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Naturalistic decision-making typically involves sequential deployment of attention to choice
alternatives to gather information before a decision is made. Attention filters how
information enters decision circuits, implying attentional control may shape how decision
computations unfold. We recorded neuronal activity from three subregions of prefrontal
cortex (PFC) while monkeys performed an attention-guided decision-making task. From
the first saccade to decision-relevant information, a triple dissociation of decision- and
attention-related computations emerged in parallel across PFC subregions. During
subsequent saccades, orbitofrontal cortex activity reflected value comparison between
currently and previously attended information. By contrast, anterior cingulate cortex
carried several signals reflecting belief updating in light of newly attended information,
integration of evidence to a decision bound, and an emerging plan for what action to
choose. Our findings show how anatomically dissociable PFC representations evolve during
attention-guided information search, supporting computations critical for value-guided
choice.



Anatomical'?, neuroimaging™* and lesion studies®® indicate that prefrontal cortex (PFC) is central
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to value-guided choice. These techniques have functionally localized subcomponents of decision making
to different subregions of PFC. However, explanations of neuronal computations within these subregions
vary widely across studies. Recent debates on the role of PFC subregions in value-guided decision
making have been manifold. One debate centres on whether decision-related computations are performed
in serial (certain subregions preceding others) or parallel (simultaneous, distributed activity across
subregions)”®. A second concerns whether stimulus valuation in orbitofrontal cortex (OFC) and adjacent
ventromedial prefrontal cortex may be influenced by attention’!''. Further debate relates to whether
anterior cingulate cortex (ACC) integrates evidence for different actions'*"*, modifies behaviour in light
of new evidence'®", or evaluates evidence for alternative courses of action?'. Resolving these debates
demands a rich dataset that contrasts neuronal activity across multiple PFC subregions within a single
paradigm, whilst experimentally controlling the order, duration and frequency with which choice options
are attended and compared.

Real-world choices are typically guided by multiple shifts in attention between choice
alternatives. Interactions between attention, information search and choice have been widely studied in
the behavioral sciences****, and the order, duration and frequency of shifts in visual attention can strongly
influence the eventual decision made**. The evolutionary expansion of primate PFC relative to other
species may have been driven by primates’ need to foveate, evaluate, remember and compare alternatives
during visually-guided foraging®’. However, it remains largely unknown how attentional reorienting
affects PFC computations performed at a neuronal level during choice®®. This is because decision
paradigms in neuroscience have been predominantly conducted with central or uncontrolled fixation,
meaning attentional focus is not placed under experimental control. By determining which information
enters decision circuits, attention will affect the temporal dynamics of several decision-related
computations, including stimulus identification, valuation, comparison to previously attended alternatives,
and action selection. Dissociating the neural substrates of decision-related computations across PFC may
therefore require synchronizing neural activity with attentional focus.

Here we contrast neuronal activity between macaque orbitofrontal (OFC), anterior cingulate
(ACC) and dorsolateral prefrontal cortices (DLPFC) during sequential attention-guided information
search and choice. When attention is first deployed to a choice alternative, a triple dissociation of
attention and decision computations emerges in parallel across these three areas. As further information is
sampled, OFC carries representations required for comparing currently and previously attended
information. By contrast, multiple signals in ACC reflect belief updating in light of new evidence and
relative valuation of different actions. These signals ramp towards final commitment to a choice. Our
findings are consistent with models describing value comparison as an attention-guided bounded
diffusion 3pr0cessz4, but also more recent accounts that frame economic choice as a series of accept-reject
decisions".



Results
Experimental paradigm and subject behaviour

Our task design (Fig. 1a) mirrored established behavioural studies examining attention-guided
information search during sequential, multi-attribute choice?**>**2, Each option, presented on left and
right sides of the screen, comprised two pre-learned picture cues, representing different attributes - the
probability and magnitude of juice reward. Crucially, at trial start, all cues were hidden. Subjects made an
instructed saccade towards a highlighted location to reveal cue 1. Following 300ms uninterrupted
fixation, cue 1 was covered and another location highlighted, either vertically on the same option, or
horizontally on the same attribute. Subjects saccaded here to reveal cue 2, again for 300ms. Hereafter,
subjects could select either option using a manual left/right joystick movement. Alternatively, they could
fixate one or both remaining highlighted cues in any order to reveal further information before making
their decision. Following joystick choice, all four cues were revealed and juice reward was delivered with
the chosen probability and magnitude. Picture cues, first/second highlighted location, and
probability/magnitude attribute on top vs. bottom were pseudorandomly selected on each trial (with
uniform distribution). Behavioural and neuronal data were collected from two macaque monkeys (M.
mulatta).

Both monkeys used cue values appropriately to guide their choices (Fig. 1b). They chose the
option with higher expected value on 76.6% and 79.8% of trials (monkeys F (n=25 sessions) and M (n=32
sessions) respectively), assigning approximately equal weight to reward probability and magnitude, and
using all viewed cues to guide their choice (Fig. S1a/b). However, most choices were based upon partial
information: subjects chose before all four cues had been evaluated on 85.5%/71.4% of trials (subjects
F/M respectively). Choice accuracy based upon the pictures observed, rather than the true expected value,
was substantially higher (86.3% and 87.4% for monkey F and M respectively). Surprisingly, choice
accuracy was also higher on trials where subjects sampled fewer pieces of information (Fig. S1c). This
was because such trials were associated with a higher value difference, and so subjects terminated these
trials more quickly (Fig. S1d).

Subjects preferred to sample information from the option that they currently intended to
choose?*. This behavior revealed itself in two ways. Firstly, subjects were free to choose where to attend
with their third saccade. On ‘attribute’ trials, this saccade was preferentially directed towards the option
with the higher relative expected value between cue 1 and cue 2 (compare bottom-left versus top-right of
Fig. 2a). Such behavior mirrors a recently identified bias towards ‘sampling the favorite’ in an equivalent
experiment in human participants®’, and mirrors classic ‘confirmation biases’ in human hypothesis
testing®. Secondly, once two cues had been presented, subjects were also free to decide when to stop
sampling information and commit to a final choice. On ‘option’ trials, subjects sampled fewest pieces of
information when cues 1 and 2 were highest in value, but most information when cues 1 and 2 were
lowest in value (compare bottom-right versus top-left of Fig. 2b). This mirrors a (milder) ‘positive
evidence approach’ bias in humans®.

The latter bias (Fig. 2b) appears particularly surprising. Two low-valued cues in an ‘option’ trial
provide conclusive evidence for choosing the option not yet attended. Yet monkeys nonetheless sampled
from this option before committing to choosing it. This behavior is suboptimal in the context of two-
alternative forced choice, yet more rational in the context of real-world decisions that comprise multiple,
non-mutually exclusive alternatives. Here, evidence against one option does not provide evidence in favor
of any particular alternative. A natural strategy for solving such choices is to consider one option to be the
leading or ‘foreground’ candidate, and decide whether to accept or reject it*'. This accept/reject decision
might still rely upon value comparison, for example to the next best alternative”** or the average reward
rate of the environment™,



Triply dissociable PFC population codes at first saccade

We recorded single unit activity from anterior cingulate (ACC), dorsolateral prefrontal (DLPFC)
and orbitofrontal (OFC) cortices (n=189, 135 and 183 neurons respectively; see Fig. 3). ACC recordings
were primarily from the dorsal bank of the cingulate sulcus (area 24); OFC recordings were primarily
from the medial orbital gyrus (area 13); DLPFC recordings were primarily from dorsal and ventral banks
of sulcus principalis (area 9/46).

A critical feature of our experiment is that following each saccade, the currently attended cue can
be decomposed into multiple features: its associated attribute (magnitude or probability), value (level of
reward probability/magnitude), spatial position (presented on top/bottom of screen), and action (left/right
joystick response required to choose that option). In line with previous studies®®, we found a degree of
PFC subregion specificity in single neuron encoding of these features (see below). However, there was
substantial between-neuron Aeterogeneity of decision-related computations encoded. This heterogeneity
proved critical in robustly dissociating computations performed by each subregion.

We capitalised upon neuronal heterogeneity by assessing population-level encoding of decision
computations. At the time when cue 1 was attended, we used representational similarity analysis (RSA).
RSA correlates the normalised firing rate of the neural population between all conditions of interest’’.
This characterises task encoding across the neural population without strong prior assumptions on its
structure. At cue 1 presentation, we performed RSA between 20 conditions: 5 probability cues and 5
magnitude cues, presented on either the left or right option. Here, as neurons were not all simultaneously
recorded, we perform the analysis on ‘pseudopopulations’. For each subregion, we collapse across
recording sessions, and calculate the correlation matrix from the resulting [Neurons*Conditions] matrix
of firing rates.

RSA revealed a striking triple dissociation of task-evoked neural codes across PFC subregions
(Figs. 4a-c). This was consistent across subjects (Fig. S2). To formally compare subregion specificity and
temporal evolution of population representations, we regressed templates onto RSA matrices to capture
different features of the task design. DLPFC RSA reflected whether the subject was attending left or right
(Fig. 4d). OFC representational similarity reflected the currently attended stimulus identity, irrespective
of spatial position (Fig. 4e), and was also high for cues of similar attended value (Fig. 4f). ACC and
DLPFC RSA showed a value code modulated by whether the subject was currently attending to the left or
right option (Fig. 4g). ACC RSA also divided high-valued and low-valued items such that variance in
ACC was best explained as a non-linear, categorical function of value (Fig. 4h; labelled ‘accept/reject’
coding for reasons explored below).

For intuition, we provide single neuron examples for these features in Fig. S3. We also present
RSA matrices subdivided by top/bottom spatial position in Fig. S4. It is important to acknowledge that
there is not ‘pure selectivity’ for any one feature in a given region; for example, spatial attention is
represented in both OFC and ACC (Fig. 4d), and other task features have some degree of representation
in multiple regions. Nonetheless, there is strong regional specificity in the degree to which different
subregions encode each feature.

Decision-related computations at cue 1 emerged in parallel across PFC rather than sequentially
(Fig. 4d-h). Supplementary Video 1 reveals the temporal order and evolution of these different
computations. We also plot the timecourses of coefficient of partial determination (CPD) sorted by region
in Fig. S5. We quantified the time at which information relating to different factors was encoded in
different subregions by analysing when CPD in Fig. 4d-h reached 75% of its maximum value (t7s, see
Fig. SSb/c). Spatial attention affected representational similarity around the time of the saccadic eye-
movement (t75=24ms in ACC, 72ms in DLPFC, 67ms in OFC). The early rise time of this effect can be
attributed to saccade generation as cue onset was timelocked to the saccade. Following this, coding of
stimulus identity and attended value (t75=269ms/241ms respectively in OFC) was comparable in latency
to accept/reject coding (t75=238ms in ACC, 224ms in OFC). By contrast, action value coding emerged



significantly later (t75=457ms in ACC, 369ms in DLPFC). In summary, attentional modulation occurred at
time of the saccade; stimulus identification, valuation and accept/reject coding emerged in parallel across
OFC and ACC; and this was subsequently translated into action value.

Value encoding also differed between ACC and OFC. RSA in OFC was consistent with a linear
representation of cue 1 attended value (Figs. 4a/f). Additional analyses confirmed this result’s robustness
to the exact formulation of the ‘attended value’ template (see Supplementary Note, Figs. S11/S12). We
hypothesised that this graded signal in OFC may be a critical substrate to support comparison of the
currently attended cue value versus previously attended (stored) cue values during subsequent
saccades™'*%,

By contrast, ACC value coding was more non-linear and categorical (Fig. 4h). Guided by a recent
literature on ACC encoding expectancy violations and adapting behaviour in light of new evidence'*'®
18202134 a5 well as the pattern of information sampling in Fig. 2, we hypothesized that ACC activity
might reflect whether to accept or reject the current ‘foreground’ option. In particular, a high-valued cue 1
might confirm the belief that the first attended option should be accepted, not rejected. This option would
remain the ‘foreground’ candidate, from which subjects will likely sample further information*>>'** (Fig.
2). By contrast, low-valued cues would disconfirm this belief, leading to the item being rejected, and the
alternative becoming the foreground option. This hypothesis can be more robustly evaluated during
subsequent saccades, as subsequent cues might confirm or disconfirm the current ‘foreground’ candidate
as the best choice®. This signal might become particularly prominent prior to choice, when confirmatory
evidence becomes sufficient to commit to an action.

Attention-guided value comparison in OFC

To address our hypothesis concerning attention-guided value comparison in OFC, we used
multiple linear regression to evaluate how strongly each neuron encoded the values of cues 1, 2, 3 and 4
across time on both option and attribute trials. In Fig. Sa, we plot the average coefficient of partial
determination (CPD, a measure of variance explained by each regressor; see Methods), timelocked to
each of the first three cues. This shows that value encoding by OFC neurons peaked approximately 300ms
after each cue was revealed but was then sustained above baseline as further cues were attended. Note that
CPD in these single-neuron analyses is considerably lower than in Fig. 4f, but comparable to other studies
of value-based decision making®”*. This is because these values reflect variance explained across trials
in each neuron, whereas values in Fig. 4f reflect variance explained across the neural population (having
averaged across trials for each condition).

Crucially, neuronal encoding of value was highly variable across the population. We again
capitalised upon this heterogeneity to define population task-related ‘subspaces’ for value encoding.
Task-related subspaces can be defined by using linear regression to define how sensitive each neuron is to
experimental variables of interest, and then projecting the data into a space defined by these regression
coefficients*'. This analysis can again be performed on ‘pseudopopulations’ of non-simultaneously
recorded neurons, as the regression is performed separately (within-session) for each neuron, before
collapsing across sessions to define the (pseudo)population subspace.

For example, we found that single neuron T-statistics for the regression of cue 1 value when cue 1
was attended (ordinate in Fig. Sb) correlated positively with T-statistics for cue 2 value when cue 2 was
attended (abscissa in Fig. 5b). These two regressors are orthogonal and defined at different task epochs
(using a window of 150-350ms post-stimulus onset for each cue). This analysis therefore reveals a stable
population subspace for the currently attended cue value.

We repeated this approach for different phases of the task, to ask how the currently attended cue
value subspace (ordinates in Figs. Sc-e) correlates with subspaces encoding previously attended,
or stored, cues across time (abscissae in Figs. Sc-e). This revealed a signature of value comparison in



OFC between currently and previously attended cues'’. For example, when cue 2 was attended on
‘attribute’ trials, the currently attended cue 2 value subspace correlated negatively with the stored cue 1
value subspace, representing the other option (Fig. 5¢). This negative correlation indicates that neurons
encoding the value of the currently attended option at cue do so relative to the value of the previously
attended option, a key prediction of recent theories of economic choice**'. Similarly, when cue 3 was
attended on ‘option’ trials, the stored cue 1 and stored cue 2 values both represented the other option and
were both negatively correlated with currently attended cue 3 value subspace (Figs. Sd/e). However, these
two stored subspaces were themselves positively correlated at cue 3 on ‘option’ trials (Fig. 5f). This
demonstrates that the two previously attended cues were combined at cue 3 to allow comparison with the
currently attended cue.

A more complete description of the interaction between attention and value can be obtained by
plotting the cross-correlation of these subspaces across time (Figs. Sg-j). This reveals how the same OFC
population subspace would dynamically shift its encoding of values from positive to negative as the
subject saccaded around the screen. The letters superimposed on these plots refer back to the correlations
shown in Figs Sb-f.

Importantly, this signature of attention-guided value comparison was unique to OFC. Whilst
the currently attended value subspace was present in DLPFC and ACC, value comparison
with stored cues was absent in these regions (Fig 5k; Figs. S6-7). A formal comparison of each of the
three correlations of interest (corresponding to those shown in Figs. Sc-e) across the three subregions
(Fig. 5k) revealed significantly stronger population encoding in OFC than in DLPFC (attribute trials:
VCue2 vs. VCuel, p = 0.040; option trials: VCue3 vs. VCuel, p = 0.067; VCue3 vs. VCue2, p = 0.011;
Z-test after Fisher r-to-Z transformation) and in OFC than in ACC (attribute trials: VCue2 vs. VCuel, p =
0.003; option trials: VCue3 vs. VCuel, p = 0.0003; VCue3 vs. VCue2, p = 0.00013).

Parallel ACC signals for belief confirmation, choice commitment and action selection

We then evaluated ACC population activity across cues 2 and 3, based upon our earlier
interpretation that Fig. 4h may represent a belief confirmation signal for accepting or rejecting the
‘foreground’ (current best) option. To test this hypothesis more rigorously, we included four regressors in
our regression model that capture belief confirmation at subsequent cues, on both option and attribute
trials. Whenever the evidence presented thus far suggests that the currently attended side should be
chosen, we hypothesised that belief confirmation would scale positively with currently attended value. By
contrast, when the evidence suggests that the unattended side should be chosen, belief confirmation
would scale negatively with value (see Fig. S8). As a consequence, all four belief confirmation regressors
were by definition orthogonal to currently attended value (Fig. S9).

We used these regressors to test whether ACC reliably encoded belief confirmation. We found
that ACC population subspaces for each of these regressors were significantly correlated with each other
and also to cue 1 belief confirmation (Fig. 6a/Fig. S10). As all five regressors are defined at different
parts of the trial, this reveals a stable population code in ACC for accepting/rejecting the current belief,
which was not present in OFC or DLPFC (Fig. 6a). We again formally compared the correlations
between these regressors across subregions, using a Fisher r-to-Z transformation (Fig. 6b). Virtually all of
these correlations were stronger in ACC than OFC/DLPFC (Fig. 6b, right panels), and the majority of
individual comparisons were significant (Fig 6b, left panels).

We next asked whether this belief confirmation subspace in ACC might support commitment to a
final decision'*". To answer this, we examined the temporal evolution of belief confirmation subspace
activity, using the regressors in Fig. S8/Fig. 6a. We used one half of all trials to define the subspace, and
projected the data from the remaining half into this subspace to examine its evolution across time. To
ensure statistical robustness, we repeated this procedure using 100 random splits of the data to obtain a



distribution of these projection results, and then averaged across this distribution. Positive values on the
ordinate of Fig. 6¢/d thus indicates more activity in the subspace aligned with the ‘belief confirmation’
regressors in Fig. S8.

Time-varying ACC activity within this subspace showed distinct dynamics on trials of different
reaction times (Fig. 6¢). First, activity in this subspace separated short from long RT trials relatively early
during the course of making a choice — even at the time of cue 1 presentation. One interpretation of this
finding is that the first attended item is initially referenced as the ‘default’ option to be accepted or
rejected, and evidence is interpreted either in favour of or against this default**. Confirmatory evidence
may lead to executing a final choice more rapidly (Fig. 2b), with faster RTs on these trials. Second,
irrespective of reaction time, ACC activity ramped shortly prior to joystick movement (Fig. 6d). Activity
within the belief confirmation subspace therefore became prominent immediately prior to commitment to
action, on all trials.

Finally, Fig. 4g indicates that ACC contains a signal related to which action will be
selected'>'*!54? We defined a separate subspace for whether the subject would choose left or right on the
current trial, adopting the same split-half approach as in Figs. 6¢/d. Activity in the ACC action selection
subspace also gradually ramped as evidence was revealed about which option to choose, and peaked
immediately prior to action selection (Fig. 6e). Belief confirmation and action selection subspaces are
orthogonal; the relationship between them can be seen in Supplementary Video 2.

Single neuron analyses recapitulate core findings at population level

The analyses in Figs. 4-6 explore how information is represented at the level of the neural
ensemble rather than at the level of the single neuron. This exploits the known heterogeneity of PFC
single neuron responses'*'>172%4042 1o study task representations distributed across a population of cells.
There are strong theoretical and empirical reasons to motivate studying information representation at the
population level*, which have motivated several recent studies of PFC neuronal responses'®'®!4!,
However, much of the previous literature has emphasised information representation at the level of single
neurons. To facilitate comparison with this literature, we examined whether there were differences
between PFC subregions in the fraction of neurons selective for key variables at different stages of the
task. These analyses recapitulated the core findings at the population level.

We first tested whether OFC had more neurons encoding value comparison between currently
and previously attended stimuli than other subregions. We performed three analyses, analogous to Fig.
Sc-e. At cue 2 of attribute trials (cf. Fig. 5¢), we asked whether neurons encoded value difference between
cue 2 and cue 1; at cue 3 of attribute trials, we asked whether they encoded value difference between cue
3 and cue 1 (cf. Fig. 5d); at the same timepoint, we asked whether they encoded value difference between
cue 3 and cue 2 (cf. Fig. Se). To consider a neuron as representing value difference, we required that the
contrast of parameter estimates (i.e. (Value Attended) — (Value Unattended)) be significant, and also that
(Value Attended) and (Value Unattended) be independently significant with opposing signs. At all three
relevant timepoints, we found that a greater proportion of single neurons passed these criteria in OFC than
in ACC/DLPFC (Fig. 7a). We collapsed across these three tests to show the fraction of single neurons
passing these criteria at any of the three cues individually (Fig. 7b).

We next tested whether ACC had a larger proportion of neurons encoding belief confirmation
than other subregions. Here, we asked whether each neuron significantly encoded the four regressors
depicted in Fig. S8, corresponding to belief confirmation at cue 2 or 3 on ‘option’ or ‘attribute’ trials.
These are the four regressors whose parameter estimates correlate with each other in ACC (Fig. S10) but
not OFC/DLPFC (Fig. 6a) and form the ‘belief confirmation subspace’ shown in Fig. 6¢/d. At all four
timepoints, there was a greater proportion of single neurons significantly encoding belief confirmation in
ACC than in OFC or DLPFC (Fig. 7c).



Finally, we performed an additional regression analysis at cue 1 onset to examine how factors
relating to the value of different task features was represented in PFC. We again capitalized upon the fact
that each cue could be decomposed into multiple features: its associated action, attribute, spatial position,
and value. These different values were entered into the same regression model, allowing us to test the
unique contribution of each of these features in explaining variance in neuronal firing across different
regions. Across all three regions, a significant fraction of neurons encoded Cue 1’s value, irrespective of
the cue’s attribute, action or spatial position (Fig. 8; binomial test, all p<1*107). We also found that single
neurons encoded value in distinct frames of reference across PFC subregions.

First, a significant subset of ACC and DLPFC neurons (~18%) preferentially responded to the
values of either left or right options (binomial test, both p<1*107). Both of these populations were
significantly greater than OFC, which encoded action value at chance level (pairwise Chi* test, ACC vs.
OFC: p=0.002, DLPFC vs. OFC: p=0.003). The timecourse of these signals (Fig. 8b) was similar to that
identified in the population analysis of cue 1 activity using RSA (Fig. 4f/g).

As left and right options were spatially dissociated, ACC and DLPFC neurons might be encoding
value with reference to various parts of space (as opposed to action). However, in a region tuned to spatial
location rather than action, one would also expect to find neurons that differentiated value for cues on the
top part of the visual display compared to the bottom part. In DLPFC, such a relationship held: an equally
prevalent population of top-bottom ‘spatial value’ neurons was observed as left-right ‘action value’
neurons (binomial test, p<1*107). In ACC, this population was significantly smaller than the left-right
value population (pairwise Chi* test p=0.03). Consistent with its strong modulation by attention in Fig.
4a, this suggests that DLPFC preferentially encodes value in the reference frame of spatial position,
whereas ACC encodes it with respect to relevant choice actions.

Lastly, replicating previous results*, we found a significant proportion of neurons in OFC
(~24%) reflected attribute value (binomial test, p<1*10"): they preferentially responded to the value of
cues for either probability or magnitude. This proportion was significantly greater than the representation
of attribute value coding in either ACC or DLPFC (pairwise Chi? tests, OFC vs. ACC: p=0.001, OFC vs.
DLPFC: p=0.014). We interpret this finding with a degree of caution, however. It is possible that OFC
neurons could appear to reflect attribute value as an artifact of being particularly selective for individual
stimulus identities (see RSA analysis, Fig. 4a/e, and example neuron Fig. S3b). There was not clear
evidence for attribute-specific value coding in OFC using RSA (see Fig. 4a).



Discussion

In real-world decision tasks, value-guided decision making is shaped heavily by visual attention.
Information gathering strategies of both human consumers**?**” and foraging animals* are well
characterised as consecutive consideration of each choice option and its component attributes. Our
findings demonstrate that as attention is first deployed to a choice option, population codes for decision-
related processes emerge simultaneously in ACC, OFC and DLPFC rather than sequentially (Fig. 4/8),
lending strong support for distributed and parallel models of value-based choice’®. As attention was
redeployed to sample further information, OFC activity reflected attention-guided value comparison (Fig.
5/7), whereas ACC activity reflected belief updating in light of new evidence and commitment to a final
action (Fig. 6/7).

In addition to providing functional dissociations across PFC subregions, our paradigm allowed us
to explore subjects’ information sampling behavior, which suggested how subjects might be solving the
task. In particular, subjects were biased towards sampling information from an option that they currently
intended to choose (Fig. 2a), even when that information would yield little or no information about the
choice (Fig. 2b). This mirrors biases that we have recently observed in a human version of the same
experiment™, and is consistent with monkeys’ willingness to sacrifice reward to obtain information about
reward delivery*®. Such behaviors could be interpreted of in terms of a mechanism for solving value-
based choice of having a ‘foreground’ option in mind, and deciding sequentially whether to accept or
reject this option relative to alternatives®.

An accept/reject strategy for value-based choice might be considered quite natural in the wider
context of the real-world foraging decisions faced by our evolutionary ancestors®'. These are inherently
sequential in nature and involve decisions such as whether to accept or reject a current patch. Such patch-
leaving decisions rely upon ramping signals in ACC prior to action selection®*”. In our task, ACC
categorised the first attended option non-linearly into cues that might be accepted or rejected (Fig. 4¢/h);
had a stable ‘belief confirmation’ code for accepting/rejecting the foreground option in light of new
evidence (Fig. 6a/S8/S10); and integrated that evidence towards a decision bound (Fig. 6¢/d) while
signalling which action would be chosen (Fig. 6e). There are a number of seemingly discrepant accounts
of ACC function such as its role in value updating®>*, action-outcome prediction', information
seeking®', behavioural adaptation'®***” and action selection®'>**, The computations we identified in ACC
are consistent with these accounts but occurred at distinct time points or within orthogonal subspaces
(Supplementary Video 2), thereby reconciling some of the outstanding debate concerning ACC function.

By contrast, OFC initially carried a representation of the first attended stimulus identity and its
value, consistent with its anatomical projections from regions of inferotemporal cortex*® representing
highly processed visual information such as object identity*’. As further information was attended,
simultaneous coding of attended and stored information emerged uniquely in OFC populations (Fig. 5)
and provided a relative value coding mechanism for how choice options are compared. Such attention-
guided relative value coding mechanisms form a central component of value comparison in recent
accept/reject models of economic choice®, as well as other decision models**. Our findings are consistent
with similar findings in adjacent ventromedial prefrontal cortex (VMPFC)*'” but extend these results in
important ways. For example, on ‘option’ trials we reveal how the OFC neural ensemble combines the
value associated with multiple components of an option. Attribute integration did not occur immediately
upon attending to the second cue, but instead only once the third cue was attended on the alternative
option (Fig. 5f/h) and value comparison could take place (Fig. 5d/e/i/j). Our findings also indicate that
with respect to attended stimuli, attention-guided value comparison is neuroanatomically specific (cf.
Figs. S6/S7). We note, however, that value comparison may still be supported in other structures in
complementary frames of reference’*, for instance in the space of action value in ACC (Fig. 4f).

An important caveat of our study is that analyses were based on pseudo-ensembles, not large
ensembles of simultaneously recorded neurons. We typically isolated between 5 and 25 single units per

10



recording session (see Supplementary Table S1). Further insight into the relationship between different
PFC subregions’ decision dynamics might be obtained with higher-yield simultaneous population
recording techniques.

In summary, theoretical models propose decision-making requires several computations including
stimulus identification, valuation and integration with other attributes, comparison to previous choice
options and action selection”®*’. More recently it has been suggested that value-based decision making
may be linked to other forms of choice such as sequential foraging decisions®*'. Although value-related
signals are commonly found in PFC, a mechanistic account describing how distinct PFC subregions
contribute to these computations has been lacking. Using a naturalistic information search and decision
task that afforded exploration of how decision-related computations evolve as evidence informing choice
is attended, we isolated these computations dissociably across PFC subregions. Our results therefore
provide a unifying account of how PFC subregions support value-guided choice.
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Fig. 1. Experimental paradigm and basic subject behavior. (A) Task design. Subjects chose between a
left and right option (green rectangles) using a manual joystick movement, after sequentially sampling 2,
3, or 4 cues that revealed reward probability and magnitude to the subject. Blue squares indicated
locations available for information sampling. On attribute trials (left panels), cues 1 and 2 were on
opposing options but the same attribute; on option trials (right panels), cues 1 and 2 were different
attributes of the same option. (B) Choice behavior as function of cue 1 and 2 value. (i) Probability of
choosing left option on attribute trials, as function of left-right picture rank difference (where 1 is lowest
rank picture on each attribute, and 5 is highest rank picture). (ii) Probability of choosing option 1 on

option trials, as function of first plus second picture value (relative to middle value picture 3). See also
Fig. S1 for additional analyses of choices.
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remain on option 2, is high when Cue 1 is high value and Cue 2 is low value. (B) On option trials, the
number of cues sampled is lowest when Cues 1 and 2 are high value, but surprisingly it is highest when
Cues 1 and 2 are low value, even though this provides complete information about which option to
choose.
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Fig. 3. Recording locations. (A) Strategy for reconstructing path of electrode tracks. Left: After surgery
for chamber implantation, prior to craniotomy, subjects underwent MRI scan with a custom-built implant
placed within the chamber. This contained the MRI contrast agent gadolinium along the trajectory of
potential recording paths at regular 4mm intervals. Note the prominent susceptibility artifact due to
titanium chambers does not affect gadolinium trajectories, which were intentionally located away from
the chamber. Right: This scan could be co-registered to a pre-operative scan without susceptibility artifact
(in orange; note that head appears smaller due to muscle growth between scans), to reliably reconstruct
recording locations. This technique was further verified by identification of grey/white matter boundaries
during lowering of electrodes along different trajectories. (B) Recording locations of orbitofrontal
neurons (OFC), dorsolateral prefrontal neurons (DLPFC), and anterior cingulate neurons (ACC), shown
on coronal sections. AP range denotes position anterior to interaural plane in stereotactic coordinates.
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Fig. 4. Triple dissociation of task-evoked neural codes across OFC (n=183 units), DLPFC (n=135
units) and ACC (n=189 units) at Cue 1 presentation. (A) OFC representaional similarity analysis
between the 10 different cue identities — probability and magnitude, sorted from lowest (1) to highest (5)
ranked picture — when presented on left and right options. For matrix element (i,), color denotes
Pearson’s correlation coefficient of Z-scored firing rate between condition 7 and condition j across the
OFC neuronal population. Firing rate is averaged from 100ms to 500ms post-stimulus (see also
Supplementary Video 1). Note this matrix collapses across top/bottom spatial position; see Fig. S4 for
40x40 matrix, splitting conditions by spatial position. (B)/(C) As panel (A), but for DLPFC and ACC
populations respectively. (D)-(H) Results from multiple linear regression of ‘templates’ onto RSA
matrices. In each column, top subpanel shows template matrix, middle subpanel shows corresponding
regression T-statistics for each region, and bottom subpanel shows coefficient of partial determination
from sliding regression of templates onto RSA matrices, using sliding window of +/- 100ms. See
Methods for full description of template matrices, regression model and statistical inference via non-
parametric permutation test. (D) ‘Spatial attention’ template (differentiating cues on left vs. right-hand
option) was particularly prominent in DLPFC (DLPFC: T399=35.782, p<1*107*), and significantly more so
than other regions (one-way ANOVA F, 1179 = 311.18, p<1*10; post-hoc comparison for DLPFC>ACC:
p<1*10; post-hoc comparison for DLPFC>OFC: p<1*¥10*); (E) ‘stimulus identity’ template (responding
similarly to the same cue irrespective of side) was particularly strong in OFC (T399=15.3173, p<1*¥10™*),
again more so than other regions (F2,1170 = 32.77, p<1*10™*; post-hoc comparisons: OFC>ACC: p<1*10;
OFC>ACC: p<1*10™*); (F) ‘Attended value’ template (representing cue 1 value irrespective of stimulus
location or attribute) was prominent in OFC (T399= 5.0697, p=0.0036), and significantly more so than in
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other regions (F2,1179 = 6.73, p=0.0126; post-hoc comparisons: OFC>DLPFC: p=0.0017; OFC>ACC:
p=0.0002); (G) ‘Left/right value’ template was prominent principally within ACC (T399=5.5151,
p=0.0096) and DLPFC (T399=5.7156, p=0.0062), and significantly more so than in OFC (F,1179 = 9.08,
p=0.011; post-hoc comparisons: ACC>OFC: p=0.0003; DLPFC>OFC: p=0.011); (H) ‘Accept/reject’
template (reflecting whether Cue 1 had high (rank 4 or 5) versus low value (rank 1 or 2)) was strongest in
ACC (T399=12.1217, p<1*10™*) and significantly more so than other regions (F2,1179 = 17.20, p=0.0006;
post-hoc comparisons: ACC>OFC: p<1¥10*; ACC>DLPFC: p=0.0004). In pantels (D)-(F), * denotes
p<0.05, ** denotes p<0.005, *** denotes p<0.0005. See also Fig. S5.
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Fig. 5. Valuation subspaces for attended (‘online’) and stored cues, supporting attention-guided
value comparison in OFC (n=183 units). (A) Coefficient of partial determination for Cue 1 Value, Cue
2 Value and Cue 3 value, timelocked to each cue’s presentation using a sliding 200ms window. Lines
denote mean +/- s.e.m. across neurons. (B) Positive relationship between T-statistics from regression of
value of cue 1 when cue 1 is presented (ordinate), and value of cue 2 when cue 2 is presented (abscissa),
implying a stable subspace reflecting the currently attended value. (C) When cue 2 is being attended on
attribute trials, the online value subspace (ordinate) correlates negatively with the subspace reflecting the
stored value of cue 1 (abscissa). (D)-(F) When cue 3 is being attended on option trials, the attended value
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subspace (ordinate of (D) and (E)) correlates negatively with the subspace for stored values of both cue 1
(abscissa of (D)) and cue 2 (abscissa of (E)). The two stored subspaces are positively correlated (F). (G)-
(J) Cross-correlation matrices reflecting the time-varying relationship between different value subspaces
on attribute trials (in (G)) and option trials (in (H)-(J)). Heat maps reflect the correlation coefficient
between T-statistics from regression for each cue’s value across the OFC population. Superimposed
letters refer back to the correlations that are plotted above, in panels (B)-(F). Black lines denote
significant clusters (p<0.001, cluster-based permutation test, corrected for multiple comparisons). (K)
Negative correlations in parts (C)-(E) are only present in OFC, and significantly stronger in OFC than in
DLPFC (n=135 units) and ACC (n=189 units); bars show correlation coefficient +/- s.e. (*** = p<0.001,
** = p<0.01, * = p<0.05 (two-tailed), ‘+* = p<<0.05 (one-tailed), Fisher’s r-to-Z transform). Correlations
in parts B-F and K are defined using a window of 150-350ms post-stimulus onset. All correlation
coefficients are Pearson’s correlation. See also Figs. S6/S7.
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Fig. 6. Multiple signals in ACC reflect belief confirmation, commitment to a course of action, and
accumulation of evidence for left/right movement (n=189 units). (A) Positive population correlations
between four orthogonal regressors that reflect ‘belief confirmation’ at cue 2/cue 3 on both option and
attribute trials (cf. Fig. S8), and initial value population response at cue 1 (cf. Fig. 4H), demonstrating a
stable belief confirmation subspace in ACC across multiple cues. The value inside each box denotes the
Pearson correlation of parameter estimates across the neural population in each region; shading denotes
significance. See Fig. S10 for individual ACC correlations. (B) Formal comparison of correlations shown
in part (A) using Fisher’s r-to-Z transformation against OFC (n=183 units) and DLPFC (n=135 units); left
panels show the individual Z-scores/significance for each comparison (same layout as in part (A)), right
panels show distribution of Z-scores. (C)/(D) Projecting ACC population activity into belief confirmation
subspace reveals ramping immediately prior to the commitment to joystick movement. In part (C), trials
are sorted by response time and time-locked to cue 1 onset (blue bars above are box plots of cue onset
times for other cues); in part (D), trials are time-locked to response onset. (E) An orthogonal subspace in
ACC reflects the emergence of an action plan to choose the left or right option. Activity in this subspace
progressively favors one action over the other across time. See Supplementary Video 2 for relationship
between belief confirmation and action selection subspaces.
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Fig 7. Single neuron analysis of attention-guided value comparison and belief confirmation
recapitulates findings of population analysis. (A) Attention-guided value comparison can be defined
using three separate epochs and sets of regressors (see text for details). All three definitions show a
greater proportion on neurons significantly encoding attention-guided value comparison in OFC (n=183
units) than in DLPFC (n=135 units) or ACC (n=189 units). (B) This figure shows the percentage of
neurons that encoded value attended minus value unattended across any of the three different epochs in
part (A). (C) There are four separate ways of defining ‘belief confirmation’ (see text and Fig. S8 for
details). All four definitions show a greater proportion of neurons significantly encoding belief
confirmation in ACC than in OFC or DLPFC.
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Fig 8. Single neuron correlates of task variables at Cue 1 presentation. (A) Fractions of ACC (n=189

units), DLPFC (n=135 units) and OFC (n=183 units) neurons significantly encoding cue value, action
value (left minus right), attribute value (probability minus magnitude), and spatial value (top minus

bottom) in firing rates 100-500ms post-Cue 1 onset. Significance denotes two-sided binomial test against

chance encoding (5%) for each bar (Cue value: ACC p<1*10e”, DLPFC p<1*10e”, OFC p<1*10e7;
Action value: ACC p<1*10e”, DLPFC p<1*10e”, OFC p=0.4139; Attribute value: ACC p=0.029,
DLPFC p=0.0023, OFC p<1*10e”; Spatial value: ACC p=0.0572, DLPFC p<1*10e”, OFC p=0.0845),
and pairwise Chi’ tests for comparisons between regions; * denotes p<0.05, ** denotes p<0.01, ***

denotes p<0.001. (B) Coefficient of partial determination estimated in sliding 200ms bins for cue, action,

attribute and spatial value in each region (mean +/- s.e. across neurons (ACC, n=189 units; DLPFC,

n=135 units; OFC, n=183 units)).
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Online Methods

Subjects. Two adult male rhesus monkeys (Macaca mulatta), M and F, were used as subjects and weighed
7-10kg at the time of neuronal data collection. Both were ~4 years old at the start of the experiment. We regulated
their daily fluid intake to maintain motivation on the task. All experimental procedures were approved by the UCL
Local Ethical Procedures Committee and the UK Home Office, and carried out in accordance with the UK Animals
(Scientific Procedures) Act.

Behavioral Protocol. Subjects sat head restrained in a behavioral chair facing a 19”” computer monitor
placed approximately 57cm away from the subjects’ eyes. The height of the screen was adjusted so that the center of
the screen aligned with neutral eye level for the subject. A voltage-gating joystick (APEM Components, UK) was
placed in front of the subject out of his line of sight and was used to make manual responses during the task. Eye
position and pupil tracking was achieved using an infrared camera (ISCAN ETL-200) sampled at 240Hz. The
behavioral paradigm was run using the MATLAB based toolbox MonkeyLogic (http://www.monkeylogic.net/,
Brown University, USA)’!3, All joystick and eye position was relayed to MonkeyLogic and for use online during
the task and also recorded by MonkeyLogic at 1000Hz. Juice delivery was achieved by using a precision peristaltic
(ISMATEC IPC) to pump juice to a spout placed at the lips of the subject. Subject M was given dilute (50%) apple
juice while Subject F drank dilute (50%) mango juice.

Subjects were taught the value of a set of 10 isoluminant pictures cues pertaining to either magnitude or
probability value (see Task for further details) using secondary conditioning on a separate day preceding data
acquisition. This set of cues was then used for the following 1-4 recording sessions at which point a new set of cues
would be taught to the subject. In total Subject M learnt 13 separate sets of cues, while Subject F learnt 11 sets.

Task. A representation of the task structure is shown in main Figure 1A. Subjects initiated the trial by
maintaining saccadic fixation on the center of the screen and central fixation of the joystick for 500ms. Once this
was achieved two options were presented on the screen (left and right of center). Each option consisted of two pre-
learned picture cues assigned to two different value attributes, probability of reward (10%, 30%, 50%, 70%, 90%)
and magnitude of juice reward (0.15AU, 0.35AU, 0.55AU, 0.75AU, 0.95AU). The cues were uniformly sampled
(with replacement, i.e. it was sometimes the case that the same cue would appear on both options). Reward
magnitude (volume) was varied by manipulating the length of time a reward pump was driven, and the absolute
values (i.e. reward time) associated with each stimulus varied slightly between subjects. Importantly, all four picture
cues were covered up by grey squares with the exception of one, which was covered by a blue square. The blue
square informed the subject the location of a required saccade. Once the subject made a saccade and fixated the blue
square, the blue square was replaced by the picture cue, which the subject was required to continuously fixate for
300ms. If continuous fixation was not achieved within 1200ms the trial was aborted and the subject received a short
timeout. Once this fixation period was achieved, the cue was covered and a second blue square was presented,
indicating the location of the required second saccade. The position of this blue square indicated to the subject the
type of trial being experienced. If the blue square was for the second cue of the same option subjects were in an
‘Option trial’, whereas if the blue square was for the same attribute cue of the second option then this was an
‘Attribute trial’. Selection of trial types was pseudorandom. Once the subject made a saccade to the blue square, the
blue square was replaced by the picture cue, and the subject was again required to maintain fixation of the second
cue for 300ms. After this point, the subjects were relatively unconstrained. The two remaining unexplored locations
were now replaced by blue squares. The subject could either choose an option using a joystick movement (left/right)
based on the value of the currently known information, or saccade to one or both of the remaining cues (in any
order) as they wanted (with the 3™ cue requiring 300ms of fixation before subjects could saccade and uncover the
information of the 4™ cue) before making a choice. Importantly, however, they were prevented from viewing any
cue that they had already seen. Once a response was made all four cues were uncovered (for 500ms for Subject F
and 1000ms for Subject M), after which juice reward feedback was given with the probability and reward magnitude
chosen by the subject.

Note that the position of the probability/magnitude cues were counterbalanced across trials — i.e. on half of
all ‘Option’/’ Attribute’ trials, the probability cues would appear on the top row, and on the other half of trials the
magnitude cues would appear on the top row. Attribute locations also corresponded across options (i.e. if probability
was on the top row for the left option, it would also be on the top row for the right option). Additionally, the location
of the first cue was counterbalanced across all four possible spatial locations across trials.
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‘Option’ and ‘Attribute’ trials were pseudorandomly interleaved during blocks of 50 trials. Between each of
these blocks subjects were presented with a block of 25 trials, where all four picture cues were presented
immediately (so called ‘Simultaneous’ trials). Data from these trials will be discussed in a separate publication.

Neuronal Recordings. Subjects were implanted with a titanium head positioner for restraint, and then
subsequently implanted with two recording chambers that were located using pre-operative 3T MRI and stereotactic
measurements. Post-operatively we used gadolinium attenuated MRI imaging and electrophysiological mapping of
gyri and sulci to confirm chamber placement. The center of each chamber along the anterior-posterior (AP)
coordinate plane was as follows; Subject M: left: AP 30.5, right: AP 33, Subject F: left: AP 34, right: AP 32.5. The
chambers were angled along the medial-lateral plane to target different frontal regions (see Figure 3). Craniotomies
were then performed inside each chamber to allow neuronal recordings.

During each recording session, neuronal activity was measured using tungsten microelectrodes (FHC
Instruments, Bowdoin, USA) that were lowered into the brain through a grid using using custom-built manual
microdrives or chamber-mounted motorized microdrives (FlexMT; AlphaOmega Inc.). During a typical recording
session, 8-24 electrodes were lowered bilaterally into multiple target regions until well-isolated neurons were found.
Neuronal data was recorded at 40kHz using a Plexon Omniplex system (Dallas, USA). Single unit isolation was
achieved with manual spike sorting, using Plexon Offline Sorter (Dallas, USA). We randomly sampled neurons; no
attempt was made to select neurons based on responsiveness. This procedure ensured an unbiased estimate of
neuronal activity thereby allowing a fair comparison of neuronal properties between the different brain regions. Note
that neural populations used to perform analyses in Figs. 4-6 are therefore not all simultaneously recorded, but they
are pseudopopulations constructed across multiple recording sessions. Each neuron is first averaged across
conditions (Fig. 4) or regressed across trials (Fig. 5/6) to identify the neuron’s response to experimental variables,
allowing us to then collapse across sessions, as in previous studies using similar approaches!'®**4!. We excluded
neurons with an average firing rate of <IHz from further analysis (9 units in ACC, 21 in DLPFC, 12 in OFC; n
reported in main text are after these units have been removed). No statistical methods were used to pre-determine
sample sizes but our sample sizes are similar to those reported in previous publications (refs !0-11,1415.20,38-40.42.46

We recorded neuronal data from three target regions: anterior cingulate cortex (ACC), dorsolateral
prefrontal cortex (DLPFC), and orbitofrontal cortex (OFC). We considered ACC to be the entire dorsal bank of the
anterior cingulate sulcus from AP 27-37mm. Our LPFC recordings spanned both dorsal and ventral banks of the
principal sulcus but were concentrated towards the former. All neurons recorded lateral to the medial orbital sulcus
and medial to the lateral orbital sulcus was considered OFC. In some sessions, all three regions were recorded
simultaneously, whereas in other sessions only two were targeted. The total number of units with firing rate >1Hz in
each brain region for each recording session is shown in Supplementary Table 1. Some recordings were also made
in ventromedial prefrontal cortex (VMPFC), but these will be discussed in a separate publication. We used the
gadolinium-enhanced MRI along with electrophysiological observations during the process of lowering each
electrode to estimate the location of each recorded neuron and produce a histological map of the neuronal population
(see Figure 3). All data was subsequently analysed using custom-written MATLAB code, using MATLAB 2017a
(MathWorks, Natick, USA). Data collection and analysis were not performed blind to the conditions of the
experiments, as neuroanatomical location of recording sites had to be known when lowering electrodes for
recording.

Representational similarity analysis (RSA) at Cue 1 presentation (Figures 4/S2/S4, Supplementary
Video 1). To calculate the representational similarity matrices shown in Figure 4A-C, we first calculated the
average firing rate for each neuron for each of the 20 conditions of interest: when the lowest to highest probability
cue was presented on the left at Cue 1, when the lowest to highest magnitude cue was presented on the left at Cue 1,
lowest to highest probability cue on right, and lowest to highest magnitude cue on right. This firing rate was
computed between 100ms and 500ms after Cue 1 onset. We then normalized across these 20 conditions, subtracting
the mean and dividing by the standard deviation.

Repeating this for every neuron yielded a matrix with dimensions (neurons*20). For two conditions (i, j),
we computed the correlation coefficient across neurons between row i and row j of this matrix, which is plotted in
element (i,j) of the representational similarity matrix. For Supplementary Video 1, we repeated the same procedure
on sliding windows of +/- 100ms from the timepoint of interest.

RSA template-based regression (Figure 4D-H). We used multiple linear regression to assess the

contribution of several potential ‘template’ neural codes to the RSA matrices within each region. Each of the 400
elements of each region’s RSA template was explained using the following regression model:

27



T(i']-) = BO + BnTemplaten(iJ.) + e(i']')
n=1

Where r denotes the correlation coefficient matrix computed using RSA, and there are six ‘template’
matrices onto which the RSA matrix is regressed. We estimated fo.6 using ordinary least squares, minimizing the
sum of squared residuals &. The six template matrices were as follows:

Template 1: Identity matrix — accounting for all RSA matrices being 1 when element i=element j (note that
this is a regressor of no interest, to model out the unity correlation between a condition and itself)

Template 2 (Figure 4D): ‘Spatial attention’ — accounting for representational similarity between cues
presented on the same side, but dissimilarity between cues on opposite sides (1 if i<=10 and j<=10, 1 if >=11 and

j>=11, -1 elsewhere)

Template 3 (Figure 4E): ‘Stimulus identity’ — accounting for representational similarity between the same
stimulus being presented on left/right options (1 where |i-j|=10, 0 elsewhere)

Template 4 (Figure 4F): ‘Attended value’ — accounting for representational similarity between similarly
valued items and representational dissimilarity between dissimilarly valued items (ranked value(i)*ranked value(j),
where ranked value is -2 for the lowest ranked stimulus within an attribute (i.e. 10% probability, 15% maximal
reward magnitude), -1 for the 2" lowest ranked (30% probability, 35% maximal reward magnitude), 0 for the
median ranked (50 % probability, 55% maximal reward magnitude), 1 for the 2™ highest ranked (70% probability,
75% maximal reward magnitude), 2 for the highest ranked (90% probability, 95% maximal reward magnitude)) —
see supplementary note for further justification of the structure of this regressor

Template 5 (Figure 4G): ‘Left/right value’ — interaction of template 4 with spatial attention - i.e. set to the
same value as template 4 for cues presented on the same side, and set to 0 for cues presented on opposite sides

Template 6 (Figure 4H): ‘Accept/reject’ - accounting for representational similarity between cues that
might lead to ultimately accepting the current alternative (good items similar to other good items; bad items similar
to other bad items), and representational dissimilarity between dissimilar items in terms of acceptance/rejection (sign
of attended value template)

For the middle panels in Figure 4D-H this model was estimated on RSA matrices from 100-500ms post-
stimulus, as in Figure 4A-C; for the bottom panels of Figure 4D-H it was performed on sliding windows of +/-
100ms from the timepoint of interest, as in Supplementary Video 1. In these panels we plot the coefficient of
partial determination (CPD) for each regressor across time, which is defined for EV Xi as follows:

CPD(X;) = [SSE(X.;) — SSE(X_;,X;)]/SSE(X.))

where SSE(X) refers to the sum of squared errors in a GLM that includes a set of EVs X, and X-; is a set of all the
EVs included in the full model except X; 1440,

Prior to running the regression model, each template was normalized by dividing by its maximum absolute
value (so that the minimum possible value of each template was -1, and the maximum value of each template was
+1). This normalization was simply to place the regressors on a common scale, so that when plotted in Figure 4, the
same color axis could be used to describe all regressors. Importantly, this normalization has no bearing on either the
CPD or T-statistics, as both of these measures are scale-free.

To quantify the latency at which different factors were represented across time, we calculated the timepoint
at which the CPD reached 75% of its maximal value over time, a statistic we label #75 in the paper. To simulate how
different instantiations of the noise might affect our estimate of t7s, we permuted the residuals from the original
GLM and added these permuted residuals to X (where X is the design matrix and S are the parameter estimates).
We then recalculated the time-varying measure of CPD and re-estimate t75 for each instantiation of the noise. The
resulting distribution of values of t7s from this analysis are shown in Figure S5¢ (100 permutations were
performed).

Statistical inference on RSA template-based regression model. We tested the significance of each
template within each region by computing the T-statistic for each f coefficient (i.e. £, /6,,, where &,, denotes the
standard errors of each coefficient estimate). We compared differences between regions by computing F-statistics
equivalent to a one-way ANOVA (see https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FEAT/UserGuide#ANOVA:_1-factor 4-
levels for example). Importantly, however, when calculating these statistics on a correlation matrix, they may not be
parametrically distributed in the null distribution (due to observations not being independently and identically
distributed). To overcome this, we built a non-parametric null distribution for each test of interest, by permuting the
identities of the 20 cues (i.e. values 1-5 on probability/magnitude, left/right), recomputing the RSA matrix, and
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rerunning the regression. We then computed the T-statistics and F-statistics on this permuted data, and compared the
true statistics to the permuted null distribution to obtain p-values >*. We performed 10,000 permutations.

General linear model (GLM), underlying analyses in Figures 5-7. For the analyses shown in Figures 5-
7, we first estimated a general linear model on the firing rate of each individual neuron, timelocked with respect to
Cue 1 presentation, Cue 2 presentation, Cue 3 presentation, and joystick movement (response). Each neuron’s firing
rate was explained using a GLM containing 18 explanatory variables (EVs), detailed below, estimated using
ordinary least squares. Note that EVs /-6 are critical for the analyses shown in Figure 5 and Figures S6/S7, EVs 13-
16 are critical for the analyses shown in Figure 6A-C and Figure S10, and EVs 17-18 are critical for the analyses
shown in Figure 6D.

EV 1 captured the linear effect of changing the first attended cue’s value from the lowest value to highest
value, collapsing across probability and magnitude cues, selectively on ‘option trials’. Specifically, if the lowest
ranked probability/magnitude item was presented they were valued -2; if the second lowest ranked item was
presented -1; third lowest, 0; second highest, 1; highest, 2.

EVs 2-4 were similar to EV 1, but reflected the second, third and fourth attended cue’s value respectively
(for option trials only). On trials where the third or fourth cue was not attended on an option trial (because the
subject responded without sampling all cues), the corresponding EVs were valued 0.

EVs 5-6 were similar to EVs 1-2, but reflected the first and second attended cue’s value respectively for
‘attribute trials’ only. EVs 7-8 were similar to EVs 3-4, but reflected the third and fourth attended cue’s value on
attribute trials where the subject saccaded diagonally back to the first side of the screen (0 on vertical saccade trials),
whereas EVs 9-10 reflected the third and fourth attended cue’s value on attribute trials where the subject saccaded
vertically to the second side of the screen (i.e. 0 on diagonal saccade trials). Note that there is no need to split option
trials by third saccade direction, as unlike in option trials the third saccade is always to the second side of the screen.

EV 11 was an indicator variable for option trials (1 on option trials, 0 otherwise); EV 12 was an indicator
variable for attribute trials (1 on attribute trials, 0 otherwise). Note that EVs 11 and 12 sum to produce a constant
term, thereby capturing variation in the mean firing rate of the cell across time.

EVs 13-16 were variables that all captured the extent to which the Cue value observed at Cue 2 and Cue 3
were consistent (belief confirmation) or inconsistent (belief disconfirmation) with the currently held belief as to
which option would be rewarded. They are described below, but for clarity, they are also depicted in Figure S8.
Two key points are pertinent: (a) by design, all four EVs were largely orthogonal to the value of Cue 1, Cue 2 and
Cue 3 (although see note on EV 16 below); (b) they each rely upon different cues and different trials, and so are
orthogonal to each other by design.

EV 13 (Figure S8A) was the same as EV 2 —i.e. the value of cue 2 on option trials — but crucially, it was
multiplied by 1 whenever the value of the first cue was greater than the average value (i.e. best or second best
picture cues), multiplied by -1 whenever the value of the first cue was lower than the average value (i.e. worst or
second worst picture cue), and multiplied by 0 whenever it was of average value (middle picture cue). EV 13
therefore was positively signed whenever Cue 2 was consistent with Cue 1 (e.g. low-valued cue followed by another
low-valued cue, or high-valued cue followed by another high-valued cue).

EV 14 (Figure S8B) was the same as EV 6 —i.e. the value of cue 2 on attribute trials — but was multiplied
by 1 when the first cue’s value was lower than average, by -1 whenever the first cue’s value was higher than
average, and by 0 when cue 1 was of average value. Again, this meant that EV 14 was positively signed whenever it
was consistent with Cue 1 (e.g. low-valued cue on the left followed by high-valued cue right both favor the right
action, or high-valued cue on the left followed by low-valued cue on the right both favor a left action).

EV 15 (Figure S8C) was the same as EV 3 —i.e. the value of cue 3 on option trials — but was multiplied by
1 whenever the first and second cue were lower than average value (when EV 1 + EV 2 was negative), by -1
whenever the first and second cue were higher than average value (when EV 1 + EV 2 was positive), and by 0 when
the first and second cue were of average value(when EV 1+ EV 2 equalled 0).

EV 16 (Figure S8D) was similarly defined to EVs 7 and 9 —i.e. the value of cue 3 on attribute trials — but
crucially relies upon an interaction of the relative value of the first and second cue, and which side the subject
decided to attend with the third saccade. On trials where the subject’s third saccade was diagonal back to option 1, it
was EV 7 multiplied by 1 when (EV 5> EV 6), multiplied by -1 when (EV 6>EV 5), and multiplied by 0 when (EV
5=EV 6). On trials where the subject’s third saccade was vertical within option 2, it was EV 9 multiplied by 1 when
(EV 6>EV 5), multiplied by -1 when (EV 5>EV 6), and multiplied by 0 when (EV 5=EV 6). Note that because
subjects’ decision whether to make a third saccade to the same side as option 1 relied upon the relative value of Cue
1 and Cue 2, there existed some positive correlation between EV16 and EVs 7 and 9 (mean r? of 0.167 and 0.194
respectively, see Figure S9). Nevertheless, including all three EVs together in the GLM directly controls for this
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correlation with value, by partialling out any variance that can be attributed to EVs 7 or 9 from the parameter
estimate for EV 16.

EV 17 was defined in terms of action selectivity on option trials. It was valued 1 on option trials where the
subject chose left, -1 on option trials where the subject chose right, and 0 on attribute trials.

EV 18 was defined in terms of action selectivity on attribute trials. It was valued 1 on attribute trials where
the subject chose left, -1 on attribute trials where the subject chose right.

We estimated this multiple regression model on neuronal firing rate in sliding 200ms bins, stepped in 10ms
time-windows, from 100ms pre-cue to 500ms post-cue (when stimulus-locked), or from 500ms pre-response to
100ms post-response (when response-locked). We excluded trials where subjects viewed fewer than 3 cues from this
analysis.

Peri-stimulus correlation and cross-correlation of parameter estimates from GLM (Figure 5/Figures
S6/S7). Once the model in the previous section was estimated for each neuron, we then correlated, across neurons,
T-statistics associated with parameter estimates for different EVs. This allowed us to examine how population
subspaces encoding different variables related to each other, at various timepoints through the trial. Note that in one
case (Figure SB) we collapse across parameter analyses from option and attribute trials for clarity. Parameter
estimates in Figure 5B-F/K were taken from 250ms post-stimulus, whereas in Figure 5G-J they were repeated on
all possible combinations of time-points to produce cross-correlation matrices of parameter estimates. In figure 5K,
we performed a Fisher r-to-Z transformation to test the differences between these correlations between subregions.

Statistical inference on cross-correlation of parameter estimates. To test whether areas of high/low
correlation between parameter estimates were significantly larger than would be expected by chance, we used a
cluster-based permutation test**. We identified clusters in the cross-correlation map that were larger than a cluster-
forming threshold (set at |#|>0.2; similar results could be obtained with other cluster-forming thresholds). We then
permuted (across neurons) one of the two sets of parameter estimates used to compute the cross-correlation matrix,
and identified clusters that exceeded the cluster-forming threshold in the permuted data. For each of the 1,000
permutations, we stored the size of the largest cluster. This provided a null distribution of maximum cluster sizes
that would be expected by chance. We used the 99.9™ percentile of this null distribution as a threshold for deeming
whether cluster sizes observed in the data were significant, at a p-value of p<0.001 (corrected for multiple
comparisons).

Projection of ACC activity onto belief confirmation/chosen response subspaces (Figure 6 and Figure
S10, Supplementary Video 2). To identify whether there was a stable subspace representing ‘belief confirmation’
in each brain region (Figure 6A), we investigated whether the parameter estimates for all four regressors that
captured belief confirmation in our GLM were correlated (Figure S9). The parameter estimates used were EV 13,
300ms after Cue 2 onset; EV 14, 300ms after Cue 2 onset; EV 15, 300ms after Cue 3 onset; EV 16, 300ms after Cue
3 onset. We also asked whether this subspace was similar to the subspace for Cue 1 value (i.e. EVI + EV5, 300ms
after Cue 1 onset), based on the idea that Cue 1 ‘value’ responses in ACC are better conceived in terms of belief
confirmation about accepting or rejecting the first attended cue (cf. results in Figure 4C, 4H). We again performed a
Fisher r-to-Z transformation to test the differences across subregions between the correlations in these subspaces.

This approach uniquely identified a stable subspace for belief confirmation in ACC. Once this stable
subspace was identified (see Figure 6A/S10), we asked how activity in this subspace evolved in trials where the
subject took different lengths of time to make his final choice response (Figure 6 and Supplementary Video 2). For
each neuron, we split trials into five separate bins depending upon response time from Cue 1 onset, and averaged
neuronal firing for these different trial types. For each bin, this yielded a matrix with dimensions time*neurons.

To examine activity within different subspaces, we then regressed this matrix onto a projection matrix
composed of two key ‘weights’ per neuron, i.e. T-statistics of contrasts of parameter estimates of interest, estimated
from the GLM. This projection matrix therefore had dimensions neurons*(2 PEs). The two contrasts of interest
were:

1. The average parameter estimates for belief confirmation, i.e. EV 13, 300ms after Cue 2 onset; EV 14,

300ms after Cue 2 onset; EV 15, 300ms after Cue 3 onset; EV 16, 300ms after Cue 3 onset;

2. The average parameter estimates for left vs. right action selection, i.e. EV 17 and EV 18, 200ms prior to

response onset;

Regressing the time*neurons matrix onto the neurons*(2 PEs) gives rise to the sliding analysis that is shown in
Figure 6. In Figure 6B/C, we plot the stimulus-locked and response-locked parameter estimates for contrast 1
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respectively, reflecting the population activity in the belief confirmation subspace for trials of different length. In
Figure 6D, we plot the response-locked parameter estimates for contrast 2, reflecting population activity in the
left/right action selection subspace in trials of different length. In both cases, we baseline corrected subspace activity
to the time of Cue 1 onset +/- 50ms. Supplementary Video 2 provides a representation of how activity in both of
these subspaces progresses during the course of the trial.

Crucially, we avoided using the same data for estimating different neurons’ weights in the projection matrix as
for plotting population activity. To achieve this, we first split the data into odd and even trials; we estimated the
projection matrix weights using the GLM on the odd trials, and projected these weights onto firing rates on the even
trials; we then repeated the same process with even trials for GLM estimation and odd trials for projection; finally,
we averaged subspace activity together across odd and even-trial analyses.

Further detail on methods is available online in the Life Sciences Reporting Summary.
Code Availability/Data Availability Statement. The raw neuronal data and custom MATLAB analysis

scripts that support the findings in this study have been made freely available for download on the CRCNS data
repository (http://crens.org, dataset pfc-7)>.
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Supplementary Figure 1

/Additional analysis of subject behaviour.

(A)/(B) Logistic regression shows weighting of all four presented cues and both probability and magnitude attributes on subject choices.
In (A), bars show mean +/- s.e.m. of regression coefficient for the final viewed picture, penultimate viewed picture (n-1), antepenultimate
viewed picture (n-2), and first viewed picture on trials where subject viewed all four cues (n-3), as well as bias towards choosing the left
cue. Both subjects use all four cues to guide their choices, with a slight upweighting of the antepenultimate cue. In (B), Bars show mean
+/- of the regression coefficient for left minus right probability, and left minus right magnitude, separately for option and attribute trials.
)Also included in the model are a bias towards choosing the left cue and a bias towards choosing the first side (note that both subjects|
show a small but significant bias towards choosing the second side on option trials, also visible in main Figure 1B). Regression models
were fit to all trials, collapsed across sessions (n=14,251 trials (subject M), n=9,863 trials (subject F)). (C) Subjects paradoxically were
imore likely to choose optimally, on average, on trials where 2 pictures were viewed rather than 3 or 4 pictures. (D) This effect can be|
straightforwardly explained by subjects terminating information sampling earlier, on average, on trials where the first two cues are more
informative (and so the decision is easier). Bars show mean +/- standard error; n=14,251 trials (subject M), n=9,863 trials (subject F).
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Supplementary Figure 2

Reproducibility of representational similarity matrices across subjects.

Data are as presented in main Figure 4A-C, plotted separately for subjects M and F. Correlation is computed with Pearson’s correlation,
as in main Figure 4. n=189 units (ACC), 135 units (DLPFC), 183 units (OFC).
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Supplementary Figure 3

Example single neurons to provide intuition for how different task variables are represented at cue 1 presentation.

Each subplot shows a different single neuron example. Bar plots show average firing rate of the neuron to each of the 10 stimuli when
presented on left and right of the screen, averaged from 300-500ms following cue 1 presentation. Line plots show peri-stimulus histograms|
for each of these conditions, timelocked in ms to cue 1 presentation. (A) Example DLPFC unit reflecting spatial position (high firing for all
stimuli on right side of screen. (B) Example OFC unit showing ‘stimulus identity’ coding (esoteric high firing for certain stimuli, replicated
on both left/right sides of screen). (C) Example OFC unit showing ‘attended value’ coding (firing linearly scales with value, irrespective of]
attribute or spatial position). (D) Example ACC unit reflecting action value (high firing for high valued stimuli on left or low valued stimuli
on right). (E) Example ACC unit showing ‘accept/reject’ coding (high firing for stimuli ranked 4 or 5; low firing for stimuli ranked 1 or 2).
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Supplementary Figure 4

Representational similarity across all 40 conditions at cue 1 presentation.

Data are as presented in main Figure 4A-C, but are now subdivided into trials where cue 1 was presented in the top versus bottom half
of the screen. The key results from this analysis primarily replicate the findings when top and bottom cues are collapsed. Note, however,
that in DLPFC, representational similarity is modulated by top/bottom stimulus location (compare, for example, the average brightness
for top left->top left versus top left > bottom left). This indicates that DLPFC activity primarily represents spatial position rather than|
simply left/right action. This finding was also recapitulated in single unit analyses of DLPFC neurons (see Supplementary Note).
Correlation is computed with Pearson’s correlation, as in main Figure 4. n=189 units (ACC), 135 units (DLPFC), 183 units (OFC).
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Supplementary Figure 5

Comparison of latencies for different features in representational similarity matrices within each subregion.

(A) This plot shows the same information as in bottom panels of main Fig. 4d-h, but sorted by subregion rather than by regressor. This|
shows more clearly the relative latencies of different variables — i.e. that spatial attention affects representational similarity earliest in each
subregion; stimulus identity, attended value and accept/reject emerge roughly simultaneously, and left/right value emerges last. Whils{
these findings can be used to compare latencies of these different responses, we caution that the magnitude of CPD values for different
variables are not directly comparable with each other, because they depend upon the correlation structure of the design matrix. Instead,
CPD values for the same variables should be compared with each other across subregions (as in main figure 4). (B) This plot shows the|
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same information as in part (A), but after each regressor has been normalized to its peak value. Regressors explaining little variance
have been removed from this plot, for clarity. The dashed line denotes the value at which 75% of maximal CPD is reached, which we
denote as t7s. Note that in both figures, CPD is estimated in sliding 200ms bins, and is timelocked to cue onset (after the subject has|
saccaded to the cue). (C) Box-and-whisker plot of t75 for key variables/brain regions, estimated using different simulated observations of]
the noise (see Methods for details). The distributions of t7s for spatial attention do not overlap with those of attended value, accept/reject,
or stimulus identity, demonstrating that spatial attention is encoded significantly earlier than other variables. Similarly, left/right value (in
IACC and DLPFC) is encoded significantly later than other variables. Red lines denote median values; notches denote 95% Cls of the
median; edge of boxes denote 25/75 percentiles of data; whiskers denote maximum/minimum values (excluding outliers, as estimated
using MATLAB boxplot algorithm). n=189 units (ACC), 135 units (DLPFC), 183 units (OFC).
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Supplementary Figure 6

\Value subspaces for attended and stored code in ACC.

Figure layout is as for main Figure 5. Note that like OFC, ACC shows consistent single neuron coding of value (A), and that population
subspaces for attended (B) and stored (F) subspaces are present in ACC. However, there is no evidence of inhibition between the|
attended and stored subspaces (parts (C)-(E)). Lines in part (A) denote mean +/- s.e.m. of coefficient of partial determination across
neurons. Lines in parts (B)-(F) denote line of best fit +/- 95% CI. n=189 units.
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Supplementary Figure 7

\Value subspaces for attended and stored code in DLPFC.

Figure layout is as for main Figure 5. Value coding is weaker in DLPFC than in either of the other two regions (A), but population
subspaces for attended (B) and stored (F) subspaces are nonetheless present in DLPFC. However, there is little evidence of inhibition
between the attended and stored subspaces (parts (C)-(E)). Lines in part (A) denote mean +/- s.e.m. of coefficient of partial determination
across neurons. Lines in parts (B)-(F) denote line of best fit +/- 95% CI. n=135 units.
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Supplementary Figure 8

Design of ‘Belief confirmation regressors’ (i.e. EV13 — EV16 in General Linear Model).

Each of the four EVs is depicted by a different panel, and refers to a different trial type/timepoint through the trial. Crucially, however, the
interpretation of the four EVs is very similar. Whenever the evidence presented to the subject thus far suggests that the currently attended
side should be chosen (green dots), then ‘belief confirmation’ scales positively with value. Whenever the evidence suggests that the|
unattended side should be chosen (red dots), then ‘belief confirmation’ scales negatively with value. Note that all four regressors were
thus orthogonal to currently attended value (see Figure S9). (A) EV13, reflecting belief confirmation at second saccade of option trials.
(B) EV14, reflecting belief confirmation at second saccade of attribute trials. (C) EV15, reflecting belief confirmation at third saccade of]
option trials. (D) EV16, reflecting belief confirmation at third saccade of attribute trials (depending upon whether subjects’ third saccade

was to (i) side 1, or (ii) side 2).
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Supplementary Figure 9

Mean correlation between explanatory variables (EVs) in General Linear Model.

Note that most EVs of interest (1-6, 13-18) are decorrelated from one another by design, with the exception of EV16 (whose valug
depends upon where the subject looked at Cue 3, and this saccade depends systematically upon the relative value of cue 1 and cue 2
(see main Figure 2)). EVs 11/12 are indicator variables for trial type.
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Supplementary Figure 10

IACC has a robust belief confirmation signal across different cues and trial types.

Parameter estimates for all four ‘belief confirmation’ regressors (at Cues 2/3 on both option and attribute trials) are positively correlated
with each other across the ACC neural population. They are also positively correlated with value coding at cue 1. The Pearson correlation|
coefficients from each of these plots are also shown in main Figure 6A, right-hand plot. Lines denote line of best fit +/- 95% CI. n=189
units.
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Supplementary Figure 11

IAnalysis of RSA using alternative ‘attended value’ and ‘left/right value’ templates (with equal similarity for mid-valued and
extreme-valued stimuli).

This analysis replaces the ‘attended value’ and ‘left/right value’ templates with an alternative formulation (equal on-diagonal similarity),
and produces qualitatively similar functional dissociations to those observed in main Figure 4. See supplementary note for further
details. See Methods for full description of other regressors in regression model, and statistical inference via non-parametric permutation
test. * denotes p<0.05, ** denotes p<0.005, *** denotes p<0.0005. n=189 units (ACC), 135 units (DLPFC), 183 units (OFC).
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Supplementary Figure 12

Results of simulated RSA matrix for a population of neurons with linear encoding of value.

This simulation reproduces the result found in OFC that extreme-valued stimuli have strong representational similarity, whereas mid-

valued stimuli do not. See supplementary note for details of simulation. Correlations shown are Pearson’s correlation, as in other RSA
figures.

45



Supplementary Table, Supplementary Movie Details, and Supplementary Note
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31 1 6 3
33 0 7 1
34 0 2 2
36 0 0 1

Supplementary Table S1. Total number of units with average firing rate >1Hz in each subregion for
each recording session.

Supplementary Movie Details

Movie S1. Temporal evolution of representational similarity at first saccade to fixate value-related
information. This video depicts the temporal evolution of representational similarity around the time of Cue 1
fixation (see main Figure 4). Each movie frame represents average firing rates of +/- 100ms around the timebin of
interest. The bottom panels show the evolution of the template-based regression presented in main Figure 4.

Movie S2. Orthogonal subspaces for belief confirmation and action selection in ACC. This video shows the

relationship between ‘belief confirmation’ and ‘left/right action selection’ population subspaces, both of which show
ramping prior to action selection in anterior cingulate cortex.
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Supplementary Note: Design of ‘attended value’ regressor for RSA

When analyzing results from the representational similarity analysis at cue 1, we used an ‘attended value’
template, based on the product of the ranked value of the cues ([-2, -1, 0, +1 +2]) — see Methods of main paper.

This yields the perhaps surprising result that extreme-valued stimuli (rank 1 or rank 5) are similar,
whereas mid-valued stimuli (rank 3) are rated as being less similar. It is worth noting that this structure
captures the main structure of the responses in OFC (see main Figure 4A). It is also worth noting that similar
results to those obtained in the main paper could also be obtained with a regressor that has a uniform diagonal
(that is, where mid-valued stimuli are rated as being equally similar to extreme-valued stimuli). Such a
regressor can be constructed by calculating the negative absolute difference in value between cue i and cue ;.
As shown in Supplementary Figure 11, such a regressor to analyse the data in main Figure 4 yields a similar
functional dissociation between OFC, DLPFC and ACC for ‘attended value’ and ‘left/right value’.

Whilst this analysis demonstrates that our results are robust to different formulations of these
regressors, it also fails to capture a feature of the data that can clearly be seen in main figure 4A — namely, that
extreme-valued stimuli are found to be more similar than mid-value stimuli. In this note, we consider why
such a template might arise from a population of neurons which show linear encoding of value in their firing
rates at cue 1 presentation. To show this, we simulated a population of 1000 neurons whose firing rate was
linearly related to value, with equal proportions of neurons positively and negatively encoding value
(approximating what is seen in the data, see main Figure 5B). It is worth noting that this region has many
neurons with a strong linear relationship with currently attended value, which remains stable across multiple
cue presentations (see main Figure 5B/S).

The MATLAB code for this simulation is given below.

%% simulate RSA matrix for linear coding of value (or, why does OFC RSA have the structure that
it does?)

nUnits = 1000; %number of neurons

baseline firing rate = poissrnd(4,nUnits,1l); %for each neuron

linear_value_slope = randn(nUnits,1); %how much each neuron correlates with value
value levels = [-2:2]; %different possible levels of attended value (demeaned)

fr noise = 10; %noise level

gmodel firing rates (fr)

for i = 1l:nUnits %loop over units
for v = 1:5 %loop over different levels of value
fr(i,v) = baseline firing rate(i) + linear_value_slope(i)*value_levels(v) +
poissrnd(fr_noise);
fr(i,v+5) = baseline firing rate(i) + linear_value_slope(i)*value_levels(v) +
poissrnd(fr_noise);
fr(i,v+10) = baseline_firing rate(i) + linear value_slope(i)*value_levels(v) +
poissrnd(fr_noise);
fr(i,v+15) = baseline_firing rate(i) + linear value_slope(i)*value_levels(v) +
poissrnd(fr_noise);
end
end
fr = fr - repmat(mean(fr,2),[1 20]); %demean firing rate across conditions

imagesc(corrcoef(fr)); %calculate RSA matrix across simulated firing rates
colormap( 'hot');
caxis([-0.3 0.3]);

This resulting RSA matrix from this simulation is shown in Supplementary Figure 12. As can be
seen from this figure, it reproduces the result that extreme-valued stimuli will have strong representational
similarity, whereas mid-valued stimuli do not. Part of the reason behind this feature of the simulation is that
the ‘value levels’ in the simulation have been demeaned. In effect, this produces a greater range of firing rates
for low-values stimuli and high-valued stimuli, and a smaller-range of firing rates for mid-valued stimuli.
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