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Naturalistic decision-making typically involves sequential deployment of attention to choice 
alternatives to gather information before a decision is made. Attention filters how 
information enters decision circuits, implying attentional control may shape how decision 
computations unfold. We recorded neuronal activity from three subregions of prefrontal 
cortex (PFC) while monkeys performed an attention-guided decision-making task. From 
the first saccade to decision-relevant information, a triple dissociation of decision- and 
attention-related computations emerged in parallel across PFC subregions. During 
subsequent saccades, orbitofrontal cortex activity reflected value comparison between 
currently and previously attended information. By contrast, anterior cingulate cortex 
carried several signals reflecting belief updating in light of newly attended information, 
integration of evidence to a decision bound, and an emerging plan for what action to 
choose. Our findings show how anatomically dissociable PFC representations evolve during 
attention-guided information search, supporting computations critical for value-guided 
choice.  
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Anatomical1,2, neuroimaging3,4 and lesion studies5,6 indicate that prefrontal cortex (PFC) is central 
to value-guided choice. These techniques have functionally localized subcomponents of decision making 
to different subregions of PFC. However, explanations of neuronal computations within these subregions 
vary widely across studies. Recent debates on the role of PFC subregions in value-guided decision 
making have been manifold. One debate centres on whether decision-related computations are performed 
in serial (certain subregions preceding others) or parallel (simultaneous, distributed activity across 
subregions)7,8. A second concerns whether stimulus valuation in orbitofrontal cortex (OFC) and adjacent 
ventromedial prefrontal cortex may be influenced by attention9-11. Further debate relates to whether 
anterior cingulate cortex (ACC) integrates evidence for different actions12-15, modifies behaviour in light 
of new evidence16-19, or evaluates evidence for alternative courses of action20,21. Resolving these debates 
demands a rich dataset that contrasts neuronal activity across multiple PFC subregions within a single 
paradigm, whilst experimentally controlling the order, duration and frequency with which choice options 
are attended and compared. 

Real-world choices are typically guided by multiple shifts in attention between choice 
alternatives. Interactions between attention, information search and choice have been widely studied in 
the behavioral sciences22-28, and the order, duration and frequency of shifts in visual attention can strongly 
influence the eventual decision made24. The evolutionary expansion of primate PFC relative to other 
species may have been driven by primates’ need to foveate, evaluate, remember and compare alternatives 
during visually-guided foraging29. However, it remains largely unknown how attentional reorienting 
affects PFC computations performed at a neuronal level during choice30. This is because decision 
paradigms in neuroscience have been predominantly conducted with central or uncontrolled fixation, 
meaning attentional focus is not placed under experimental control. By determining which information 
enters decision circuits, attention will affect the temporal dynamics of several decision-related 
computations, including stimulus identification, valuation, comparison to previously attended alternatives, 
and action selection. Dissociating the neural substrates of decision-related computations across PFC may 
therefore require synchronizing neural activity with attentional focus.  

Here we contrast neuronal activity between macaque orbitofrontal (OFC), anterior cingulate 
(ACC) and dorsolateral prefrontal cortices (DLPFC) during sequential attention-guided information 
search and choice. When attention is first deployed to a choice alternative, a triple dissociation of 
attention and decision computations emerges in parallel across these three areas. As further information is 
sampled, OFC carries representations required for comparing currently and previously attended 
information. By contrast, multiple signals in ACC reflect belief updating in light of new evidence and 
relative valuation of different actions. These signals ramp towards final commitment to a choice. Our 
findings are consistent with models describing value comparison as an attention-guided bounded 
diffusion process24, but also more recent accounts that frame economic choice as a series of accept-reject 
decisions31. 
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Results 
Experimental paradigm and subject behaviour 

Our task design (Fig. 1a) mirrored established behavioural studies examining attention-guided 
information search during sequential, multi-attribute choice22,25,26,32. Each option, presented on left and 
right sides of the screen, comprised two pre-learned picture cues, representing different attributes - the 
probability and magnitude of juice reward. Crucially, at trial start, all cues were hidden. Subjects made an 
instructed saccade towards a highlighted location to reveal cue 1. Following 300ms uninterrupted 
fixation, cue 1 was covered and another location highlighted, either vertically on the same option, or 
horizontally on the same attribute. Subjects saccaded here to reveal cue 2, again for 300ms. Hereafter, 
subjects could select either option using a manual left/right joystick movement. Alternatively, they could 
fixate one or both remaining highlighted cues in any order to reveal further information before making 
their decision. Following joystick choice, all four cues were revealed and juice reward was delivered with 
the chosen probability and magnitude. Picture cues, first/second highlighted location, and 
probability/magnitude attribute on top vs. bottom were pseudorandomly selected on each trial (with 
uniform distribution). Behavioural and neuronal data were collected from two macaque monkeys (M. 
mulatta). 

Both monkeys used cue values appropriately to guide their choices (Fig. 1b). They chose the 
option with higher expected value on 76.6% and 79.8% of trials (monkeys F (n=25 sessions) and M (n=32 
sessions) respectively), assigning approximately equal weight to reward probability and magnitude, and 
using all viewed cues to guide their choice (Fig. S1a/b). However, most choices were based upon partial 
information: subjects chose before all four cues had been evaluated on 85.5%/71.4% of trials (subjects 
F/M respectively). Choice accuracy based upon the pictures observed, rather than the true expected value, 
was substantially higher (86.3% and 87.4% for monkey F and M respectively). Surprisingly, choice 
accuracy was also higher on trials where subjects sampled fewer pieces of information (Fig. S1c). This 
was because such trials were associated with a higher value difference, and so subjects terminated these 
trials more quickly (Fig. S1d). 

Subjects preferred to sample information from the option that they currently intended to 
choose25,26. This behavior revealed itself in two ways. Firstly, subjects were free to choose where to attend 
with their third saccade. On ‘attribute’ trials, this saccade was preferentially directed towards the option 
with the higher relative expected value between cue 1 and cue 2 (compare bottom-left versus top-right of 
Fig. 2a). Such behavior mirrors a recently identified bias towards ‘sampling the favorite’ in an equivalent 
experiment in human participants25, and mirrors classic ‘confirmation biases’ in human hypothesis 
testing33. Secondly, once two cues had been presented, subjects were also free to decide when to stop 
sampling information and commit to a final choice. On ‘option’ trials, subjects sampled fewest pieces of 
information when cues 1 and 2 were highest in value, but most information when cues 1 and 2 were 
lowest in value (compare bottom-right versus top-left of Fig. 2b). This mirrors a (milder) ‘positive 
evidence approach’ bias in humans25.  

The latter bias (Fig. 2b) appears particularly surprising. Two low-valued cues in an ‘option’ trial 
provide conclusive evidence for choosing the option not yet attended. Yet monkeys nonetheless sampled 
from this option before committing to choosing it. This behavior is suboptimal in the context of two-
alternative forced choice, yet more rational in the context of real-world decisions that comprise multiple, 
non-mutually exclusive alternatives. Here, evidence against one option does not provide evidence in favor 
of any particular alternative. A natural strategy for solving such choices is to consider one option to be the 
leading or ‘foreground’ candidate, and decide whether to accept or reject it31. This accept/reject decision 
might still rely upon value comparison, for example to the next best alternative23,34 or the average reward 
rate of the environment35. 

 



 5 

Triply dissociable PFC population codes at first saccade 

We recorded single unit activity from anterior cingulate (ACC), dorsolateral prefrontal (DLPFC) 
and orbitofrontal (OFC) cortices (n=189, 135 and 183 neurons respectively; see Fig. 3). ACC recordings 
were primarily from the dorsal bank of the cingulate sulcus (area 24); OFC recordings were primarily 
from the medial orbital gyrus (area 13); DLPFC recordings were primarily from dorsal and ventral banks 
of sulcus principalis (area 9/46). 

A critical feature of our experiment is that following each saccade, the currently attended cue can 
be decomposed into multiple features: its associated attribute (magnitude or probability), value (level of 
reward probability/magnitude), spatial position (presented on top/bottom of screen), and action (left/right 
joystick response required to choose that option). In line with previous studies36, we found a degree of 
PFC subregion specificity in single neuron encoding of these features (see below). However, there was 
substantial between-neuron heterogeneity of decision-related computations encoded. This heterogeneity 
proved critical in robustly dissociating computations performed by each subregion. 

We capitalised upon neuronal heterogeneity by assessing population-level encoding of decision 
computations. At the time when cue 1 was attended, we used representational similarity analysis (RSA). 
RSA correlates the normalised firing rate of the neural population between all conditions of interest37. 
This characterises task encoding across the neural population without strong prior assumptions on its 
structure. At cue 1 presentation, we performed RSA between 20 conditions: 5 probability cues and 5 
magnitude cues, presented on either the left or right option. Here, as neurons were not all simultaneously 
recorded, we perform the analysis on ‘pseudopopulations’. For each subregion, we collapse across 
recording sessions, and calculate the correlation matrix from the resulting [Neurons*Conditions] matrix 
of firing rates. 

RSA revealed a striking triple dissociation of task-evoked neural codes across PFC subregions 
(Figs. 4a-c). This was consistent across subjects (Fig. S2). To formally compare subregion specificity and 
temporal evolution of population representations, we regressed templates onto RSA matrices to capture 
different features of the task design. DLPFC RSA reflected whether the subject was attending left or right 
(Fig. 4d). OFC representational similarity reflected the currently attended stimulus identity, irrespective 
of spatial position (Fig. 4e), and was also high for cues of similar attended value (Fig. 4f). ACC and 
DLPFC RSA showed a value code modulated by whether the subject was currently attending to the left or 
right option (Fig. 4g). ACC RSA also divided high-valued and low-valued items such that variance in 
ACC was best explained as a non-linear, categorical function of value (Fig. 4h; labelled ‘accept/reject’ 
coding for reasons explored below).  

For intuition, we provide single neuron examples for these features in Fig. S3. We also present 
RSA matrices subdivided by top/bottom spatial position in Fig. S4. It is important to acknowledge that 
there is not ‘pure selectivity’ for any one feature in a given region; for example, spatial attention is 
represented in both OFC and ACC (Fig. 4d), and other task features have some degree of representation 
in multiple regions. Nonetheless, there is strong regional specificity in the degree to which different 
subregions encode each feature. 

Decision-related computations at cue 1 emerged in parallel across PFC rather than sequentially 
(Fig. 4d-h). Supplementary Video 1 reveals the temporal order and evolution of these different 
computations. We also plot the timecourses of coefficient of partial determination (CPD) sorted by region 
in Fig. S5. We quantified the time at which information relating to different factors was encoded in 
different subregions by analysing when CPD in Fig. 4d-h reached 75% of its maximum value (t75, see 
Fig. S5b/c). Spatial attention affected representational similarity around the time of the saccadic eye-
movement (t75=24ms in ACC, 72ms in DLPFC, 67ms in OFC). The early rise time of this effect can be 
attributed to saccade generation as cue onset was timelocked to the saccade. Following this, coding of 
stimulus identity and attended value (t75=269ms/241ms respectively in OFC) was comparable in latency 
to accept/reject coding (t75=238ms in ACC, 224ms in OFC). By contrast, action value coding emerged 
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significantly later (t75=457ms in ACC, 369ms in DLPFC). In summary, attentional modulation occurred at 
time of the saccade; stimulus identification, valuation and accept/reject coding emerged in parallel across 
OFC and ACC; and this was subsequently translated into action value. 

Value encoding also differed between ACC and OFC. RSA in OFC was consistent with a linear 
representation of cue 1 attended value (Figs. 4a/f). Additional analyses confirmed this result’s robustness 
to the exact formulation of the ‘attended value’ template (see Supplementary Note, Figs. S11/S12). We 
hypothesised that this graded signal in OFC may be a critical substrate to support comparison of the 
currently attended cue value versus previously attended (stored) cue values during subsequent 
saccades9,10,38.  

By contrast, ACC value coding was more non-linear and categorical (Fig. 4h). Guided by a recent 
literature on ACC encoding expectancy violations and adapting behaviour in light of new evidence14,16-

18,20,21,34, as well as the pattern of information sampling in Fig. 2, we hypothesized that ACC activity 
might reflect whether to accept or reject the current ‘foreground’ option. In particular, a high-valued cue 1 
might confirm the belief that the first attended option should be accepted, not rejected. This option would 
remain the ‘foreground’ candidate, from which subjects will likely sample further information25,31,33 (Fig. 
2). By contrast, low-valued cues would disconfirm this belief, leading to the item being rejected, and the 
alternative becoming the foreground option. This hypothesis can be more robustly evaluated during 
subsequent saccades, as subsequent cues might confirm or disconfirm the current ‘foreground’ candidate 
as the best choice34. This signal might become particularly prominent prior to choice, when confirmatory 
evidence becomes sufficient to commit to an action.  

 

Attention-guided value comparison in OFC 

To address our hypothesis concerning attention-guided value comparison in OFC, we used 
multiple linear regression to evaluate how strongly each neuron encoded the values of cues 1, 2, 3 and 4 
across time on both option and attribute trials. In Fig. 5a, we plot the average coefficient of partial 
determination (CPD, a measure of variance explained by each regressor; see Methods), timelocked to 
each of the first three cues. This shows that value encoding by OFC neurons peaked approximately 300ms 
after each cue was revealed but was then sustained above baseline as further cues were attended. Note that 
CPD in these single-neuron analyses is considerably lower than in Fig. 4f, but comparable to other studies 
of value-based decision making39,40. This is because these values reflect variance explained across trials 
in each neuron, whereas values in Fig. 4f reflect variance explained across the neural population (having 
averaged across trials for each condition). 

Crucially, neuronal encoding of value was highly variable across the population. We again 
capitalised upon this heterogeneity to define population task-related ‘subspaces’ for value encoding. 
Task-related subspaces can be defined by using linear regression to define how sensitive each neuron is to 
experimental variables of interest, and then projecting the data into a space defined by these regression 
coefficients41. This analysis can again be performed on ‘pseudopopulations’ of non-simultaneously 
recorded neurons, as the regression is performed separately (within-session) for each neuron, before 
collapsing across sessions to define the (pseudo)population subspace.  

For example, we found that single neuron T-statistics for the regression of cue 1 value when cue 1 
was attended (ordinate in Fig. 5b) correlated positively with T-statistics for cue 2 value when cue 2 was 
attended (abscissa in Fig. 5b). These two regressors are orthogonal and defined at different task epochs 
(using a window of 150-350ms post-stimulus onset for each cue). This analysis therefore reveals a stable 
population subspace for the currently attended cue value.  

We repeated this approach for different phases of the task, to ask how the currently attended cue 
value subspace (ordinates in Figs. 5c-e) correlates with subspaces encoding previously attended, 
or stored, cues across time (abscissae in Figs. 5c-e). This revealed a signature of value comparison in 
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OFC between currently and previously attended cues10. For example, when cue 2 was attended on 
‘attribute’ trials, the currently attended cue 2 value subspace correlated negatively with the stored cue 1 
value subspace, representing the other option (Fig. 5c). This negative correlation indicates that neurons 
encoding the value of the currently attended option at cue do so relative to the value of the previously 
attended option, a key prediction of recent theories of economic choice24,31. Similarly, when cue 3 was 
attended on ‘option’ trials, the stored cue 1 and stored cue 2 values both represented the other option and 
were both negatively correlated with currently attended cue 3 value subspace (Figs. 5d/e). However, these 
two stored subspaces were themselves positively correlated at cue 3 on ‘option’ trials (Fig. 5f). This 
demonstrates that the two previously attended cues were combined at cue 3 to allow comparison with the 
currently attended cue.  

A more complete description of the interaction between attention and value can be obtained by 
plotting the cross-correlation of these subspaces across time (Figs. 5g-j). This reveals how the same OFC 
population subspace would dynamically shift its encoding of values from positive to negative as the 
subject saccaded around the screen. The letters superimposed on these plots refer back to the correlations 
shown in Figs 5b-f. 

Importantly, this signature of attention-guided value comparison was unique to OFC. Whilst 
the currently attended value subspace was present in DLPFC and ACC, value comparison 
with stored cues was absent in these regions (Fig 5k; Figs. S6-7). A formal comparison of each of the 
three correlations of interest (corresponding to those shown in Figs. 5c-e) across the three subregions 
(Fig. 5k) revealed significantly stronger population encoding in OFC than in DLPFC (attribute trials: 
VCue2 vs. VCue1, p = 0.040; option trials: VCue3 vs. VCue1, p = 0.067; VCue3 vs. VCue2, p = 0.011; 
Z-test after Fisher r-to-Z transformation) and in OFC than in ACC (attribute trials: VCue2 vs. VCue1, p = 
0.003; option trials: VCue3 vs. VCue1, p = 0.0003; VCue3 vs. VCue2, p = 0.00013). 

 

Parallel ACC signals for belief confirmation, choice commitment and action selection 

We then evaluated ACC population activity across cues 2 and 3, based upon our earlier 
interpretation that Fig. 4h may represent a belief confirmation signal for accepting or rejecting the 
‘foreground’ (current best) option. To test this hypothesis more rigorously, we included four regressors in 
our regression model that capture belief confirmation at subsequent cues, on both option and attribute 
trials. Whenever the evidence presented thus far suggests that the currently attended side should be 
chosen, we hypothesised that belief confirmation would scale positively with currently attended value. By 
contrast, when the evidence suggests that the unattended side should be chosen, belief confirmation 
would scale negatively with value (see Fig. S8). As a consequence, all four belief confirmation regressors 
were by definition orthogonal to currently attended value (Fig. S9). 

We used these regressors to test whether ACC reliably encoded belief confirmation. We found 
that ACC population subspaces for each of these regressors were significantly correlated with each other 
and also to cue 1 belief confirmation (Fig. 6a/Fig. S10). As all five regressors are defined at different 
parts of the trial, this reveals a stable population code in ACC for accepting/rejecting the current belief, 
which was not present in OFC or DLPFC (Fig. 6a). We again formally compared the correlations 
between these regressors across subregions, using a Fisher r-to-Z transformation (Fig. 6b). Virtually all of 
these correlations were stronger in ACC than OFC/DLPFC (Fig. 6b, right panels), and the majority of 
individual comparisons were significant (Fig 6b, left panels). 

We next asked whether this belief confirmation subspace in ACC might support commitment to a 
final decision12,15. To answer this, we examined the temporal evolution of belief confirmation subspace 
activity, using the regressors in Fig. S8/Fig. 6a. We used one half of all trials to define the subspace, and 
projected the data from the remaining half into this subspace to examine its evolution across time. To 
ensure statistical robustness, we repeated this procedure using 100 random splits of the data to obtain a 
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distribution of these projection results, and then averaged across this distribution. Positive values on the 
ordinate of Fig. 6c/d thus indicates more activity in the subspace aligned with the ‘belief confirmation’ 
regressors in Fig. S8.  

Time-varying ACC activity within this subspace showed distinct dynamics on trials of different 
reaction times (Fig. 6c). First, activity in this subspace separated short from long RT trials relatively early 
during the course of making a choice – even at the time of cue 1 presentation. One interpretation of this 
finding is that the first attended item is initially referenced as the ‘default’ option to be accepted or 
rejected, and evidence is interpreted either in favour of or against this default34. Confirmatory evidence 
may lead to executing a final choice more rapidly (Fig. 2b), with faster RTs on these trials. Second, 
irrespective of reaction time, ACC activity ramped shortly prior to joystick movement (Fig. 6d). Activity 
within the belief confirmation subspace therefore became prominent immediately prior to commitment to 
action, on all trials. 

Finally, Fig. 4g indicates that ACC contains a signal related to which action will be 
selected12,13,15,42. We defined a separate subspace for whether the subject would choose left or right on the 
current trial, adopting the same split-half approach as in Figs. 6c/d. Activity in the ACC action selection 
subspace also gradually ramped as evidence was revealed about which option to choose, and peaked 
immediately prior to action selection (Fig. 6e). Belief confirmation and action selection subspaces are 
orthogonal; the relationship between them can be seen in Supplementary Video 2.  
 

Single neuron analyses recapitulate core findings at population level 

 The analyses in Figs. 4-6 explore how information is represented at the level of the neural 
ensemble rather than at the level of the single neuron. This exploits the known heterogeneity of PFC 
single neuron responses14,15,17,36,40,42 to study task representations distributed across a population of cells. 
There are strong theoretical and empirical reasons to motivate studying information representation at the 
population level43, which have motivated several recent studies of PFC neuronal responses10,18,21,41. 
However, much of the previous literature has emphasised information representation at the level of single 
neurons. To facilitate comparison with this literature, we examined whether there were differences 
between PFC subregions in the fraction of neurons selective for key variables at different stages of the 
task. These analyses recapitulated the core findings at the population level. 

 We first tested whether OFC had more neurons encoding value comparison between currently 
and previously attended stimuli than other subregions. We performed three analyses, analogous to Fig. 
5c-e. At cue 2 of attribute trials (cf. Fig. 5c), we asked whether neurons encoded value difference between 
cue 2 and cue 1; at cue 3 of attribute trials, we asked whether they encoded value difference between cue 
3 and cue 1 (cf. Fig. 5d); at the same timepoint, we asked whether they encoded value difference between 
cue 3 and cue 2 (cf. Fig. 5e). To consider a neuron as representing value difference, we required that the 
contrast of parameter estimates (i.e. (Value Attended) – (Value Unattended)) be significant, and also that 
(Value Attended) and (Value Unattended) be independently significant with opposing signs. At all three 
relevant timepoints, we found that a greater proportion of single neurons passed these criteria in OFC than 
in ACC/DLPFC (Fig. 7a). We collapsed across these three tests to show the fraction of single neurons 
passing these criteria at any of the three cues individually (Fig. 7b). 

 We next tested whether ACC had a larger proportion of neurons encoding belief confirmation 
than other subregions. Here, we asked whether each neuron significantly encoded the four regressors 
depicted in Fig. S8, corresponding to belief confirmation at cue 2 or 3 on ‘option’ or ‘attribute’ trials. 
These are the four regressors whose parameter estimates correlate with each other in ACC (Fig. S10) but 
not OFC/DLPFC (Fig. 6a) and form the ‘belief confirmation subspace’ shown in Fig. 6c/d. At all four 
timepoints, there was a greater proportion of single neurons significantly encoding belief confirmation in 
ACC than in OFC or DLPFC (Fig. 7c). 
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  Finally, we performed an additional regression analysis at cue 1 onset to examine how factors 
relating to the value of different task features was represented in PFC. We again capitalized upon the fact 
that each cue could be decomposed into multiple features: its associated action, attribute, spatial position, 
and value. These different values were entered into the same regression model, allowing us to test the 
unique contribution of each of these features in explaining variance in neuronal firing across different 
regions. Across all three regions, a significant fraction of neurons encoded Cue 1’s value, irrespective of 
the cue’s attribute, action or spatial position (Fig. 8; binomial test, all p<1*107). We also found that single 
neurons encoded value in distinct frames of reference across PFC subregions. 

 First, a significant subset of ACC and DLPFC neurons (~18%) preferentially responded to the 
values of either left or right options (binomial test, both p<1*10-5). Both of these populations were 
significantly greater than OFC, which encoded action value at chance level (pairwise Chi2 test, ACC vs. 
OFC: p=0.002, DLPFC vs. OFC: p=0.003). The timecourse of these signals (Fig. 8b) was similar to that 
identified in the population analysis of cue 1 activity using RSA (Fig. 4f/g).  

As left and right options were spatially dissociated, ACC and DLPFC neurons might be encoding 
value with reference to various parts of space (as opposed to action). However, in a region tuned to spatial 
location rather than action, one would also expect to find neurons that differentiated value for cues on the 
top part of the visual display compared to the bottom part. In DLPFC, such a relationship held: an equally 
prevalent population of top-bottom ‘spatial value’ neurons was observed as left-right ‘action value’ 
neurons (binomial test, p<1*10-6). In ACC, this population was significantly smaller than the left-right 
value population (pairwise Chi2 test p=0.03). Consistent with its strong modulation by attention in Fig. 
4a, this suggests that DLPFC preferentially encodes value in the reference frame of spatial position, 
whereas ACC encodes it with respect to relevant choice actions.  

Lastly, replicating previous results44, we found a significant proportion of neurons in OFC 
(~24%) reflected attribute value (binomial test, p<1*107): they preferentially responded to the value of 
cues for either probability or magnitude. This proportion was significantly greater than the representation 
of attribute value coding in either ACC or DLPFC (pairwise Chi2 tests, OFC vs. ACC: p=0.001, OFC vs. 
DLPFC: p=0.014). We interpret this finding with a degree of caution, however. It is possible that OFC 
neurons could appear to reflect attribute value as an artifact of being particularly selective for individual 
stimulus identities (see RSA analysis, Fig. 4a/e, and example neuron Fig. S3b). There was not clear 
evidence for attribute-specific value coding in OFC using RSA (see Fig. 4a). 
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Discussion 
In real-world decision tasks, value-guided decision making is shaped heavily by visual attention. 

Information gathering strategies of both human consumers22-24,27 and foraging animals45 are well 
characterised as consecutive consideration of each choice option and its component attributes. Our 
findings demonstrate that as attention is first deployed to a choice option, population codes for decision-
related processes emerge simultaneously in ACC, OFC and DLPFC rather than sequentially (Fig. 4/8), 
lending strong support for distributed and parallel models of value-based choice7,8. As attention was 
redeployed to sample further information, OFC activity reflected attention-guided value comparison (Fig. 
5/7), whereas ACC activity reflected belief updating in light of new evidence and commitment to a final 
action (Fig. 6/7).  

In addition to providing functional dissociations across PFC subregions, our paradigm allowed us 
to explore subjects’ information sampling behavior, which suggested how subjects might be solving the 
task. In particular, subjects were biased towards sampling information from an option that they currently 
intended to choose (Fig. 2a), even when that information would yield little or no information about the 
choice (Fig. 2b). This mirrors biases that we have recently observed in a human version of the same 
experiment25, and is consistent with monkeys’ willingness to sacrifice reward to obtain information about 
reward delivery46. Such behaviors could be interpreted of in terms of a mechanism for solving value-
based choice of having a ‘foreground’ option in mind, and deciding sequentially whether to accept or 
reject this option relative to alternatives8.  

An accept/reject strategy for value-based choice might be considered quite natural in the wider 
context of the real-world foraging decisions faced by our evolutionary ancestors31. These are inherently 
sequential in nature and involve decisions such as whether to accept or reject a current patch. Such patch-
leaving decisions rely upon ramping signals in ACC prior to action selection20,47. In our task, ACC 
categorised the first attended option non-linearly into cues that might be accepted or rejected (Fig. 4c/h); 
had a stable ‘belief confirmation’ code for accepting/rejecting the foreground option in light of new 
evidence (Fig. 6a/S8/S10); and integrated that evidence towards a decision bound (Fig. 6c/d) while 
signalling which action would be chosen (Fig. 6e). There are a number of seemingly discrepant accounts 
of ACC function such as its role in value updating3,5,14, action-outcome prediction13, information 
seeking21, behavioural adaptation18,20,47 and action selection5,15,42. The computations we identified in ACC 
are consistent with these accounts but occurred at distinct time points or within orthogonal subspaces 
(Supplementary Video 2), thereby reconciling some of the outstanding debate concerning ACC function. 

By contrast, OFC initially carried a representation of the first attended stimulus identity and its 
value, consistent with its anatomical projections from regions of inferotemporal cortex48 representing 
highly processed visual information such as object identity49. As further information was attended, 
simultaneous coding of attended and stored information emerged uniquely in OFC populations (Fig. 5) 
and provided a relative value coding mechanism for how choice options are compared. Such attention-
guided relative value coding mechanisms form a central component of value comparison in recent 
accept/reject models of economic choice31, as well as other decision models24. Our findings are consistent 
with similar findings in adjacent ventromedial prefrontal cortex (VMPFC)9,10 but extend these results in 
important ways. For example, on ‘option’ trials we reveal how the OFC neural ensemble combines the 
value associated with multiple components of an option. Attribute integration did not occur immediately 
upon attending to the second cue, but instead only once the third cue was attended on the alternative 
option (Fig. 5f/h) and value comparison could take place (Fig. 5d/e/i/j). Our findings also indicate that 
with respect to attended stimuli, attention-guided value comparison is neuroanatomically specific (cf. 
Figs. S6/S7). We note, however, that value comparison may still be supported in other structures in 
complementary frames of reference7,8, for instance in the space of action value in ACC (Fig. 4f).  

An important caveat of our study is that analyses were based on pseudo-ensembles, not large 
ensembles of simultaneously recorded neurons. We typically isolated between 5 and 25 single units per 
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recording session (see Supplementary Table S1). Further insight into the relationship between different 
PFC subregions’ decision dynamics might be obtained with higher-yield simultaneous population 
recording techniques. 

In summary, theoretical models propose decision-making requires several computations including 
stimulus identification, valuation and integration with other attributes, comparison to previous choice 
options and action selection7,8,50. More recently it has been suggested that value-based decision making 
may be linked to other forms of choice such as sequential foraging decisions8,31. Although value-related 
signals are commonly found in PFC, a mechanistic account describing how distinct PFC subregions 
contribute to these computations has been lacking. Using a naturalistic information search and decision 
task that afforded exploration of how decision-related computations evolve as evidence informing choice 
is attended, we isolated these computations dissociably across PFC subregions. Our results therefore 
provide a unifying account of how PFC subregions support value-guided choice.  
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Fig. 1. Experimental paradigm and basic subject behavior. (A) Task design. Subjects chose between a 
left and right option (green rectangles) using a manual joystick movement, after sequentially sampling 2, 
3, or 4 cues that revealed reward probability and magnitude to the subject. Blue squares indicated 
locations available for information sampling. On attribute trials (left panels), cues 1 and 2 were on 
opposing options but the same attribute; on option trials (right panels), cues 1 and 2 were different 
attributes of the same option. (B) Choice behavior as function of cue 1 and 2 value. (i) Probability of 
choosing left option on attribute trials, as function of left-right picture rank difference (where 1 is lowest 
rank picture on each attribute, and 5 is highest rank picture). (ii) Probability of choosing option 1 on 
option trials, as function of first plus second picture value (relative to middle value picture 3). See also 
Fig. S1 for additional analyses of choices. 
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Fig. 2. Information sampling behaviour on Attribute and Option trials reveals preference for 
sampling current best alternatiive. (A) On attribute trials where a third cue was sampled, the 
probability of third saccade being directed diagonally back towards option 1, rather than vertically to 
remain on option 2, is high when Cue 1 is high value and Cue 2 is low value. (B) On option trials, the 
number of cues sampled is lowest when Cues 1 and 2 are high value, but surprisingly it is highest when 
Cues 1 and 2 are low value, even though this provides complete information about which option to 
choose.  
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Fig. 3. Recording locations. (A) Strategy for reconstructing path of electrode tracks. Left: After surgery 
for chamber implantation, prior to craniotomy, subjects underwent MRI scan with a custom-built implant 
placed within the chamber. This contained the MRI contrast agent gadolinium along the trajectory of 
potential recording paths at regular 4mm intervals. Note the prominent susceptibility artifact due to 
titanium chambers does not affect gadolinium trajectories, which were intentionally located away from 
the chamber. Right: This scan could be co-registered to a pre-operative scan without susceptibility artifact 
(in orange; note that head appears smaller due to muscle growth between scans), to reliably reconstruct 
recording locations. This technique was further verified by identification of grey/white matter boundaries 
during lowering of electrodes along different trajectories.  (B) Recording locations of orbitofrontal 
neurons (OFC), dorsolateral prefrontal neurons (DLPFC), and anterior cingulate neurons (ACC), shown 
on coronal sections. AP range denotes position anterior to interaural plane in stereotactic coordinates. 
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Fig. 4. Triple dissociation of task-evoked neural codes across OFC (n=183 units), DLPFC (n=135 
units) and ACC (n=189 units) at Cue 1 presentation. (A) OFC representaional similarity analysis 
between the 10 different cue identities – probability and magnitude, sorted from lowest (1) to highest (5) 
ranked picture – when presented on left and right options. For matrix element (i,j), color denotes 
Pearson’s correlation coefficient of Z-scored firing rate between condition i and condition j across the 
OFC neuronal population. Firing rate is averaged from 100ms to 500ms post-stimulus (see also 
Supplementary Video 1). Note this matrix collapses across top/bottom spatial position; see Fig. S4 for 
40x40 matrix, splitting conditions by spatial position. (B)/(C) As panel (A), but for DLPFC and ACC 
populations respectively. (D)-(H) Results from multiple linear regression of ‘templates’ onto RSA 
matrices. In each column, top subpanel shows template matrix, middle subpanel shows corresponding 
regression T-statistics for each region, and bottom subpanel shows coefficient of partial determination 
from sliding regression of templates onto RSA matrices, using sliding window of +/- 100ms. See 
Methods for full description of template matrices, regression model and statistical inference via non-
parametric permutation test. (D) ‘Spatial attention’ template (differentiating cues on left vs. right-hand 
option) was particularly prominent in DLPFC (DLPFC: T399=35.782, p<1*10-4), and significantly more so 
than other regions (one-way ANOVA F2,1179 = 311.18, p<1*10-4; post-hoc comparison for DLPFC>ACC: 
p<1*10-4; post-hoc comparison for DLPFC>OFC: p<1*10-4); (E) ‘stimulus identity’ template (responding 
similarly to the same cue irrespective of side) was particularly strong in OFC (T399=15.3173, p<1*10-4), 
again more so than other regions (F2,1179 = 32.77, p<1*10-4; post-hoc comparisons: OFC>ACC: p<1*10-4; 
OFC>ACC: p<1*10-4); (F) ‘Attended value’ template (representing cue 1 value irrespective of stimulus 
location or attribute) was prominent in OFC (T399= 5.0697, p=0.0036), and significantly more so than in 
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other regions (F2,1179 = 6.73, p=0.0126; post-hoc comparisons: OFC>DLPFC: p=0.0017; OFC>ACC: 
p=0.0002); (G) ‘Left/right value’ template was prominent principally within ACC (T399=5.5151, 
p=0.0096) and DLPFC (T399=5.7156, p=0.0062), and significantly more so than in OFC (F2,1179 = 9.08, 
p=0.011; post-hoc comparisons: ACC>OFC: p=0.0003; DLPFC>OFC: p=0.011); (H) ‘Accept/reject’ 
template (reflecting whether Cue 1 had high (rank 4 or 5) versus low value (rank 1 or 2)) was strongest in 
ACC (T399=12.1217, p<1*10-4) and significantly more so than other regions (F2,1179 = 17.20, p=0.0006; 
post-hoc comparisons: ACC>OFC: p<1*10-4; ACC>DLPFC: p=0.0004). In pantels (D)-(F), * denotes 
p<0.05, ** denotes p<0.005, *** denotes p<0.0005. See also Fig. S5. 
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Fig. 5. Valuation subspaces for attended (‘online’) and stored cues, supporting attention-guided 
value comparison in OFC (n=183 units). (A) Coefficient of partial determination for Cue 1 Value, Cue 
2 Value and Cue 3 value, timelocked to each cue’s presentation using a sliding 200ms window. Lines 
denote mean +/- s.e.m. across neurons. (B) Positive relationship between T-statistics from regression of 
value of cue 1 when cue 1 is presented (ordinate), and value of cue 2 when cue 2 is presented (abscissa), 
implying a stable subspace reflecting the currently attended value. (C) When cue 2 is being attended on 
attribute trials, the online value subspace (ordinate) correlates negatively with the subspace reflecting the 
stored value of cue 1 (abscissa). (D)-(F) When cue 3 is being attended on option trials, the attended value 
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subspace (ordinate of (D) and (E)) correlates negatively with the subspace for stored values of both cue 1 
(abscissa of (D)) and cue 2 (abscissa of (E)). The two stored subspaces are positively correlated (F). (G)-
(J) Cross-correlation matrices reflecting the time-varying relationship between different value subspaces 
on attribute trials (in (G)) and option trials (in (H)-(J)). Heat maps reflect the correlation coefficient 
between T-statistics from regression for each cue’s value across the OFC population. Superimposed 
letters refer back to the correlations that are plotted above, in panels (B)-(F). Black lines denote 
significant clusters (p<0.001, cluster-based permutation test, corrected for multiple comparisons). (K) 
Negative correlations in parts (C)-(E) are only present in OFC, and significantly stronger in OFC than in 
DLPFC (n=135 units) and ACC (n=189 units); bars show correlation coefficient +/- s.e. (*** = p<0.001, 
** = p<0.01, * = p<0.05 (two-tailed), ‘+’ = p<0.05 (one-tailed), Fisher’s r-to-Z transform). Correlations 
in parts B-F and K are defined using a window of 150-350ms post-stimulus onset. All correlation 
coefficients are Pearson’s correlation. See also Figs. S6/S7. 
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Fig. 6. Multiple signals in ACC reflect belief confirmation, commitment to a course of action, and 
accumulation of evidence for left/right movement (n=189 units). (A) Positive population correlations 
between four orthogonal regressors that reflect ‘belief confirmation’ at cue 2/cue 3 on both option and 
attribute trials (cf. Fig. S8), and initial value population response at cue 1 (cf. Fig. 4H), demonstrating a 
stable belief confirmation subspace in ACC across multiple cues. The value inside each box denotes the 
Pearson correlation of parameter estimates across the neural population in each region; shading denotes 
significance. See Fig. S10 for individual ACC correlations. (B) Formal comparison of correlations shown 
in part (A) using Fisher’s r-to-Z transformation against OFC (n=183 units) and DLPFC (n=135 units); left 
panels show the individual Z-scores/significance for each comparison (same layout as in part (A)), right 
panels show distribution of Z-scores. (C)/(D) Projecting ACC population activity into belief confirmation 
subspace reveals ramping immediately prior to the commitment to joystick movement. In part (C), trials 
are sorted by response time and time-locked to cue 1 onset (blue bars above are box plots of cue onset 
times for other cues); in part (D), trials are time-locked to response onset. (E) An orthogonal subspace in 
ACC reflects the emergence of an action plan to choose the left or right option. Activity in this subspace 
progressively favors one action over the other across time. See Supplementary Video 2 for relationship 
between belief confirmation and action selection subspaces. 
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Fig 7. Single neuron analysis of attention-guided value comparison and belief confirmation 
recapitulates findings of population analysis. (A) Attention-guided value comparison can be defined 
using three separate epochs and sets of regressors (see text for details). All three definitions show a 
greater proportion on neurons significantly encoding attention-guided value comparison in OFC (n=183 
units) than in DLPFC (n=135 units) or ACC (n=189 units). (B) This figure shows the percentage of 
neurons that encoded value attended minus value unattended across any of the three different epochs in 
part (A). (C) There are four separate ways of defining ‘belief confirmation’ (see text and Fig. S8 for 
details). All four definitions show a greater proportion of neurons significantly encoding belief 
confirmation in ACC than in OFC or DLPFC. 
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Fig 8. Single neuron correlates of task variables at Cue 1 presentation. (A) Fractions of ACC (n=189 
units), DLPFC (n=135 units) and OFC (n=183 units) neurons significantly encoding cue value, action 
value (left minus right), attribute value (probability minus magnitude), and spatial value (top minus 
bottom) in firing rates 100-500ms post-Cue 1 onset. Significance denotes two-sided binomial test against 
chance encoding (5%) for each bar (Cue value: ACC p<1*10e-5 , DLPFC p<1*10e-5, OFC p<1*10e-5; 
Action value: ACC p<1*10e-5, DLPFC p<1*10e-5, OFC p=0.4139; Attribute value: ACC p=0.029, 
DLPFC p=0.0023, OFC p<1*10e-5; Spatial value: ACC p=0.0572 , DLPFC p<1*10e-5, OFC p=0.0845), 
and pairwise Chi2 tests for comparisons between regions; * denotes p<0.05, ** denotes p<0.01, *** 
denotes p<0.001. (B) Coefficient of partial determination estimated in sliding 200ms bins for cue, action, 
attribute and spatial value in each region (mean +/- s.e. across neurons (ACC, n=189 units; DLPFC, 
n=135 units; OFC, n=183 units)). 
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Online Methods 
 

Subjects. Two adult male rhesus monkeys (Macaca mulatta), M and F, were used as subjects and weighed 
7-10kg at the time of neuronal data collection. Both were ~4 years old at the start of the experiment. We regulated 
their daily fluid intake to maintain motivation on the task. All experimental procedures were approved by the UCL 
Local Ethical Procedures Committee and the UK Home Office, and carried out in accordance with the UK Animals 
(Scientific Procedures) Act. 
 

Behavioral Protocol. Subjects sat head restrained in a behavioral chair facing a 19” computer monitor 
placed approximately 57cm away from the subjects’ eyes. The height of the screen was adjusted so that the center of 
the screen aligned with neutral eye level for the subject. A voltage-gating joystick (APEM Components, UK) was 
placed in front of the subject out of his line of sight and was used to make manual responses during the task. Eye 
position and pupil tracking was achieved using an infrared camera (ISCAN ETL-200) sampled at 240Hz. The 
behavioral paradigm was run using the MATLAB based toolbox MonkeyLogic (http://www.monkeylogic.net/, 
Brown University, USA)51-53. All joystick and eye position was relayed to MonkeyLogic and for use online during 
the task and also recorded by MonkeyLogic at 1000Hz. Juice delivery was achieved by using a precision peristaltic 
(ISMATEC IPC) to pump juice to a spout placed at the lips of the subject. Subject M was given dilute (50%) apple 
juice while Subject F drank dilute (50%) mango juice. 

Subjects were taught the value of a set of 10 isoluminant pictures cues pertaining to either magnitude or 
probability value (see Task for further details) using secondary conditioning on a separate day preceding data 
acquisition. This set of cues was then used for the following 1-4 recording sessions at which point a new set of cues 
would be taught to the subject. In total Subject M learnt 13 separate sets of cues, while Subject F learnt 11 sets. 
 

Task. A representation of the task structure is shown in main Figure 1A. Subjects initiated the trial by 
maintaining saccadic fixation on the center of the screen and central fixation of the joystick for 500ms. Once this 
was achieved two options were presented on the screen (left and right of center). Each option consisted of two pre-
learned picture cues assigned to two different value attributes, probability of reward (10%, 30%, 50%, 70%, 90%) 
and magnitude of juice reward (0.15AU, 0.35AU, 0.55AU, 0.75AU, 0.95AU). The cues were uniformly sampled 
(with replacement, i.e. it was sometimes the case that the same cue would appear on both options). Reward 
magnitude (volume) was varied by manipulating the length of time a reward pump was driven, and the absolute 
values (i.e. reward time) associated with each stimulus varied slightly between subjects. Importantly, all four picture 
cues were covered up by grey squares with the exception of one, which was covered by a blue square. The blue 
square informed the subject the location of a required saccade. Once the subject made a saccade and fixated the blue 
square, the blue square was replaced by the picture cue, which the subject was required to continuously fixate for 
300ms. If continuous fixation was not achieved within 1200ms the trial was aborted and the subject received a short 
timeout. Once this fixation period was achieved, the cue was covered and a second blue square was presented, 
indicating the location of the required second saccade. The position of this blue square indicated to the subject the 
type of trial being experienced. If the blue square was for the second cue of the same option subjects were in an 
‘Option trial’, whereas if the blue square was for the same attribute cue of the second option then this was an 
‘Attribute trial’. Selection of trial types was pseudorandom. Once the subject made a saccade to the blue square, the 
blue square was replaced by the picture cue, and the subject was again required to maintain fixation of the second 
cue for 300ms. After this point, the subjects were relatively unconstrained. The two remaining unexplored locations 
were now replaced by blue squares. The subject could either choose an option using a joystick movement (left/right) 
based on the value of the currently known information, or saccade to one or both of the remaining cues (in any 
order) as they wanted (with the 3rd cue requiring 300ms of fixation before subjects could saccade and uncover the 
information of the 4th cue) before making a choice. Importantly, however, they were prevented from viewing any 
cue that they had already seen. Once a response was made all four cues were uncovered (for 500ms for Subject F 
and 1000ms for Subject M), after which juice reward feedback was given with the probability and reward magnitude 
chosen by the subject. 

Note that the position of the probability/magnitude cues were counterbalanced across trials – i.e. on half of 
all ‘Option’/’Attribute’ trials, the probability cues would appear on the top row, and on the other half of trials the 
magnitude cues would appear on the top row. Attribute locations also corresponded across options (i.e. if probability 
was on the top row for the left option, it would also be on the top row for the right option). Additionally, the location 
of the first cue was counterbalanced across all four possible spatial locations across trials. 
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‘Option’ and ‘Attribute’ trials were pseudorandomly interleaved during blocks of 50 trials. Between each of 
these blocks subjects were presented with a block of 25 trials, where all four picture cues were presented 
immediately (so called ‘Simultaneous’ trials). Data from these trials will be discussed in a separate publication. 
 

Neuronal Recordings. Subjects were implanted with a titanium head positioner for restraint, and then 
subsequently implanted with two recording chambers that were located using pre-operative 3T MRI and stereotactic 
measurements. Post-operatively we used gadolinium attenuated MRI imaging and electrophysiological mapping of 
gyri and sulci to confirm chamber placement. The center of each chamber along the anterior-posterior (AP) 
coordinate plane was as follows; Subject M: left: AP 30.5, right: AP 33, Subject F: left: AP 34, right: AP 32.5. The 
chambers were angled along the medial-lateral plane to target different frontal regions (see Figure 3). Craniotomies 
were then performed inside each chamber to allow neuronal recordings. 

During each recording session, neuronal activity was measured using tungsten microelectrodes (FHC 
Instruments, Bowdoin, USA) that were lowered into the brain through a grid using using custom-built manual 
microdrives or chamber-mounted motorized microdrives (FlexMT; AlphaOmega Inc.). During a typical recording 
session, 8-24 electrodes were lowered bilaterally into multiple target regions until well-isolated neurons were found. 
Neuronal data was recorded at 40kHz using a Plexon Omniplex system (Dallas, USA). Single unit isolation was 
achieved with manual spike sorting, using Plexon Offline Sorter (Dallas, USA). We randomly sampled neurons; no 
attempt was made to select neurons based on responsiveness. This procedure ensured an unbiased estimate of 
neuronal activity thereby allowing a fair comparison of neuronal properties between the different brain regions. Note 
that neural populations used to perform analyses in Figs. 4-6 are therefore not all simultaneously recorded, but they 
are pseudopopulations constructed across multiple recording sessions. Each neuron is first averaged across 
conditions (Fig. 4) or regressed across trials (Fig. 5/6) to identify the neuron’s response to experimental variables, 
allowing us to then collapse across sessions, as in previous studies using similar approaches10,39,41. We excluded 
neurons with an average firing rate of <1Hz from further analysis (9 units in ACC, 21 in DLPFC, 12 in OFC; n 
reported in main text are after these units have been removed). No statistical methods were used to pre-determine 
sample sizes but our sample sizes are similar to those reported in previous publications (refs 10,11,14,15,20,38-40,42,46). 

We recorded neuronal data from three target regions: anterior cingulate cortex (ACC), dorsolateral 
prefrontal cortex (DLPFC), and orbitofrontal cortex (OFC). We considered ACC to be the entire dorsal bank of the 
anterior cingulate sulcus from AP 27-37mm. Our LPFC recordings spanned both dorsal and ventral banks of the 
principal sulcus but were concentrated towards the former. All neurons recorded lateral to the medial orbital sulcus 
and medial to the lateral orbital sulcus was considered OFC. In some sessions, all three regions were recorded 
simultaneously, whereas in other sessions only two were targeted. The total number of units with firing rate >1Hz in 
each brain region for each recording session is shown in Supplementary Table 1. Some recordings were also made 
in ventromedial prefrontal cortex (VMPFC), but these will be discussed in a separate publication. We used the 
gadolinium-enhanced MRI along with electrophysiological observations during the process of lowering each 
electrode to estimate the location of each recorded neuron and produce a histological map of the neuronal population 
(see Figure 3). All data was subsequently analysed using custom-written MATLAB code, using MATLAB 2017a 
(MathWorks, Natick, USA). Data collection and analysis were not performed blind to the conditions of the 
experiments, as neuroanatomical location of recording sites had to be known when lowering electrodes for 
recording. 
 

Representational similarity analysis (RSA) at Cue 1 presentation (Figures 4/S2/S4, Supplementary 
Video 1). To calculate the representational similarity matrices shown in Figure 4A-C, we first calculated the 
average firing rate for each neuron for each of the 20 conditions of interest: when the lowest to highest probability 
cue was presented on the left at Cue 1, when the lowest to highest magnitude cue was presented on the left at Cue 1, 
lowest to highest probability cue on right, and lowest to highest magnitude cue on right. This firing rate was 
computed between 100ms and 500ms after Cue 1 onset. We then normalized across these 20 conditions, subtracting 
the mean and dividing by the standard deviation.  

Repeating this for every neuron yielded a matrix with dimensions (neurons*20). For two conditions (i, j), 
we computed the correlation coefficient across neurons between row i and row j of this matrix, which is plotted in 
element (i,j) of the representational similarity matrix. For Supplementary Video 1, we repeated the same procedure 
on sliding windows of +/- 100ms from the timepoint of interest. 
 

RSA template-based regression (Figure 4D-H). We used multiple linear regression to assess the 
contribution of several potential ‘template’ neural codes to the RSA matrices within each region. Each of the 400 
elements of each region’s RSA template was explained using the following regression model: 
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𝒓(𝒊,𝒋) = 𝜷𝟎 ++𝜷𝒏𝑻𝒆𝒎𝒑𝒍𝒂𝒕𝒆𝒏(𝒊,𝒋)

𝟔

𝒏5𝟏

+ 𝝐(𝒊,𝒋) 

Where r denotes the correlation coefficient matrix computed using RSA, and there are six ‘template’ 
matrices onto which the RSA matrix is regressed. We estimated β0-6 using ordinary least squares, minimizing the 
sum of squared residuals ε. The six template matrices were as follows: 

Template 1: Identity matrix – accounting for all RSA matrices being 1 when element i=element j (note that 
this is a regressor of no interest, to model out the unity correlation between a condition and itself) 

Template 2 (Figure 4D): ‘Spatial attention’ – accounting for representational similarity between cues 
presented on the same side, but dissimilarity between cues on opposite sides (1 if i<=10 and j<=10, 1 if i>=11 and 
j>=11, -1 elsewhere) 

Template 3 (Figure 4E): ‘Stimulus identity’ – accounting for representational similarity between the same 
stimulus being presented on left/right options (1 where |i-j|=10, 0 elsewhere) 

Template 4 (Figure 4F): ‘Attended value’ – accounting for representational similarity between similarly 
valued items and representational dissimilarity between dissimilarly valued items (ranked value(i)*ranked value(j), 
where ranked value is -2 for the lowest ranked stimulus within an attribute (i.e. 10% probability, 15% maximal 
reward magnitude), -1 for the 2nd lowest ranked (30% probability, 35% maximal reward magnitude), 0 for the 
median ranked (50 % probability, 55% maximal reward magnitude), 1 for the 2nd highest ranked (70% probability, 
75% maximal reward magnitude), 2 for the highest ranked (90% probability, 95% maximal reward magnitude)) – 
see supplementary note for further justification of the structure of this regressor 

Template 5 (Figure 4G): ‘Left/right value’ – interaction of template 4 with spatial attention - i.e. set to the 
same value as template 4 for cues presented on the same side, and set to 0 for cues presented on opposite sides 

Template 6 (Figure 4H): ‘Accept/reject’ - accounting for representational similarity between cues that 
might lead to ultimately accepting the current alternative (good items similar to other good items; bad items similar 
to other bad items), and representational dissimilarity between dissimilar items in terms of acceptance/rejection (sign 
of attended value template) 

For the middle panels in Figure 4D-H this model was estimated on RSA matrices from 100-500ms post-
stimulus, as in Figure 4A-C; for the bottom panels of Figure 4D-H it was performed on sliding windows of +/- 
100ms from the timepoint of interest, as in Supplementary Video 1. In these panels we plot the coefficient of 
partial determination (CPD) for each regressor across time, which is defined for EV Xi as follows: 

 
𝐶𝑃𝐷(𝑋<) = [𝑆𝑆𝐸(𝑋~<) − 𝑆𝑆𝐸(𝑋~<, 𝑋<)]/𝑆𝑆𝐸(𝑋~<) 

 
where SSE(X) refers to the sum of squared errors in a GLM that includes a set of EVs X, and X~i is a set of all the 
EVs included in the full model except Xi 14,40. 
 Prior to running the regression model, each template was normalized by dividing by its maximum absolute 
value (so that the minimum possible value of each template was -1, and the maximum value of each template was 
+1). This normalization was simply to place the regressors on a common scale, so that when plotted in Figure 4, the 
same color axis could be used to describe all regressors. Importantly, this normalization has no bearing on either the 
CPD or T-statistics, as both of these measures are scale-free. 
 To quantify the latency at which different factors were represented across time, we calculated the timepoint 
at which the CPD reached 75% of its maximal value over time, a statistic we label t75 in the paper. To simulate how 
different instantiations of the noise might affect our estimate of t75, we permuted the residuals from the original 
GLM and added these permuted residuals to Xb (where X is the design matrix and b are the parameter estimates). 
We then recalculated the time-varying measure of CPD and re-estimate t75 for each instantiation of the noise. The 
resulting distribution of values of t75 from this analysis are shown in Figure S5c (100 permutations were 
performed). 
 

Statistical inference on RSA template-based regression model. We tested the significance of each 
template within each region by computing the T-statistic for each β coefficient (i.e. 𝛽EF/𝜎HF, where 𝜎HF denotes the 
standard errors of each coefficient estimate). We compared differences between regions by computing F-statistics 
equivalent to a one-way ANOVA (see https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FEAT/UserGuide#ANOVA:_1-factor_4-
levels for example). Importantly, however, when calculating these statistics on a correlation matrix, they may not be 
parametrically distributed in the null distribution (due to observations not being independently and identically 
distributed). To overcome this, we built a non-parametric null distribution for each test of interest, by permuting the 
identities of the 20 cues (i.e. values 1-5 on probability/magnitude, left/right), recomputing the RSA matrix, and 
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rerunning the regression. We then computed the T-statistics and F-statistics on this permuted data, and compared the 
true statistics to the permuted null distribution to obtain p-values 54. We performed 10,000 permutations. 
 

General linear model (GLM), underlying analyses in Figures 5-7. For the analyses shown in Figures 5-
7, we first estimated a general linear model on the firing rate of each individual neuron, timelocked with respect to 
Cue 1 presentation, Cue 2 presentation, Cue 3 presentation, and joystick movement (response). Each neuron’s firing 
rate was explained using a GLM containing 18 explanatory variables (EVs), detailed below, estimated using 
ordinary least squares. Note that EVs 1-6 are critical for the analyses shown in Figure 5 and Figures S6/S7, EVs 13-
16 are critical for the analyses shown in Figure 6A-C and Figure S10, and EVs 17-18 are critical for the analyses 
shown in Figure 6D. 

EV 1 captured the linear effect of changing the first attended cue’s value from the lowest value to highest 
value, collapsing across probability and magnitude cues, selectively on ‘option trials’. Specifically, if the lowest 
ranked probability/magnitude item was presented they were valued -2; if the second lowest ranked item was 
presented -1; third lowest, 0; second highest, 1; highest, 2.  

EVs 2-4 were similar to EV 1, but reflected the second, third and fourth attended cue’s value respectively 
(for option trials only). On trials where the third or fourth cue was not attended on an option trial (because the 
subject responded without sampling all cues), the corresponding EVs were valued 0.  

EVs 5-6 were similar to EVs 1-2, but reflected the first and second attended cue’s value respectively for 
‘attribute trials’ only. EVs 7-8 were similar to EVs 3-4, but reflected the third and fourth attended cue’s value on 
attribute trials where the subject saccaded diagonally back to the first side of the screen (0 on vertical saccade trials), 
whereas EVs 9-10 reflected the third and fourth attended cue’s value on attribute trials where the subject saccaded 
vertically to the second side of the screen (i.e. 0 on diagonal saccade trials). Note that there is no need to split option 
trials by third saccade direction, as unlike in option trials the third saccade is always to the second side of the screen. 

EV 11 was an indicator variable for option trials (1 on option trials, 0 otherwise); EV 12 was an indicator 
variable for attribute trials (1 on attribute trials, 0 otherwise). Note that EVs 11 and 12 sum to produce a constant 
term, thereby capturing variation in the mean firing rate of the cell across time. 

EVs 13-16 were variables that all captured the extent to which the Cue value observed at Cue 2 and Cue 3 
were consistent (belief confirmation) or inconsistent (belief disconfirmation) with the currently held belief as to 
which option would be rewarded. They are described below, but for clarity, they are also depicted in Figure S8. 
Two key points are pertinent: (a) by design, all four EVs were largely orthogonal to the value of Cue 1, Cue 2 and 
Cue 3 (although see note on EV 16 below); (b) they each rely upon different cues and different trials, and so are 
orthogonal to each other by design. 

EV 13 (Figure S8A) was the same as EV 2 – i.e. the value of cue 2 on option trials – but crucially, it was 
multiplied by 1 whenever the value of the first cue was greater than the average value (i.e. best or second best 
picture cues), multiplied by -1 whenever the value of the first cue was lower than the average value (i.e. worst or 
second worst picture cue), and multiplied by 0 whenever it was of average value (middle picture cue). EV 13 
therefore was positively signed whenever Cue 2 was consistent with Cue 1 (e.g. low-valued cue followed by another 
low-valued cue, or high-valued cue followed by another high-valued cue). 

EV 14 (Figure S8B) was the same as EV 6 – i.e. the value of cue 2 on attribute trials – but was multiplied 
by 1 when the first cue’s value was lower than average, by -1 whenever the first cue’s value was higher than 
average, and by 0 when cue 1 was of average value. Again, this meant that EV 14 was positively signed whenever it 
was consistent with Cue 1 (e.g. low-valued cue on the left followed by high-valued cue right both favor the right 
action, or high-valued cue on the left followed by low-valued cue on the right both favor a left action). 

EV 15 (Figure S8C) was the same as EV 3 – i.e. the value of cue 3 on option trials – but was multiplied by 
1 whenever the first and second cue were lower than average value (when EV 1 + EV 2 was negative), by -1 
whenever the first and second cue were higher than average value (when EV 1 + EV 2 was positive), and by 0 when 
the first and second cue were of average value(when EV 1 + EV 2 equalled 0). 

EV 16 (Figure S8D) was similarly defined to EVs 7 and 9 – i.e. the value of cue 3 on attribute trials – but 
crucially relies upon an interaction of the relative value of the first and second cue, and which side the subject 
decided to attend with the third saccade. On trials where the subject’s third saccade was diagonal back to option 1, it 
was EV 7 multiplied by 1 when (EV 5> EV 6), multiplied by -1 when (EV 6>EV 5), and multiplied by 0 when (EV 
5=EV 6). On trials where the subject’s third saccade was vertical within option 2, it was EV 9 multiplied by 1 when 
(EV 6>EV 5), multiplied by -1 when (EV 5>EV 6), and multiplied by 0 when (EV 5=EV 6). Note that because 
subjects’ decision whether to make a third saccade to the same side as option 1 relied upon the relative value of Cue 
1 and Cue 2, there existed some positive correlation between EV16 and EVs 7 and 9 (mean r2 of 0.167 and 0.194 
respectively, see Figure S9). Nevertheless, including all three EVs together in the GLM directly controls for this 
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correlation with value, by partialling out any variance that can be attributed to EVs 7 or 9 from the parameter 
estimate for EV 16. 

EV 17 was defined in terms of action selectivity on option trials. It was valued 1 on option trials where the 
subject chose left, -1 on option trials where the subject chose right, and 0 on attribute trials. 

EV 18 was defined in terms of action selectivity on attribute trials. It was valued 1 on attribute trials where 
the subject chose left, -1 on attribute trials where the subject chose right. 

We estimated this multiple regression model on neuronal firing rate in sliding 200ms bins, stepped in 10ms 
time-windows, from 100ms pre-cue to 500ms post-cue (when stimulus-locked), or from 500ms pre-response to 
100ms post-response (when response-locked). We excluded trials where subjects viewed fewer than 3 cues from this 
analysis. 
 

Peri-stimulus correlation and cross-correlation of parameter estimates from GLM (Figure 5/Figures 
S6/S7). Once the model in the previous section was estimated for each neuron, we then correlated, across neurons, 
T-statistics associated with parameter estimates for different EVs. This allowed us to examine how population 
subspaces encoding different variables related to each other, at various timepoints through the trial. Note that in one 
case (Figure 5B) we collapse across parameter analyses from option and attribute trials for clarity. Parameter 
estimates in Figure 5B-F/K were taken from 250ms post-stimulus, whereas in Figure 5G-J they were repeated on 
all possible combinations of time-points to produce cross-correlation matrices of parameter estimates. In figure 5K, 
we performed a Fisher r-to-Z transformation to test the differences between these correlations between subregions. 

 
Statistical inference on cross-correlation of parameter estimates. To test whether areas of high/low 

correlation between parameter estimates were significantly larger than would be expected by chance, we used a 
cluster-based permutation test54. We identified clusters in the cross-correlation map that were larger than a cluster-
forming threshold (set at |r|>0.2; similar results could be obtained with other cluster-forming thresholds). We then 
permuted (across neurons) one of the two sets of parameter estimates used to compute the cross-correlation matrix, 
and identified clusters that exceeded the cluster-forming threshold in the permuted data. For each of the 1,000 
permutations, we stored the size of the largest cluster. This provided a null distribution of maximum cluster sizes 
that would be expected by chance. We used the 99.9th percentile of this null distribution as a threshold for deeming 
whether cluster sizes observed in the data were significant, at a p-value of p<0.001 (corrected for multiple 
comparisons). 
 

Projection of ACC activity onto belief confirmation/chosen response subspaces (Figure 6 and Figure 
S10, Supplementary Video 2). To identify whether there was a stable subspace representing ‘belief confirmation’ 
in each brain region (Figure 6A), we investigated whether the parameter estimates for all four regressors that 
captured belief confirmation in our GLM were correlated (Figure S9). The parameter estimates used were EV 13, 
300ms after Cue 2 onset; EV 14, 300ms after Cue 2 onset; EV 15, 300ms after Cue 3 onset; EV 16, 300ms after Cue 
3 onset. We also asked whether this subspace was similar to the subspace for Cue 1 value (i.e. EV1 + EV5, 300ms 
after Cue 1 onset), based on the idea that Cue 1 ‘value’ responses in ACC are better conceived in terms of belief 
confirmation about accepting or rejecting the first attended cue (cf. results in Figure 4C, 4H). We again performed a 
Fisher r-to-Z transformation to test the differences across subregions between the correlations in these subspaces. 

This approach uniquely identified a stable subspace for belief confirmation in ACC. Once this stable 
subspace was identified (see Figure 6A/S10), we asked how activity in this subspace evolved in trials where the 
subject took different lengths of time to make his final choice response (Figure 6 and Supplementary Video 2). For 
each neuron, we split trials into five separate bins depending upon response time from Cue 1 onset, and averaged 
neuronal firing for these different trial types. For each bin, this yielded a matrix with dimensions time*neurons.  

To examine activity within different subspaces, we then regressed this matrix onto a projection matrix 
composed of two key ‘weights’ per neuron, i.e. T-statistics of contrasts of parameter estimates of interest, estimated 
from the GLM. This projection matrix therefore had dimensions neurons*(2 PEs). The two contrasts of interest 
were: 

1. The average parameter estimates for belief confirmation, i.e. EV 13, 300ms after Cue 2 onset; EV 14, 
300ms after Cue 2 onset; EV 15, 300ms after Cue 3 onset; EV 16, 300ms after Cue 3 onset; 

2. The average parameter estimates for left vs. right action selection, i.e. EV 17 and EV 18, 200ms prior to 
response onset; 

Regressing the time*neurons matrix onto the neurons*(2 PEs) gives rise to the sliding analysis that is shown in 
Figure 6. In Figure 6B/C, we plot the stimulus-locked and response-locked parameter estimates for contrast 1 
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respectively, reflecting the population activity in the belief confirmation subspace for trials of different length. In 
Figure 6D, we plot the response-locked parameter estimates for contrast 2, reflecting population activity in the 
left/right action selection subspace in trials of different length. In both cases, we baseline corrected subspace activity 
to the time of Cue 1 onset +/- 50ms. Supplementary Video 2 provides a representation of how activity in both of 
these subspaces progresses during the course of the trial. 

Crucially, we avoided using the same data for estimating different neurons’ weights in the projection matrix as 
for plotting population activity. To achieve this, we first split the data into odd and even trials; we estimated the 
projection matrix weights using the GLM on the odd trials, and projected these weights onto firing rates on the even 
trials; we then repeated the same process with even trials for GLM estimation and odd trials for projection; finally, 
we averaged subspace activity together across odd and even-trial analyses. 

 
Further detail on methods is available online in the Life Sciences Reporting Summary. 
 

Code Availability/Data Availability Statement. The raw neuronal data and custom MATLAB analysis 
scripts that support the findings in this study have been made freely available for download on the CRCNS data 
repository (http://crcns.org, dataset pfc-7)55. 
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Supplementary Figure 1 

Additional analysis of subject behaviour. 

(A)/(B) Logistic regression shows weighting of all four presented cues and both probability and magnitude attributes on subject choices. 
In (A), bars show mean +/- s.e.m. of regression coefficient for the final viewed picture, penultimate viewed picture (n-1), antepenultimate 
viewed picture (n-2), and first viewed picture on trials where subject viewed all four cues (n-3), as well as bias towards choosing the left 
cue. Both subjects use all four cues to guide their choices, with a slight upweighting of the antepenultimate cue. In (B), Bars show mean 
+/- of the regression coefficient for left minus right probability, and left minus right magnitude, separately for option and attribute trials. 
Also included in the model are a bias towards choosing the left cue and a bias towards choosing the first side (note that both subjects 
show a small but significant bias towards choosing the second side on option trials, also visible in main Figure 1B). Regression models 
were fit to all trials, collapsed across sessions (n=14,251 trials (subject M), n=9,863 trials (subject F)). (C) Subjects paradoxically were 
more likely to choose optimally, on average, on trials where 2 pictures were viewed rather than 3 or 4 pictures. (D) This effect can be 
straightforwardly explained by subjects terminating information sampling earlier, on average, on trials where the first two cues are more 
informative (and so the decision is easier). Bars show mean +/- standard error; n=14,251 trials (subject M), n=9,863 trials (subject F). 
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Supplementary Figure 2 

Reproducibility of representational similarity matrices across subjects. 

Data are as presented in main Figure 4A-C, plotted separately for subjects M and F. Correlation is computed with Pearson’s correlation, 
as in main Figure 4. n=189 units (ACC), 135 units (DLPFC), 183 units (OFC). 
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Supplementary Figure 3 

Example single neurons to provide intuition for how different task variables are represented at cue 1 presentation. 

Each subplot shows a different single neuron example. Bar plots show average firing rate of the neuron to each of the 10 stimuli when 
presented on left and right of the screen, averaged from 300-500ms following cue 1 presentation. Line plots show peri-stimulus histograms 
for each of these conditions, timelocked in ms to cue 1 presentation. (A) Example DLPFC unit reflecting spatial position (high firing for all 
stimuli on right side of screen. (B) Example OFC unit showing ‘stimulus identity’ coding (esoteric high firing for certain stimuli, replicated 
on both left/right sides of screen). (C) Example OFC unit showing ‘attended value’ coding (firing linearly scales with value, irrespective of 
attribute or spatial position). (D) Example ACC unit reflecting action value (high firing for high valued stimuli on left or low valued stimuli 
on right). (E) Example ACC unit showing ‘accept/reject’ coding (high firing for stimuli ranked 4 or 5; low firing for stimuli ranked 1 or 2). 
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Supplementary Figure 4 

Representational similarity across all 40 conditions at cue 1 presentation. 

Data are as presented in main Figure 4A-C, but are now subdivided into trials where cue 1 was presented in the top versus bottom half 
of the screen. The key results from this analysis primarily replicate the findings when top and bottom cues are collapsed. Note, however, 
that in DLPFC, representational similarity is modulated by top/bottom stimulus location (compare, for example, the average brightness 
for top leftàtop left versus top left à bottom left). This indicates that DLPFC activity primarily represents spatial position rather than 
simply left/right action. This finding was also recapitulated in single unit analyses of DLPFC neurons (see Supplementary Note). 
Correlation is computed with Pearson’s correlation, as in main Figure 4. n=189 units (ACC), 135 units (DLPFC), 183 units (OFC). 
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Supplementary Figure 5 

Comparison of latencies for different features in representational similarity matrices within each subregion. 

(A) This plot shows the same information as in bottom panels of main Fig. 4d-h, but sorted by subregion rather than by regressor. This 
shows more clearly the relative latencies of different variables – i.e. that spatial attention affects representational similarity earliest in each 
subregion; stimulus identity, attended value and accept/reject emerge roughly simultaneously, and left/right value emerges last. Whilst 
these findings can be used to compare latencies of these different responses, we caution that the magnitude of CPD values for different 
variables are not directly comparable with each other, because they depend upon the correlation structure of the design matrix. Instead, 
CPD values for the same variables should be compared with each other across subregions (as in main figure 4). (B) This plot shows the 
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same information as in part (A), but after each regressor has been normalized to its peak value. Regressors explaining little variance 
have been removed from this plot, for clarity. The dashed line denotes the value at which 75% of maximal CPD is reached, which we 
denote as t75. Note that in both figures, CPD is estimated in sliding 200ms bins, and is timelocked to cue onset (after the subject has 
saccaded to the cue). (C) Box-and-whisker plot of t75 for key variables/brain regions, estimated using different simulated observations of 
the noise (see Methods for details). The distributions of t75 for spatial attention do not overlap with those of attended value, accept/reject, 
or stimulus identity, demonstrating that spatial attention is encoded significantly earlier than other variables. Similarly, left/right value (in 
ACC and DLPFC) is encoded significantly later than other variables. Red lines denote median values; notches denote 95% CIs of the 
median; edge of boxes denote 25/75 percentiles of data; whiskers denote maximum/minimum values (excluding outliers, as estimated 
using MATLAB boxplot algorithm).  n=189 units (ACC), 135 units (DLPFC), 183 units (OFC). 
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Supplementary Figure 6 

Value subspaces for attended and stored code in ACC. 

Figure layout is as for main Figure 5. Note that like OFC, ACC shows consistent single neuron coding of value (A), and that population 
subspaces for attended (B) and stored (F) subspaces are present in ACC. However, there is no evidence of inhibition between the 
attended and stored subspaces (parts (C)-(E)). Lines in part (A) denote mean +/- s.e.m. of coefficient of partial determination across 
neurons. Lines in parts (B)-(F) denote line of best fit +/- 95% CI. n=189 units. 
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Supplementary Figure 7 

Value subspaces for attended and stored code in DLPFC. 

Figure layout is as for main Figure 5. Value coding is weaker in DLPFC than in either of the other two regions (A), but population 
subspaces for attended (B) and stored (F) subspaces are nonetheless present in DLPFC. However, there is little evidence of inhibition 
between the attended and stored subspaces (parts (C)-(E)). Lines in part (A) denote mean +/- s.e.m. of coefficient of partial determination 
across neurons. Lines in parts (B)-(F) denote line of best fit +/- 95% CI. n=135 units. 
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Supplementary Figure 8 

Design of ‘Belief confirmation regressors’ (i.e. EV13 – EV16 in General Linear Model). 

Each of the four EVs is depicted by a different panel, and refers to a different trial type/timepoint through the trial. Crucially, however, the 
interpretation of the four EVs is very similar. Whenever the evidence presented to the subject thus far suggests that the currently attended 
side should be chosen (green dots), then ‘belief confirmation’ scales positively with value. Whenever the evidence suggests that the 
unattended side should be chosen (red dots), then ‘belief confirmation’ scales negatively with value. Note that all four regressors were 
thus orthogonal to currently attended value (see Figure S9). (A) EV13, reflecting belief confirmation at second saccade of option trials. 
(B) EV14, reflecting belief confirmation at second saccade of attribute trials. (C) EV15, reflecting belief confirmation at third saccade of 
option trials. (D) EV16, reflecting belief confirmation at third saccade of attribute trials (depending upon whether subjects’ third saccade 
was to (i) side 1, or (ii) side 2). 
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Supplementary Figure 9 

Mean correlation between explanatory variables (EVs) in General Linear Model. 

Note that most EVs of interest (1-6, 13-18) are decorrelated from one another by design, with the exception of EV16 (whose value 
depends upon where the subject looked at Cue 3, and this saccade depends systematically upon the relative value of cue 1 and cue 2 
(see main Figure 2)). EVs 11/12 are indicator variables for trial type. 

 



 43 

 
Supplementary Figure 10 

ACC has a robust belief confirmation signal across different cues and trial types. 

Parameter estimates for all four ‘belief confirmation’ regressors (at Cues 2/3 on both option and attribute trials) are positively correlated 
with each other across the ACC neural population. They are also positively correlated with value coding at cue 1. The Pearson correlation 
coefficients from each of these plots are also shown in main Figure 6A, right-hand plot. Lines denote line of best fit +/- 95% CI. n=189 
units. 
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Supplementary Figure 11 

Analysis of RSA using alternative ‘attended value’ and ‘left/right value’ templates (with equal similarity for mid-valued and 
extreme-valued stimuli). 

This analysis replaces the ‘attended value’ and ‘left/right value’ templates with an alternative formulation (equal on-diagonal similarity), 
and produces qualitatively similar functional dissociations to those observed in main Figure 4. See supplementary note for further 
details. See Methods for full description of other regressors in regression model, and statistical inference via non-parametric permutation 
test.  * denotes p<0.05, ** denotes p<0.005, *** denotes p<0.0005. n=189 units (ACC), 135 units (DLPFC), 183 units (OFC). 
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Supplementary Figure 12 

Results of simulated RSA matrix for a population of neurons with linear encoding of value. 

This simulation reproduces the result found in OFC that extreme-valued stimuli have strong representational similarity, whereas mid-
valued stimuli do not. See supplementary note for details of simulation. Correlations shown are Pearson’s correlation, as in other RSA 
figures. 
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Supplementary Table, Supplementary Movie Details, and Supplementary Note 
 
Subject M 

Session_ID ACC OFC DLPFC 
5 9 0 1 
7 3 1 0 
10 4 3 0 
11 9 2 0 
12 2 0 3 
14 4 0 7 
15 3 0 2 
16 6 0 5 
18 0 0 2 
19 1 0 1 
21 4 5 0 
22 1 4 0 
23 6 1 0 
25 4 2 0 
26 4 3 0 
27 6 5 0 
29 4 2 0 
30 7 6 3 
33 3 3 3 
35 4 4 0 
36 2 3 0 
40 3 11 2 
41 4 8 5 
42 1 3 3 
44 0 9 1 
45 1 3 3 
46 4 5 3 
48 0 3 0 
49 2 1 5 

 
Subject F 

Session_ID ACC OFC DLPFC 
2 9 0 7 
3 8 0 4 
4 10 0 8 
8 8 7 0 
9 7 8 0 
10 10 9 4 
12 14 5 2 
13 8 11 0 
15 2 13 5 
16 3 4 13 
17 3 12 14 
18 0 0 11 
19 1 0 12 
20 2 0 8 
22 1 0 2 
23 1 5 3 
24 2 3 0 
25 2 7 2 
27 1 5 3 
30 4 4 2 
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31 1 6 3 
33 0 7 1 
34 0 2 2 
36 0 0 1 

 
Supplementary Table S1. Total number of units with average firing rate >1Hz in each subregion for 
each recording session.  
 
 
 
Supplementary Movie Details 
 
Movie S1. Temporal evolution of representational similarity at first saccade to fixate value-related 
information.  This video depicts the temporal evolution of representational similarity around the time of Cue 1 
fixation (see main Figure 4). Each movie frame represents average firing rates of +/- 100ms around the timebin of 
interest. The bottom panels show the evolution of the template-based regression presented in main Figure 4. 
 
Movie S2. Orthogonal subspaces for belief confirmation and action selection in ACC. This video shows the 
relationship between ‘belief confirmation’ and ‘left/right action selection’ population subspaces, both of which show 
ramping prior to action selection in anterior cingulate cortex. 
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Supplementary Note: Design of ‘attended value’ regressor for RSA 
 

When analyzing results from the representational similarity analysis at cue 1, we used an ‘attended value’ 
template, based on the product of the ranked value of the cues ([-2, -1, 0, +1 +2]) – see Methods of main paper.  

This yields the perhaps surprising result that extreme-valued stimuli (rank 1 or rank 5) are similar, 
whereas mid-valued stimuli (rank 3) are rated as being less similar. It is worth noting that this structure 
captures the main structure of the responses in OFC (see main Figure 4A). It is also worth noting that similar 
results to those obtained in the main paper could also be obtained with a regressor that has a uniform diagonal 
(that is, where mid-valued stimuli are rated as being equally similar to extreme-valued stimuli). Such a 
regressor can be constructed by calculating the negative absolute difference in value between cue i and cue j. 
As shown in Supplementary Figure 11, such a regressor to analyse the data in main Figure 4 yields a similar 
functional dissociation between OFC, DLPFC and ACC for ‘attended value’ and ‘left/right value’. 

Whilst this analysis demonstrates that our results are robust to different formulations of these 
regressors, it also fails to capture a feature of the data that can clearly be seen in main figure 4A – namely, that 
extreme-valued stimuli are found to be more similar than mid-value stimuli. In this note, we consider why 
such a template might arise from a population of neurons which show linear encoding of value in their firing 
rates at cue 1 presentation. To show this, we simulated a population of 1000 neurons whose firing rate was 
linearly related to value, with equal proportions of neurons positively and negatively encoding value 
(approximating what is seen in the data, see main Figure 5B). It is worth noting that this region has many 
neurons with a strong linear relationship with currently attended value, which remains stable across multiple 
cue presentations (see main Figure 5B/8).  

The MATLAB code for this simulation is given below. 
 
%% simulate RSA matrix for linear coding of value (or, why does OFC RSA have the structure that 
it does?) 
 
nUnits = 1000; %number of neurons 
baseline_firing_rate = poissrnd(4,nUnits,1); %for each neuron 
linear_value_slope = randn(nUnits,1); %how much each neuron correlates with value 
value_levels = [-2:2]; %different possible levels of attended value (demeaned) 
fr_noise = 10; %noise level 
  
%model firing rates (fr) 
for i = 1:nUnits %loop over units 
    for v = 1:5 %loop over different levels of value 
        fr(i,v)   = baseline_firing_rate(i) + linear_value_slope(i)*value_levels(v) + 
poissrnd(fr_noise); 
        fr(i,v+5) = baseline_firing_rate(i) + linear_value_slope(i)*value_levels(v) + 
poissrnd(fr_noise); 
        fr(i,v+10) = baseline_firing_rate(i) + linear_value_slope(i)*value_levels(v) + 
poissrnd(fr_noise); 
        fr(i,v+15) = baseline_firing_rate(i) + linear_value_slope(i)*value_levels(v) + 
poissrnd(fr_noise); 
    end 
end 
fr = fr - repmat(mean(fr,2),[1 20]); %demean firing rate across conditions 
imagesc(corrcoef(fr)); %calculate RSA matrix across simulated firing rates 
colormap('hot'); 
caxis([-0.3 0.3]); 
 

This resulting RSA matrix from this simulation is shown in Supplementary Figure 12. As can be 
seen from this figure, it reproduces the result that extreme-valued stimuli will have strong representational 
similarity, whereas mid-valued stimuli do not. Part of the reason behind this feature of the simulation is that 
the ‘value_levels’ in the simulation have been demeaned. In effect, this produces a greater range of firing rates 
for low-values stimuli and high-valued stimuli, and a smaller-range of firing rates for mid-valued stimuli. 
 
 
 


