable winner which in turn effects on the predicted variable

reviewMovie. Probably, both of the observed variables contribute to the predic-

tion of reviewMoview, as shown in the conditional probability distribution in Figure

4.7b. However, in order to properly compute inferences in each variable (via Bayes

theorem) in a step-by-step fashion we would need more information (marginal prob-

abilities.)

From this explanation we can pinpoint the possible source of error for predict-

ing that Daniel Kahneman is the reviewer of a movie. The variable winner seems

to have a high correlation with the predicted variable. It seems that Model F incor-

rectly associated the concept of being a winner with that of being the reviewer of

a movie. This spurious association was captured by the BN tree in the form of a

link. If we observe the rest of the sub-tree, the links provide a sense of direct, or re-

versed, entailment. For example, the link from award to laureate can be interpreted

as the following entailment: If someone is awarded a price then this person is lau-

reate with that price. In this sub-tree, the only link that seems to be out of context

is the one responsible for the incorrect prediction, namely the link from winner to

reviewMovie.

Explanation 2 We explain the following prediction of Model F: arenaStadium

(Philadelphia Eagles, Canton) = True, an incorrect prediction.38 In order to

explain it, the proxy models use the observed fact playAt(Philadelphia Eagles,

Canton) as input. In the case of logic rules, we cannot explain this prediction

since we are not able to recover any rule where the input relates, directly or in-

36See Figure 2.7c for an explanation of this type of structure.
37See Figure 2.7a for an explanation of this type of structure.
38The arena stadium of the Philadelphia Eagles is not the Canton stadium but the Lincoln Financial

Field stadium.
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nominateFor 

receive 

winner 

reviewMovie 

win award 

laureate 

 

(a) Variable predicted: reviewMovie.

A:parent→B:child p(B = 1|A = 1) p(B = 0|A = 0)
winner→reviewMovie 0.8119 0.9922
winner→nominateFor 0.8329 0.9951
nominateFor→receive 0.6261 0.9925

win→winner 0.8583 0.9994
win→award 0.7428 0.9982

award→laureate 0.7258 0.9980
(b) Conditional probability distribution.

Figure 4.7: Explanation for the prediction reviewMovie(Daniel Kahneman,Nobel) = True
using a Bayesian network tree. (a) Excerpt from the sub-graph that spans lo-
cal influences from the observed variables to the predicted variable. Blue circle
indicates observed variable, red arrow indicates a wrong influence over the vari-
able predicted, denoted by a dotted circle. (b) Conditional probability table of
the sub-graph.

directly, to the predicted variable. On the other hand, an explanation from a deci-

sion tree is the following path (converted to a logic rule): I f playAt = True then

arenaStadium = True. This proxy model learned a single, direct relation from the

input to the predicted variable which shows a probable rationale for Model F mak-

ing such an incorrect prediction; it seems that Model F believes that if a team T

plays in a stadium X then X is the arena stadium of T.

The decision process shown by the decision tree seems to be supported by the

BN tree; but the explanation from the latter proxy model shows a more fine-grained

decision process. In Figure 4.8a we see the sub-tree where the observed input vari-

able playAt is indirectly correlated with the predicted variable arenaStadium in a

causal way. We can see the trail of local influences between these two variables.

This trail of influence denotes the decision process that Model F may have taken

to predict as shown above. To back-up this explanation, in Figure 4.8b we can see

the local confidences for propagating the belief from the observed variable to the
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arenaStadium 

 

playAt defeatAt beatAt 

(a) Variable predicted: arenaStadium.

A:parent→B:child p(B = 1|A = 1) p(B = 0|A = 0)
playAt→defeatAt 0.8651 0.9978
defeatAt→beatAt 0.8435 0.9999

beatAt→arenaStadium 0.8186 0.9989
(b) Conditional probability distribution.

Figure 4.8: Explanation for the prediction arenaStadium(Philadelphia Eagles,Canton) =
True using a Bayesian network tree. (a) Excerpt of the sub-graph that spans
local influences from the observed variables to the predicted variable. Blue
circle indicates observed variable, red arrow indicates a wrong influence over
the variable predicted, denoted by a dotted circle. (b) Conditional probability
table of the sub-graph.

predicted variable. The probability of instantiating the variable defeatAt given our

input variable playAt is high, namely p(defeatAt = True|playAt = True) = 0.8651;

in turn, the probability of instantiating the following variable in the path, beatAt,

given the realization of its parent, defeatAt, is also high, namely p = 0.8435. Fi-

nally, in the last step of the decision process, the probability of instantiating the

predicted variable given both the path of influences just described and the likeli-

hood of arenaStadium being influenced by its parent is the multiplication of all the

conditional probabilities; this computation results in p = 0.59 which when thresh-

olded at γ = 0.5 gives us a True prediction value.

Thus, according to the explanation from the BN tree, it seems that Model F

learned the series of correlations shown above. We note that at least the final step in

the decision process is incorrect. A team T beating some other team at a stadium X

does not imply that X is the arena stadium of T; thus there is a spurious entailment

learned by Model F. Comparing the explanation from the decision tree and the one

from the BN tree, we see a difference in the granularity of the explanation; the one

from the DT is coarser than the one from the BN tree: The decision process of

Model F is reduced to a single logical entailment, cutting off a multi-step process.
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Explanation 3 Another incorrect prediction by Model F is placeOfDeath

(Ryutaro Hashimoto, Tokyo) = False where the observed fact taken as input to

the proxy models is meetIn(Ryutaro Hashimoto, Tokyo).39 In the case of logic

rules, the predicate meetIn does not appear in any rule due to its low mutual in-

formation with any other predicate, thus we have no explanation from this proxy

model. We also lack an explanation from the corresponding decision tree since

there is no branch in the tree that connects the observed input and the predicted

variable; this is because the input variable has low correlation with the target vari-

able and thus it does not appear in any path of the tree. According to the BN tree,

the reason for Model F’s incorrect prediction is because the degree of separation

between both input and output variables is so big (there are more than 30 nodes in

between them) that the influence from the input variable vanishes at some point and

does not reach the target variable. Therefore, the probability at the target variable,

placeOfDeath, is near zero, which is interpreted as a False value.

Explanation 4 We present an explanation only from the perspective of a decision

tree. Consider Model F’s prediction personCompany(Michael Lynton,Penguin) =

True.40 The observed fact in the data is executiveOf (Michael Lynton,Penguin)

which we use as an input for the decision tree learned. In Figure 4.9 we

can see a hierarchical structure of decisions that classify whether the pair of

entities (Michael Lynton,Penguin), when instantiating a variable, in this case

personCompany, results in a true prediction or not. Each decision node is a test

of whether the pair of entities is true under the relation denoted in the node, i.e.

we test whether each node becomes a true fact. Each left split (s ≤ 0.5) in a node

means a false realization of the relation (a false fact). Each right split means a

true fact. In each leaf node we find a prediction for the target variable. If we see

at the root node of the tree we find that it is the input variable; hence, from this

node we can then extract the following explanation: I f executiveOf = True then

personCompany = True.

39This fact conveys the information about Ryutaro Hashimoto being present in Tokyo.
40This prediction can be interpreted as the fact that Michael Lynton is a member of the company

Penguin.
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executiveOf 

professorAt 𝑝(𝑌 = 1|�⃗�) = 0.98 

<0.5 ≥0.5 

<0.5 ≥0.5 

executive 𝑝(𝑌 = 1|�⃗�) = 0.43 

<0.5 ≥0.5 

chairmanOf 𝑝(𝑌 = 1|�⃗�) = 0.87 

<0.5 ≥0.5 

officerOf 𝑝(𝑌 = 1|�⃗�) = 0.45 

<0.5 ≥0.5 

presidentOf 𝑝(𝑌 = 1|�⃗�) = 0.77 

<0.5 ≥0.5 

𝑝(𝑌 = 1|�⃗�) = 0.23 𝑝(𝑌 = 1|�⃗�) = 0.015 

Figure 4.9: Explanation for the prediction personCompany(Michael Lynton,Penguin) =
True using a decision tree.

Explanation 5 We now present an explanation only from the perspective of

the BN tree. Model F predicts the fact restaurantAt(Chilean,Washington) =

True. The observed facts from data are embassyIn(Chilean,Washington) and

diplomatIn(Chilean,Washington). Figure 4.10 shows how the influence of the in-

put variables reaches the predicted variable. We can see that Model F incorrectly

correlated the predicted variable with another variable related to a different context:

While restaurantAt pertains to a context related to city life, the rest of the nodes in

the sub-tree pertain to a context related to politics.

4.9 Discussions and Conclusions
We first answer our research questions posed in Section 4.3, then we discuss in

the following subsections our findings from our experiments. In order to learn the

proxy models, we had to conceptualize Model F as a multi-label classifier for learn-

ing logic rules and a Bayesian network tree (unsupervised learning) and as a binary
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restaurantAt 

 

embassyIn 

hostageIn aidTo missionIn 

interestIn 

ambassadorTo 

policyToward troopsIn forceIn attackOn 

supportFor 

diplomatIn 

Figure 4.10: Explanation for the prediction restaurantAt(Chilean,Washington) = True us-
ing a Bayesian network tree: Excerpt of the sub-graph that spans local in-
fluences from the observed variables to the predicted variable. Blue circle
indicates observed variable, red arrow indicates a wrong influence over the
variable predicted, denoted by a dotted circle.

classifier for learning decision trees (supervised learning). Since Model F is a trans-

ductive system, it does not learn a function that maps inputs to outputs; however,

our proxy models need an input in order to produce an output. Thus, for learning

the logic rules and the BN tree, we defined the input and output spaces to be the

same, namely all the relations r j ∈ R in the domain of Model F. This means that

these two proxy models can receive as an input a value for any relation in R and

predict an output for any relation in R. We used thresholded predictions of Model F

to populate an unlabeled training set where an instance is formed by the prediction

of all relations r j ∈ R applied to an entity pair ei. In the case of decision trees, we

defined the input space as all relations r j ∈ R, and the output space as a single target

relation rk. We selected 19 relations from Freebase as target variables and thus we

learned 19 decision trees, one model for each target variable. We used the input

space from both the NYT corpus and Freebase relations; these input instances were

labeled with predictions of Model F.

We evaluated our three proxy models using three metrics, two of them widely

used for testing classifiers, namely accuracy and F1, and precision-recall curves

which measure the ranking abilities of systems. We proposed the last metric be-

cause Model F was trained using a ranking loss function, thus we also wanted to
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evaluate to what extent our proxy models learned to rank in the same way as Model

F. While accuracy scores show a misleading picture of how well the proxy models

accomplished their objective, F1 shows to what extent this models approximated the

behavior of Model F in terms of classification abilities. In addition, we found that

precision-recall curves give another perspective of the behavior of the proxy models

–a ranking behavior – and they provide a view that none of the popular metrics from

the literature can provide.

Finally, our evaluations show that only one of the proposed models was a good

proxy model for Model F, namely the Bayesian network tree. It faithfully repro-

duced the predictive behavior of Model F while remaining interpretable for a hu-

man. In addition, learning the BN tree took polynomial time. Furthermore, explain-

ing predictions of Model F via the BN tree allowed us to see in a graphical way

where Model F possibly made a mistake and how the inputs connected to the out-

put. Thus, the BN tree, our proposed model, was the only model to provide faithful

explanations of the decision process of Model F, where inputs are related to outputs

in an understandable way.

4.9.1 On The Interpretability-Fidelity Trade-Off of Proxy Mod-

els

We found that the Bayesian network tree, as a descriptive model for Model F, rep-

resents a near-optimal point in the fidelity-interpretability trade-off: It faithfully

reproduces (mimics) the ranking behavior of Model F while its tree structure is

simple to read –a sequence of local influences from an observed input variable to

a target variable. As a further test of fidelity we measured generalization abilities;

we saw that the BN tree behavior is very similar to that of Model F on test data

according to our precision-recall curves, meaning that the BN tree may make both

similar errors and hits as the black-box system. These two fidelity tests show strong

evidence for the BN tree to be an equivalent of Model F; i.e. the behavior of the

BN tree is functionally similar to the behavior of Model F.41 That is, the BN tree

41We borrow the term functionally similar, when talking about behavior, from studies in behavior
and cognition in animals (Shettleworth and Sutton, 2006; Hampton, 2001). In these studies, it is
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exhibits functional properties very similar (faithful) to those of Model F, such as

classification and ranking abilities; thus, in this way, we claim that the BN tree

has captured part of the knowledge encoded in Model F which is represented in a

probabilistic and graphical form.42

Also, according to our results, the ranking performance of decision trees and

logic rules is not as good as that of the Bayesian network tree. Even though the

fidelity of the decision trees is clearly higher than that of the logic rules, it is not

comparable to the fidelity of the BN tree as shown by the precision-recall curves.

However, in terms of classification performance, we saw that the behavior of the

decision trees is close to that of the BN tree, even though the latter still outperforms

the former. But, a faithful proxy model, such as the BN tree, should be faithful in

both aspects, not only one. Thus we conclude that despite the interpretable symbolic

representation that decision trees and logic rules offer they do not represent a good

compromise in the fidelity-interpretability trade-off for Model F.

A possible reason for the logic rules not performing well in terms of fidelity

(aside their brittle nature and consequent inability to deliver probability estimates)

is the restrictions we imposed in their structure. We used Horn clauses with only

one predicate in the body, and we discarded those relations that were not statistically

correlated, by some threshold, to any other relation. It is possible that these restric-

tions impeded logic rules, to some extent, to better capture the predictive behavior

of Model F. However, significant improvements in fidelity by using less restricted

logic rules are unclear, since the task of ranking seems to be correlated with ob-

taining probability estimates. Besides, learning unrestricted-size logic rules is an

NP-hard problem and resorting to heuristics may be needed.

intended to discover any parallels in cognitive capacities between humans and animals; for example,
being able to consciously retrieve items from memory. To do so, researchers design experiments
where they can examine the behavior of animals and humans in a task that requires the target ca-
pacity; if the behavior of the animals is functionally similar to that of humans then this serves as
evidence for the animals to have some sort of cognitive capacity similar to that of the humans.

42We do not claim that Model F’s knowledge is necessarily in the form of a Bayesian network; we
also do not claim that the decision process of Model F is in the form of a sequence of probabilistic
entailments (as that of a Bayesian network). We claim that our BN tree, along with its inference
process, is a plausible model to explain, to some extent, the knowledge encoded in Model F and its
decision process.
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Decision trees, on the other hand, have been proven to be poor ranking mod-

els (Provost and Domingos, 2003). This seems to be a possible reason for their

low fidelity. Even though we tried some heuristics to improve their ranking be-

havior, such as Laplacian smoothing as recommended in (Provost and Domingos,

2003), these efforts did not allow to fully capture the ranking behavior of Model

F. Further improving this ability, as in other previous works (Ling and Yan, 2003;

Margineantu and Dietterich, 2003), could help to obtain better fidelity scores. We

leave this improvement for future work. Nevertheless, decision trees have a disad-

vantage against a Bayesian network tree. Learning all the knowledge in Model F

would require learning one decision tree for each relation r j ∈ R; Model F’s do-

main contain around 4000 relations, which means that we would require the same

number of decision trees. On the other hand, a single BN tree can capture all such

knowledge; a BN tree requires n nodes to encode the n relations handled by Model

F (one node per relation) and n−1 links to connect the nodes (a compact model.)

4.9.2 On Explanations of Predictions of Model F

We explained some of Model F’s predictions using the descriptive models learned.

In Explanation 2, we saw that the explanation from the BN tree was more fine-

detailed than that from the decision tree, i.e. the BN tree captured more steps in

the decision process by showing a multi-step explanation, compared to the one-step

explanation of the decision tree. On the other hand, we found no explanation from

the logic rules for any of the proposed predictions because either the observed vari-

ables or the predicted variables, or both, were not found in the set of rules due to

their low mutual information with any other variable, possibly a drawback of our

rule induction algorithm. The BN tree was able to explain all the wrong predictions

made by Model F in the form of probabilistic entailments. The observed variables

influenced intermediate variables which in turn influenced other variables until the

probabilistic influence reached the predicted variable. Each entailment can be seen

as a basic step in such process, where a spurious link from one of the observed or

intermediate nodes towards the predicted variable can explain why Model F pre-

dicted as such; i.e., the BN tree represents in a graphical way both the correct and
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the spurious correlations learned by the black-box.

The explanations mentioned above were obtained for a specific type of pre-

diction, namely those where Model F wrongly predicts as true a target fact. But,

we also showed an explanation for another type of wrong prediction, that where the

target fact is wrongly predicted as false. In the explanation given by the BN tree, we

could understand why Model F predicted as such. The degree of separation between

observed and predicted nodes was so big that the influence from the former node to

the latter became negligible; thus the conditional probability of the predicted node

was near zero, meaning a false value for the prediction.

One possible drawback of our approach is the lack of tests on users in order to

collect evidence of how useful are the BN tree explanations for other people. Even

though we have based our work in the findings of psychological experiments of pre-

vious works (Huysmans et al., 2011; Pacer et al., 2013), we believe that performing

evaluation tests on users may be useful, which we leave for future work.

As another possible research question to answer in future work, we think that it

is not totally clear what is a suitable level of granularity for an explanation induced

from a BN tree. In our current form of explanation, a structural one, we only show

the local influences from the observed variables to the predicted variable in order

to keep simplicity; however, we may lose transparency by not using the local con-

ditional probability distributions and not showing how the beliefs are propagated

through the nodes (i.e. the reasoning process of the Bayesian network (Nielsen

et al., 2008).) On the other hand, by showing these parameters and this process we

may add an undesirable complexity in the explanation if the user is not familiar with

Bayesian networks; we leave this as an open research question for future work.

4.9.3 Final Remarks

In this chapter, we showed that our BN tree served as an equivalent model of Model

F since the classification and ranking behaviors associated with the latter are faith-

fully found in the former according to our experimental framework. Nevertheless,

we do not claim that the BN tree is a replica (with a different representation) of the

knowledge encoded in Model F; it rather is a plausible model (an approximation)
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of what Model F has learned. When the BN tree is attached with its inference al-

gorithm, then we claim that we have obtained a plausible model of how Model F

achieves its predictions; and again, we do not claim that Model F’s decision pro-

cess is based on a sequence of probabilistic entailments; this entailment process,

along with the BN tree, is a model that turns out to fit very well the behavioral data

coming from Model F, faithfully mimicking its abilities, and as such, it becomes a

functionally similar model of Model F.43

Also, we tied the task of interpretability with Marr’s analysis at the represen-

tation and algorithmic level by showing how an interpretable proxy model provides

a similar explanation to that obtained by Marr’s analysis. By doing so, we provided

another view of the task of explaining predictions of a black-box system, namely as

that of explaining the decision process of a black-box system. This high-level re-

conceptualization allows us to better situate this task by finding a parallel with other

field of science, namely cognitive science. In this way, we hope future research in

interpretability will be further inspired by methods in cognitive science.

43We also note that other interpretable models may fit even better the behavioral data coming from
Model F, thus serving as a better approximation to Model F’s decision process.





Chapter 5

Behavior Analysis of ESIM, DAM,

and CE: Evaluating Robustness

5.1 Introduction
The task of Natural Language Inference (NLI) (also known as Recognizing Textual

Entailment) has received a lot of attention due to its complexity: given two sen-

tences, called premise and hypothesis, a system has to categorize their relation into

three classes, namely entailment (the information in the hypothesis is true given

the information in the premise), neutral (the information in the hypothesis may

be true given the information in the premise), and contradiction (the information

in the hypothesis either contradicts or has nothing to do with the information in

the premise). This task has elicited state-of-the-art models which have achieved im-

pressive results, such as the ESIM system (Chen et al., 2017) which has scored close

to what seems to be the ceiling score of the Stanford NLI (SNLI) dataset (Bowman

et al., 2015). These results are impressive due to both the linguistic abilities and

knowledge required to solve the task of natural language understanding (LoBue

and Yates, 2011; Maccartney, 2009). For example, NLI systems may need to know

about lexical semantic relations, such as hypernymy and antonymy,1 asymmetric

1For example, knowing that a cat is a type of vertebrate, and vertebrate is the opposite to inverte-
brate.
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relationships,2 and causality,3 among other types of knowledge and abilities.

With such positive results, new systems improving accuracy results are contin-

uously proposed, leading closer to a state where the SNLI dataset is finally solved.

However, the ever-growing complexity of such models prevents people from fully

understanding the phenomena being captured by such models. As a direct con-

sequence, validating that the systems have captured the abilities and knowledge

required for the task of NLI, such as those described above, relies on a single sig-

nal from the test set; this signal may not provide enough evidence to prove, in a

fine-grained detail, what the systems have learned. Similarly, evaluating whether

the systems have captured a bias, have been influenced by certain factors, or have

captured any possible abnormal behaviors becomes a difficult task just by looking

at test accuracy (Kummerfeld et al., 2012; Sammons et al., 2010).

Previous work in the natural language processing (NLP) community has evalu-

ated abilities of complex systems (Isabelle et al., 2017; B. Hashemi and Hwa, 2016;

White et al., 2017), it has also evaluated the robustness of systems facing adversarial

instances (Jia and Liang, 2017), and it has identified biases learned by ReLe systems

(Zhao et al., 2017; Bolukbasi et al., 2016).4 For example, in (Jia and Liang, 2017)

ReLe systems were trained to find answers in a text given a query. These systems

were able to extract the correct answer with a high test accuracy; however, when Jia

and Liang (2017) added an adversarial (spurious) sentence in the text which over-

lapped in content to the sentence where the correct answer was to be found, the

system got confused and extracted the answer from the adversarial sentence rather

than from the correct sentence.5 In this way, Jia and Liang (2017) exposed the lack

of robustness of these ReLe systems to alterations in the text. More concretely, they

showed that the predictions of the systems were based in certain patterns that when

2For example, knowing that a cat is a type of vertebrate but a vertebrate is not necessarily a cat.
3For instance, knowing that if an object is thrown to the air and there is no obstacle in between

then it will fall down.
4We refer to Section 3.2.2 for a deeper description of previous work.
5For example, given the query Where did the person A was born? and a text (not shown here)

where the correct answer is contain in the sentence Person A, whose parents come from France, was
born in 1990 in London, England., Jia and Liang (2017) then add an adversarial sentence such as
Person B was born in New York.. When the system receives the query, it answers it with the string
New York instead of London which is the correct answer.
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arranged in a certain configuration they could easily mislead the system, i.e. the

systems’ predictions were influenced by some confounding factors.

However, analyzing the robustness6 of NLP ReLe systems is in its early stages.

In this chapter, we aim to advance in this line of research by studying the robust-

ness of three ReLe systems for the task of natural language inference, namely the

ESIM system, one of the best systems to date on the SNLI dataset, DAM a former

state-of-the-art system, and CE, a basic ReLe system. Similar to work in adversar-

ial instances, we propose to create challenging instances that only systems with a

good grasp of natural language would classify correctly; thus while these instances

may be challenging for a ReLe system, they are easy for a human. In this way, we

propose to study how well ESIM, DAM, and CE react to a transformation in the

input space that yields challenging instances, i.e. we obtain challenging instances

from existing instances after we apply our transformation. This transformation con-

sists in swapping two words, one word from the premise sentence with one word

from the hypothesis sentence; this simple alteration may cause the class label of the

transformed instance to change.

Let’s take the instance in Example 5.1 to show our transformation. This in-

stance is a contradiction, the information in the premise sentence p contradicts the

information in the hypothesis sentence h;7 if we swap the word pair (elderly, young)

we yield a new instance, shown in Example 5.2, where the semantics of each sen-

tence has changed, to some extent, but the class label remains the same, a contradic-

tion. The preservation of the class label is because we swapped an antonym word

pair, and since antonymy is a symmetric relationship, swapping two antonyms does

not affect their relation, and since the word pair remains in an antonymy relation

then we did not affect the relationship of the premise and the hypothesis. Thus,

if a system classifies correctly the instance in Example 5.1 and is able to handle

antonymy, then we would expect it to correctly classify the transformed instance as

well.

(5.1) p : An elderly woman sitting on a bench.
6We refer to Section 3.2.2 for a description of robustness.
7In Section 5.6.1 we describe in detail the task of natural language inference.
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h : A young mother sits down.

(5.2) p : An young woman sitting on a bench.

h : A elderly mother sits down.

At a first glance, it seems that if a system correctly classifies our transformed

instances, despite the changes introduced with respect to the original instances un-

dergoing the transformation, then this system would be deemed as robust. For ex-

ample, if a system correctly classifies the instances in Examples 5.1 and 5.2 as con-

tradiction then it would seem that the system has learned antonymy. However, this

picture may be misleading. Given that the system got the original instance correct,

maybe it got the transformed instance correct as well just because the two instances

closely resemble each other; i.e., probably the system did not find the transforma-

tion to be so significant as to change the class label. In other words, a confounding

factor probably affected the behavior of the system, namely the system’s insensi-

tivity to changes in the input data. Another possible confounding factor explaining

why the system classified correctly the transformed instance is because the word

pair (young, elderly) (where young is in the premise and elderly is in the hypothe-

sis) appeared in many training instances of class contradiction and thus the system

learned that any instance containing this word pair is likely to be a contradiction,

regardless of the words surrounding the word pair in both premise and hypothesis

sentences. In other words, we say that the word pair is polarized, like a magnet that

has negative/positive polarity, the word pair may have a contradiction, entailment,

or neutral polarity according to the class of instances it was mainly seen in the train-

ing set; but opposite to a magnet, a polarized word pair attracts the same polarity,

i.e. influences the system to predict the same class label as its polarity.

Now, what if the system actually gets the original instance correct but it gets the

transformed instance incorrect? Can we attribute this result to a lack in robustness?

Not necessarily, as another confounding factor may play a role. It may be the case

that the word pair (young, elderly) in the transformed instance was never seen at

training time and so the system was not able to handle something it did not learn

about. This scenario seems to be misleading again since we are evaluating the
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system on an unseen word pair for which there was no training signal and thus no

knowledge was gained by the system about the interaction of young with elderly.

This thought experiment leaves us then with some questions, such as to what

extent the system is actually robust? How do we measure its robustness? How can

we validate that the impressive, or unimpressive, behavior that we observe is due to

the abilities of the system and not due to confounding factors, such as insensitivity,

polarity, and unseen word pairs? What other confounding factors may affect a

system trained on the SNLI dataset?

Studying the robustness of a system thus implies analyzing what factors may

affect a system’s behavior, so that we are sure we attribute a robust behavior to the

abilities of the system rather than to confounding factors. Then, in order to study the

robustness of our target ReLe systems, we draw motivation from behavioral science.

In this discipline, the aim is to analyze the behavior of a subject mainly for two rea-

sons; first, to understanding environment-behavior relationships (Epling and Pierce,

1986), i.e. how environmental factors influence the behavior of the subject under

study; and second, to discover possible abnormal behaviors (Birkett and Newton-

Fisher, 2011). These analyses of behavior are performed under controlled scenarios

in order to discover or rule out any possible confounding factors; this experimental

setting then allows the researcher to statistically validate that the behavior observed

is due to the target variable under analysis and not due to a confounding factor.

In other words, this experimental setting is said to provide internal validity to the

results obtained.8 Motivated by the research from this discipline, we borrow both

research questions and design of experiments in order to elaborate a framework to

systematically analyze the robustness of ReLe systems to cope with our proposed

transformations in the input data.

In order to provide internal validity in our study, we control for possible con-

founding factors such as the length of the sentences and the presence of words out

of vocabulary; however, we recognize the presence of three factors which we call

insensitivity, polarity, and unseen pairs that we cannot control by keeping them

8We refer to Section 3.2.1 for a description of internal validity and an example of previous work
in the behavioral science.
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identical for both groups control and treatment, so we control them in a statistical

way. Thus, we analyze how these three target factors influence the behavior of the

ReLe systems. Based on preliminary observations, we hypothesize that these fac-

tors systematically influence the robustness of the systems. Finally, we ask whether

these factors affect in a similar way the ESIM, DAM, and CE systems. Do the state-

of-the-art system, ESIM, is less prone to be affected by such factors? Is the test

accuracy of ESIM correlated with its robustness? Are there any behavioral patterns

in the three ReLe systems?

5.2 Problem Definition
We aim to evaluate the robustness of ReLe systems trained on the SNLI dataset

(SNLI systems from now on.) We define the problem as follows: Given a pre-

trained SNLI system which receive as input an instance x of the form (p,h), where p

is a premise sentence and h is a hypothesis sentence, and the system responds with a

class label y∈ { contradiction, entailment, neutral}, we aim to evaluate its ability to

classify instances transformed by our operation T which consist in swapping word

pairs. This evaluation is achieved by observing its behavior on the transformed

instances while statistically accounting for confounding factors that may influence

such a behavior, namely insensitivity, polarity, and unseen word pairs.

5.3 Research Questions and Hypotheses
Considering the three target SNLI systems ESIM, DAM, and CE, our transformation

T , and the confounding factors that we call insensitivity, polarity, and unseen word

pairs we guide our research with the following questions and hypotheses:

Research Questions

1. Are the SNLI systems robust on our transformed instances?

• Do they obtain a similar accuracy score on our transformed instances as

that obtained on SNLI development data?

• In the case that they achieve high accuracy scores on our transformed

instances, is it due to their robustness or due to confounding factors?
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• Is their predictive behavior affected by the confounding factors listed

above?

2. Is there any relation between a system’s accuracy score on the SNLI develop-

ment data and the way its behavior is influenced by the confounding factors?

I.e., is the best scoring system on SNLI development data less prone to have

its score on transformed instances affected by the confounding factors?

3. Are there any common behavioral patterns embodied by the systems? I.e. Do

different systems are affected by different confounding factors?

Hypotheses

1. We hypothesize that part of the impressive accuracy scores that we observe

on SNLI test data are due to one or both confounding factors, namely insensi-

tivity and polarity; i.e., these two factors contribute to the performance of the

systems on test data.

2. We also hypothesize that unseen word pairs systematically affect the per-

formance of the systems in a detrimental way; i.e. drop in performance is

correlated with having unseen word pairs in transformed instances.

5.4 Contributions
• We analyze the robustness of three SNLI systems (two of them widely pop-

ular) based on methods from behavioral science where we control for con-

founding factors and statistically analyze the effects of other factors in the

response of the systems.

• We propose a simple transformation on instances that yields challenging in-

stances useful to test the robustness of systems, namely a swap of word pairs.

Also, we manually annotate the transformed instances to guarantee correct

labelling of the instances. Furthermore, we will release this new test set of

transformed instances so that the community can evaluate new SNLI systems.
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5.5 Scope and Limitations
We aim to understand how three specific ReLe systems trained on the SNLI dataset

performed on challenging instances (we obtained these instances via a transforma-

tion on SNLI instances) by using methods from behavioral science. These meth-

ods allow us to control for certain confounding factors and to statistically analyze

other confounding factors without the need to open the systems under study; i.e., all

the analyzes are done just by looking at stimulus-response (input-output) patterns.

Hence, we do not aim to provide any insight into the inner workings of the sys-

tems; the methodology used is designed to ignore what happens inside the systems

without compromising the validity of the results obtained.

Even though this methodology allow us to control for confounding factors, it

is difficult to control for all possible factors either because there are hidden factors

which we are not aware of, because controlling for such factors would lead us to

extremely few data to test the systems, or simply because it becomes unfeasible to

do so. Hence, there are factors for which we were not able to control. In addi-

tion, in our analyzes we investigate each of the confounding factors independently;

however, confounding factors may interact with each other.

Another limitation is the generalization of results obtained on the transformed

instances. These instances are just one type of challenging instances; i.e., other

transformations may yield other types of challenging instances which may rise other

confounding factors. Furthermore, after controlling for confounding factors, we

obtain samples in the order of 620 transformed instances, a relatively small sample

size. Thus, our results provide a piece of evidence for the robustness of the systems

under study rather than a fully conclusive view of their robustness.

Furthermore, our aim in this chapter is to provide an evaluation and analyses

that may be useful for future work on improving the SNLI dataset or the systems.

We do not aim to carry out any improvements in this chapter, but rather to provide

explanations of why the systems are robust or not.
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5.6 Systems Under Study
In this section we provide descriptions of the task of natural language inference, the

SNLI dataset, and the systems that address this task.

5.6.1 Natural Language Inference

This task, also known as Recognizing Textual Entailment (RTE) (Dagan and Glick-

man, 2004; Dagan et al., 2009), requires systems to classify two sentences under

three possible classes, according to the relation between the two. We call these

sentences premise and hypothesis, and the possible classes are entailment, neutral,

and contradiction. The sentences fall under the entailment class if the information

in the hypothesis entails the information in the premise; i.e., the information in the

hypothesis must be true given the information in the premise. Consider the pair of

sentences in Example 5.3; we see that the hypothesis h follows from the premise p

because the expression two men is subsumed by the term people who are doing the

same activity, riding bicycles.

On the other hand, in a neutral relation, the hypothesis sentence may be true

given the premise, but not necessarily. As an example see Example 5.4; the hypoth-

esis h provides extra-information not contained in the premise sentence p. Thus, we

cannot conclude that the hypothesis follows the premise, though it may follow due

to the high overlap of information; i.e., we agree that two men on bicycles is equiv-

alent to the expression people are riding bicycles, though we are not sure whether

the expression in a race is also equivalent to the term on the street because we do

not know if the race takes place on the street.

Finally, we say the hypothesis is in a contradiction with the premise if either the

information from both is contradictory or unrelated. In Example 5.5 we observe the

first type of contradiction, where the two men mentioned in both sentences are doing

different things; thus the hypothesis h contradicts the premise p. In Example 5.6 we

see the second type of contradiction, where the hypothesis contains no overlap of

information with the premise sentence.

(5.3) p : Two men on bicycles competing in a race.

h : People are riding bicycles.
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(5.4) p : Two men on bicycles competing in a race.

h : People are riding bicycles on the street.

(5.5) p : Two men on bicycles competing in a race.

h : Two men on bicycles going to the cinema.

(5.6) p : Two men on bicycles competing in a race.

h : Three women are eating rice.

We used the SNLI dataset for training the ESIM, DAM and CE systems which

we describe below.

5.6.2 Stanford Natural Language Inference Dataset

The SNLI (Bowman et al., 2015) was created with the purpose of training large-

scale systems. It consists of around 570 000 instances in total, divided into training,

development, and test sets. It was created in a two-phase process. First, sentences

were taken from a pre-existing dataset of images labeled with a description pro-

vided by a human; these descriptions served as the premise sentences. Then, the

premise sentences were given to Amazon Mechanical Turk workers who were in-

structed to provide a hypothesis sentence that entails, contradicts, and may entail

the premise sentence. In this context, an entailing hypothesis sentence is defined as

an alternative, true description of the image from where the premise sentence comes

from;9 thus, a possible way of writing an entailing hypothesis is to paraphrase the

premise. A contradictory hypothesis is defined as a false description of the image;

one possible way of writing this type of hypothesis is to describe a completely dif-

ferent image. A neutral hypothesis is defined as a possible true description of the

image; then, one way of writing such a description is to add extra information to

the premise sentence. An instance is then formed by pairing a premise sentence

with its corresponding hypothesis sentence in one of the three classes, entailment,

contradiction, and neutral. Examples of instances are provided in Examples 5.3,

5.6, and 5.4.

We provide some statistics about the SNLI in Tables 5.1, 5.2, and 5.3. We

compare the length of hypothesis sentences against premise sentences in instances
9We note that the workers were not given the images, only the descriptions of such images.
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Label Premise Hypothesis

Neutral 12.84 (5.65) 8.26 (3.39)
Contradiction 12.85 (5.65) 7.36 (2.81)

Entailment 12.84 (5.65) 6.63 (2.73)

Table 5.1: Average sentence length and standard deviation in both premise and hypothesis
sentences from the training set.

Label Premise Hypothesis

Neutral 13.81 (6.28) 8.34 (3.36)
Contradiction 13.98 (6.34) 7.39 (2.89)

Entailment 14.01 (6.30) 6.81 (2.94)

Table 5.2: Average sentence length and standard deviation in both premise and hypothesis
sentences from the development set.

Label Training set Dev set

Neutral 4.33 4.36
Contradiction 3.76 3.82

Entailment 4.66 4.96

Table 5.3: Average word overlap in premise and hypothesis sentences per class label in
both training and development sets.

in the training set; we observe that the average length of hypothesis sentences, in en-

tailment instances, is almost half the length of its corresponding premise. This may

be an effect due to either paraphrasing or deleting structures such as prepositional

phrases from the premise sentence which may shorten the length of the resulting

hypothesis. We make a similar observation in the same class label in the develop-

ment set. In the case of neutral class instances, the length of the hypothesis is also

shorter with respect to that of the premise, but not as much as in the entailment

class. Probably this indicates that the annotators did not just add extra information

to the premise, but rather paraphrased it and then added extra information.
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5.6.3 CE

Our simplest system is a conditional encoder (CE) system. It consists of two bidi-

rectional LSTMs. The first one, reads the premise sentence and encodes it into a

sentence embedding, p; the second bidirectional LSTM receives as input both the

embedding of the premise, p, and the hypothesis sentence. It then encodes the hy-

pothesis into the embedding h, conditioned on the information stored in p. On top

of the final hidden state of the second bidirectional LSTM, a softmax layer is placed

in order to compute a probability distribution over the three classes, entailment, neu-

tral, and contradiction. This system can be considered as a building-block of ESIM

since both use bidirectional LSTMs, but ESIM enhances them with more complex

artifacts.

5.6.4 DAM

The DAM (Decomposable Attention Model) (Parikh et al., 2016) system consists

of 2-layer multi-layer perceptrons (MLPs) factorized in a 3-step process. First,

a soft-alignment matrix is created for all the words in both the premise and hy-

pothesis sentences. Then, each word of the premise sentence is paired with the

soft-alignment representation of the hypothesis sentence and fed into an MLP, and

similarly for each word in the hypothesis with the soft-alignment of the premise sen-

tence. The resulting representations are then aggregated; the vector representations

of the premise sentence are summed up and the same for those of the hypothesis

sentence; the new representations are then fed to an MLP followed by a linear layer

and a softmax whose output is a class label. As a final note, we use pre-trained

GloVe embeddings with dimensionality d = 300 which are not updated at training

time. All layers use ReLU function.

We choose to evaluate robustness of DAM since it is a former state-of-the-

art system and its accuracy score is not that far from the accuracy score of ESIM,

though their architectures are different.
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5.6.5 ESIM

The ESIM (Enhanced Sequential Inference Model) system (Chen et al., 2017) con-

sists of three sub-systems. The first sub-system reads both premise p and hypothesis

h sentences using bidirectional LSTMS (see Section 2.1.1.3), where each sentence

is mapped to an embedding (a for p and b for h.) We note that each word pi and

h j from both sentences (pi ∈ p and h j ∈ h) is associated with its own embedding

(ai and b j respectively), where this embedding carries the contextual information of

the word, i.e. information about the words surrounding the current word.

Then, the second sub-system builds a representation of local information. First,

it aligns each possible pair of words (ai, b j) from premise and hypothesis sentences;

i.e., this sub-system creates a weight wi j for each word pair based on the similar-

ity (dot product) of the embeddings corresponding to the words in the pair. After

that, this sub-system computes another embedding for each word ai ∈ p and b j ∈ h,

namely ãi and b̃ j; this embedding is the weighted sum of the embeddings of the

words in the other sentence, as shown in Equations 5.7 and 5.8, where |p| and |h|

denote the length of premise and hypothesis sentences, respectively. We can inter-

pret this embedding as the composition of relevant information for the current word.

Finally, this sub-system enhances the local information of premise and hypothesis

by computing both the difference and the element-wise product of the representa-

tion of the sentence and the weighted representation, a− ã, a� ã, b− b̃, b� b̃; then,

the resulting embeddings are concatenated with the original vectors, as shown in

Equations 5.9 and 5.10. The intuition behind this new representation is that it may

capture some interactions between embeddings.

ãi =
|h|

∑
j=1

exp(wi j)

∑
|h|
k=1 exp(wik)

b̃ j∀i ∈ [1, ..., |p|] (5.7)

b̃ j =
|p|

∑
i=1

exp(w ji)

∑
|p|
k=1 exp(wki)

ãi∀i ∈ [1, ..., |h|] (5.8)

ma = [a; ã;a− ã;a� ã] (5.9)
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mb = [b; b̃;b− b̃;b� b̃] (5.10)

Finally, the third sub-system explores the relationship between premise and

hypothesis sentences by composing their latest representations learned, namely ma

and mb. This composition takes place via a bidirectional LSTM; after that, both

average and max pooling are performed over the latest representation. Finally, the

resultant representations from the pooling operations are concatenated to form the

final representation. This final embedding is then fed to a softmax to compute prob-

abilities for each of the three classes, entailment, neutral, and contradiction. As

a final note, we use pre-trained GloVe embeddings with dimensionality d = 300

which are updated at training time.

We choose to study this system because is currently the state-of-the-art system

on the SNLI dataset achieving an accuracy score close to what seems to be the

ceiling accuracy of this dataset.

5.7 Methods and Materials

5.7.1 Data

We describe the data that we use to evaluate the robustness of the ESIM, DAM, and

CE systems.

5.7.1.1 Overview of the Whole Process

We evaluate the systems under two experimental conditions, namely in situ and ex

situ.10 For each experimental condition we generate test sets to evaluate robust-

ness, as shown in Figures 5.1 and 5.2. Each test set comprises two samples (each

sample has in average 628 instances), a control sample and a transformed sample,

similar to observational studies (Song and Chung, 2010) where control and treat-

ment groups are clearly differentiated. A transformed sample contains challenging

instances which we generate from instances already known to the systems, namely

10The main distinction between these two experimental conditions is the form of the instances, wi-
hch we will describe in Section 5.7.1.4. Having these two conditions allow to evaluate the robustness
of the systems in a finer-grained detail.
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the control instances which are sampled from the training data. Then, we feed the

systems under study with both samples, control and transformed,11 and observe

their behavior. The purpose to have control and transformed samples in a test set

is to measure the effect that a transformation on control data, such as swapping

word pairs, has on the systems. If the systems are robust then such a transformation

should not play a significant role in the accuracy scores, i.e. the accuracy on both

control and transformed samples should be similar. Having control and transformed

samples also allow us to statistically analyze whether a confounding factor is affect-

ing the behavior of the systems. In the following sections we describe in more detail

the whole process.

Figure 5.1: Process to obtain in situ instances. Instance i corresponds to a control instance,
while i’ corresponds to a transformed instance.

Figure 5.2: Process to obtain ex situ instances. Instance e corresponds to a control instance,
while e’ corresponds to a transformed instance.

5.7.1.2 Sampling Procedure

We sample instances from the SNLI training set according to a criterion, namely

whether the instance contains one of the following types of word pairs: Antonym,
11In our case a transformed sample corresponds to a treatment group.
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hypernym, or hyponym; example of these types of word pairs are (elderly, young),

(cat, animal), (animal, cat), respectively. We use the antonym word pairs from

the dataset of Mohammad et al. (2013) and the hypernym-hyponym word pairs

from the dataset of Baroni et al. (2012). Thus, for each word pair (w1,w2) in the

collection of antonym, hypernym, and hyponym word pairs obtained, we look for

instances i = (p,h), where p and h correspond to premise and hypothesis sentences

respectively, such that w1 ∈ p & w2 ∈ h.12 We separate those instances containing

antonym word pairs from those containing hypernym or hyponym word pairs. We

call these samples control since they contain instances in their original form without

any transformation,13 and we call them IA and IH (see Table 5.7.) The sample IA

contains control instances where each instance contains an antonym word pair. The

sample IH contains control instances where each instance contains a hypernym or a

hyponym word pair. Both of these samples will be used in the in situ experimental

condition.

An example of an instance sampled from the training set is the one shown in

Example 5.11. We see that this instance contains the word pair (sunset,sunrise),

which is an antonym pair found in the antonym dataset mentioned above, where

w1 = sunset ∈ p and w2 = sunrise ∈ h.

(5.11) p : A soccer game occurring at sunset.

h : A basketball game is occurring at sunrise.

5.7.1.3 Transformations

We have three different transformations that we apply on data. Two transformations,

namely Tswap and Tsub, are used to generate transformed samples, i.e. challenging

instances to evaluate robustness. The third transformation, Tex, has the purpose to

generate ex situ instances (control and transformed) from in situ instances.

Swapping Word Pairs Once we have collected control samples according to the

sampling procedure described in Section 5.7.1.2, we apply our transformation Tswap

12In the case of antonyms we also look for w2 ∈ p & w1 ∈ h since antonymy is a symmetric
relation.

13These control samples are to be used in the in situ experimental condition. In order to obtain
control samples for the ex situ experimental condition we need to transform these in situ control
samples.



5.7. Methods and Materials 175

on these instances in order to yield a set of transformed instances which are then

used for testing the robustness of the target systems.

Transformation Tswap targets the word pairs (w1,w2) described in the previous

section: We swap the position of w1 with the position of w2; this transformation

yields a transformed instance where now w2 ∈ p, w1 ∈ h and w1 /∈ p, w2 /∈ h.14 The

class label of the new instance may or may not change with respect to the class

label of the control instance undergoing the transformation. For example, take the

contradiction instance in Example 5.11 as the control instance. After we apply

Tswap on this instance, we yield the transformed instance shown in Example 5.12;

we observe that the class label of this new instance is the same as that of the control

instance, contradiction, because antonymy is a symmetric relation.

(5.12) p : A soccer game occurring at sunrise.

h : A basketball game is occurring at sunset.

Thus, it depends on the type of word pair swapped whether the class label of

the transformed instance changes or not. Instances of class contradiction will yield

transformed instances with the same class label, though instances of class entail-

ment and neutral may yield transformed instances with a different label. Consider

the control instance of class entailment in Example 5.13. After swapping the tar-

get word pair (footbridge,bridge) we obtain the transformed instance in Example

5.14. This new instance has a different class label (neutral) from that of the control

instance from which it was generated (entailment); then we say that the class label

changed from the control to the transformed instance.

(5.13) p : A little girl hugs her brother on a footbridge in a forest.

h : A pair of siblings are on a bridge.

(5.14) p : A little girl hugs her brother on a bridge in a forest.

h : A pair of siblings are on a footbridge.

Tswap when applied on the control sample IA generates the transformed sample

ITA1, and when applied on the control sample IH generates the transformed sample
14If a word w1 or w2 appears more than once, we replace all the appearances with its corresponding

pair, w2 or w1.
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IT H (see Table 5.7.)

Substituting Words Even though transformation Tswap is our main transforma-

tion to generate the transformed instances, we need to use another transformation,

namely Tsub which instead of swapping word pairs it substitutes a word in a word

pair. The reason for using Tsub is to obtain transformed instances which have a

different class label from that of the control instances. We recall that transforma-

tion Tswap applied on control instances of class contradiction generates transformed

instances of the same class; but, we need a change in class label to analyze a par-

ticular confounding factor, namely insensitivity (Section 5.7.3.1). Transformation

Tsub yields transformed instances with different class labels.

Tsub replaces one of the words in a word pair by either a synonym, hypernym,

or hyponym15 of the other word. Consider the antonym pair (elderly,young) in the

control instance shown in Example 5.15. Tsub selects the word young and replaces it

with aged, a synonym of elderly; this results in the transformed instance in Example

5.16. We notice that the class label of the two instances are different, contradiction

and neutral, due to Tsub.

(5.15) p : An elderly woman sitting on a bench.

h : A young mother sits down.

(5.16) p : An elderly woman sitting on a bench.

h : An aged mother sits down.

The systematic procedure to yield two sets of transformed instances under Tsub

is as follows. We take all the control instances of type contradiction that con-

tain antonym word pairs, namely sample IA. We then apply transformation Tsub

on premise sentences. This yields a new set of transformed instances, namely ITA2.

Then we repeat the procedure but now we apply Tsub on hypothesis sentences of IA,

which yields another set of transformed instances, namely ITA3 (see Table 5.7.)

Generating Ex Situ Instances We describe the transformation that we use in or-

der to generate both types of ex situ samples, namely control and transformed (in
15We manually select these from WordNet such that it appears at least t = 10 times in the training

set on either the premise sentences or the hypothesis sentences (except for 3 words which appear
less than 10 but more than 5 times).
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Section 5.7.1.4 we describe the purpose of having an ex situ condition.) To cre-

ate control instances we take the in situ control instances i = (p,h) ∈ IA ∪ IH and

transform them via transformation Tex. The transformation is as follows. Given

an instance i = (p,h), we randomly select either premise or hypothesis sentence;16

then, we copy-paste this sentence to form a new sentence pair. At this point, we

have an instance where the premise sentence is exactly the same as the hypothesis

sentence. After that, we replace w1 with w2, or w2 with w1, depending on which

sentence was selected, in order to preserve the original target word pair (w1,w2).

We have now generated an ex situ control instance e = (p,h) where the target word

pair is the same as in the in situ control instance counterpart, and the words sur-

rounding the word pair in e are the same in both premise and hypothesis. We do

this operation for each in situ control instance we have; thus, each in situ instance

has an ex situ instance counterpart.

An example of an ex situ control instance is the one in Example 5.17. This

instance was obtained from the in situ control instance in Example 5.11. In this

instance, we can observe that the only difference between premise and hypothesis

are the words sunset and sunrise, which form an antonym word pair.

(5.17) p : A soccer game occurring at sunset.

h : A soccer game occurring at sunrise.

In order to create ex situ transformed instances, we apply the same transfor-

mation applied to in situ instances, namely Tswap. Example 5.18 shows the ex situ

transformed instance generated after transforming the instance in Example 5.17, i.e.

after swapping the word pair (sunset,sunrise).

(5.18) p : A soccer game occurring at sunrise.

h : A soccer game occurring at sunset.

5.7.1.4 Experimental Conditions: In Situ and Ex Situ

When we apply transformation Tswap to in situ control instances, we purposefully

alter the instance but we may inadvertently add confounding factors. For example,
16We do this in order to control for any possible bias found in either premise or hypothesis sen-

tence since both come from different distributions, i.e. they come from different groups of annota-
tors.
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in the transformed instance in Example 5.14, we force the word bridge to interact

with the expressions A little girl hugs her brother on a, on the left, and in a forest

on the right. But, it may be the case that in no other premise sentence in the train-

ing set these interactions occur, i.e. these interactions may be totally new for the

systems; thus, this factor, which we call intra-sentence interaction, may affect the

performance of the system under study, rather than the swap of words per se.

Then, in order to control for the context words surrounding a word pair

(w1,w2),17 we create both control and transformed instances where the context

words in premise and hypothesis sentences are the same; we call these instances

ex situ. We now distinguish two experimental conditions, in situ and ex situ, where

the main difference between the two is the form of the instances. In Tables 5.4,

5.5, and 5.6 we show examples of both in situ and ex situ instances for different

class labels. We use the terms in situ and ex situ to refer to the fact that control and

transformed instances are in two forms, in the average form of the SNLI data and

out of such average form; we note that some instances in the SNLI data have a very

similar form to our ex situ instances, but there are very few of them and thus they

are not average instances.

Control Transformed
In Situ p : An elderly woman sitting on a bench. p : An elderly woman sitting on a bench.

h : A young mother sits down. h : An aged mother sits down.

Table 5.4: Examples of control and transformed instances in the In situ condition when
transformation Tsub is used. Label of control instance: contradiction; label of
transformed instance: neutral. In bold text, the word pair where Tsub was applied
to. No ex situ condition exists for this Tsub.

Control Transformed
In Situ p : A soccer game occurring at sunset. p : A soccer game occurring at sunrise.

h : A basketball game is occurring at sunrise. h : A basketball game is occurring at sunset.
Ex Situ p : A soccer game occurring at sunset. p : A soccer game occurring at sunrise.

h : A soccer game occurring at sunrise. h : A soccer game occurring at sunset.

Table 5.5: Examples of control and transformed instances in both In situ and ex situ con-
ditions when transformation Tswap is used. Labels of in situ control and trans-
formed instances: contradiction; labels of ex situ control and transformed in-
stances: contradiction. In bold text, the word pair where Tswap was applied to.

17The word pairs are those described in Section 5.7.1.2.
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Control Transformed
In Situ p : An adult is cutting up onions in a kitchen. p : A man is cutting up onions in a kitchen.

h : A man is cutting up onions. h : An adult is cutting up onions.
Ex Situ p : An adult is cutting up onions in a kitchen. p : A man is cutting up onions in a kitchen.

h : A man is cutting up onions in a kitchen. h : An adult is cutting up onions in a kitchen.

Table 5.6: Examples of control and transformed instances in both In situ and ex situ con-
ditions when transformation Tswap is used. Labels of in situ control and trans-
formed instances: neutral and entailment, respectively; labels of ex situ control
and transformed instances: neutral and entailment, respectively. In bold text, the
word pair where Tswap was applied to.

5.7.1.5 Factors Controlled

We find several confounding factors to control for during the whole process of cre-

ating the test sets to evaluate the systems’ robustness. However, only four factors

are feasible to be controlled, namely context words, unseen vocabulary, average

sentence length, and order of surrounding words. In addition, we statistically ana-

lyze the confounding factors insensitivity, polarity, and unseen word pairs. These

latter three factors are explained in detail in Section 5.7.3.

First, we control for context words by setting up an ex situ condition, as ex-

plained in Section 5.7.1.4. Second, we control for unseen vocabulary and average

sentence length by sampling instances from the training data rather than from de-

velopment or test data.18 The first confounding factor refers to introducing words

novel to the systems, i.e. words not seen at training time. If we had sampled in-

stances from the SNLI test set in order to create our test sets (as in the first step in

Figure 5.1) it is likely that we would have introduced novel words which may affect

the performance of the systems since they do not poses any knowledge about the

meaning of these words. The second confounding factor refers to the number of

words in premise and hypothesis sentences. Given that we use the instances sam-

pled from the SNLI data as control instances without any modification, we keep

18Controlling for confounding factors by using training instances is a type of control that goes
in hand with experimental designs in the behavioral science. When studying factors influencing a
subject, it is rather unusual that the environment where the subject is analyzed is different from, or
other than, the habitual environment where the subject performs the target activity, since doing so
may bring new factors to the study that the experimenter may not be aware of.
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unchanged the length of these sentences in each instance.19 Finally, we control for

the order of surrounding words in in situ instances since the transformation Tswap

only changes the placement of two words, but it does not change the order of the

words surrounding the word pair swapped.

5.7.1.6 Factors Not Controlled

As we mentioned before, there are possible confounding factors which are very

difficult, or unfeasible, to control for or to analyze statistically. The first factor we

are aware of is intra-sentence interaction and arises when we swap a word pair in

an in situ instance, i.e. when we obtain a transformed instance. This factor refers

to the fact that when we apply Tswap on a control instance, a word w2 from the

hypothesis sentence replaces a word w1 from the premise sentence and vice-versa,

which leads to the interactions of w2 with the words in the premise and w1 with

the words in the hypothesis. These interactions may be new to the systems and as

such they may influence the systems’ behavior due to the lack of any knowledge of

such interactions. Controlling for this factor would require to generate transformed

samples to study how each single interaction effects on the systems. This study

becomes unfeasible since the number of words that we swap combined with the

new words they interact with is probably in the order of the hundreds.

A similar confounding factor arises when we generate ex situ instances: We

may put words in a novel position not seen during training when we copy a premise

sentence and paste it as a hypothesis sentence, or the other way around. For exam-

ple, in Example 5.17 we copied the premise sentence and pasted it as a hypothesis

sentence, thus it may be possible that the word soccer was never seen in a hypothesis

sentence in the training set, and this may affect the performance of the systems (the

other words, game and ocurring, are seen in hypothesis sentences during training.)

Another possible confounding factor that we bring in this experimental condition is

the average sentence length. Having both premise and hypothesis sentences con-

taining the same number of words does not conform to the average SNLI instance,

19Furthermore, training data is much more abundant than both development and test data. Sam-
pling instances from either of these two latter sets results in an extremely small sample stopping us
from achieving accurate results.
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as we show in Table 5.1; in this table we see that the premise sentence is usually

longer than the hypothesis sentence in the training set of the SNLI dataset. How-

ever, this factor is a by-product of the ex situ condition, and controlling for it would

mean getting rid of this experimental condition.

A possible way in which we could control for most of the confounding factors

is via laboratory conditions, where we would aim to be in total control of most of

the factors at the cost of abstracting the systems away from their known environ-

ment, the SNLI data; however, this would require us to craft instances where all

the confounding factors are controlled. Again, we would end up in an unfeasible

scenario. In addition, we would sacrifice external validity for internal validity; i.e,

we would evaluate the systems on our laboratory instances with some statistical de-

gree of confidence, which does not imply that the results obtained are indicative of

the behavior of the systems on SNLI data. Thus, in our case, we have a trade-off

between internal and external validity, since we are using original instances from

the SNLI dataset, as opposed to using instances hand-crafted under laboratory con-

ditions, at the cost of not control certain factors.

5.7.1.7 Description of Test Sets Used to Evaluate Robustness

We now describe all the test sets used for analyzing both the robustness of the

systems and the target factors described in Section 5.7.3.

After applying the procedure described in Sections 5.7.1.2 and 5.7.1.3 we end

up with two types of test sets, in situ and ex situ. Each set contains two types of sam-

ples, a control sample, which we denote with the letters I (in situ) and E (ex situ),

and a transformed sample, denoted by IT and ET . We recall that the transformed

samples are generated from the control samples. We make a further distinction in

the samples, namely by the type of word pair that the instances contain. Samples

with instances containing antonym word pairs have subscript A, i.e. IA, ITA, EA,

and ETA; samples with instances containing hypernym or hyponym word pairs are

denoted as IH , IT H , EH , and ET H . More details about each test set are as follows (a

summary can be found in Table 5.7):



182Chapter 5. Behavior Analysis of ESIM, DAM, and CE: Evaluating Robustness

IA : In situ sample containing control instances. It only contains contradiction in-

stances, and each instance contains an antonym word pair.

ITA1 : In situ sample containing transformed instances. This sample is generated

after applying transformation Tswap on IA. It only contains contradiction instances,

and each instance contains an antonym word pair.

ITA2, ITA3 : In situ samples containing transformed instances. These samples are

generated after applying transformation Tsub on IA. They may contain instances

from any class (entailment, neutral, contradiction); each instance may contain any

type of word pair (including synonym word pairs, only used in these cases.)

IH : In situ sample containing control instances. This sample contains all types of

instances, though mainly of type neutral and entailment. Each instance contains

either a hypernym or a hyponym word pair.

IT H : In situ sample containing transformed instances. It is obtained after applying

transformation Tswap on IH . It contains all classes of instances, but mainly neutral

and entailment; each instance contains either a hypernym or a hyponym word pair.

EA : Ex situ sample containing control instances which are generated from IA.

This sample only contains contradiction instances, where each instance contains

an antonym word pair.

ETA : Ex situ sample containing transformed instances. These instances are gener-

ated after the application of transformation Tswap on EA. All the instances are class

contradiction, and each of them contains an antonym word pair.

EH : Ex situ sample containing control instances; these instances are obtained from

IH . This sample only contains instances of class neutral and entailment, where each

instance contains either a hypernym or a hyponym word pair.

ET H : Ex situ set containing transformed instances. These instances are generated

after the application of transformation Tswap on EH . The instances are either class

entailment or class neutral; each instance contains either a hypernym or a hyponym

word pair.
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Creation details Collection details
Sample Word Pairs Type Transformation Size Labels Labels Changed Unseen Pairs

IA antonym control 620 contradiction No
ITA1 antonym transformed swap 620 contradiction 0% Yes
ITA2 diverse transformed substitution 607 all ≈ 50% Yes
ITA3 diverse transformed substitution 608 all ≈ 50% Yes
EA antonym control copy-paste 620 contradiction No
ETA antonym transformed swap 620 contradiction 0% Yes
IH hyper/hypo control 648 all No

IT H hyper/hypo transformed swap 648 all ≈ 42% Yes
EH hyper/hypo control copy-paste 644 neutral,entailment No

ET H hyper/hypo transformed swap 644 neutral,entailment ≈ 93% Yes

Table 5.7: Details of the samples used to test the robustness of the models. Word Pairs:
Type of word pair contained in the instances of the current sample. Type: Type
of sample. Transformation: Transformation used to obtain the current sample.
Size: Number of instances in the current sample. Labels: class labels found
in the current sample. Labels Changed: Percentage of instances that have dif-
ferent class label with respect to their control instances counterpart. Unseen
Pairs: Whether the current sample contains instances with unseen word pairs.
Diverse={synonymy, hypernymy, hyponymy}.

5.7.2 Evaluation of Robustness

We aim to measure the generalization abilities of the systems to challenging sce-

narios, namely the transformed samples we obtained in Section 5.7.1. We envisage

two perspectives to analyze the robustness of the systems; the first one by compar-

ing control vs. transformed samples, and the second one by comparing in situ vs.

ex situ scenarios. In all of these comparisons we measure accuracy scores and the

difference in such scores.

5.7.2.1 Control vs. Transformed

We evaluate how well the systems generalize to the transformed samples we ob-

tained. In other words, we compare accuracy scores on both control and transform

samples to see to what extent our transformations Tswap and Tsub affected the be-

havior of the systems. We do this analysis in both experimental conditions, in situ

and ex situ. Our main purpose in this comparison is to find differences in sys-

tems’ performance between sets of instances where the target word pairs remain in

their original position and sets of instances where the target word pairs have been

swapped.
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Thus, we compare the following samples against each other. First, IA vs. ITA1

and EA vs. ETA, where we can observe the effect of swapping antonym word pairs

in contradiction instances in both experimental conditions. Second, IA vs. ITA2

and IA vs. ITA3 where can observe the effect of substituting a word in a word pair

in contradiction instances. And third, IH vs. IT H and EH vs. ET H where we are

able to observe the effect of swapping hypernym-hyponym word pairs in all class

of instances on both experimental conditions.

5.7.2.2 In Situ vs. Ex Situ

We also compare the difference in a system’s performance between the two experi-

mental conditions, in situ and ex situ, to figure out whether the words surrounding a

swapped word pair influence the systems’ behavior. Here we target to measure the

difference in score on the following sample pairs. First, we analyze a system’s be-

havior on samples containing only contradiction instances, i.e. we analyze behavior

on IA vs. EA and ITA1 vs. ETA, where we can analyze to what extent a system can

cope to changes in context words surrounding antonym word pairs. After that, we

compare difference in accuracy scores on IH vs. EH and IT H vs. ET H to elucidate to

what extent the figure to be observed in contradiction instances remains in all class

of instances containing hypernym-hyponym pairs.

5.7.3 Factors Under Analysis

As part of our experiments, we statistically analyze whether the three confounding

factors mentioned in Section 5.1, namely polarity, insensitivity, and unseen word

pairs, play a role in the systems’ response affecting the accuracy scores that we

obtain when we evaluate their robustness. That is, we will elucidate whether the

results obtained from the experiments described in Section 5.7.2 are really due to

the robustness of the systems or due, to some extent, to the confounding factors. To

do so, we use statistical tests, as explained in Section 5.7.4, to unveil any influence

of a factor on a system’s behavior.
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5.7.3.1 Insensitivity

This is an inherent factor to the systems, i.e. an internal factor, rather than an ex-

ternal factor arising in the dataset. This factor relates to the ability of a system to

recognize that a control instance was transformed and thus a transformed instance

was generated; the way in which we know whether a system recognizes this trans-

formation is via a change of class label between control and transformed instances;

i.e., we analyze the response of the systems to both control and transformed in-

stances that have different class labels. For example, we have the control instance

shown in Example 5.13, which has associated an entailment label, and its trans-

formed counterpart shown in Example 5.14, which has associated a neutral label.

We feed both instances to a system and we observe if the system recognizes that the

transformed instance is different in label from the control instance. We denominate

a system insensitive if it predicts the same class label for both instances. We test for

the influence of this factor via tests of independence between incorrect predictions

and change of labels predicted between control and transformed instances.

5.7.3.2 Unseen Word Pairs

This factor may naturally arise after we perform our transformation Tswap on control

instances, and it indicates that the word pair swapped is a novel word pair (it was

unseen at training time.) More concretely, we say that a word pair (w j,wi) is unseen

if during training time it was not the case that both words, wi and w j, were observed

co-occurring together in an instance i = (p,h) in the form w j ∈ p and wi ∈ h. This

may be the case for some swapped word pairs contained in transformed instances,

but it is not the case for un-swapped word pairs in control instances; i.e. all control

instances i = (p,h) contain seen word pairs (wi,w j) where wi ∈ p and w j ∈ h are

observed co-occurring together in this form at training time.20

An example of an unseen word pair is the pair (sunrise,sunset) contained in

the transformed instance in Example 5.12; as explained above, it is unseen because

there is no instance i = (p,h) on the training set where sunrise ∈ p and sunset ∈ h.

However, it is the case that sunrise appears on the premise sentence of an instance

20This applies to both experimental conditions, in situ and ex situ.
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a = (pa,ha) and sunset appears on the hypothesis sentence of another instance b =

(pb,hb), i.e. sunrise ∈ pa and sunset ∈ hb but this does not mean that the word pair

is seen because the two words did not co-occur in the same instance.

Having unseen word pairs in the transformed instances may affect the per-

formance of a system since there was no learning about the interaction of the two

words. Hence, we test whether this factor indeed influences the response of a system

by observing if unseen word pairs correlate with incorrect predictions.

5.7.3.3 Polarity

We associate each target word pair with a label –a polarity– based on the frequency

of the word pair in a class label in training data. We define four classes of polarity

where three of them correspond to the classes of the NLI task, namely entailment,

neutral, and contradiction.21 The last polarity corresponds to the label none which

is designated for those unseen word pairs from Section 5.7.3.2, i.e. pairs not seen

in training data but rather on transformed instances. Thus, we polarize a word pair

with the most frequent label it is seen in training data. For example, we assign

the polarity contradiction to the word pair (sunset,sunrise) because it is observed

mainly in contradiction instances, and we assign the polarity none to the word pair

(sunrise,sunset) because it is an unseen word pair.

Polarity, which acts as a bias (an undesirable pattern), may influence the re-

sponse of a system. We became aware of this factor by virtue of a manual ex-

ploration of the dataset; we observe a certain pattern relating the polarity of word

pairs with the class label of the instance containing the pair. For example, it seems

that antonym pairs are often correlated with contradiction instances, and hypernym

pairs with entailment instances. Thus, a system may use this bias as cue to predict

the class label of the instance. We test the influence of this factor on the systems’

response via independence tests between polarity and class label predicted.

21To be more precise, we define four more classes, where three of them correspond to combina-
tions of the three NLI class labels, i.e. entailment-neutral, entailment-contradiction, and neutral-
contradiction; these labels correspond to cases when a word pair is observed in the same number of
instances from such two classes. We call draw to the fourth polarity, which indicates that a word
pair is seen in the same number of instances from the three classes. We note, however, that these
four polarities are rare, i.e. very few word pairs fall in one of these four cases in the training data.
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5.7.4 Statistical Analyses

We apply 2-way independence and homogeneity chi-square tests22 to analyze

whether our target factors (Section 5.7.3) play a role on the behavior of the sys-

tems under study. These tests allow us to obtain internal validity in our experiments

(McDonald, 2014). In all our experiments we use a significance value of p< 0.0001

(otherwise stated) in order to correct for any possible false positive rejection of the

null hypothesis given that we do multiple tests.23 In some cases, we use a McNemar

test for obtaining a significant comparison of a system’s performance between con-

trol and transformed samples, where the null hypothesis assumes that the system

achieves the same error rate on these two samples (Alpaydin, 2010).24

In order to analyze the insensitivity factor, we use transformed instances that

have a different class label from that of the control instances they were generated

from. Our null hypothesis states an independence between the rate of incorrect

predictions and whether the system predicts a different class label for the trans-

formed instances from that predicted for the control instances. In other words, we

test whether the system is insensitive to our transformation, and thus predicting the

same label for both transformed and controls instances, is a reason for a significant

amount of its errors.

When we analyze the transformed samples containing unseen word pairs, our

null hypothesis claims an independence between a significant error rate and the

presence of such unseen pairs. In other words, we test if the unseen pairs are asso-

ciated with predicting incorrect class labels.

Finally, in order to analyze if the polarity of word pairs have any influence on

a system’s behavior, we propose no association between class label predicted and

polarity as our null hypothesis; i.e., we test whether a system’s predictions correlate

with the polarity of the word pairs contained in the instances.

22We apply Yate’s correction of Fisher exact tests when the sample size is considerably small.
23We note that this correction is actually stricter than a Bonferroni correction.
24We use the packages StatsModels (Seabold and Perktold, 2010) and SciPy (Oliphant, 2007).
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5.8 Experiments and Results
We first compare overall performance between control and transformed samples, i.e.

we analyze how robust the systems were to our transformation. Then, we compare

overall performance between in situ and ex situ conditions. After that, we present

four experiments, categorized by both the type of experimental condition and target

word pair, where in each experiment we analyze in a fine-grained detailed how the

factors under analysis played a role in the behavior of the systems.

Before proceeding to the experiments, we give an overview of Table 5.9 which

contains the accuracy scores of our experiments. The top-level heading Whole sam-

ple indicates a system’s accuracy score on the control and transformed samples

previously described in Section 5.7.1. The next columns contain accuracy scores

on subsets of instances taken from such samples. First, Subset 1 refers to those

instances from a transformed sample whose gold labels are different from the gold

labels of the instances in the control sample used to generate them; for example, the

cell (ITA2, ESIM) contains ESIM’s accuracy score on the subset of instances from

ITA2 that have different label from their counterpart instances in IA. Second, Subset

2 refers to transformed instances containing unseen word pairs. Finally, Subset 3

refers to the subset of instances, in either a control or a transformed sample, con-

taining word pairs whose polarity is different from the gold label of the instance;

for example, the cell (ITA1, DAM) contains the accuracy of DAM on those instances

from ITA1, a transformed sample with only contradiction instances, whose word

pairs have polarity other than contradiction.

Insensitivity Unseen Word Pairs Polarity
Exp sample ESIM DAM CE ESIM DAM CE ESIM DAM CE

1 ITA1 39.33(1) 74.16(1) 19.46(1) 64.4(6) 101.26(6) 30.69(6)
ITA2 175.34(1) 108.30(1) 73.3(1)

2 EA 57.23(8) 53.72(8) 10.78(8)1

ETA 44.72(1) 59.17(1) 15.91(1) 103.47(6) 136.99(6) 34.37(6)
3 IT H 150.92(1) 101.52(1) 90.73(1) 0.178(1)2 0.985(1)3 0.00(1)4 22.72(14)5 47.71(14) 25.27(14)6

4 EH 176.38(10) 312.67(10) 261.77(10)
ET H 252.27(1) 158.62(1) 175.19(1) 0.183(1)7 2.43(1)8 0.352(1)9 105.70(14) 258.09(14) 56.52(14)

Table 5.8: Correlations between the systems’ response and confounding factors in terms of
χ2 (chi-square) values. Degrees of freedom are shown next to each correlation
value in a parenthesis. All correlations are measured at at p-value of p < 0.0001,
unless otherwise stated. Other p-values: 1 p = 0.21, 2 p = 0.67, 3 p = 0.32, 4 p =
0.98, 5 p = 0.06, 6 p = 0.03, 7 p = 0.66, 8 p = 0.11, 9 p = 0.55.
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Whole sample Subset 1: Subset 2: Subset 3:
Gold label changes Unseen word pairs Polarity 6= gold label

Exp sample ESIM DAM CE ESIM DAM CE ESIM DAM CE ESIM DAM CE
1 IA 0.970 0.946 0.820 0.900 0.900 0.750

ITA1 0.933 0.946 0.732 0.600 0.500 0.400 0.681 0.637 0.536
ITA2 0.721 0.771 0.645 0.554 0.653 0.476
ITA3 0.722 0.745 0.646 0.568 0.630 0.535

2 EA 0.953 0.958 0.508 0.400 0.500 0.450
ETA 0.933 0.929 0.480 0.575 0.500 0.175 0.565 0.492 0.260

3 IH 0.898 0.819 0.828 0.836 0.701 0.733
IT H 0.648 0.691 0.543 0.315 0.509 0.271 0.694 0.777 0.555 0.719 0.697 0.586

4 EH 0.771 0.849 0.742 0.715 0.707 0.461
ET H 0.576 0.788 0.534 0.551 0.783 0.516 0.527 0.666 0.472 0.631 0.674 0.507

Table 5.9: Accuracy scores of all systems. Exp: experiment number. Whole sample: ac-
curacy scores on the whole sample indicated by the second column, namely
sample. Subset 1: subset of instances from the whole transformed sample that
have different label with respect to the control instances they were generated
from. Subset 2: subset of transformed instances that contain word pairs unseen
at training time. Subset 3: subset of control or transformed instances containing
word pairs whose polarity does not match the instance’s gold label.

5.8.1 Evaluation of Robustness

5.8.1.1 Control vs. Transformed

We start our exploration of results with those where the systems seem to be robust

when control instances are compared to their transformed instances counterpart.

The ESIM system shows robustness to our transformation Tswap, as far as accuracy

scores can show, when the instances are contradiction and they contain antonym

word pairs; this seemingly robust behavior applies in both conditions, in situ and

ex situ. Table 5.9 shows that the difference in accuracy between a control sample

and a transformed sample is small: 0.037 points dropped between IA and ITA1, and

0.02 points dropped between EA and ETA. However, in both cases the difference

in scores, though small, may be significant according to a McNemar test: in situ:

χ2(1) = 11.80, p < 0.001, ex situ: χ2(1) = 10.08, p < 0.01. These two cases are

the only ones where ESIM seems to be robust.

Similarly, the DAM system seems to be robust in the same cases as ESIM. The

drop in score between IA and ITA1 is zero, and a McNemar test finds no evidence

to support a significant difference in error rates; DAM seems to be totally robust in

this case, though the reason for this result may not be precisely robustness but rather
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a confounding factor. The difference in the ex situ scenario (EA and ETA) is 0.029

points, a very small drop in performance; however, a McNemar test (χ2(1) = 16.05,

p < 0.0001) shows strong evidence for the system having significantly worse error

rate in the transformed sample compared to that in the control sample. These are

the only two cases in which the DAM system seems to be robust to transformation

Tswap.

Finally, the CE system shows a robust behavior only when the control sample

EA is compared with the transformed sample ETA. The drop in performance is only

0.028 points; however, this result may not be really indicative of a robust behavior,

since the accuracy score on the control sample is already very low (0.508 points).

As we can see, ESIM and DAM seem to be robust when the control instances

are of class contradiction, they contain an antonym pair, and the transformation is

a swap of words, namely transformation Tswap. However, this behavior is not per-

sistent if the transformation is a substitution, namely transformation Tsub. We recall

that this transformation is only used to analyze the insensitivity of the systems (Sec-

tion 5.8.2.1), but in Table 5.9 we can see that the three systems drop accuracy when

we apply this transformation on control instances (IA vs. ITA2 and IA vs. ITA3),

possibly because this transformation changes the gold label of the transformed in-

stances with respect to the control instances. More concretely, ESIM drops up to

0.249 points, around 25% of its accuracy on the control sample, while DAM drops

up to 0.201 points, and CE loses up to 0.175 points.

On the other hand, the systems exhibit a non-robust behavior to transforma-

tion Tswap when the control instances are of class entailment or neutral. In the in

situ condition (IH vs. IT H), drops in accuracy are 0.250, 0.128, and 0.285 points

for ESIM, DAM, and CE, respectively. In the ex situ condition, drops in score be-

tween control (EH) and transformed (ET H) samples are 0.195, 0.061, and 0.208

for ESIM, DAM, and CE, respectively. We observe that in both conditions ESIM

and CE have the biggest drops in performance, being quite similar the drops be-

tween the two systems; in what could be seen as a moderate drop from DAM in the

ex situ condition is, nonetheless, a significant drop according to a McNemar test
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(χ2(1) = 7.25, p < 0.01).

5.8.1.2 In Situ vs. Ex Situ

We now report accuracy differences between the two experimental conditions. In

the case of contradiction instances containing antonym word pairs, ESIM and DAM

seem to be not affected by the type of context words surrounding an antonym pair;

the differences in score between IA and EA are minimal (0.017 points for ESIM and

0.012 points for DAM), as well as those between ITA1 and ETA (0 points for ESIM

and 0.017 points for DAM). In dissonance with these results, the CE system is heav-

ily affected when the context is repeated in premise and hypothesis sentences with

drops in score of 0.312 and 0.252 points when the results on the in situ samples IA

and ITA1 are compared with those of the ex situ condition, EA and ETA, respectively.

However, the picture portrayed for contradiction instances where ESIM and

DAM seemed to be robust to the context type, is no longer preserved for entailment

and neutral instances. In the new picture, ESIM shows difficulty to cope with the ex

situ condition when compared to its in situ counterpart, similar to the picture por-

trayed by CE, while DAM shows the opposite behavior; DAM seems to cope better

with ex situ instances rather than with in situ ones. Drops in accuracy for ESIM go

up to 0.127 points while this figure is up to 0.086 points for CE. DAM reaches its

peak in performance when tested on the EH sample with 0.03 improvement with

respect to IH .

5.8.2 Influence of Target Factors

We saw in Section 5.8.1.1 that the systems seem to be robust in certain cases and

non-robust in other cases. However, it is unclear to what extent this behavior is

the result of the systems’ abilities, such as linguistic abilities learned, or rather due

to the influence of one of the confounding factors under study. In this section we

provide experiments to study which of our target factors –insensitivity, unseen word

pairs, and polarity– have an influence on the response of the systems (see Section

5.7.3 for a description of these factors.)
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5.8.2.1 Experiment 1: Swapping Antonym Word Pairs In In Situ

Instances

ESIM and DAM seem to be robust to swapping words in an antonym word pair

when this pair is placed in contradiction instances, regardless of the experimental

condition, as we described earlier. However, we show here that this behavior is in

part due to the insensitivity of the systems to changes in the control instances, and

also due the polarity of the word pairs under analysis.

Insensitivity To study this factor, we use the control sample IA and the transformed

samples ITA2 and ITA3. Our first piece of evidence towards unmasking the effect of

this factor are accuracy scores in the column Subset 1 from Table 5.9. We observe

that all systems’ accuracy on transformed instances whose gold label is different

from that of their control instances counterpart are much lower than accuracy scores

on the complete transformed sample. An even bigger gap in score can be seen

when accuracy scores of Subset 1 from ITA2 and ITA3 are compared against accuracy

scores of the control sample IA. The three systems have a poor performance on

instances from Subset 1, and the accuracy of the state-of-the-art system, ESIM, is

very close to that of our most simple system, CE. However, accuracy scores alone

may not be really indicative, therefore we confirm the influence of insensitivity via

chi-square tests.

In Tables 5.10, 5.11, 5.12 we see the contingency tables used for the 2-way in-

dependence tests; these tables comprise those instances in Subset 1 extracted from

ITA2 that have different class label from the control instances in IA. For all sys-

tems, we find very strong evidence towards incorrect predictions being mainly due

to the systems predicting the same labels for both transformed and control instances

(ESIM: χ2(1) = 175.34, DAM: χ2(1) = 108.30, CE: χ2(1) = 73.33, p < 0.0001)

(see Table 5.8). In other words, insensitivity, the prediction of same labels on trans-

formed instances as on control instances, is the main source of error in the three

systems.

A different picture would be portrayed if the main source of error was, for

example, the prediction of an incorrect label for a transformed instance that is dif-
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ferent from the label of the control instance; take as an example a system predicting

the label neutral for a transformed instance whose gold label is entailment, and let’s

suppose that the control instance from which the transformed instance was gener-

ated has gold label contradiction. The system would still make a mistake but it

would not be deemed as insensitive.

Distribution of predictions
Labels predicted correct incorrect

change 155 31
no change 8 100

Table 5.10: Contingency table for ESIM (Experiment 1): Predictions of class labels dis-
tributed according to matching or not the gold labels. Only transformed in-
stances that have gold labels different from those of their control instances
counterpart are used.

Distribution of predictions
Labels predicted correct incorrect

change 179 37
no change 13 65

Table 5.11: Contingency table for DAM (Experiment 1): Predictions of class labels dis-
tributed according to matching or not the gold labels. Only transformed in-
stances that have gold labels different from those of their control instances
counterpart are used.

Distribution of predictions
Labels predicted correct incorrect

change 95 29
no change 45 125

Table 5.12: Contingency table for CE (Experiment 1): Predictions of class labels dis-
tributed according to matching or not the gold labels. Only transformed in-
stances that have gold labels different from those of their control instances
counterpart are used.

Unseen Word Pairs Handling antonym pairs in a new order seems to be problem-

atic for the three systems. In the subset of transformed instances that contain unseen

antonym pairs, namely Subset 2 of ITA1 (Table 5.9), we observe that the systems get

accuracy scores much lower than the scores on the complete sample; concretely, the
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drops in score are 0.333, 0.446, 0.332 for ESIM, DAM, and CE, respectively. These

results are strongly backed up by homogeneity tests as shown in Table 5.8 (ESIM:

χ2(1) = 39.33, DAM: χ2(1) = 74.16, CE: χ2(1) = 19.46, p < 0.0001), which are

computed from Tables 5.13, 5.14, 5.15. We note, however, that the number of trans-

formed instances containing unseen antonym pairs is very small, 40 instances; thus,

these results are to be taken with some precaution.

Word pairs
Predictions seen unseen

correct 555 24
incorrect 25 16

Table 5.13: Contingency table for ESIM (Experiment 1): Predictions of class labels dis-
tributed according to whether they contain a seen or an unseen antonym word
pair.

Word pairs
Predictions seen unseen

correct 567 20
incorrect 13 20

Table 5.14: Contingency table for DAM (Experiment 1): Predictions of class labels dis-
tributed according to whether they contain a seen or an unseen antonym word
pair.

Word pairs
Predictions seen unseen

correct 438 16
incorrect 142 24

Table 5.15: Contingency table for CE (Experiment 1): Predictions of class labels dis-
tributed according to whether they contain a seen or an unseen antonym word
pair.

Polarity We use sample ITA1 for this experiment, where we test an association be-

tween the polarity of our target word pairs and the class labels predicted by the

systems. We note that in this transformed sample only 11% of the word pairs have

a polarity different from contradiction; this means that a system predicting class

labels based only on this factor would achieve an accuracy score of 0.89.
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Comparing Subset 3 of IA with Subset 3 of ITA1 (Table 5.9), where the polar-

ity of a word pair is different from the gold label of the instance containing it, we

observe that ESIM, DAM, and CE drop 0.219, 0.263, and 0.214 accuracy points,

respectively. The systems probably memorized the instances from the control sam-

ple, and thus they did not need to use polarity, but for predicting class labels in the

transformed sample they seem to rely on this factor. According to our independence

tests, computed from Tables 5.16, 5.17, 5.18,25 we clearly reject the null hypothesis

and confirm a correlation between polarity of word pairs and class label predicted

(ESIM: χ2(6) = 64.40, DAM: χ2(6) = 101.26, CE: χ2(6) = 30.69, p < 0.0001).

As a point of comparison with a perfect classifier that achieves accuracy score

of 1.0 on ITA1, the statistic obtained would not reject the null hypothesis, and would

imply no association between polarity and class label predicted.

Polarity
Prediction

Neutral Contradiction Entailment

Neutral 6 20 0
Contradiction 7 532 12

Entailment 0 3 0
None 9 24 7

Table 5.16: Excerpt of contingency table for ESIM (Experiment 1): Predictions of class
labels distributed according to the word pair polarity they match with.

Polarity
Prediction

Neutral Contradiction Entailment

Neutral 5 21 0
Contradiction 5 543 3

Entailment 0 3 0
None 8 20 12

Table 5.17: Excerpt of contingency table for DAM (Experiment 1): Predictions of class
labels distributed according to the word pair polarity they match with.

25We leave out of the tables polarity classes entailment-neutral, entailment-contradiction, neutral-
contradiction, and draw, since very few instances fall in these categories.
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Polarity
Prediction

Neutral Contradiction Entailment

Neutral 5 18 3
Contradiction 81 417 53

Entailment 0 3 0
None 21 16 3

Table 5.18: Excerpt of contingency table for CE (Experiment 1): Predictions of class labels
distributed according to the word pair polarity they match with.

5.8.2.2 Experiment 2: Swapping Antonym Word Pairs In Ex Situ

Instances

In this experiment, we study whether the target factors influence the systems’ be-

havior when fed with ex situ instances as they are influenced when fed with in situ

instances. Though, we skip the study on insensitivity since this requires to generate

a new sample via transformation Tsub, which may add an extra-layer of alterations

to the ex situ control sample yielding results that may be difficult to interpret.

Unseen Word Pairs We find the same problem as in the in situ condition on those

transformed ex situ instances that contain word pairs in an unseen order. Comparing

accuracy scores of the whole sample ETA with this subset of instances (Subset 2

in Table 5.9), we can see, again, big drops in accuracy of at least 0.305 points

(CE) and up to 0.429 points (DAM). Our homogeneity tests (Tables 5.19, 5.20,

and 5.21) show strong evidence for these drops in accuracy being associated with

the unseen word pairs present in the transformed instances (ESIM: χ2(1) = 44.72,

DAM: χ2(1) = 59.17, CE: χ2(1) = 15.91, p < 0.0001) as show in Table 5.8.

We compare accuracy scores of transformed instances in Subset 2 from both

experimental conditions, ITA1 and ETA; we observe that ESIM and DAM seem to

be robust to the context type, and thus drops in accuracy seem to be explained by

the unseen word pairs. On the other hand, the extremely low score of CE seem to

indicate that it is affected by both, the context type and the unseen pairs.

Polarity From the accuracy scores on the instances in Subset 3 from both samples

control (EA) and transformed (ETA), we can see that the three systems have severe
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Word pairs
Predictions seen unseen

correct 556 23
incorrect 24 17

Table 5.19: Contingency table for ESIM (Experiment 2): Predictions of class labels dis-
tributed according to whether they contain a seen or an unseen antonym word
pair.

Word pairs
Predictions seen unseen

correct 556 20
incorrect 24 20

Table 5.20: Contingency table for DAM (Experiment 2): Predictions of class labels dis-
tributed according to whether they contain a seen or an unseen antonym word
pair.

Word pairs
Predictions seen unseen

correct 291 7
incorrect 289 33

Table 5.21: Contingency table for CE (Experiment 2): Predictions of class labels dis-
tributed according to whether they contain a seen or an unseen antonym word
pair.

trouble when the instances’ gold labels mismatch the polarity of the word pairs

they contain, except for CE where the drop in accuracy in Subset 3 of EA with

respect to the whole sample is moderate (0.058). However, in the same scenario

(Subset 3 of EA vs. whole EA), ESIM and DAM drop scores by 0.553 and 0.458

points, respectively. Our tests of independence confirm the influence of word pairs

polarities on the behavior of both ESIM (χ2(8) = 57.23, p < 0.0001) and DAM

(χ2(8) = 53.72, p < 0.0001), but the tests do not reject the null hypothesis in the

case of CE (χ2(8) = 10.78, p = 0.21), meaning that we have no evidence to support

the claim that this factor influences CE’s behavior when fed with the sample EA.

However, when the CE system faces the transformed sample, ETA, it signifi-

cantly drops accuracy by 0.22 points on those instances mismatching polarity and
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gold label, namely Subset 3 of ETA (χ2(6) = 34.37, p < 0.0001); we find a simi-

lar behavior shown by both ESIM, with a significant drop in performance of 0.368

points (χ2(6) = 103.47, p < 0.0001), and DAM, with also a significant drop of

0.437 points (χ2(6) = 136.99, p < 0.0001) (see Tables 5.22, 5.23, and 5.24.)

Comparing the scores on Subset 3 of the ex situ condition with those of Subset

3 in the in situ condition, we see a degradation of performance in the former case. It

seems that the three systems, besides relying on the polarity bias, they relayed on the

context type, being the context words in the in situ condition a more familiar type

of context for the systems, because such context words were observed at training

time.

Polarity
Prediction

Neutral Contradiction Entailment

Neutral 0 14 12
Contradiction 0 540 11

Entailment 0 2 1
None 2 23 15

Table 5.22: Excerpt of contingency table for ESIM (Experiment 2): Predictions of class
labels distributed according to the word pair polarity they match with.

Polarity
Prediction

Neutral Contradiction Entailment

Neutral 2 11 13
Contradiction 0 542 9

Entailment 0 3 0
None 1 20 19

Table 5.23: Excerpt of contingency table for DAM (Experiment 2): Predictions of class
labels distributed according to the word pair polarity they match with.

Polarity
Prediction

Neutral Contradiction Entailment

Neutral 11 11 4
Contradiction 135 280 136

Entailment 0 0 3
None 23 7 10

Table 5.24: Excerpt of contingency table for CE (Experiment 2): Predictions of class labels
distributed according to the word pair polarity they match with.
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5.8.2.3 Experiment 3: Swapping Hypernym and Hyponym Word

Pairs In In Situ Instances

We saw in Section 5.8.1.1 that the three systems dropped accuracy, by a wide mar-

gin, on the transformed sample IT H with respect to its control sample counterpart.

We investigate whether our target factors are playing a role in such a behavior.

Insensitivity Looking at the subset of transformed instances that have different class

label from those in the control sample (Subset 1 of IT H in Table 5.9), we observe

a further drop in accuracy score across the systems. Comparing accuracy on the

whole transformed sample against this subset of instances, we observe the follow-

ing drops: 0.333 points for ESIM, 0.182 points for DAM, and 0.272 points for CE.

We find strong evidence for these results to be associated with the insensitivity of

the systems to the difference between control and transformed instances, namely

the position of the word pairs swapped; this strong evidence is given by our inde-

pendence tests (ESIM: χ2(1) = 150.92, DAM: χ2(1) = 101.52, CE: χ2(1) = 90.73,

p < 0.0001) as shown in Table 5.8. These tests are computed based on Tables 5.25,

5.26, and 5.27.

Distribution of predictions
Labels predicted correct incorrect

change 70 14
no change 16 173

Table 5.25: Contingency table for ESIM (Experiment 3): Predictions of class labels dis-
tributed according to matching or not the gold labels. Only transformed in-
stances that have gold labels different from those of their control instances
counterpart are used.

Distribution of predictions
Labels predicted correct incorrect

change 115 31
no change 24 103

Table 5.26: Contingency table for DAM (Experiment 3): Predictions of class labels dis-
tributed according to matching or not the gold labels. Only transformed in-
stances that have gold labels different from those of their control instances
counterpart are used.
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Distribution of predictions
Labels predicted correct incorrect

change 59 34
no change 15 165

Table 5.27: Contingency table for CE (Experiment 3): Predictions of class labels dis-
tributed according to matching or not the gold labels. Only transformed in-
stances that have gold labels different from those of their control instances
counterpart are used.

Unseen Word Pairs We note that accuracy scores on Subset 2 of IT H , which only

contains instances that have unseen word pairs, are better for all systems than the

accuracy scores on the complete transformed sample IT H . It seems that the systems

are robust to unseen hypernym and hyponym word pairs, as opposed to when they

faced unseen antonym pairs. As a confirmation of this finding, our homogeneity

tests find no correlation between the presence of unseen pairs with incorrect pre-

dictions (ESIM: χ2(1) = 0.178, p = 0.67, DAM: χ2(1) = 0.985, p = 0.32, CE:

χ2(1) = 0.00036, p = 0.98) as shown in Table 5.8; see also Tables 5.28, 5.29, 5.30

for a view of the contingency tables used for computing the tests.

Word pairs
Predictions seen unseen

correct 395 25
incorrect 217 11

Table 5.28: Contingency table for ESIM (Experiment 3): Predictions of class labels dis-
tributed according to whether they contain a seen or an unseen antonym word
pair.

Word pairs
Predictions seen unseen

correct 420 28
incorrect 192 8

Table 5.29: Contingency table for DAM (Experiment 3): Predictions of class labels dis-
tributed according to whether they contain a seen or an unseen antonym word
pair.
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Word pairs
Predictions seen unseen

correct 332 20
incorrect 280 16

Table 5.30: Contingency table for CE (Experiment 3): Predictions of class labels dis-
tributed according to whether they contain a seen or an unseen antonym word
pair.

Polarity Looking at the accuracy results of Subset 3 of the control sample IH (Ta-

ble 5.9), we see that the three systems lose accuracy when the polarity of the word

pairs differ from the gold label of the instances they are contained in. Indepen-

dence tests strongly confirm this association, namely between systems’ error rate

and word pairs polarities (ESIM: χ2(10) = 157.76, DAM: χ2(10) = 182.76, CE:

χ2(10) = 168.40, p < 0.0001) (see Tables 5.31, 5.32, and 5.33). However, this

figure is only maintained by DAM on the transformed sample (χ2(14) = 47.71,

p< 0.0001); ESIM and CE seem to cease using polarity as a cue for predicting class

labels when faced with sample IT H , according to our independence tests (ESIM:

χ2(14) = 22.72, p = 0.06, CE: χ2(14) = 25.27, p = 0.03), which show weak evi-

dence for an association between polarity and prediction of labels.

Polarity
Prediction

Neutral Contradiction Entailment

Neutral 126 60 36
Contradiction 27 21 15

Entailment 67 54 221

Table 5.31: Excerpt of contingency table for ESIM (Experiment 3): Predictions of class
labels distributed according to the word pair polarity they match with.

5.8.2.4 Experiment 4: Swapping Hypernym and Hyponym Word

Pairs In Ex Situ Instances

In Section 5.8.1.1, we saw big drops in accuracy scores, between control and trans-

formed samples, from ESIM and CE, and a moderate, but significant, drop from

DAM. We now analyze the influence of our target factors into these results.
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Polarity
Prediction

Neutral Contradiction Entailment

Neutral 132 57 33
Contradiction 30 19 14

Entailment 64 53 225

Table 5.32: Excerpt of contingency table for DAM (Experiment 3): Predictions of class
labels distributed according to the word pair polarity they match with.

Polarity
Prediction

Neutral Contradiction Entailment

Neutral 119 68 35
Contradiction 23 20 20

Entailment 56 59 227

Table 5.33: Excerpt of contingency table for CE (Experiment 3): Predictions of class labels
distributed according to the word pair polarity they match with.

Insensitivity Accuracy scores on Subset 1 of ET H are slightly lower than the scores

for the complete sample, across all systems. Thus, it is not very clear whether

insensitivity has an impact on the systems’ behavior. However, independence tests

(see Tables 5.34, 5.35, and 5.36) show very strong evidence in favour of such an

impact (ESIM: χ2(1) = 252.27, DAM: χ2(1) = 158.62, CE: χ2(1) = 175.19, p <

0.0001) as shown in Table 5.8. Comparing the accuracy scores on Subset 1 of ET H

with those on the same subset of the in situ condition, namely Subset 1 of IT H , we

see that the three systems seem to be more insensitive to instances closer to the

training set; i.e., the three systems have lower accuracy on the Subset 1 of the in

situ than on Subset 1 of the ex situ transformed instances.

Distribution of predictions
Labels predicted correct incorrect

change 233 24
no change 98 245

Table 5.34: Contingency table for ESIM (Experiment 4): Predictions of class labels dis-
tributed according to matching or not the gold labels. Only transformed in-
stances that have gold labels different from those of their control instances
counterpart are used.
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Distribution of predictions
Labels predicted correct incorrect

change 409 38
no change 61 92

Table 5.35: Contingency table for DAM (Experiment 4): Predictions of class labels dis-
tributed according to matching or not the gold labels. Only transformed in-
stances that have gold labels different from those of their control instances
counterpart are used.

Distribution of predictions
Labels predicted correct incorrect

change 215 49
no change 95 241

Table 5.36: Contingency table for CE (Experiment 4): Predictions of class labels dis-
tributed according to matching or not the gold labels. Only transformed in-
stances that have gold labels different from those of their control instances
counterpart are used.

Unseen Word Pairs Accuracy scores on Subset 2 of ET H , when compared to the

scores on the whole sample, seem to indicate that all systems struggle with instances

containing unseen word pairs. However, homogeneity tests, based on Tables 5.37,

5.38, and 5.39, find either no evidence or weak evidence for such an indication

(ESIM: χ2(1) = 0.183, p = 0.66, DAM: χ2(1) = 2.43, p = 0.11, CE: χ2(1) =

0.352, p = 0.55). This evidence, together with that from Experiment 3 in the in

situ condition, works towards the hypothesis that this class of systems are robust to

unseen hypernym and hyponym pairs.

Word pairs
Predictions seen unseen

correct 352 19
incorrect 256 17

Table 5.37: Contingency table for ESIM (Experiment 4): Predictions of class labels dis-
tributed according to whether they contain a seen or an unseen antonym word
pair.
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Word pairs
Predictions seen unseen

correct 484 24
incorrect 124 12

Table 5.38: Contingency table for DAM (Experiment 4): Predictions of class labels dis-
tributed according to whether they contain a seen or an unseen antonym word
pair.

Word pairs
Predictions seen unseen

correct 327 17
incorrect 281 19

Table 5.39: Contingency table for CE (Experiment 4): Predictions of class labels dis-
tributed according to whether they contain a seen or an unseen antonym word
pair.

Polarity When we compare accuracy scores on Subset 3 with the scores on the

complete sample, for both control and transformed samples, we observe a tendency

across all systems, namely a drop in performance; i.e., the systems lose accuracy

when the polarities of the word pairs mismatch the gold labels of the instances.

This tendency is strongly backed up by independence tests in both the control

sample (ESIM: χ2(10) = 176.38, DAM: χ2(10) = 312.67, CE: χ2(10) = 261.77,

p < 0.0001) and the transformed sample (ESIM: χ2(14) = 105.70, DAM: χ2(14) =

258.09, CE: χ2(14) = 56.52, p < 0.0001) as shown in Table 5.8. Tables 5.40, 5.41,

and 5.42 show an excerpt of the contingency tables used for computing the statistics

for the transformed sample.

Polarity
Prediction

Neutral Contradiction Entailment

Neutral 83 26 195
Contradiction 30 12 46

Entailment 6 15 172
None 10 1 25

Table 5.40: Excerpt of contingency table for ESIM (Experiment 4): Predictions of class
labels distributed according to the word pair polarity they match with.
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Polarity
Prediction

Neutral Contradiction Entailment

Neutral 211 9 84
Contradiction 25 16 47

Entailment 13 16 164
None 14 4 18

Table 5.41: Excerpt of contingency table for DAM (Experiment 4): Predictions of class
labels distributed according to the word pair polarity they match with.

Polarity
Prediction

Neutral Contradiction Entailment

Neutral 116 19 169
Contradiction 29 12 47

Entailment 27 10 156
None 10 4 22

Table 5.42: Excerpt of contingency table for CE (Experiment 4): Predictions of class labels
distributed according to the word pair polarity they match with.

5.9 Discussions and Conclusions
We start this section by answering our research questions and then we elaborate on

each of them and on the results obtained from the experiments done.

We found that none of the systems under study is robust on all of our trans-

formed samples when accuracy scores on these samples are compared to accuracy

scores on the SNLI data. In some cases, ESIM and DAM achieve high scores on

our samples, but we show via statistical tests that part of the reason for these scores

is due to the influence of confounding factors. We found that the way in which

the systems are affected by these confounding factors is very similar; in most of the

cases, the three systems use polarity of word pairs to predict class labels and in other

cases they are benefited by being insensitive to transformations in the instances. In

addition, the systems are affected when instances contain unseen antonym word

pairs, but surprisingly, they are not affected by unseen hypernym-hyponym pairs.

We believe that the three systems are able to cope with unseen hypernym and hy-

ponym word pairs because they may have learned some characteristics of hyper-

nymy, such as generality and similarity (we will elaborate on this two features on
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Chapter 6); for example, if a system sees at training time entailment instances where

hyponym word pairs appear, such as (cat,animal), then it will learn for this class of

instances that the more abstract concept (in this case animal) will always appear in

the hypothesis sentence, while the less abstract concept (cat in our example) will ap-

pear on the premise sentence; and similarly with other pairs such as (dog,animal),

(car,vehicle), (bicycle,vehicle), and so on; thus, the systems probably learned that

one concept is more general than the other. The systems probably also learned

that both concepts are similar because they appear in similar contexts; for example,

cat and animal will often appear with words such as food, prey, hunt, eat, and so

on. Furthermore, hypernym pairs, such as (animal,cat), tend to appear in neutral

instances, providing similar information as the one we just described. Therefore,

when the systems are presented with a new hyponym pair, say (dog,animal), they

may infer that this is a hyponym pair because animal is a concept with the charac-

teristics of being abstract (general) across instances and being similar to dog. And

similarly for the hypernym pair (animal,dog).

5.9.1 On Systems’ Robustness on Transformed Instances Con-

taining Antonym Word Pairs

Our chi-square tests provide evidence for the targets factors playing a role in the re-

sponse of the systems. Thus, these statistical tests show that some of the reasons for

ESIM and DAM showing an apparently robust behavior, and for CE not dropping

accuracy dramatically, are two out of three of the target factors. On the one hand,

the three systems seem to be insensitive to small changes, such as those made by

transformation Tsub which is a simple substitution of a word in either the premise or

hypothesis sentence. This insensitivity seems to be a possible explanation of why

these systems achieved a very good accuracy on the transformed sample ITA1. The

systems’ insensitivity to the difference between the control and transformed sam-

ples (IA and ITA1) helped them to predict the same labels for both samples, namely

contradiction, achieving a very good score on the transformed sample because the

gold labels of these instances turned out to be the same as the gold labels of the

control instances. This, in turn, also explains why the two systems have a big gap
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in performance between sample ITA1 and those transformed samples that have dif-

ferent gold labels from the control sample, namely ITA2 and ITA3.

Another possible reason for ESIM’s and DAM’s good scores, though unrelated

to what we call robust behavior, and for CE not losing more accuracy points, is

the polarity of word pairs. The three systems learned to correlate the most frequent

class a word pair is seen at training time with the label of the instance it is con-

tained in; this correlation influenced the systems’ response each time a polarized

word pair was contained in an instance. In simple words, the systems learned that if

a word pair (w1,w2) happens mostly in contradiction instances, then when they are

fed with a test instance containing this word pair it is likely that such an instance

will be of class contradiction as well, and thus the systems predict such a class label

perhaps without reading the surrounding words. The systems learned to do so due

to the design of the SNLI dataset. In the test sets we created, we can observe that

annotators tend to use antonyms in contradiction instances much more often than

on entailment or neutral instances. And similarly with hypernym-hyponym pairs

with the latter two classes. In this way, ESIM, DAM, and CE learned to predict con-

tradiction class based on whether an instance contained a polarized antonym pair.

And similarly for entailment and neutral classes containing hypernym or hyponym

pairs.

On the other hand, the presence of unseen antonym pairs affected the perfor-

mance of the three systems, though the number of instances containing such pairs

is very low (around 7%); thus the overall performance on the transformed sample

did not suffer such a big drop. Nevertheless, on this small sample our independence

tests show strong evidence for ESIM, DAM, and CE not having learned a symmetric

antonym relation. Though our statistical tests suggest that the systems did not learn

antonymy, this evidence, however, does not imply that the systems are not able to

learn this semantic relation from data. It may be possible that with more instances,

or with a different design of the data, the systems are able to do so.

Thus, overall, insensitivity and polarity seem to have contributed to the seem-

ingly robust performance of ESIM and DAM on contradiction instances in the trans-



208Chapter 5. Behavior Analysis of ESIM, DAM, and CE: Evaluating Robustness

formed sample ITA1, with a limited number of unseen antonym pairs not deeply

affecting its overall score. Therefore, we conclude that both ESIM and DAM are

not as robust as its overall accuracy score implies on any of the transformed in situ

samples, namely ITA1, ITA2, and ITA3.

Analyzing the same class of instances, contradiction, but on the ex situ condi-

tion, we find very similar results to those in the in situ condition. The three systems,

again, use polarity as a cue to predict the class label of an instance. And their perfor-

mance is hurt by unseen antonym pairs, though the number of instances containing

such a type of pair is again 7%, thus any damage to score is tiny. Overall, polar-

ity seems to be a plausible explanation for why ESIM and DAM are robust in both

cases, the ex situ control condition (EA) and the challenging sample (ETA), as our

statistical tests suggest. The case of CE is a bit different from the cases of the other

two systems; CE gets poor scores on both samples. A possible explanation for such

a low score on the sample EA may be because it does not use polarity as a cue for

predicting class labels, as the other two systems do. However, CE seems to use

polarity for predicting labels on the transformed sample, as both our statistical tests

show and as we can see on the score of Subset 3 from ETA where it performs even

poorer on instances where polarity cannot be used.

However, we are aware that other possible factors, such as confounding factors

or systems’ abilities learned, may also play a role in their behavior.

5.9.2 On Systems’ Robustness on Transformed Instances Con-

taining Hypernym-Hyponym Word Pairs

A clearer picture of the systems’ non-robust behavior can be seen when the types

of instances are entailment or neutral and they contain hypernym or hyponym

word pairs. This behavior is clearer than with contradiction instances containing

antonyms pairs since the difference between control and transformed samples is ex-

posed: 42% of transformed in situ instances change label with respect to their con-

trol instances counterpart, while the same figure is observed in 93% of the trans-

formed ex situ instances. In both experimental conditions, the three systems see

their performance significantly affected by their insensitivity to the small change
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generated by our transformation, specially in the in situ condition where we see big

drops in accuracy on the subset of transformed instances that have different label

from the control instances, being ESIM the most affected with 0.333 points lost.

If insensitivity was the only factor affecting the systems’ behavior then it would

be plausible to think that the biggest drops in score from the control sample to the

transformed sample should be seen in the ex situ condition, since changes in labels

occurs in almost all the transformed sample (with respect to the control sample).

However, it is the other way around; the biggest drops in score, for the three systems,

are seen in the in situ condition, i.e. the differences in score between IH and IT H

is bigger than the difference between EH and ET H . A possible explanation for this

phenomenon is the influence of polarity on the systems’ behavior. In the in situ

condition, we find weak evidence for ESIM and CE using polarities of word pairs

to predict labels of the transformed instances. In contrast, in the ex situ condition

there is strong evidence for the systems using polarity. However, DAM seems to

use polarity in both conditions, in situ and ex situ; thus, it may be the case that this

system’s behavior is affected by the form of the ex situ instances. Overall, it seems

that polarity of word pairs may be a crucial factor for the performance of the three

systems.

In contrast to the case of contradiction instances containing antonym word

pairs where the three systems failed to learn antonymy, the systems seem to have

learned an asymmetric hypernymy relationship. Our statistical tests show strong ev-

idence for the systems to correctly responding to unseen hypernym-hyponym pairs,

a clear proof of robustness. We can support this finding with our main finding in

Chapter 6; it seems that ReLe systems are able to learn hypernymy.

5.9.3 On the Accuracy on Transformed Instances vs. Accuracy

on SNLI Development Set

Up to this point we have contrasted a control sample with a transformed sample

for a combination of experimental conditions and classes of instances. Across these

studies, we have seen that accuracy scores showed a misleading picture of ESIM and

DAM on transformed instances of class contradiction; it seemed that both systems
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had properly labelled these instances. However, we provided statistical evidence

against a robust behavior and in favour of confounding factors playing a role in

the systems’ behavior. Nevertheless, accuracy scores provided a signal for a clear

impairment of not only ESIM and DAM but also CE on transformed instances of

classes entailment and neutral, regardless of the experimental condition. Our sta-

tistical tests confirmed such an impairment by providing evidence for our target

factors having an effect in the systems’ behavior. Nonetheless, we saw evidence of

robust behavior when the three systems faced unseen hypernym-hyponym pairs.

However, these analyses may be disembodied from a wider context: How do

these drops in performance compare with the overall performance of the system?

The accuracy scores of ESIM, DAM, and CE on the development set of the

SNLI dataset are 0.882, 0.854, and 0.782 points, respectively. Comparing these

scores to the scores obtained for any transformed in situ sample, we find only one

case where ESIM and DAM seem to be robust exceeding any expectation, namely

on the transformed sample ITA1. Nevertheless, we already explained how the scores

on this sample are deceptive and we showed that ESIM and DAM actually fail to

be robust on this sample. In the case of CE, there is only one case where it does

not drop accuracy in a drastic way, i.e. on ITA1, though reasons for this behavior

are the same as the reasons for the apparent robust behavior of the two other sys-

tems. On the other hand, if we look at the ex situ samples, we find one case where

ESIM and DAM, again, seem to exceed expectations with respect to their overall

performance on the SNLI development set, namely on sample ETA with scores of

0.933 and 0.929 points, respectively. However, we can attribute, to some extent, the

exploitation of the polarities of word pairs to their strong performance; thus leaving

unclear to what extent the accuracy results observed really are due to robust behav-

ior. Thus, we conclude that, in general, ESIM’s and DAM’s behavior in our test sets

mismatch their state-of-the-art performance on the SNLI development set by failing

to maintain their robustness.
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5.9.4 On Common Behavioral Patterns Across the Systems

A natural follow-up question to our previous conclusion is that of comparing the

behavioral patterns we observed from the three systems on our test sets: Are there

any common behavioral patterns among these ReLe systems? According to our

experiments, and as we have seen through out this section of discussions, the for-

mer state-of-the-art system, DAM, behaves in most cases similarly to ESIM; it is

insensitive, it uses polarity as a cue for predicting labels, it seemed to have not learn

antonymy, though it seemed to have learned hypernymy. All of these behavioral

patterns are found at both systems at par in almost all the test samples. Thus ro-

bustness of these two systems are comparable. However, there are two cases where

DAM shows better performance than ESIM. The first one is on the sample EH , where

DAM loses minimal accuracy with respect to its accuracy on the development set of

the SNLI dataset; on this sample, ESIM is not near to match its own accuracy score

on the development set. The second case is when we compare scores on the control

samples IH and EH ; DAM is not affected by the context words surrounding hyper-

nym or hyponym word pairs and achieves similar results on both samples, whereas

ESIM is affected by such a factor. Another comparison we provide is against a

simpler version of ESIM, namely CE. Similar to our observations from the previous

comparison, the same behavioral patterns of ESIM are reproduced by CE in most of

the cases, though, not surprisingly, CE achieves worse accuracy scores than ESIM,

as indicated by the difference in scores in the SNLI development set where ESIM is

better by 0.10 points.

5.9.5 On the Limitations of This Work

Finally, we are aware of limitations in this work that may have influenced the out-

comes. First of all, even though our analyses are fine-grained, they are not at the

deepest level of granularity. We analyzed both the behavior of the systems and some

confounding factors under two experimental conditions, in addition to sub-dividing

each one by the type of class label and word pairs; however, we do not account for

interactions of these factors. Doing so would lead to a combinatorial number of

outcomes (across the levels of each of the factors), probably hazarding the intelligi-
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bility of the analyses. We may lose some very fine-grained details, but our current

results guarantee internal validity given the high confidence of our statistical tests.

Another limitation is the control of confounding factors. Given that we use

original instances from the SNLI dataset as control instances, when we perform our

transformations, possible confounding factors arise that are very difficult to control

for. For example, intra-sentence word pair interaction; when we move a word from

the hypothesis to the premise sentence, and vice-versa, we force this word to interact

with the context words surrounding it, and some of these interactions may be new

(unseen in the training set.) This factor may, indeed, influence the response of the

systems in such a way unknown to us. A possible solution to this problem is to hand-

craft instances where we control for this factor; nevertheless, this control would lead

to smaller samples than those we use. Furthermore, there are clear advantages of

using data from the original dataset, rather than using data crafted under laboratory

conditions. Even though some factors are left without a proper control, the validity

of the results is guaranteed to apply to the original SNLI data, whereas in the case

of a laboratory sample, the results, though thoroughly validated, are not guaranteed

to apply to the data the system was trained with, thus leaving an uncertainty of the

extent to which the behavior under study is valid in the home environment of the

system under study.



Chapter 6

Internal Analysis of GloVe:

Predicting Hypernymy

6.1 Introduction
Word embeddings are widely used as features in many natural language processing

tasks, such as question answering (Kumar et al., 2016), sentiment analysis (Tai

et al., 2015), or natural language inference (Parikh et al., 2016) as we saw in the

previous chapter. These embeddings are dense vectors that represent concepts in a

distributed way. There exists specially dedicated ReLe systems that only learn word

embeddings that are then used by other machine learning systems in NLP tasks

such as the ones described above. GloVe is one of the most popular ReLe systems

dedicated to learning word embeddings (Pennington et al., 2014) (for details see

Section 6.6.2).

However, because of their opaque nature it remains unclear what linguistic

phenomena are captured. A hint of the information learned by GloVe word embed-

dings is given by the objective function used for training the system. This function

is designed to capture both a sense of similarity and a sense of juxtaposition among

concepts. For example, the concept canine is similar to the concept feline in the

sense that both are animals, but at the same time they differ because they are dif-

ferent types of predators. GloVe word embeddings are expected to capture both

the similarity and the difference between these two concepts which can be recov-
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ered via vector operations over these embeddings. For example, by applying the dot

product to the embeddings of feline and canine we can measure how similar the two

concepts are in vector space; similarly, by applying a vector difference to the two

embeddings we can measure how different they are.1 But, as said before, knowing

if any other phenomena is encoded in the embeddings is unclear. The ability of

uncovering such phenomena not only allow us to better understand the system, but,

in addition, to further explore ways of properly exploiting the word embeddings as

unsupervised pre-training in NLP tasks (Erhan et al., 2010).

A desirable semantic relation to be encoded in any representation is hyper-

nymy. This relation between concepts provides a hierarchical structure where the

concept in the upper level is an abstraction of the concept in the lower level; i.e., the

concept below in the hierarchy is a type of the above concept. For example, a dog is

a type of canine which in turn is a type of animal. When we speak about abstracting

a concept into a more generic concept we refer to a hyponymy relationship, such as

when we say that a dog is a canine. When we ground a concept into a more specific

concept then we refer to a hypernymy relationship, such as when we say that animal

includes the concept of canine. In order to analyze if a ReLe system has captured

this semantic relation, it is useful to have a taxonomy from which examples can

be sampled and thus use them to test the system (or its representations learned.)

Nonetheless, creating this type of dataset is not simple; some concepts are polyse-

mous (have different senses) and thus difficult to correctly categorize (such as bank

which can refer to a type of seat, a shore, or a place where financial operations are

carried out); other concepts are also difficult to categorize because their properties

do not match all the properties of a category (a penguin cannot fly but it is a type of

bird), and so on. Thus, having appropriate hypernymy data is a crucial aspect for

testing whether any system, or representation, has captured this relation.

1We note that the values obtained by these two operations are relative rather than absolute. For
example, consider the concepts canine, feline, and chair; we would expect that the dot product
between the corresponding embeddings of canine and feline is bigger than that of either canine and
chair or feline and chair, since chair is unrelated to any of the other two concepts. Similarly, we
would expect that the vector difference of the corresponding embeddings of canine and feline is
closer to the vector difference of the concepts dog and cat, rather than to the vector difference of the
embeddings of chair and sofa since these last two concepts are not under a predator structure.
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Previous work has provided internal analyses of certain ReLe systems at the

parameter level –word embedding level– in order to figure out whether the repre-

sentation learned has captured hypernymy (Weeds et al., 2014; Roller et al., 2014;

Vylomova et al., 2016). However, integrating the results obtained across this body

of research has been difficult, and previous analysis has shown inconsistencies in

the results and has suggested that previous works failed to successfully extract hy-

pernymy information from the embeddings (Levy et al., 2015). Several factors have

played a role in the task of extracting hypernym relations, and thus achieving a

conclusion has become difficult, and while the nature of these factors is mostly

technical, i.e. related to elements in the design of the experiments, the most cru-

cial factor has been the hypernymy data used. Different ReLe systems have been

studied under two possible regimes, supervised and unsupervised; different scoring

metrics have been used to report results, some of them not entirely appropriate for

the task at hand; furthermore, different hypernymy datasets have been used, giving

different results, and some of them have been found to contain confounding factors,

such as lexical memorization which can influence the results to show a misleading

picture where it is believed that the system has excelled to learn hypernymy. Hence,

the combination across levels of these factors have made it difficult to integrate and

interpret the results; though we emphasize on the fact that the datasets play a big

role in how the same ReLe system can be pictured as either a failure or a success in

capturing hypernymy just by using a different dataset.

In this work, we provide a further internal analysis of a ReLe system with the

objective to recover hypernymy from its parameters. But, we propose to do so in a

properly controlled experiment where we can eliminate possible sources of confu-

sion. Therefore, we propose to fix to a particular ReLe system, namely GloVe (di-

mensionality d = 50), due to its wide use in the NLP community and the availability

of its word embeddings. We also propose to use two metrics, namely accuracy and

AUC ROC (not used before in the community for this task) appropriate for the task

at hand. We choose a supervised approach to recover hypernymy, rather than an

unsupervised one, because it has received more attention from the community and,
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thus, it is in a more mature state. Having fixed these factors, we propose to study

the influence that different datasets have for predicting hypernymy from GloVe word

embeddings. This study poses some natural questions: How can we study the influ-

ence of the different datasets on the results? How can we compare which dataset is

more useful for extracting hypernym relations from word embeddings? How can we

analyze the datasets? I.e. how can we characterize the datasets in order to conclude

which one represents a better choice? Can we extract hypernymy from the word

embeddings via any of the target datasets? To do the comparison of the datasets, we

take motivation from previous work in the computer vision community (Torralba

and Efros, 2011) where biases and confounding factors are removed from vision

datasets in order to fairly compare them. Hence, we aim to conclude to what extent

we are able to extract hypernyms from GloVe embeddings, what are characteristics

of a good hypernymy dataset, and which dataset from the literature fulfills these

characteristics.

6.2 Problem Definition
We aim to know whether GloVe word embeddings encode hypernymy information.

To test this, we use supervised classifiers that predict if two concepts, represented by

word embeddings, are under a hypernymy relationship. The input to the classifiers

are only the word embeddings of the two concepts, and the output is the probability

of the two concepts being in a hypernymy relationship. However, the experimental

design for such a supervised task can be easily affected by some factors, where the

choice of dataset may be the most important one. Therefore, we define our problem

as follows. Given both the embeddings learned by GloVe and a set of hypernymy

datasets, we aim to provide controlled experiments where we can study how the

datasets influence the decision of the classifiers, and how the correct choice of a

dataset can allow us to conclude whether GloVe embeddings have captured hyper-

nymy information or not. To do this, we propose the following setup. First, we

propose to use two classification measures widely used in other machine learning

communities for evaluating classifiers. Second, we propose to study the influence
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of six different hypernymy datasets on the classifiers’ ability to recover hypernymy

from word embeddings; this study is carried out by comparing in a fair way how

well the classifiers can extract hypernymy given each of the datasets. Third, we pro-

pose to analyze why a dataset may or may not be useful for extracting hypernymy,

and so, explain the results from the comparison of the datasets.

6.3 Research Questions and Hypotheses
Our central research question is about understanding what information has been

learned by the GloVe system. More concretely, we ask whether GloVe has captured

hypernymy information in its parameters –word embeddings. Our interest in this

question relies in the fact that the objective function for training GloVe does not

have an extrinsic component dedicated for learning hypernymy; thus, a controlled

study is the only way to answer our central question. With this question in mind,

and taking into consideration the results from previous work where no consensus

has be achieved, we pose the following questions.

Research Questions

1. How can we fairly compare existing hypernymy datasets?

2. What confounding factors are to be controlled in order to compare the

datasets? I.e. What are possible confounding factors in the datasets that may

influence the decision of the classifiers?

3. How can we control for such confounding factors?

4. Are accuracy and AUC ROC (Area Under the Curve of the Receiver Op-

erating Characteristic) appropriate measures for evaluating classifiers in this

task?

5. What characteristics make a dataset consistent and useful for recovering hy-

pernymy from word embeddings? I.e. how can we characterize a hypernymy

dataset?

• How can we measure these characteristics in a dataset?
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• How can we corroborate the value of these characteristics?

Hypotheses

1. We hypothesize that both accuracy and AUC ROC are suitable metrics for

evaluating binary classifiers, as previous work in the machine learning com-

munity has shown.

2. We hypothesize that one possible confounding factor, previously exposed by

Torralba and Efros (2011) for comparing visual datasets, has to be controlled

in order to compare the hypernymy datasets, namely the dataset size.

3. We also hypothesize that an appropriate way of comparing the datasets, as

proposed by Torralba and Efros (2011), is via cross-test evaluations where a

classifier trained on a dataset Di is tested not only on the test set of Di but also

on the test sets of other datasets.

4. Based on previous work in psychology (Murphy, 2004), and based on our

own observations of hypernymy data, we hypothesize that any consistent and

useful hypernymy dataset should encode two important properties for the tar-

get phenomena, which we call generality and similarity.

6.4 Contributions
• Our main contribution is focused on understanding a specific aspect of ReLe

systems, the ability to learning a linguistic phenomena as a side effect of the

whole learning procedure. In this sense, we provide evidence towards GloVe

word embeddings encoding hypernymy information.

• To achieve our main contribution, we provide a controlled comparison of hy-

pernymy datasets. We study six commonly used hypernymy datasets in order

to figure out if any of them is a useful dataset to recover hypernymy.

• We also analyze the characteristics that we propose that make a hypernymy

dataset useful for recovering hypernymy.
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• Based on our analysis, we provide a way to improve hypernymy datasets, i.e.

we develop a sampling procedure based on the characteristics of hypernymy

that allows a classifier to improve its accuracy score.

• Finally, we analyze to what extent accuracy and AUC ROC are suitable for

assessing classifiers in the task of hypernym extraction.

6.5 Scope and Limitations
We study one specific ReLe system, namely GloVe, which means that our results

may not generalize to other ReLe systems. Furthremore, we study whether GloVe

has captured a specific phenomena, namely hypernymy. Thus, the conclusions that

we achieve may not apply to any other semantic relation, such as antonymy or

meronymy. In addition, we are aware that we did not study all the existing hyper-

nymy datasets in the literature; we targeted those most commonly used, but we leave

for future work the analysis of the rest of the datasets. Furthermore, our analysis of

hypernymy datasets may provide a schema (or at least an idea) of how to analyze

other types of datasets, but to what extent this is the case is unknown to us and such

endeavour is out of the scope of this work.

6.6 System Under Study
In this section we describe GloVe, our target system, and the data used for training

it.

6.6.1 Wikipedia and Gigaword Data

The version of GloVe that we analyze was trained using a combination of two

datasets, namely Wikipedia 2014 and Gigaword 5 (Parker and et al., 2011). The first

dataset is the collection of Wikipedia articles from 2014 (all available documents

in English.) The second dataset is a collection of English news text from seven

sources, namely the Agence France-Presse, the Associated Press Worldstream, the

Central News Agency of Taiwan, the Los Angeles Time/Washington Post Newswire

Service, the Washington Post/Bloomberg Newswire Service, the New York Times
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Newswire Service, and the Xinhua News Agency; this collection was done by the

Linguistic Data Consortium from the University of Pennsylvania.

6.6.2 GloVe: Global Vectors

GloVe (Pennington et al., 2014) is a ReLe system that learns word embeddings

based on the auxiliary task of predicting occurrence counts of pairs of words; its

formulation is similar to that of a matrix factorization model (Section 2.1.1.1.) The

objective function it minimizes is the following:

J(θ) =
1
2

|V |

∑
i, j=1

f (Xi j)(wT
i w̃ j− logXi j) (6.1)

This equation is an approximation of the ratio of co-occurrence probabilities:

p(wordk|wordi)

p(wordk|word j)
(6.2)

Where wordk is for all words in the vocabulary; the function f () in Equation

6.1 is a weighting function; it gives higher weight to more frequent word pairs than

to rare ones. Xn×n is a matrix of co-occurrences (rows and columns correspond

to words in a vocabulary V of size n), and, therefore, Xi j is the count of word wi

co-occurring with word w j in a corpus. The parameters are the word embeddings

wi and w j. We notice that in Equation 6.1 the tilde on the embedding of word

w j indicates that this embedding comes from a set of embeddings associated to the

columns of matrix X, whereas the embedding of word wi comes from a set of vectors

associated to the rows. This design –having one set of embeddings for columns and

one set for rows– corresponds to a matrix factorization model.

After the word embeddings are learned, via a gradient descent algorithm, they

are ready to be used as features in a downstream task. An excerpt of the word

embedding learned for the concept cat is [0.45281 -0.50108 ... 0.71278]; as we

see, an embedding is a continuous vector of fixed dimension. Since two sets of

embeddings are learned for the same words, we either take only one set or linearly

combine both sets.

GloVe embeddings evaluated on the tasks of similarity and analogy provided
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state-of-the-art results on the datasets of wordsim353 (Finkelstein et al., 2002) and

(Mikolov et al., 2013) at the time of publication of the corresponding article. These

results seem to indicate that the vector space of GloVe captures some semantic

information.

6.7 Methods and Materials

6.7.1 Data

Here we describe several aspects related to our analysis of hypernymy datasets.

First, we describe what is a hypernymy dataset (Section 6.7.1.1); then, we explain

a confounding factor found in some datasets, namely lexical memorization (Section

6.7.1.2); after that, we describe the six hypernymy datasets that we analyze (Section

6.7.1.3); finally, we describe how we control for some factors on the datasets in or-

der to produce controlled datasets to fairly compare them for the task of hypernymy

extraction from GloVe embeddings (Section 6.7.1.4).

6.7.1.1 A Hypernymy Dataset

An instance in a hypernymy dataset is of the form (ci,c j, label), where ci and c j

each refer to a concept, and label refers to whether the two concepts are in a hyper-

nym relation. We say that a concept ci takes the position of a hyponym and c j takes

the position of a hypernym. For example, (dog, animal, True) is a positive instance

where dog is positioned in the slot corresponding to a hyponym and animal is po-

sitioned in the slot corresponding to a hypernym; thus, this positive instance can be

read as a dog is a type of animal, which is a true statement. Examples of negative

instances are the following:

(6.3) (car, animal, False)

(6.4) (animal, car, False)

(6.5) (dog, cat, False)

(6.6) (dog, invertebrate, False)

(6.7) (animal, dog, False)
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These are negative instances since they do not fulfill a hypernymy relation. For

example, in Example 6.3 we can clearly recognize that a car is not a type of animal;

we also recognize that a dog is not a type of invertebrate (Example 6.6); and the

same with the rest of the examples. We now categorize in a fine-grained detail these

types of negative instances according to our hypothesis that there are two important

properties for characterizing hypernymy, namely generality and similarity.

These negative instances differ along three dimensions, two of them mentioned

above (generality and similarity), and the position that a concept takes within the

instance (hyponymy or hypernym). In the negative instance of Example 6.3, car is

less abstract (general) than animal, and both concepts are dissimilar from each other.

In Example 6.4, similarly to the first example, the relations between both concepts

are the same, but their order within the instance is different; in these two examples

the order of the concepts does not matter, since they do not fulfill the similarity

constraint, i.e. they are unrelated concepts. In Example 6.5, both concepts are

similar but none of them is more abstract than the other. In Example 6.6, dog is less

abstract than invertebrate, and both are similar to some degree, but, indeed, a dog

is a vertebrate. Finally, in Example 6.7, we see a true hyponymy relationship, and

not a hypernymy relationship, due to the order of the two concepts.

We note that the datasets under study have similarities and dissimilarities.

First, all the datasets contain the same type of positive instances since there is only

one type, as shown above, but they may not contain all the types of negative in-

stances we described. Furthermore, the sources where the instances come from,

the sampling process, and the motivation for creating the datasets are different, and

therefore, the resulting datasets differ mainly in sample size, in the ratio of positive

vs. negative instances, and the quality of the instances (some datasets contain more

noisy instances than others which affect the performance of the classifiers.)

We also note that since some datasets were constructed with a different objec-

tive from that of studying hypernymy, these datasets had to be tailored for the task

of predicting hypernym relations. Therefore, we use the tailored version of those

datasets as provided by Levy et al. (2015). In the following sections we describe
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both the original datasets and how they were tailored for hypernymy prediction.

Table 6.1 shows a summary of the datasets. These datasets, in turn, will be modi-

fied according to our experimental design in order to control for two confounding

factors, namely sample size and imbalance (Section 6.7.1.4.)

6.7.1.2 Lexical Memorization as a Confounding Factor

Previous work exposed a confounding factor lying in some hypernymy datasets,

namely lexical memorization (Weeds et al., 2014; Levy et al., 2015; Vylomova et al.,

2016). If a concept c j is mainly seen in the position of a hypernym concept across

positive instances, as in (ci,c j,True), then the classifier may memorize that c j is a

hypernym of the concept in the hyponym position, and thus it may predict a true

hypernym relationship between the two concepts regardless of the information con-

tained in the word embeddings representing these two concepts. To control for this

factor, previous work has suggested having disjoint vocabularies between training

and test sets. In this way, the concept c j from the example above will never appear

on the test data and thus cannot influence the score of the classifiers.

6.7.1.3 Hypernymy Datasets From the Literature

Baroni Dataset Baroni et al. (2012) extracted 9734 positive examples of hyper-

nymy from WordNet; all of these examples were manually checked to discard noisy

ones. After this selection process, they kept 1385 examples. They created two types

of negative instances; on the one hand, they selected 33% of the positive instances

and swapped the concepts in order to obtain hyponym pairs, i.e. the concept in the

hyponym position was swapped with the concept in the hypernym position; the type

of negative instance obtained with this swap is similar to Example 6.7. On the other

hand, they randomly paired concepts from different positive instances, thus obtain-

ing instances similar in form to the Examples 6.3 and 6.6. At the end, Baroni et al.

(2012) obtained 1385 negative instances, all of them manually checked in order to

discard any positive instance. Since the number of positive and negative instances

is the same, this dataset is balanced. In order to control for the lexical memorization

factor, Levy et al. (2015) deleted those instances that had a concept seen in training

data and a concept seen in test data. The sample size of the resulting training set
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is 791 instances where roughly 49% are positive instances, and the test set contains

536 instances almost perfectly balanced between positive and negative.

Bless Dataset Baroni and Lenci (2011) created a dataset with the objective of se-

mantic evaluation for distributional models. This dataset includes instances of sev-

eral semantic relations such as meronymy (for example, (wheel, car), since one is

a part of the other), hypernymy, co-hyponym (for example, (cup, glass), since both

are sister concepts in a taxonomy), random (for example, (car, bird), since both

concepts have no relation with each other), among others. Most of the 200 concepts

filling the hyponym position in an instance come from the McRae dataset (McRae

et al., 2005). These concepts are distributed among 17 classes of concepts that in-

clude both living and non-living entities (vehicle, animal, etc.). Also, these concepts

are neither ambiguous nor highly polysemous. The concepts in the hypernym po-

sition within the instances come from several resources such as the McRae dataset,

WordNet (Fellbaum, 1998), ConceptNet (Liu and Singh, 2004), and Wikipedia, and

were validated by the authors. The concepts, for instances of the random relation,

were randomly drawn from the positive instances of the other relations; then, crowd-

source annotators confirmed whether there was a truly random relation between the

two concepts. In order to obtain a hypernymy dataset, Levy et al. (2015) used the

instances of the hypernymy relation as positive instances and the positive instances

from meronym, co-hyponym, and random relations as negative instances. The sam-

ple size of the train set is 3225 instances with approximately 90% negative ones.

The test set contains 3650 instances where 92% are negative ones. The resulting

training and test sets have disjoint vocabularies.

Kotlerman Dataset This dataset is a version of the lexical entailment dataset of

Zhitomirsky-Geffet and Dagan (2009). This dataset was created with the purpose

of evaluating directional-distributional similarity measures. Such a measure deter-

mines whether two concepts (ci,c j) hold in an entailment relation, in the sense that

a concept c j is implied in the meaning of a concept ci; for example, (chess, game,

True) and (divorce, marriage, True) are positive instances of entailment (Kotlerman

et al., 2010). In addition, synonyms are considered as two-way positive instances,
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such as (car, automobile, True) and (automobile, car, True). Each instance in the

dataset was obtained using the LIN measure (Lin, 1998) which computes the sim-

ilarity of two concepts based on their distributional vectors. The similarity is pro-

portional to the number of features both concepts have in common. The instances

obtained by this measure were then manually annotated as either positive or nega-

tive leading to a sample size of 3772 instances. Levy et al. (2015) obtained disjoint

training and test sets using those instances from which 739 instances were kept

(around 69% are negative instances.) The test set contains 621 instances with 26%

positive instances.

Levy Dataset Levy et al. (2014) gathered a set of 68 million propositions in the

form (subject, verb, object) from Google’s syntactic n-grams, for example (aspirin,

cure, headache). They kept propositions from the health-care domain and manu-

ally discarded noisy ones. The remaining triples were manually annotated by native

English speakers for the task of entailment. From the set of entailing propositions,

Levy et al. (2015) extracted entailing nouns that shared two arguments while keep-

ing a disjoint vocabulary between training and test sets. The meaning of entailment

between two propositions applied by (Levy et al., 2014) is based on the ability of a

human to decide whether one proposition is true given the other one. The resulting

training set consists of 2932 instances where only 8% are positive. The sample size

of the test set is 2985 instances with 93% being negatives.

Turney Dataset Turney and Mohammad (2015) created this dataset in order to eval-

uate lexical entailment. In order to know whether a concept ci entails another con-

cept c j, a semantic relation bounding the two concepts should be taken into con-

sideration as background knowledge; thus, entailment is derived from the meaning

of this semantic relation, provided that there is little ambiguity in the meaning of

the concepts, i.e. they are not highly polysemous. Then, Turney and Mohammad

(2015) transformed the SemEval-2012 dataset to expand from 79 to 158 semantic

relations by taking the reversed relations as new types of relation. Both symmetric

and asymmetric relations were considered, including synonymy. Then, Turney and

Mohammad (2015) manually annotated each relation as either a positive or negative
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entailment. Levy et al. (2015) obtained a disjoint training set comprising 539 pairs

from which roughly 52% are positive. The test set has 507 pairs where 47% are

positive.

Weeds Dataset Weeds et al. (2014) created a dataset from WordNet for hypernym

detection. The design of this dataset controls for other possible confounding fac-

tors besides lexical memorization, namely 1) imbalance, 2) preventing the classi-

fiers from predicting hypernymy based only on the similarity of the concepts, 3)

preventing the classifiers from learning a taxonomical relationship among three or

more concepts just by the arrangement of the instances, for example by virtue of

having the instances (dog, canine, True), (canine, vertebrate, True), and (verte-

brate, animal, True) in the training set a classifier may discover that (dog, animal,

True) is a correct instance without looking at the word embeddings of the concepts

and only from the disposition of the instances.

Thus, Weeds et al. (2014) built the dataset in the following way. They selected

those words that were 1) frequent (according to some threshold) in the WordNet

SemCor package and Wikipedia and 2) monosemous, according to the frequency of

its predominant sense in the WordNet SemCor package. Thus, polysemous words

were filtered out. Weeds et al. (2014) aimed for a balanced dataset where half of the

negative instances were co-hyponyms2 and the other half were positive instances

reversed. A constraint for accepting any instance, positive or negative, from Word-

Net to populate the dataset was that each concept in such an instance has not been

previously seen in the same position (hyponym or hypernym) in any other instance

already selected. The resulting training set contains 2033 instances balanced be-

tween positives and negatives. The test set is of size 123 instances, balanced as

well.
2A co-hyponym pair (ci,c j) is one where both concepts ci and c j share a common hypernym

concept, i.e. both have the same parent in a taxonomy tree.
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Dataset Name Training Set Size Ratio positive/negative instances

Baroni 791 0.97
Bless 3225 0.12

Kotlerman 739 0.45
Levy 2932 0.08

Turney 539 1.06
Weeds 2033 0.98

Table 6.1: Summary of datasets. Training Set Size: Number of instances (positive and
negative).

6.7.1.4 Adjusted Hypernymy Datasets for Extracting Hypernymy

from GloVe Embeddings

We take the datasets from Section 6.7.1.3 and adjust them to control for two factors:

Sample size, similar to (Torralba and Efros, 2011), and imbalance. In other words,

we aim to have comparable datasets to fairly compare them for the task of hyper-

nymy extraction. Hence, we want the training sets of each dataset to contain the

same number of instances; and each training set should contain the same number of

positive and negative instances. These adjustments allow us to fairly compare the

datasets in terms of their usefulness, or quality, to predict hypernym relations. A

training set with a bigger sample size may be deemed more useful than one with

fewer training instances since the confidence, in terms of error, for parameter esti-

mation of the classifier may be better; however, the opposite scenario may occur if

many of the instances from the bigger dataset are noisy or incorrect, such as (dog,

animal, False). Thus, in order to evaluate how useful the datasets are in terms of

the quality of the instances rather than their sample size, we fix them all to have the

same number of instances. On the other hand, an imbalanced dataset biases a classi-

fier towards predicting the label of the majority class, thus giving an over-optimistic

result on the classification task. One way to overcome this problem is to choose a

metric score, for evaluating the classifier, that focuses on the minority class, such

as the F1 measure; however, we opt to use two other metrics widely used for evalu-

ating binary classifiers in the machine learning community, namely AUC ROC and
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accuracy, both of them requiring a balanced dataset.

We do the adjustments proposed above to the training sets (and a similar adjust-

ment to the test sets) of each dataset. In order to obtain both an aggregated measure

(average score) and a confidence value (standard error) to evaluate the classifiers

trained with the adjusted hypernymy datasets, we obtain 20 bootstrapped, adjusted

training sets from each dataset. To do so, we uniformly at random sample instances

with replacement3 from each of the original training sets in Section 6.7.1.3 to gen-

erate its corresponding 20 training sets. All of these resulting training sets are both

normalized to the same sample size and balanced. (Then, for example, we will use

20 normalized and balanced training sets generated from the Baroni dataset to train

20 Baroni classifiers to average their performance.) We choose a sample size of 400

instances, and so, we end up with 200 positive and 200 negative instances in each

training set.

On the other hand, we adjust the test sets by balancing them but we do not

normalize them. We balance the test sets to match the number of instances in the

majority class to the number of instances in the minority class by discarding some

instances from the majority class; since each of the original test sets has a different

sample size, the resulting test sets are not normalized to the same number of in-

stances. The reason for not normalizing the test sets is because it is not necessary;

due to the evaluation methodology, which we explain in Section 6.7.2, sample size

does not play a role as a confounding factor in the test sets.

In both cases, for adjusting training and test sets, we apply an under-sampling

scheme to the datasets in order to obtain smaller training and test sets. This sam-

pling scheme, compared to an over-sampling4 scheme, has the advantage of avoid-

ing overfitting because instead of copying instances it discards instances (He and

Garcia, 2009). Nonetheless, we also try an over-sampling scheme for balancing the

test sets, though our results are very similar to the under-sampling scheme and so

3That is, all the instances have the same probability of being selected and can be sampled more
than once.

4In this scheme, the aim is to match the number of instances from the majority class; to do so, one
needs to over-sample instances from the minority class. In this way, multiple copies of the minority
class instances are generated.
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we will not report these results.

To summarize, we obtain 20 under-sampled training sets from each of the

datasets in Section 6.7.1.3. All the training sets contain 400 instances balanced

between positive and negative labels. The test sets are also under-sampled in order

to be balanced, but they are not normalized as the training sets. The number of

instances in each test set depends on the number of positive instances; we discard

negative instances (majority class) in order to match the number of the positives.

This adjustment process helps us to both fairly compare how useful the datasets

are for learning to classify hypernyms and testing the classifiers using appropriate

metrics, namely AUC ROC and accuracy.

6.7.2 Cross-test Evaluation

To elucidate whether GloVe word embeddings capture hypernymy information, we

compare the six datasets from Section 6.7.1.3 by using the adjusted datasets ob-

tained in Section 6.7.1.4 which do not contain confounding factors that may in-

fluence our outcome. We apply the cross-test evaluation from Torralba and Efros

(2011) to do the comparison. In this evaluation, we train classifiers using each of

the adjusted training sets and we test them on each of the adjusted test sets derived

from the six original datasets. In this way, given that for each of the six original

datasets we obtain 20 adjusted training sets, we end up with 20 classifiers, which, in

turn, are evaluated on each of the adjusted test sets. Therefore, each original dataset

is evaluated through the ability of 20 classifiers to generalize to its own test set and

to the other five test sets.

In order to clarify the method proposed above, we take the evaluation of the

Baroni dataset as an example. We generate 20 adjusted training sets and one ad-

justed test set from this dataset (likewise for the rest of the datasets.) We obtain one

classifier for each of the adjusted Baroni training sets. Each classifier is tested on

the Baroni adjusted test set, and on the adjusted test sets of the other five datasets.

Finally, we average the scores obtained from the 20 the classifiers; thus to evalu-

ate the Baroni dataset, we report the average score of the 20 Baroni classifiers on

the adjusted Baroni test set, the average score of the 20 Baroni classifiers on the



230 Chapter 6. Internal Analysis of GloVe: Predicting Hypernymy

adjusted Bless test set, and so on.

The results of a cross-test evaluation can tell us how useful is a dataset for a

classifier to generalize to different distributions of data. Each dataset is obtained

from a particular source of information, for example WordNet, which may or may

not be representative of the phenomenon under study, namely hypernymy. Thus, a

dataset that allows a classifier to generalize beyond its own distribution of data can

be regarded as a good dataset. On the contrary, a dataset that leads a classifier to

perform poorly on other test distributions can be discarded; such poor results may

mean that the dataset is not representative of the phenomenon or that a considerably

large portion of the instances are ill-built.

Based on this type of evaluation of a dataset, natural questions arise regarding

confounding factors and explanations of the data itself: Does the choice of classi-

fier play a role in the generalization ability? What if we have chosen a classifier

suitable for a specific dataset but not for another one? What are the correct metrics

to evaluate the classifiers? Can we expect a certain type of structure in the dataset

that allows a classifier to generalize the best?5

Answers to the questions above are as follows. In order to control for any pos-

sible effect of the learning mechanism underlying the datasets, namely the classifier

and the vector operation over the embeddings, we try, for each adjusted training

set, each possible combination of classifier (logistic regression, support vector ma-

chine.6 For a description of these classifiers see Sections 2.2.1 and 2.2.2) and vector

operation (diff, concat). We use the best result on validation data to select the clas-

sifier and the vector operation to be evaluated on test data. We choose two score

metrics to evaluate each classifier on test data: AUC ROC and accuracy, explained

in the following sections.

Finally, as for our last concern, we hypothesize that a good dataset follows

a structure according to a background theory of the phenomenon under analysis;

in our case, we hypothesize that the background knowledge required to create a

5Another possible factor is the presence of out of vocabulary words; for those rare concepts for
which there are no word embeddings associated we use the unk embedding, an embedding specially
used for out of vocabulary concepts.

6We also try each possible kernel among linear, polynomial, and RBF.
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hypernymy dataset are two conditions proper of hypernymy: We characterize this

linguistic phenomenon along two dimensions, generality and similarity. In Section

6.7.3 we formalize our analysis of this background theory in order to experimentally

prove our hypothesis.

6.7.2.1 Ranking Instances: AUC ROC

Previous work in hypernymy prediction has mainly used F1 (see Equation 6.8) as

the metric for evaluating hypernymy classifiers. However, we find two characteris-

tics of this metric not suitable for our purposes. First, its usefulness for the task of

comparing classifiers has been questioned (He and Garcia, 2009). Second, F1 works

on predictions thresholded at α = 0.5, an un-optimized threshold, thus loosing in-

formation of the classifiers’ behavior on other thresholds. Instead, previous work

has suggested using AUC ROC (Huang and Ling, 2005) for a better evaluation of

classifiers.

F1 = 2
(

Precision∗Recall
Precision+Recall

)
(6.8)

Precision =
TruePositives

TruePositives+FalsePositives
(6.9)

Recall =
TruePositives

TruePositives+FalseNegatives
(6.10)

AUC ROC provides a single score for a classifier that summarizes the trade-off

between true positive and false positive rates (TPR and FPR) across several thresh-

olds on the predictions (Equations 6.11 and 6.12.) AUC ROC stands for Area Under

the Curve of Receiver Operating Characteristics, where ROC is a graph (FPR vs.

TPR) across several thresholds of the predictions, i.e. each point in the graph rep-

resents a trade-off between false positives and true positives for a given threshold.

The higher the AUC the better the ability of the classifier. A qualitative interpreta-

tion of the AUC ROC score is the evaluation of a classifier’s ability to rank positive

instances with respect to negative ones (Huang and Ling, 2005). In addition, it has

been shown that AUC ROC is equivalent to the Wilcoxon sum rank test (Huang
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and Ling, 2005), a nonparametric statistical test suitable for comparing classifier’s

ranking abilities (Perlich et al., 2003).

T PR =
TruePositives
TotalPositives

(6.11)

FPR =
FalsePositives
TotalNegatives

(6.12)

However, previous work has pinpointed some drawbacks of using AUC ROC in

highly imbalanced datasets. When the number of negative instances is considerably

bigger than that of positives, the true negatives predicted by the classifier will help

push the true positives in the ranking and thus will lead to a good AUC ROC score

(Zou et al., 2016). Furthermore, even if the presence of false positives is comparable

to that of true positives, this will not seriously impact the AUC ROC score, due to

the high imbalance in the data (Zou et al., 2016; Lobo et al., 2008). To deal with

this problem, we balance the test sets; as described in Section 6.7.1.4, we use an

under-sampling scheme (which gets similar results compared to an over-sampling

scheme.)

Thus, our experiments in Section 6.8 provide a cross-test evaluation reporting

AUC ROC scores, from which we can elucidate to what extent each dataset helps

classifiers to rank positive hypernymy relations with respect to negative relations

using GloVe embeddings.

6.7.2.2 Predicting Hypernym Relations: Accuracy

As a complementary measure to AUC ROC, we provide accuracy scores for the

cross-test evaluation of the classifiers. This metric can tell us to what extent the

datasets are useful for classifiers to predict hypernym relations. We use the adjusted

test sets from Section 6.7.1.4 to compute these scores (the same test sets that we

use for computing the AUC ROC scores.) Since these test sets are balanced, we

do not have the common problems found when computing accuracy on imbalanced

datasets, as previous work has shown (Huang and Ling, 2005). The main advantage

of using accuracy scores instead of F1 scores on a balanced dataset is the easiness
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of interpretation of results; in a binary classification problem using accuracy, it is

clear that a classifier that predicts all labels to be in the same class will achieve a

50% score, whereas using F1 the score is around 0.66, a less intuitive score. Thus,

we stick to accuracy for reporting hypernymy prediction. We optimize a threshold

for each classifier on validation data.

6.7.3 Dataset Analysis

In order to understand why a dataset Di is more useful than a dataset D j for extract-

ing hypernymy relations from GloVe word embeddings, we analyze the datasets

under a background theory, i.e. the conditions we believe to be pertinent for char-

acterizing hypernymy: Generality and similarity. We base our background theory

on previous theories of concepts from psychology (Murphy, 2004).7 In a taxon-

omy, generality refers to the level of abstractness of a concept compared to other

concepts; i.e., it denotes that a concept c j includes another concept ci if the latter

includes all the features of the former. Similarity refers to the degree of overlap of

features a concept c j has with another concept ci. For example, if we compare dog

with cat under the concept of animal, we find out that both are sibling terms; none

of them is a more general (abstract) concept than the other. A cat has properties that

a dog does not have, like whiskers, and vice-versa, dog has features not included

in the definition of cat; so, none of them encompasses the other, but both concepts

share many features proper of any animal, thus they are similar to each other.

We analyze the six datasets from Section 6.7.1.3 along the dimensions of gen-

erality and similarity: Do the instances in the dataset fit our background theory? I.e.,

do the datasets encode these two characteristics? Are these two characteristics rele-

vant for a hypernymy dataset? We respond to these questions via two experiments.

In the first one, we explore the datasets in order to analyze patterns of generality

and similarity. In the second experiment, we provide a mechanism in order to cre-
7Previous theories have claimed that people categorize objects based on how similar they are to

common objects pertaining to a category; for example, when a person sees a dog in the street she
may classify it as such by comparing it to her dog at home. Claims have also been made about
people learning hierarchies of concepts based on common features across objects; for example,
when a person describes an animal, she may mention general attributes present in all animals, such
as breathes and eats, but when she describes a more specific animal, such as a dog, then she may
mention attributes more specific, such as barks.
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ate hypernymy datasets that leverage generality and similarity patterns to figure out

to what extent these two patterns are useful.

6.7.3.1 Exploration of Datasets: Recovering Generality and Simi-

larity Patterns

We operationalize our background theory based on WordNet (Fellbaum, 1998)

given that it is a taxonomy encompassing a wide range of concepts and it has been

widely used in the community. We define generality as a function, g(), over two

concepts, ci and c j, where the resulting value, g(ci,c j), is the difference in abstrac-

tion between the two concepts; i.e., generality is the difference in the number of

edges in WordNet with respect to the root of the taxonomy, as shown in Equation

6.13, where the function distance(ci,c j) is the number of edges separating concept

ci from concept c j. We note that the closer a concept is to the root of the WordNet

taxonomy, the more abstract it is.

On the other hand, we define similarity using the Wu-Palmer similarity func-

tion (Wu and Palmer, 1994), as shown in Equation 6.14, where LCS stands for least

common super-concept, which is the closest common ancestor concept closest to

both concepts ci and c j, and the function num nodes(ck,cl) returns the number of

intermediate concepts in the taxonomy that connects two concepts ck and cl . We

note that the Wu-Palmer function values are in the interval [0.0,1.0] where the max-

imum value of similarity is given only when ci and c j are synonyms.8 However,

in our experiments we re-scale these values to the interval [−1.0,1.0] for visual-

ization purposes. Thus, a similarity value of s(ci,c j) = −1.0 can be interpreted as

the two concepts being totally unrelated, whereas the value s(ci,c j) = 1.0 imply the

two concepts being synonyms. Similarity values in the range [−1.0,0.0] can then

be interpreted as levels of unrelatedness, while those in the range [0.1,1.0] can be

regarded as levels of relatedness.

g(ci,c j) = |distance(ci,root)−distance(c j,root)| (6.13)

8More specifically, a similarity value of s(ci,c j) = 1.0 means that both concepts make reference
to the same synset in WordNet, i.e. they have the same meaning.
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s(ci,c j)=
2×num nodes(LCS,root)

num nodes(ci,LCS)+num nodes(c j,LCS)+2×num nodes(LCS,root)
(6.14)

An example of generality and similarity functions applied to the concepts ani-

mal and cat is the following. The difference in generality in WordNet between ani-

mal and cat is g(animal,cat) = |6−13|= 7; this means that animal is more general

than cat by several levels of abstraction. Their similarity, in terms of the Wu-Palmer

function, is s(animal,cat) = 0.32, which can be interpreted as both concepts being

somewhat similar. If we apply generality and similarity now to the sister concepts

(co-hyponyms) terrier and hound we obtain the values g(terrier,hound) = 0.0 and

s(terrier,hound) = 0.62. We obtain a generality value that indicates that both terms

are in the same level of abstraction since they have a common concept parent, hunt-

ing dog; i.e., there is only one edge from each concept to their parent concept. The

similarity value indicates that both concepts are, indeed, very similar to each other

since both are types of dog. From these two examples we can see that certain pat-

terns follow after some types of concept pairs; for example, generality and similarity

values are specific for co-hyponyms, as we just saw.

We now propose a structure expected in a hypernymy dataset based on the char-

acteristics of generality and similarity. Assuming a hypernymy dataset is sampled

from a taxonomy, where each instance is drawn uniformly at random, we would ex-

pect to draw more concepts from the bottom than from the top of the taxonomy. The

rationale behind this assumption is because a concept at the level α in the taxonomy

has, in average, β edges that lead to the α +1 level, a lower level in the taxonomy;

thus, if in the α level there are k concepts, then in the α + 1 level we expect that

there are k×β concepts. Therefore, if all concepts at both levels, α and α +1, have

the same probability of being drawn, it is more likely to draw a concept from the

lower level than from the upper level. Following this logic, we expect that most

of the instances, positive and negative, will have a small generality value g(ci,c j);

thus we expect that across the possible generality levels, the number of positive and
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negative instances will decrease as we move towards the highest level. As we saw

in the first example above, the difference in generality between animal and cat is

high because the former concept is much closer to the root of the taxonomy than the

latter concept. And since we expect to sample highly abstract concepts less times

than more grounded concepts, like cat, such high generality values should be seen

less often than small values. We note that the lowest level in generality, g = 0 where

both concepts are in the same level of the taxonomy, is devote only to co-hyponyms,

a type of negative instance, as we saw in the second example above.

We now describe similarity patterns to be found in the data. First of all,

we note that similarity values of most of the positive instances should be in the

range [0.1,1.0]9 denoting a level of relatedness between the concepts in the in-

stance. On the other hand, similarity values of negative instances can be spread

along the whole range [−1.0,1.0] due to the variety of possible negatives. For ex-

ample, we saw before that the instance (animal, cat, False) has a similarity value

of s(animal,cat) = 0.32; this is a similarity value that denotes relatedness because

this instance is the reversed of the positive instance (cat, animal, True), and the

Wu-Palmer function is symmetric. A similar scenario can be put for a negative in-

stance containing co-hyponyms, as we saw before with the example (terrier, hound,

False). Similarity values denoting unrelatedness can be found in negative instances

where the concepts are unrelated; for example, the instance (cat, knife, False) has

a similarity value of s(cat,knife) = −0.4. Thus, we can expect negative instances

to populate all similarity levels, while positive instances should only populate what

we call relatedness levels.

A second similarity pattern describes the mass of the positive instances being

concentrated around high levels of similarity. This is because, following the ra-

tionale used above to describe generality patterns expected in the data, we expect

the data to contain more positive instances with concepts from the bottom of the

taxonomy having a close common ancestor, and thus being highly similar to each

other, than concepts from the top of the taxonomy. Thus, we would expect that pos-

9Except for a few instances where the hyponym is at the bottom level and the hypernym is the
root of the taxonomy.
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itive instances decrease in number as the similarity levels also decrease. In the case

of negative instances, we would expect a more uniform distribution of instances

than that of the positive instances because of the variety of the types of negatives.

The exact number of negatives in the low levels of similarity (s ≤ 0.0) and on the

high levels depend on the sampling procedure used to create a dataset; we expect

that the majority of negative instances contain concepts from the bottom rather than

from the top of the taxonomy, and if so then such concepts are either unrelated

or co-hyponyms with similarity values falling mostly in the low and high levels,

respectively.

6.7.3.2 Dataset Creation: Leveraging Generality and Similarity Pat-

terns

As a proof of concept of our hypothesis that the characterization of hypernymy

along generality and similarity dimensions is important for creating a hypernymy

dataset, we create a new dataset following a structure, in terms of generality and

similarity patterns, similar to the structure described in Section 6.7.3.1. More con-

cretely, we copy the structure from the dataset that produces the best experimen-

tal outcomes (AUC ROC and accuracy scores) from the cross-test evaluations de-

scribed in Section 6.7.2.

We create rules in order to copy the structure from the most useful hypernymy

dataset; with these rules we try to distribute positive and negative instances as sim-

ilar as possible as they are distributed in that dataset. The rules that we follow in

order to accept an instance h = (ci,c j, label) to populate our new dataset have the

structure: IF generality level is g = i AND the ratio of positive vs. negative in-

stances in this generality levels is rg = m AND number of instances in this level is

< threshold tg THEN accept instance h to populate dataset. And similar rules across

similarity levels. We note that we design these rules by hand.

We create 20 balanced training sets, each of size 400 instances (200 positive

and 200 negative instances) by bootstrapping. We sample both positive and negative

instances from the union of the training sets of the six datasets described in Section

6.7.1.3. We sample each instance uniformly at random and if that instance fulfills
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our rule described above then we accept it to populate our new dataset. We compare

the usefulness of this new dataset against two baseline datasets. The first one is

created in the same way as our proof-of-concept dataset except that we do not use

any rules for accepting an instance, i.e. any instance that is sampled is accepted

to populate the baseline dataset. The second dataset is created in the same way as

our proof-of-concept dataset, except for the rules to follow in order to accept an

instance; we design rules to copy the structure of the least useful dataset (according

to results from cross-test evaluations), and then we follow those rules to generate

the new dataset. These two baseline datasets are also bootstrapped to be compared

against our proof-of-concept dataset.

Thus, we end up with three datasets, namely our proof-of-concept dataset, that

we believe to be useful for extracting hypernymy from word embeddings, and two

baseline datasets against which we compare the former. To do so, we perform

cross-test evaluations where we train classifiers using these three new datasets and

test them on the adjusted test sets from Section 6.7.1.4. We report average accuracy

scores across the 20 training sets of each dataset.

6.8 Experiments and Results

6.8.1 Cross-test Evaluations

We note that the Weeds vocabulary from training and test sets slightly overlaps with

the vocabularies of the rest of the datasets, thus the results on the classifiers trained

on Weeds data may be influenced by the lexical memorization factor. Similarly, the

classifiers trained on any other dataset when tested on the Weeds test set may be

slightly influenced by the same factor.

6.8.1.1 Experiment 1: AUC ROC scores

Table 6.2 shows the AUC ROC scores on all the cross-test evaluations, which have

a high confidence as the standard errors show. We can clearly see that classifiers

trained on the Baroni dataset perform better than any other set of classifiers trained

on any other dataset. Baroni classifiers do better in 5 out of the 6 test sets; thus, Ba-

roni classifiers can do better than the rest of classifiers on any test set (except for the
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Bless test set where Bless classifiers do better than Baroni classifiers.) This means

that the Baroni dataset seems to be more useful for this ranking task, regardless of

any threshold on the predictions, than any other dataset.

At a more fine-grained level of comparison, we can see that, indeed, the Baroni

data seems to help classifiers to obtain better results. Half of the Baroni classifiers,

across all the test sets, score in the [0.6-0.7] points interval and the rest of them

score above 0.7 points. On the other hand, half of the Bless classifiers score just

above 0.6 points, a rather poor generalization behavior. Two good results over 0.75

points are obtained, namely on the Baroni test set and on its own test set, though the

last one is by far better than the former. In addition, Bless classifiers behave close

to random on the Kotlerman test set. It seems that this dataset does not help the

classifiers to generalize robustly to different distributions of data.

Regarding Levy classifiers, most of the scores obtained are below 0.7 points,

and the best score (just above 0.7 points), is on the Baroni test set. This behavior

found on Levy classifiers clearly indicates the inadequacy of the Levy dataset for

the task. With a similar behavior to the Levy classifiers, we find that most of the

Turney classifiers score below 0.65 points, and the highest score (0.68 points) is,

again, on the Baroni test set. We can find the same pattern of behavior in the Weeds

classifiers, where most of the of them score below 0.7 points and the best score

(0.81 points) is on the Baroni data. Finally, we find that the Kotlerman classifiers

provide the lowest results where most of the scores fall in the [0.5-0.6] points range.

We now analyze the AUC ROC scores from a slightly different perspective,

namely from the point of view of the test sets. We observe that the highest scores

are obtained on the Baroni test data, with values ranging from 0.65 to 0.91 points.

Comparing with the closest test set, in terms of scores, we observe that results on the

Bless test set ranges from 0.61 to 0.85 points. In average, the differences in scores

obtained on the Baroni and the Bless test sets is 0.079 points, a notable difference.

On the other hand, the test set on which classifiers obtained the lowest scores is

on the Kotlerman data, where most of the results are below 0.6 points and the best

score (0.61 points) is achieved by the Baroni classifiers.



240 Chapter 6. Internal Analysis of GloVe: Predicting Hypernymy

Train
Test

Baroni Bless Kotlerman Levy Turney Weeds max SE Mean

Baroni 0.916 0.711 0.616 0.702 0.654 0.686 0.004 0.714
Bless 0.762 0.850 0.555 0.632 0.600 0.615 0.015 0.669

Kotlerman 0.653 0.612 0.543 0.566 0.581 0.544 0.020 0.583
Levy 0.716 0.611 0.592 0.698 0.569 0.533 0.017 0.619

Turney 0.686 0.646 0.547 0.595 0.646 0.520 0.015 0.606
Weeds 0.817 0.645 0.574 0.687 0.637 0.675 0.006 0.672

Table 6.2: Cross-test performance: Mean AUC ROC scores over 20 samples. Self-test
score in bold. Max SE: maximum standard error of the mean across all means in
a row. Mean: mean of the means in a row.

6.8.1.2 Experiment 2: Accuracy scores

In Table 6.3 we now observe the accuracy results of the different classifiers on all

the adjusted test sets. In an overall picture, we see that most of the results, 75% to

be more specific, are below 0.6 points, a low accuracy value. These results give us

another perspective of the datasets. From this perspective, we observe that the Levy,

Kotlerman, and Turney classifiers achieve scores mostly close to random across all

the test sets, where the highest scores are 0.56 points (Kotlerman classifier), 0.52

points (Levy classifier) and 0.54 points (Turney classifier). A similar behavior is

observed on the Bless classifiers where all the scores are near to random, and the

only acceptable result (0.64 points) is achieved on its own test set. A slightly better

picture can be observed on the Weeds classifiers where half of the scores are below

0.6 points and half of them are above such a score. Finally, the Baroni classifiers

achieve, again, the best scores, where all of these scores, except for the score on

the Kotlerman test set, are above 0.6 points, and the highest one –0.81 points– is

achieved on its own test data. Comparing the results by columns (test data) in Table

6.3 we observe better scores on the Baroni test data, as in the previous experiment.

All the classifiers achieve equal or better scores on Baroni test data than on its own

test data, except for the Bless classifiers. Finally, we also observe that the classifiers

with the highest confidence on the results are both the Levy and Baroni classifiers.
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Train
Test

Baroni Bless Kotlerman Levy Turney Weeds Max SE Mean

Baroni 0.812 0.638 0.587 0.653 0.608 0.636 0.005 0.655
Bless 0.578 0.642 0.505 0.526 0.524 0.508 0.013 0.547

Kotlerman 0.563 0.546 0.520 0.524 0.528 0.528 0.014 0.534
Levy 0.521 0.510 0.507 0.522 0.509 0.496 0.004 0.510

Turney 0.546 0.534 0.518 0.540 0.540 0.479 0.016 0.526
Weeds 0.736 0.579 0.553 0.626 0.599 0.600 0.007 0.615

Table 6.3: Cross-test performance: Mean accuracy scores over 20 samples. Self-test score
in bold. Max SE: maximum standard error of the mean across all means. Mean:
mean of the means in a row.

6.8.2 Dataset Analysis

6.8.2.1 Experiment 1: Exploration of Datasets Along Generality

and Similarity Patterns

We plot how positive and negative instances distribute, along generality and sim-

ilarity levels, for each training set of the datasets in Section 6.7.1.3. Figures 6.1,

6.2, 6.3, 6.4, 6.5, and 6.6 show such plots. We first look at the distribution of in-

stances in the training sets, along generality levels, to see whether they comply with

the two generality patterns described in Section 6.7.3.1. We note that across the

generality levels g≥ 1 all the training sets are distributed as expected: The number

of instances, positive and negative, is inversely proportional to the generality level;

thus, at the highest levels we find the lowest concentration of instances while at the

lowest levels we find the highest concentration. Though the positive instances in

the Bless data are less compliant with this rule (Figure 6.2a); these instances seem

to almost distribute uniformly up to level g = 7 and decrease in number afterwards.

On the other hand, at the level g = 0, where we expect only negative instances,

we find positive instances in three datasets, namely in the Kotlerman (Figure 6.3a),

Levy (Figure 6.4a), and Turney (Figure 6.5a) datasets, though more markedly on the

latter one where the ratio of positive vs. negative instances is the highest from these

three datasets. These positive instances seem to be noisy instances. On the other

hand, we observe that the Baroni (Figure 6.1a), Bless (Figure 6.2a), and Weeds
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(Figure 6.6a) training sets do comply with our expectation by having only negative

instances at the lowest generality level.

We now turn our attention to the expected similarity patterns. We find the first

pattern in only two datasets, Baroni and Weeds. This pattern states that most of

the positive instances are distributed proportionally to the level of similarity in the

range s ≥ 0.1; i.e., the higher the similarity level the more instances are concen-

trated, forming a sort of skewed-bell shape similar to that of the generality pattern

but in the opposite direction (skewed to the right rather than to the left); however,

the Weeds data seems to have some noisy positive instances populating the level

s = −1.0. Closer to this pattern, but not fully compliant with, the Bless data has

its positive instances distributed in the expected range, but they do not follow the

expected skewed-bell shape. On the other hand, the Kotlerman, Levy, and Turney

datasets have their positive instances distributed along all the similarity levels, in-

cluding those levels reserved to negative instances, i.e. s ≤ 0.0. We also observe

that all the datasets, except for Weeds, comply with a pattern expected from the neg-

ative instances, namely that they are distributed along all similarity levels. Another

pattern expected is the shape of the distribution of the negative instances; we find

that only two datasets, the Baroni and Levy, are the closest to a sort of double-bell

shape peaked at both the lowest and the highest levels of similarity. The rest of the

datasets have their negative instances distributed in a less clear manner.

6.8.2.2 Experiment 2: Creation of a New Dataset by Leveraging

Generality and Similarity Patterns

We experimentally test our hypothesis that the characterization of hypernymy along

generality and similarity patterns is useful in the construction of a hypernymy

dataset. To do so, we create a new dataset that mimics such patterns from the most

useful hypernymy dataset. According to the evidence derived from our cross-test

evaluations (Sections 6.8.1.1 and 6.8.1.2) and data analysis (Section 6.8.2.1), we

find that the Baroni dataset is both the most useful to extract hypernym relations

from word embeddings and the one that complies with all the expected patterns.

Using the same criterion, we find the Kotlerman dataset to be the least useful for
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(a) Generality Patterns (b) Similarity Patterns

Figure 6.1: Distribution of positive and negative instances of the Baroni training set along
generality and similarity levels.

(a) Generality Patterns (b) Similarity Patterns

Figure 6.2: Distribution of positive and negative instances of the Bless training set along
generality and similarity levels.

(a) Generality Patterns (b) Similarity Patterns

Figure 6.3: Distribution of positive and negative instances of the Kotlerman training set
along generality and similarity levels.
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(a) Generality Patterns (b) Similarity Patterns

Figure 6.4: Distribution of positive and negative instances of the Levy training set along
generality and similarity levels.

(a) Generality Patterns (b) Similarity Patterns

Figure 6.5: Distribution of positive and negative instances of the Turney training set along
generality and similarity levels.

(a) Generality Patterns (b) Similarity Patterns

Figure 6.6: Distribution of positive and negative instances of the Weeds training set along
generality and similarity levels.
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hypernymy extraction. As we explained in Section 6.7.3.2, we create rules in or-

der to sample instances from the union of all the training sets from Section 6.7.1.3.

Examples of the rules we use in order to accept an instance h = (ci,c j, label) to

populate the new dataset are those shown in Examples 6.15 and 6.16. Similar rules

are used in order to create the dataset that is distributed as the Kotlerman dataset.

(6.15) IF generality value g(ci,c j) = 0 AND label 6= True AND number of

positive instances = 0 in generality level g = 0 AND number of negative

instances ≤ 11 in generality level g = 0 THEN accept instance sampled

(6.16) IF generality value g(ci,c j) = 1 AND ratio of number of positive instances

vs. number of negative instances > 1.06 in generality level g = 1 AND ratio

of number of positive instances vs. number of negative instances < 1.10 in

generality level g = 1 AND total number of instances < 97 in generality

level g = 1 AND total number of instances in generality level g = 1 is

greater than the total number of instances at any other generality level THEN

accept instance sampled

Results of the classifiers trained on the new dataset and tested across all ad-

justed test sets are presented in Tables 6.4 and 6.5. We call this dataset B2 which

stands for Baroni version 2 since it mimics the patterns from the Baroni data. We

compare it against the baseline dataset No-rules and K2; the first name reflects the

fact that we did not use any rule to accept instances to populate that dataset, while

the second name stands for Kotlerman version 2. We observe that B2 classifiers

achieve better, or equal, AUC ROC and accuracy scores than the two baselines in

all cases. Furthermore, the standard error in the results of B2 classifiers are the low-

est ones. We also observe a similar trend if we compare the two baselines; No-rules

classifiers achieve better, or equal, scores than K2 classifiers in all cases except for

one test set, the Weeds test, in terms of accuracy. From this evidence we can see

that by virtue of arranging the data according to generality and similarity patterns

we can either improve or worsen the ability of classifiers to extract hypernym rela-

tions from word embeddings.
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In Table 6.6 we can observe the distribution of instances of the three new

datasets according to the original datasets they were sampled from. We observe

a clear tendency among the three sets of data; the proportion of instances coming

from a particular dataset increases or decreases along with the scores of the classi-

fiers trained on those instances. For example, B2, the training set that leads to the

best scores, contains more instances from the Baroni data (13.8% of its sample) than

both No-rules (9.2%) and K2 (8.8%). A similar figure is observed across the rest

of the instances, being the instances from the Baroni and Bless datasets more nu-

merous in B2 than in the baseline datasets; and instances from the Kotlerman, Levy,

Turney, and Weeds datasets are more numerous in the least useful dataset, namely

K2, than in B2. Thus, it seems that the rules we used to populate B2 tend to accept

more Baroni and Bless data while excluding instances from the other datasets.

Train
Test

Baroni Bless Kotlerman Levy Turney Weeds Max SE Mean

B2 0.879 0.734 0.618 0.692 0.641 0.672 0.011 0.706
No-rules 0.859 0.725 0.603 0.688 0.641 0.655 0.013 0.695

K2 0.852 0.724 0.597 0.685 0.639 0.654 0.015 0.691

Table 6.4: New hypernymy datasets: Mean AUC ROC scores over 20 samples. Max SE:
maximum standard error of the mean across all means in a row. Mean: mean of
the means in a row.

Train
Test

Baroni Bless Kotlerman Levy Turney Weeds Max SE Mean

B2 0.794 0.664 0.580 0.644 0.596 0.629 0.011 0.651
No-rules 0.775 0.655 0.566 0.641 0.596 0.598 0.013 0.638

K2 0.763 0.645 0.561 0.639 0.596 0.615 0.015 0.636

Table 6.5: New hypernymy datasets: Mean accuracy scores over 20 samples. Max SE:
maximum standard error of the mean across all means in a row. Mean: mean of
the means in a row.

6.9 Discussions and Conclusions
We first answer our research questions previously posed and then we elaborate on

both the answers to the questions and the findings from our experiments.

Our cross-test evaluations suggest that GloVe word embeddings capture hy-

pernymy information, despite the fact that the training function of GloVe does not
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Train
Source

Baroni Bless Kotlerman Levy Turney Weeds

B2 13.814 29.085 6.600 20.811 7.382 22.305
No-rules 9.289 26.855 7.907 21.302 7.881 26.763

K2 8.839 21.757 10.957 23.204 8.971 26.269

Table 6.6: Distribution of instances (mean percentage across 20 samples) in the B2, No-
rules, and K2 datasets according to the source of origin.

include an explicit term dedicate to learn hypernymy. Furthermore, we found that

the selection of a hypernymy dataset is a crucial step in the experimental setup to

extract hypernymy information. According to our evaluations and data analysis, we

conclude that out of the six datasets analyzed one is substantially more useful than

the rest for extracting hypernymy from word embeddings –the Baroni dataset. To do

these evaluations, we controlled for two confounding factors in the datasets, namely

sample size and imbalance. Furthermore, we hypothesized that part of the useful-

ness of a dataset is due to its design: Creating a dataset by following a background

theory of the phenomenon under study helps to discard data not representative of

the phenomenon. Further experiments show evidence that, indeed, a dataset built

following a characterization of hypernymy is more useful for the task than a dataset

that is not. According to our analysis we thus conclude that the Baroni data is use-

ful for extracting hypernymy from word embeddings, and part of its usefulness is

due to its construction design which follows two patterns relevant to hypernymy,

namely generality and similarity. These results may help other people in the NLP

community to better exploit the word embeddings in tasks where both hypernymy

is required and knowledge transfer, in the form of word embeddings, is possible.

6.9.1 On the Cross-Test Evaluation of Hypernymy Datasets

From the Literature

In order to fairly compare the hypernymy datasets we adjusted them to avoid two

possible confounding factors influencing the results in our cross-test evaluations.

We controlled for sample size and imbalance, in the case of the training sets, and
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we did it by bootstrapping 20 training sets from each of the original training sets.

Each new training set thus contained the same number of instances as the other

bootstrapped samples where the number of positive instances was the same as that

of negative instances. Then we trained one classifier for each new training set and

averaged the scores across the 20 classifiers. This setting allowed us to obtain con-

fidence values. In the case of test sets, we controlled only for imbalance since there

was no need to control for sample size.

In our cross-test experiments, we found that classifiers trained on the Baroni

data achieve, on average, the highest scores across all the test sets. AUC ROC and

accuracy scores obtained by these classifiers are consistent with each other. The

ability of Baroni classifiers to extract hypernymy is always above the chance level

(0.5 points) in both scenarios, AUC ROC and accuracy scores. In contrast, classi-

fiers trained on Bless, Levy, and Turney data show some AUC ROC scores which

disagree with accuracy scores. Using the former metric, the results portray classi-

fiers with an ability of ranking positive instances above chance level, whereas ac-

curacy results show the opposite picture; most of the accuracy results show that the

classifiers are practically tossing a coin when predicting. This discrepancy between

AUC ROC and accuracy scores, not seen in the rest of the datasets, is likely due to

the quality of the validation data where we optimized the thresholds; this means that

the validation sets of the discrepant datasets are not useful. The Baroni data seems

to be the only dataset with representative data of hypernymy well distributed across

training, validation, and test sets. All of this cross-test results show low standard

error of the mean across all classifiers, which provide us with a high confidence in

the results.

Comparing the metrics we used, AUC ROC and accuracy, with that used in

previous work, F1, we observe some differences. First, previous work reports results

using a single scoring metric, which provides scores only for the minority class

(positive instances) and requires a threshold. In contrast, we provide two metrics,

widely used in other binary classification problems, which provide scores for both

classes, minority and majority, as well as scores of the ranking behavior of the
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classifier across several thresholds. Second, F1 is not as intuitive to interpret as

accuracy which provides easy-to-interpret results.

6.9.2 On the Analysis of Hypernymy Datasets Along Generality

and Similarity Patterns

We hypothesized that a hypernymy dataset encoding generality and similarity pat-

terns would be more consistent and thus more helpful for the classifying hyper-

nymy. We tested our hypothesis via two experiments. First, we analyzed the spe-

cific generality and similarity patterns encoded in each of the datasets under study;

we compared these patterns against an expected structure in a hypernymy dataset.

We derived this theoretical structure based on our background theory of hypernymy

together with a thought experiment of sampling instances from a hypothetical tax-

onomy. In our experiment, we found that most of the datasets have their instances

distributed as expected across generality levels g ≥ 1, but only half of the datasets

comply with our expectation at generality level g = 0. This seems to indicate that

the sampling procedures used to obtain the data were appropriate –uniformly at

random– but the positive instances found at level g = 0 may be noisy or incorrectly

labeled instances, i.e. false hypernym relations. As for similarity patterns, we found

that most of the datasets fulfilled one of our expected patterns, namely they have

their negative instances distributed along all similarity levels. However, only the

Baroni dataset complies with the rest of the patterns, namely the shape of the distri-

bution of negative and positive instances. In contrary, datasets such as Kotlerman,

Levy, and Turney have their positive instances distributed in a totally unexpected

manner; these instances are spread along all the similarity levels, including those

levels exclusive for negative instances where the similarity between two concepts

indicates a lack of relatedness between such concepts. Overall, the only dataset that

complies with our expected structure is the Baroni dataset.

We further hypothesized that the theoretical structure that we proposed would

play a role in the usefulness of a hypernymy dataset to allow a classifier to pre-

dict hypernym relations. We tested this hypothesis via a second experiment where

we created new datasets in the light of our above findings. Each dataset was sam-
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pled from the same pool of instances, but using a different sampler. One sampler

followed certain sampling rules in order to distribute the instances as similar as

those in the Baroni dataset, the most consistent and useful dataset as our cross-test

evaluations showed. Another sampler followed sampling rules with the objective

of copying the distribution of the least useful and consistent dataset, namely the

Kotlerman dataset. The last sampler selected instances from the pool uniformly

at random, i.e. it did not follow any specific rule to imitate any distribution. We

obtained 20 training samples from each of the three samplers by bootstrap. Each

training sample was used to learn a classifier which in turn was evaluated on all

the test sets previously used in the cross-test experiments. We corroborated our hy-

pothesis; we found that the classifiers that achieved better AUC ROC and accuracy

results were those trained with the data distributed as the Baroni data. On the other

hand, the classifiers with the lowest scores were those using training samples dis-

tributed as the Kotlerman data. The classifiers using data obtained with no prior

assumptions achieved scores in between the other two sets of classifiers’ scores.

This indicates that structuring a hypernymy dataset according to a certain structure

along generality and similarity patterns may either leverage (as the training samples

following the Baroni structure did) or worsen (as the training samples following the

Kotlerman structure did) the abilities of the classifiers to extract hypernymy from

word embeddings.

6.9.3 On Limitations in This Work

We also found both limitations in our work and possible factors that may have af-

fected our results. A possible factor influencing our dataset analysis is the use of

a specific taxonomy (WordNet) in order to measure generality and similarity lev-

els. We are not clear to what extent having used any other taxonomy would have

changed our outcomes, since each taxonomy reveals the creator’s view of the world.

Other factors, at a finer-grained level of analysis, unconsidered in this work are

those related to the specific vocabularies used by each dataset. For example, it may

be possible that the semantics of monosemous concepts are better captured by the

word embeddings than that of polysemous concepts, and thus the former are easier
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to predict in a hypernymy relation. On the other hand, a limitation of our work is the

fact that we left out of the study more recent hypernymy datasets, such as HyperLex

(Vulić et al., 2017). We consider that all these factors and limitations may well be

studied in future work.





Chapter 7

Conclusions

In this thesis, we studied five NLP ReLe systems, namely, Model F, ESIM, DAM,

CE, and GloVe. We focused on the study of three aspects, namely interpretability,

robustness, and abilities learned; we advocated for studying these aspects in order

to better understand a) how a system makes a prediction, b) how robust is a system

to challenging circumstances and what factors influence its predictive behavior, and

c) to know whether a system has learned a specific linguistic ability. Doing so

represented a challenge since these systems are a type of black-box, i.e. they are not

easy to interpret by a human. Thus, we used three types of analysis that treat the

systems as black-boxes, namely representation-level analysis, behavior analysis,

and internal analysis. We divided our thesis into three case studies where each

study was dedicated to the one of the three aspects.

Furthermore, across our three case studies, we show pieces of evidence in fa-

vor and against previous ideas in the NLP community towards certain capacities

and abilities of ReLe systems. According to our analyses, ReLe systems seem to

learn correlations of features from the datasets. Moreover, ReLe systems also seem

to learn biases from the data, and to use them to predict. Furthermore, ReLe sys-

tems seem to be insensitive to some changes in the input space, specially changes

that generate instances very similar to those from the training data. Also, ReLe sys-

tems seem to struggle with instances that are significantly different from those in

the training data. Nevertheless, ReLe systems seem to be able to capture some type

of semantic information in their parameters. Thus, our analyses bring into question
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previous ideas about some capacities and abilities of ReLe systems, such as their

ability to generalize, their capacity of understanding language, and their ability for

learning semantic information. More concretely, it is not clear how well ReLe sys-

tems are able to generalize to any novel instance; as we mentioned before, they seem

to predict based on heuristics in the form of feature correlations and biases found in

the data, probably not the best strategy for generalizing. Also, it is not clear to what

extent ReLe systems use a language-understanding capacity to classify instances in

the form of natural language sentences; our results show that NLI ReLe systems

based their predictions on confounding factors, such as a bias from the data, and

when ReLe systems do not rely on these factors, they significantly lose accuracy.

Nevertheless, our analyses show that ReLe systems seem to encode hypernymy, a

type of semantic information, as previously hypothesized in the NLP community;

however, it is not clear to what extent hypernymy is encoded due to the capability

of ReLe systems to encode the semantics (meanings) of concepts and information

about their relations, or due to learning statistical patterns from the data that work

as an approximation of hypernymy information. Overall, we show the importance

of studying ReLe systems to provide evidence towards demystifying ascribed capa-

bilities to them and to better understand their actual abilities.

In the following sections we summarize each of our case studies, we answer

our research questions posed in Chapter 1, we then provide a summary of our main

contributions, and finally, we describe limitations and future work.

7.1 A summary of Our Three Case Studies

7.1.1 First Case Study: Explaining Predictions of Model F

In this study (Chapter 4), we analyzed Model F, a matrix factorization system for the

task of knowledge base population. We studied the interpretability of this system via

a representation-level analysis, i.e. we investigated how to obtain an explanation of

how Model F makes a decision. To do so, we borrowed methodology from previous

work in interpretability; we used a pedagogical approach where we treated Model

F as an oracle in order to label input instances. With these instances we created a
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dataset exposing the predictive behavior of Model F; then, we trained interpretable

proxy models with this dataset so they could learn how to mimic the behavior of

Model F. We note that these proxy models where easy to interpret, i.e. we were

able to obtain an explanation of how a prediction was made by looking at their

structure and parameters. We used two proxy models from the literature, namely

logic rules and decision trees, and a new proxy model that we proposed, namely a

tree-structured Bayesian network. We found out that the two proxy models from the

literature were not able to fully capture the predictive behavior of Model F, being

logic rules the least successful model. A possible reason for these results may be the

heuristics that we used to learn the logic rules; we chose a restricted form of Horn

rule where only one predicate is present in the body of the rule. Another reason may

be due to the nature of the models; logic rules are a symbolic model, and thus trying

to capture the probabilistic, ranking behavior of Model F seems to be difficult; and

similarly, decision trees have been shown to have difficulty in handling ranking

tasks. On the other hand, our proposed model, a Bayesian network tree (BN tree),

was able to faithfully capture the predictive behavior of Model F. Furthermore, we

showed how our BN tree had a very similar ranking behavior to Model F when

generalizing to test instances.

This evidence shows that the BN tree is an equivalent of Model F. The behavior

of the BN tree is functionally similar to that of the ReLe system. Based on this

evidence and the fact that a BN tree is easy to interpret, we provided explanations

of incorrect predictions made by Model F through the BN tree. By looking at the

tree structure we were able to spot spurious edges that connected the output with

the input variables; i.e., we were able to graphically see how Model F incorrectly

related the input to the output; this explanation was shown as a multi-step decision

process that Model F did in order to arrive at the observed output given the input.

Furthermore, we claimed that this multi-step decision process, given by the

BN tree, accounts as an explanation of the inner workings of Model F. We described

how learning a proxy model that explains the predictive behavior of a black-box sys-

tem accounts as a form of representation-level analysis from cognitive science. On
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the one hand, a proxy model relates the input to a system to the response of the sys-

tem in an algorithmic way, i.e. the proxy model proposes a plausible, faithful logic

of how the system arrives to the observed output, given the inputs, without having to

inspect the internal mechanisms of the system. On the other hand, a representation-

level analysis seeks to explain how an information-processing system processes in-

formation regardless of the mechanisms that give rise to this process, and thus it is

based on input-response observations of a person; i.e., a representation-level anal-

ysis provides a plausible logic of how a system arrives to an observed output given

an input.

7.1.2 Second Case Study: Evaluating Robustness of ESIM,

DAM, and CE

In this study (Chapter 5), we analyzed three ReLe systems for the task of natural lan-

guage inference, namely ESIM, DAM, and CE, being the first one a state-of-the-art

system on the SNLI dataset. We aimed to evaluate their robustness to challenging

instances that we generated when we made a simple transformation to input in-

stances, namely a swap of word pairs. For example, given the following entailment

instance we swap the word pair (footbridge, bridge):

(7.1) p : A little girl hugs her brother on a footbridge in a forest.

h : A pair of siblings are on a bridge.

And thus we generate a transformed instance of class neutral:

(7.2) p : A little girl hugs her brother on a bridge in a forest.

h : A pair of siblings are on a footbridge.

Then, we aimed to answer the question: To what extent are the systems robust

to this transformation? Given that it was difficult to control for certain confounding

factors, we statistically analyzed them to elucidate to what extent they played a

role in the predictive behavior of the systems; we named these factors insensitivity,

unseen word pairs, and polarity.

Insensitivity is an internal factor to the systems; it refers to the ability of the

systems to recognize that an input instance has changed. Thus, we measure to what
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extent the systems correctly react to our transformation. In the above examples, if

the systems were insensitive to the swapping of the word pair (footbridge, bridge)

then they would classify both instances as type entailment since they would not

recognize that we swapped a word pair and thus generated a new instance of class

neutral. Unseen word pairs are those word pairs that the systems did not see at

training time and thus may influence the behavior of the systems; for example, the

swapped word pair from the example above, (bridge, footbridge) maybe was never

seen in any training instance, and thus the systems may not know how these two

words interact with each other affecting their predictive behavior. Finally, Polarity

is a term we use to label word pairs into a certain class depending on the class of

instances these word pairs were most frequent in training data; for example, we

associate the word pair (footbridge, bridge) with the label entailment because this

pair was mostly seen in entailment instances.

Thus, following methodology from the behavioral science, we statistically cor-

relate these factors with the response of the systems when we feed them with the

challenging instances that we generated in order to elucidate whether these factors

influence the systems’ behavior. According to our results, we found that these fac-

tors do play a role in the predictive behavior of the three systems. Insensitivity

helps the systems to obtain high accuracy on challenging instances that have the

same class label as the instances they were generated from; in other words, the

systems’ lack of sensitivity to recognize that we swapped a word pair helps them

to predict the same class label in both cases, the instance they were familiar with

and the transformed (challenging) instance. When the transformed instances have

a different label from the instances they were generated from, then we can notice

how the systems significantly drop accuracy, according to our statistical tests. Un-

seen word pairs is an interesting factor in the sense that depending on the semantic

relation of the two words in the pair is how robust are the systems. We found out

that unseen antonym pairs affect the systems’ performance, i.e. the systems did not

learn antonymy; on the other hand, the systems are robust to unseen hypernym or

hyponym pairs; for example, if the systems learned that the pair (footbridge, bridge)
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is a hyponym pair, then when they encounter the unseen pair (bridge, footbridge),

they correctly recognize that now the words are in a hypernym relation. This find-

ing goes in hand with our main finding in our third case study, namely that a ReLe

system is able to learn hypernymy. Polarity of word pairs seems to be a factor also

influencing the systems’ predictions, as our statistical analyses show; the three sys-

tems learned to predict the label of an instance based on the polarity of a word pair

inside the instance; for example, if the word pair (bridge, footbridge) had polarity

neutral in the instance in Example 7.2, then the systems likely would predict neutral

as the class label for this instance, regardless of the rest of the words in the instance.

These findings not only apply on transformed instances that we generated from

original instances contained in the SNLI dataset, but also on other type of instances

that we generated which we call ex situ. This type of instances keep fixed the words

surrounding a word pair; for example, the instances in Examples 7.1 and 7.2 would

be transformed into the following instances:

(7.3) p : A little girl hugs her brother on a footbridge in a forest.

h : A little girl hugs her brother on a bridge in a forest.

(7.4) p : A little girl hugs her brother on a bridge in a forest.

h : A little girl hugs her brother on a footbridge in a forest.

Where Example 7.1 was transformed into its ex situ equivalent shown in Ex-

ample 7.3, and similarly, Example 7.2 was transformed into Example 7.4. In this

way, we say that we have two types of instances, namely in situ and ex situ. Anal-

ysis on ex situ instances allowed us to study the effect of swapping a word pair

when the surrounding words were fixed. Interestingly, the systems’ behavior on

ex situ instances of class contradiction is similar to that on in situ instances of the

same class; the systems are influenced by the same factors in similar ways and the

accuracy scores are comparable (except for the CE system that significantly drops

accuracy on ex situ instances.) However, when when the instances are class en-

tailment or neutral, ESIM and CE significantly drop accuracy on ex situ instances

when compared to in situ instances, while DAM is able to cope equally with both

types. In addition, in these ex situ instances, all the systems are also influenced by
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the confounding factors mentioned above.

In conclusion, we found that none of the systems is fully robust to our transfor-

mation on input instances, being the three systems highly influenced by the factors

insensitivity, polarity, and unseen word pairs. Our statistical analyses, borrowed

form the behavioral science, provide us with interval validity; i.e., we have high

statistical confidence that the response observed from the systems is indeed associ-

ated with the factors analyzed.

7.1.3 Third Case Study: Extracting Hypernymy From GloVe

In this study (Chapter 6), we investigated to what extent we can extract hypernymy,

a semantic relation between two words, from the parameters of GloVe, a ReLe sys-

tem dedicated to learn word embeddings. We categorized this study as an internal

analysis due to the similarity to work from neuroscience where information is ex-

tracted from neural activity (in the form of fMRI) of a person using a classifier that

reads this representation of the brain’s activity and predicts whether specific infor-

mation is contained in there. In a similar setup, we aim to elucidate to what extent

we can extract hypernymy from GloVe word embeddings using a classifier trained

on this vector representation. Previous work tried to do this, but the results obtained

were inconclusive due to a lack of a proper control in the experimental setup, where

the key factor to control for is the choice of hypernymy dataset. Thus, we proposed

an appropriate experimental setup where we studied how the choice of a hypernymy

dataset influenced the behavior of the classifiers trained to extract hypernymy from

word embeddings.

Our analyses showed that from six datasets analyzed only one is consistent,

and thus useful, for recovering hypernymy from GloVe embeddings, namely the

Baroni dataset. These conclusion is based on two experimental analyzes: A cross-

test evaluation and a structure analysis. On the one hand, in our cross-test evaluation

we compared which dataset allows classifiers to perform better on the test sets of the

six different datasets. To do this, we controlled for two possible confounding that

may influence the classifiers, namely the sample size of the datasets and imbalance

between positive and negative instances. Thus, we generated bootstrapped datasets
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that were equal in size and balanced. Under this controlled scenario, we found that

the Baroni dataset allowed classifiers to perform better than any other dataset across

the different test sets.

On the other hand, in our structure analysis, which we based on psychology

theories of concept categorization, we hypothesized that the usefulness of a hyper-

nymy dataset is due to two properties fundamental for hypernymy: Generality and

similarity. Two concepts can be classified to hold under a hypernymy relationship

if one is more abstract (general) than the other and both are similar to each other.

For example, we say that a dog is a type of vertebrate because the latter concept

is a more abstract concept; this can be shown in how all the features of vertebrate

are inherited by dog, but not the other way around (not all vertebrates bark as dogs

do.) Also, both concepts are similar to each other in the sense that both are clas-

sified into the same taxonomic sub-tree, namely the animal taxonomy; thus both

concepts share features proper of any animal. We operationalized the concepts of

generality and similarity, in order to measure them on hypernymy datasets, based

on metrics from WordNet. We defined generality of two concepts A and B as the

difference in the number of levels in WordNet from A to B with respect to the root of

the taxonomy. We defined similarity of two concepts with the Wu-Palmer similarity

function which provides a measure of how similar are two concepts based also on

the difference in levels within the taxonomy.

In this way, we proposed an expected structure to be found in an useful hyper-

nymy dataset based on our conceptualization of hypernymy along generality and

similarity properties. Then, we analyzed the hypernymy datasets from the litera-

ture in order to find out which dataset fulfills our expected structure. Interestingly,

only one dataset fulfilled our proposed structure, namely the Baroni dataset. In

this dataset, the positive and the negative instances are distributed along generality

and similarity levels as we expected; for example, positive instances, such as (dog,

animal) have generality and similarity values that fall in a certain range of values;

more concretely, they are distributed in the generality levels of g ≥ 1 (the level

g = 0 is only for co-hyponyms, a type of negative instance) and we expect them to
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be distributed following a type of left-skewed bell. Similarly, we expect positive

instances to be distributed in the similarity levels of s≥ 0.1 forming a right-skewed

bell. We also proposed similar patterns for negative instances across both generality

and similarity levels. To further prove our hypothesis, we created new datasets us-

ing instances from the six datasets analyzed; we do so by enforcing the new datasets

to hold the properties of generality and similarity that we expect to find in an useful

hypernymy dataset. When we used these new datasets, we found improvements in

accuracy and AUC ROC scores when extracting hypernymy, as opposed to when

we create datasets that do not hold the two properties mentioned before.

Overall, our studies found that by using the most consistent dataset, in a su-

pervised approach, we can accurately predict whether two GloVe embeddings hold

under a hypernym relationship. Thus, we conclude that, indeed, it is possible to

extract hypernymy information from GloVe word embeddings, despite that the loss

function of this ReLe system did not explicitly account for learning such linguistic

phenomena.

7.2 Answering Our Research Questions
Throughout this thesis, we aimed to study and understand the behavior and the abil-

ities learned of specific ReLe systems. To do so, we proposed to focus on both

specific aspects to study (interpretability, robustness, and abilities learned) and spe-

cific types of analyses to carry out the studies (representation-level, behavioral, and

internal analyses.) We proposed to look into other disciplines to borrow certain in-

struments, such as research questions, methodologies, motivation, or analyses. In

particular, we focused on three disciplines, namely cognitive science, behavioral

science, and neuroscience.

We gave as an example the following questions addressed by each of these dis-

ciplines: What is a cognitive model that explains how the information is processed

by the long-term memory? How does the choice of payment instrument influence

the spending behavior of people? Is it possible to extract information from the brain

activity of people? The study of each of these questions allows science to obtain ex-
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planations of the target phenomena and, thus, better understand particular aspects of

the subject under study. Then, we asked the questions: Can we study ReLe systems

in a similar way? Can we provide an explanation, in the spirit of cognitive science,

of the behavior of a representation learning system? Can we know what external

and internal factors influence the predictive behavior of a system? Can we extract

information from the internal components of a system? We showed throughout this

thesis that the answer is affirmative.

In order to addressed the above questions, we borrowed different instruments

from different disciplines, mainly from previous work in the machine learning and

natural language processing communities, but also from the disciplines listed above.

More concretely, in our first case study, we borrowed methodology from previ-

ous work on interpretability though we borrowed motivation and a research ques-

tion from cognitive science, and we draw a parallel between interpretability and

representation-level analysis.1 We showed how an interpretable proxy model ac-

counts may be viewed as an equivalent of a representation-level analysis of a black-

box system. Thus, we tied together these two types of analyses. This allowed us to

categorize a proxy model as a type of explanation of the inner working of a ReLe

system aligned to analyses from the cognitive science. In our second study, we bor-

rowed motivation from the natural language processing community while we took

research questions and methodology from the behavioral science;2 in this way, we

were able to evaluate robustness of ReLe systems by controlling for confounding

factors while we statistically analyzed what other factors influenced the systems’

response. Finally, in our third case study, we also draw a parallel of how the objec-

tives and methodology of information decoding in neuroscience aligns to those in

the field of hypernymy prediction, though we mainly borrowed all the experimental

setup from the latter field.3

1We do not claim as our contribution any method for doing interpretability analyses; we claim
as our contribution comparing how an interpretability analysis is similar to a representation-level
analysis from cognitive science.

2To clarify, we claim as our contribution being the first to conduct analysis of ReLe systems
using methods from behavioral science.

3As in our first study case, we do not claim as our contribution any method for extracting hy-
pernymy from embeddings; we claim as our contribution comparing how this analysis is similar to
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We also asked in Section 1 what types of explanations can we then obtain from

our studies. We obtained three types of explanations. The first one, an explanation,

at the representation-level, of how the matrix factorization from Chapter 4 works;

this type of explanation provides us with the logic of the decision process that the

ReLe system follows in order to produce an output; i.e. it describes how the ReLe

system processes the input information in order to produce an output. Although this

explanation describes the inner working of the target system, it does not need to

open the system and study its internal machinery, rather it only needs input-output

observations of the system. Based on this explanation we were able to understand

predictions from the ReLe system by looking, in a graphical way, at a multi-step

decision process that the target system performs. Our second type of explanation is

in the form of a set of statistics along with their description. More concretely, we

provided an explanation of how ReLe systems were influenced by certain external

and internal factors when predicting an output. The form of this explanation is that

of statistical associations between a factor and the system’s response; in this way,

we were able to explain how the SNLI systems from Chapter 5 were influenced by

three target factors and how these factors affected their robustness. An advantage

of this type of explanation is that they provide us with internal validity; i.e., we can

guarantee with some confidence that changes in the response of the target system

are due to the factor being analyzed. Our third explanation, in our third case study

in Chapter 6, is not about understanding the ReLe system, but rather understanding

how hypernymy datasets should be structured in order to be useful. We showed

that by characterizing hypernymy along generality and similarity properties we can

propose a structure of how to sample and distribute positive and negative instances.

This explanation not only allowed us to better understand how only one hypernymy

dataset from the literature was useful for extracting hypernymy from word embed-

dings, but also it allowed us to create better datasets.

In summary, we worked towards better understanding ReLe systems by nurtur-

ing our work from other disciplines whose main objective is to provide explanations

analysis done in the neuroscience for decoding semantic information from brain activity.
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of diverse phenomena occurring in different subjects. We provided qualitative anal-

ysis and different types of explanations which we hope the community will use

in order to both further understand these type of systems and to improve the next

generation of ReLe systems.

7.3 Summary of Major Contributions
We list the major contributions of this thesis in a chapter by chapter basis.

1. Chapter 4

• We studied a new type of ReLe system, namely the matrix factorization

system Model F, which was trained with a ranking loss function rather

than with a classification loss function as most of the systems from the

literature.

• We provided a new interpretable proxy model, namely a Bayesian net-

work tree; according to our evidence, this model faithfully captures the

predictive behavior of Model F. In addition, we show that popular proxy

models from the literature, namely logic rules and decision trees, were

not able to capture the behavior of Model F.

• We also proposed a new evaluation metric of fidelity, namely precision-

recall curves, since those from the literature, F1 and accuracy, were used

for classifiers.

• We showed that our interpretable proxy model is equivalent to a

representation-level analysis, which allows us to understand how Model

F makes a prediction. (We clarify, however, that interpretability analysis

is not our contribution; we contribute with comparing this analysis with

representation-level analysis to show similarities from both.)

• By showing that our Bayesian network’s behavior is functionally similar

to that of the MF system, we threw some light of a plausible way the MF

operates, namely by learning correlations in the data.
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• We published two papers, an AAAI spring symposium paper and a NIPS

workshop paper, based on the work of this chapter.

2. Chapter 5

• We evaluated the robustness of three SNLI ReLe systems, namely ESIM

(a state-of-the-art system), DAM, and CE. This evaluation allowed us to

see that none of these systems is as robust as previously thought.

• We used methodology from the behavioral science in order to control for

confounding factors and to investigate how certain factors influence in

the predictive behavior of these systems, sometimes giving a misleading

picture of robustness. We believe to be the first to borrow methods from

the behavioral science to analyze ReLe systems at the stimulus-response

level.

• We proposed a transformation on input data in order to do the evaluation

of robustness. This transformation allowed us to generate challenging

test sets that we will release to the community.

• Furthermore, we provided explanations in the form of statistical corre-

lations that allowed us to see, with high statistical confidence, how the

factors under study played a role in the systems’ response.

• Moreover, we found that there are behavioral patterns across the three

systems; they are affected in the same way by the target factors.

• We provide a piece of evidence towards NLI ReLe systems classifying

instances based on confounding factors, bringing into question the idea

of ReLe systems predicting based on understanding the semantics of the

instances. However, we acknowledge that our results are only a piece of

evidence, and in order to conclusively prove any hypothesis about the

capabilities of ReLe systems, dedicated studies should be carried out.

• We got accepted a long paper at the North American Chapter of the

Association for Computational Linguistics 2018.
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3. Chapter 6

• We provided evidence towards GloVe embeddings capturing hyper-

nymy, a type of semantic relation between two concepts.

• We also provided a comparison of six hypernymy datasets from the lit-

erature. To do this comparison, we controlled for confounding factors

and then we measured the usefulness of these datasets for training clas-

sifiers to extract hypernymy. Furthermore, we analyzed the structure of

these datasets to see which ones comply with a structure that we pro-

posed based on work on psychology. We found that only one dataset out

of the six datasets is useful for hypernymy extraction.

• Moreover, based on our proposed structure of a hypernymy dataset, we

were able to create new datasets that are also useful for extracting hy-

pernymy.

• Also, we proposed to evaluate classifiers with accuracy and AUC ROC

metrics, instead of F1 as in the literature, which provided a better insight

into the classifiers behavior.

• Even though we borrowed the methodology we use to extract hyper-

nymy from the NLP literature, we contribute with drawing a parallel

between this type of analysis from NLP with that from neuroscience

(brain decoding), and we show how both types of analysis are similar in

both objectives and methods.

• We published a short paper on the European Chapter of the Association

for Computational Linguistics 2017 based on this chapter.

7.4 Limitations and Future Work
We first present limitations shared across our three studies, then we present limita-

tions per each study. The first two clear limitations are the number of ReLe systems

studied and the number of NLP tasks the studied systems pertain to. We studied

five ReLe systems: One MF system (Model F) for the task of knowledge base pop-
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ulation, two systems using Bi-LSTMs (ESIM and CE) and one using MLPs (DAM)

for the task of natural language inference, and one system (GloVe) for the task of

hypernymy prediction. This means that our results and findings may not gener-

alize to other ReLe systems and to other tasks. Thus, we believe a wider range

of ReLe systems should be studied, namely systems based on Neural Turing Ma-

chines, Memory Networks, Gated Recurrent Units, among others. Furthermore, we

believe tasks such as question answering, machine translation, reading comprehen-

sion, among others may also benefit from the type of studies we carried out in this

work. Moreover, we believe our work may also help to better understand ReLe sys-

tems in tasks that lie in the intersection of NLP with computer vision, such as visual

question answering.

Future work that we leave open to the NLP community is to apply the all the

analyses presented here to a single ReLe system of interest. We applied three dif-

ferent types of analysis to different ReLe systems; however, did not analyze a single

system using the three different approaches. We believe that doing so would provide

a valuable understanding of any target system. As we saw in the previous chapters,

a representation-level analysis provides the researcher with a model of the deci-

sion process of a target system. A behavioral analysis provides an explanation of

what external and internal factors influence the predictions of the target system. An

internal analysis verifies whether a target system is able to encode some type of in-

formation. Thus, by having a target system analyzed under these three approaches,

we would better understand why the system behaves as such, from an algorithmic

and stimulus-response perspectives, and what information it has capture.

The above proposition for future work leads to another open problem, namely

to integrate these three approaches into an unified explanation. Even though an

isolationist approach is usually taken across scientific disciplines,4 we believe ef-

forts should be put on this endeavour. The results obtained would certainly aid to

our understanding of ReLe systems; for example, if we are to unify analyses from

cognitive and behavioral sciences, we would probably obtain a model that explains

4We do not find very often in the literature works that present unified results from more than two
disciplines due to the great complexity in doing so.



268 Chapter 7. Conclusions

the decision process of the target system while taking into account the internal and

external factors that influence the decisions of the system; in other words, we would

obtain a model that explains the role that such factors play in the decision process

of the target system. Take another scenario were we unify analyses from cognitive

science and neuroscience; in this case, we would probably obtain explanations of

how the decision process of the system takes place in the internal mechanisms of

the target system (similar to work done in the cognitive neuroscience discipline.)

Another proposition for future work is to use more types of analysis to study

ReLe systems. Two other widely-used analyses in the cognitive science and neu-

roscience disciplines are functional analysis and mechanistic analysis (see Section

3.1.2 for a description.) A functional analysis explains how a system’s capacity

works in terms of sub-capacities –functions– and the way they are organized; for

example, long-term memory in humans may be analyzed in terms of sub-capacities,

namely memory encoding, storage, and retrieval. In a similar way, we can study

ReLe systems by pinpointing possible capacities and explain them in terms of sub-

capacities, providing a functional explanation of how ReLe systems work. Comple-

mentary to a functional analysis is a mechanistic analysis; in this type of analysis,

we aim to understand how the internal components of the system are organized and

how they lead to the observed behavior.

The NLP community may also benefit from following the above propositions

to study specific capabilities of ReLe systems that today are hypothetical. For exam-

ple, while behavioral and internal analyses may aid to figure out if a system encodes

reasoning, a functional analysis may help to diagram how a system performs such a

capacity. Also, behavioral analyses, similar to those presented in this work in Chap-

ter 5 and in Section 3.2.1, may help to figure out if a system understands natural

language, and if so, a functional analysis, again, may help to provide an explanation

in the form of a functional diagram of how such capacity works. This endeavour

may help to either prove or demystify the capabilities of ReLe systems.

Another limitation of this work is that we only provide qualitative analyses of

ReLe systems and we do not provide ways of improving the systems based on our
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findings. This is clearly a line of future work: How can we debug a system using

its proxy model? How can we improve the robustness of a system by understanding

which factors influence its behavior? How can we better use the word embeddings

of a system that we know has captured certain linguistic phenomena? We believe

the findings of this thesis will allow us, in future work, to address these questions.

Furthermore, based on our analysis from Chapter 5 where we find a bias in the

data, and base on our analysis from Chapter 6 where we show how to analyze a

dataset, how to test its usefulness, and how to build better datasets, we propose

as future work to use our analyses to better study, evaluate and construct datasets

in different fields of NLP such as natural language inference, question answering,

machine translation, among others; i.e., we propose that each new dataset created is

a) tested for biases and b) verified to align to the phenomena required by the task;

and we finally propose that new versions of datasets created are evaluated following

our work.

We now propose future work based on each of our case studies.

7.4.1 First Case Study from Chapter 4

We envisage two major lines of future research based on our work in this chapter.

First, we propose to test the proxy models on users. We believe that is important to

test how easy is to users to understand the explanations from a proxy model; after

all, using a proxy model to understand the predictions of a black-box system is the

final objective of an interpretability analysis. Second, we propose to use a proxy

models to debug a black-box system. A proxy model shows an approximation of

how a black-box system makes a decision. For example, our Bayesian network

is a model of the decision process of Model F; the BN explains a prediction via a

sequence of probabilistic entailments that goes from the observed input variables up

to the response of Model F; then, by observing the BN, we are able to spot spurious

entailments, such as Daniel Kahneman reviewing movies due to the fact that we won

the Nobel price. Then, we are able to apply a mechanism to delete such a spurious

correlation; for example, by re-training Model F with the constrain of not allowing

the above correlation. Overall, we believe that proxy models can be helpful for
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debugging black-box systems and it is pertinent to evaluate their usefulness with

users.

7.4.2 Second Case Study from Chapter 5

Derived from the results and findings in this case study, we envisage two propos-

als for future research. First, we propose to improve upon the methods we used,

which we borrowed from behavioral science. More concretely, we propose to study

more methods to better control for confounding factors; as we mentioned in Chap-

ter 5, after we applied our transformation to input data some confounding factors

appeared in the new test samples, such as new interactions of words. Thus, we pro-

pose to investigate both more methods for controlling factors and more statistical

tests to assess the impact of such factors on the response of the system under study.

Moreover, we add to our proposal of future work the problem of analyzing how

confounding factors interact with each other. In our case study, we analyzed each

of the confounding factors independently of each other; however, factors may influ-

ence each other. Second, we propose to investigate new ways for transforming data

in order to obtain new challenging test sets. Our transformation was very simple

and it generated a type of test set; however, it is important to apply new transfor-

mations in order to generate new types of data that can help us to study the ReLe

systems under different angles. For example, by swapping more than one word pair

in the instances, or by adding a new word in specific places within instances, we

can obtain new test sets where new confounding factors and new phenomena to test

(such as meronymy) may arise and thus we can further learn about the behavior of

ReLe systems.

7.4.3 Third Case Study from Chapter 6

Two short-term future works in this case study are to analyze more hypernymy

datasets and more word embeddings models. Furthermore, we also propose to ex-

tract other semantic relations, such as antonymy and meronymy, from word embed-

dings and to analyze their respective datasets using our framework. By doing so,

we would be more certain as to what extent word embeddings are able to capture
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semantic information. Moreover, we propose to pay more attention to works from

neuroscience in order to enrich our studies of ReLe systems by applying both in-

vasive and non-invasive methods that can help us to understand how ReLe systems

encode other types of information, how their memory is organized, and how certain

behavioral patterns arise from the internal mechanisms.
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