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Abstract 10 

Age-at-death profiles constructed from archaeozoological data have been used for decades to infer 11 

the goals of prehistoric herd management strategies. Several ‘ideal’ profiles have been proposed as 12 

models for the optimal kill-off profiles that represent specific husbandry strategies, such as maximising 13 

milk or meat yields, which can then be compared to archaeological profiles. We evaluate the goodness 14 

of fit of ten caprine archaeological age-at-death profiles to five published idealised profiles, whilst 15 

properly accounting for sampling error and data where the age classes of observations are uncertain. 16 

We statistically reject all tested idealised profiles as plausible models to explain the data, and instead 17 

propose that a Gamma distribution provides a simpler and better general model to represent possible 18 

herd management strategies. Furthermore, we show that archaeological profiles can be summarised 19 

well using Gamma parameters, which allow multiple datasets (and models) to be easily compared and 20 

graphically represented together with minimal information loss, thus allowing clearer inferences to 21 

be drawn. Finally, we calculate likelihood distributions of the Gamma parameters, which provide 22 

confidence intervals that fully account for the uncertainties from small sample sizes and uncertain age 23 

classes. We have developed an R package ‘GammaModel’ to enable users to apply these tools to any 24 

age-at-death count data. 25 

Highlights 26 

- Existing ‘ideal’ kill-off profiles are implausible models of husbandry practices during the early 27 

Neolithic 28 

- The Gamma distribution provides a simpler model that fits data better than the current nine-29 

age class models. 30 

- Summarising kill-off profiles with the Gamma distribution minimises compression and allows 31 

clearer graphical comparisons. 32 

- We calculate kill-off profile model likelihoods whilst accounting for both sampling error, and 33 

uncertain age classes. 34 

- R package ‘GammaModel’ developed to provide tools to perform these analyses on age-at-35 

death count data. 36 
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Introduction 40 

Since their initial domestication, caprines (Sheep, Ovis aries; Goat, Capra hircus) have formed an 41 

important component of present-day and prehistoric subsistence practices (Arbuckle, et al., 2014, 42 

Helmer, et al., 2007). Direct morphological evidence for caprine domestication has been identified at 43 

Pre-Pottery Neolithic (PPN) sites in the northern Levant and Zagros regions, dating to the 9th 44 
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millennium BC (Peters, et al., 1999, Zeder, 1999). Farming arrived in Europe via two routes, a 45 

continental route associated with cattle herding, and a maritime route associated strongly with 46 

caprine husbandry in southern Europe (Çilingiroğlu, 2009, Coward, et al., 2008, Guilaine, 2001, Perlès, 47 

2005). Large-scale analysis of age-at-death data and organic residues has demonstrated caprines were 48 

managed for dairy husbandry, particularly those belonging to Impressa/Cardial ware (ICW) sites 49 

(Debono Spiteri, et al., 2016). The role of caprines and their products (meat, milk, hair) during the 50 

Neolithic is often overlooked due to the symbolic and economic value of cattle, particularly for Central 51 

and Northern European cultures such as the Linearbandkeramik (LBK) (Gillis, et al., 2017, Manning, et 52 

al., 2013). In these regions caprines had a secondary role and have been proposed to have been 53 

primarily a source of meat (Marciniak, 2013).  54 

Mortality profiles based on age-at-death data determined from dental development, replacement, 55 

and wear stages are commonly used by archaeozoologists to infer the goals of prehistoric subsistence 56 

strategies (Helmer, et al., 2005, Higham, 1969, Payne, 1973). The recovery of different age classes is 57 

governed by the mortality profile of the herd, taphonomic and preservation conditions, and 58 

excavation and sampling protocols. Payne (1973) and Redding (1981) proposed model profiles that 59 

represent the maximisation of specific product yields or herd sustainability. However the relevance of 60 

these models for prehistoric practices has been challenged (Halstead, 1998) since Payne’s profiles 61 

were derived from observations of modern Turkish market herders and Redding’s models are based 62 

on data from modern Middle Eastern caprines. Nevertheless, these mortality models have been 63 

widely used and cited to identify the targets of husbandry strategies from archaeological data (e.g. 64 

Helmer, et al., 2007). Here we test if these idealised profiles are plausible models to explain ten caprine 65 

archaeological profiles from early European Neolithic sites. Specifically, we aim to establish the degree 66 

to which such widely used kill-off profiles are appropriate models of prehistoric herding strategies.  67 

Idealised age at death profiles 68 

Payne (1973) theorised three ideal profiles, one each targeting meat, milk and wool production. These 69 

were presented graphically as survivorship curves, from which it is trivial to calculate the probability 70 

of death in each age class. Unfortunately, Payne did not provide a numerical summary, but our careful 71 

measurements of the original plots are summarised in Table 1: 72 

Class A B C D E F G H I 

Age 
0 to 2 

months 
2 to 6 

months 
6 to 12 
months 

1 to 2 
years 

2 to 3 
years 

3 to 4 
years 

4 to 6 
years 

6 to 8 
years 

8 + 
years 

Meat 0.15 0.10 0.05 0.20 0.20 0.05 0.05 0.10 0.10 

Milk 0.52 0.05 0.03 0.04 0.07 0.05 0.04 0.10 0.10 

Wool 0.15 0.10 0.05 0.05 0.07 0.06 0.06 0.26 0.20 

Table 1: summary of Payne’s 1973 Figs 1:3. Caprine probability of death, in each age class. 73 

Redding (1981) proposed two further ideal profiles targeting maximum energy offtake, and maximum 74 

herd security. Redding provided numeric probabilities in age classes, the durations of which differ 75 

slightly from Payne’s (Classes A and B are aggregated), as summarised in Table 2. 76 

class AB C D E F G H I 

age 
0 to 6 

months 
6 to 12 
months 

1 to 2 
years 

2 to 3 
years 

3 to 4 
years 

4 to 6 
years 

6 to 8 
years 

8 + years 

Energy 0.096 0.128 0.30 0.226 0.011 0.078 0.098 0.063 

Security 0.096 0.259 0.265 0.13 0.011 0.078 0.098 0.063 

Table 2: summary of Redding’s 1981 Table X2 and X3. Caprine probability of death, in each age class. 77 
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Helmer and Vigne (2007) (H&V) introduced two additional profiles for meat and milk (defined as type 78 

B to distinguish from Payne’s meat and milk profiles) which were observed kill profiles from two 79 

archaeological sites. These profiles were proposed as representations of mixed economies (Milk B) 80 

and where tender meat is the focus (Meat B). As such, these represented ‘typical data’ that might be 81 

expected, rather than new models.  82 

Marom and Bar-Oz (2009) (M&B-O) evaluated Payne and Redding’s models, but summarised the H&V 83 

type A models as distinct from Payne’s models, and included the H&V type B profiles as additional 84 

models. Unfortunately, M&B-O’s numerical summary bears little resemblance to the original source 85 

data. For example, H&V’s meat B histogram (2007 Fig 5 b) has a height of 7% in class A (or 86 

approximately 1% of the total area), whilst M&B-O reports this as 14% (from 100% to 86% between 0 87 

and 2 months). Payne’s wool profile (1973 Fig 3) shows a 5% loss in class C from 75% at 6 months to 88 

70% at 12 months, whilst M&B-O reports this as a 10% loss from 75% to 65%. M&B-O reports 89 

Redding’s data with a percentage reduction in class A, but no reduction in class B. In fact, Redding did 90 

not provide this precision and combined classes A and B. Therefore, when summarising the numeric 91 

values that describe the five published models, we discard M&B-O’s published summary in favour of 92 

our own summary of Payne and Redding’s source information (Tables 1 and 2, respectively). 93 

Archaeological data 94 

We used combined sheep and goat remains from ten Neolithic sites from Central Europe, the Northern 95 

European Plain and the northwestern Mediterranean. Polgár-Piócási-dűlő (PPI) and Polgár-Ferenci-96 

hát (PFE) come from Hungary and belong to the Alföld Linear Pottery (ALP) dated 5650-4800 BCE. 97 

Polgár-Csaszhalom-dulo (PCS) belongs to the Hungarian Late Neolithic and dated 4840-4560 cal. BCE. 98 

Mold (MOLD), Dillingen-Steinheim (WIK) and Tĕšetice-Kyjovice (TES) belong the typical LBK culture of 99 

central Europe, dated 5500 to 4900 BCE. The remaining sites, Trasano (TRA1/TRA2), Font Juvénal 100 

(FON1) and La Draga (LAD) are from the northwestern Mediterranean. These belong collectively to 101 

the Early Neolithic ICW cultures, in which ceramics are decorated with impressed designs often using 102 

the cardial shell. Trasano (Impressa, Italy) dated 6400 to 5320 BCE and Font Juvénal (Cardial, France) 103 

and La Draga (Cardial, Spain) both dated 5600 to 4800 BCE. All the sites are open-air settlements apart 104 

from Font Juvénal, which is a rock shelter site and assumed to be a spring/summer birthing station. 105 

The age-at-death was determined from teeth using eruption, replacement (Helmer, et al., 2007, 106 

Payne, 1987) and dental wear stages (Grant, 1982) for the fourth lower deciduous pre-molar (D4), first 107 

molar (M1), second molar (M2) and third molar (M3). Crown height, distance anterior to posterior 108 

(DAP) and distance transversal (DT) (Ducos, 1968) for the molars were also recorded and used to age 109 

dental remains. Occlusal eruption stage, wear stage and crown height index provide a less precise 110 

estimate of age-at-death given the inter-species and inter-individual variation in rates of eruption, 111 

wear and growth. Broken roots and long wear stages cause greater uncertainty of the age-at-death, 112 

resulting in a tooth being assigned to a multiple-age class. Data from these sites are summarised in 113 

Table 3. 114 

Code ABCD A AB B BC C CD D BCD DEF DEFG EF G EFG HI GHI EFGHI DEFGHI 

FON1 2 5 2 0 2 6 4 1 0 0 0 2 1 6 0 0 2 2 

TRA1 0 1 0 1 3 10 1 7 0 0 0 12 10 1 0 0 1 0 

MOLD 1 0 0 0 0 6 5 8 0 2 0 12 6 0 3 9 3 0 

TES 2 0 0 3 3 15 2 7 1 0 0 18 2 0 4 0 0 0 

TRA2 0 0 0 1 1 9 12 6 0 7 0 5 0 18 0 5 6 0 

PPI 0 0 0 3 2 7 0 4 0 0 0 29 25 0 0 0 3 0 

WIK 0 0 0 3 0 8 1 11 0 1 0 32 18 0 1 0 0 0 

PFE 0 0 0 12 2 26 0 6 0 0 0 11 18 4 0 3 0 0 

PCS 0 0 0 0 0 41 0 20 0 0 0 20 6 0 10 0 6 0 

LAD 1 0 1 2 1 8 5 33 0 26 2 28 14 1 0 0 0 0 

 115 
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Table 3: summary of archaeological data showing teeth counts in age Payne’s age classes A to I. Note the variation in 116 
uncertainty, such that some observations can only be assigned to a broader age range comprising several age classes.  117 

Previous statistical approaches 118 

The comparision of archaeological mortality profiles and idealised models has generally been based 119 

on a simple visual examination or on the comparison of the dominant age classes (Helmer, 1991). 120 

Occasionally statistical approaches have been employed to evaluate the (dis)similarity between 121 

archaeological profiles and /or model profiles. Greenfield and Arnold (2015) employed Mann-122 

Whitney U-tests after transforming counts into proportions in each age class. However, this is 123 

problematic since these derived proportions become compositional, therefore age classes cannot be 124 

tested separately. Marom and Bar-Oz (2009) presented ideal profiles in the form of survivorship 125 

curves (percentage of a theoretical cohort still alive) and used Kolmogorov-Smirnov (KS) tests for 126 

continuous variables to evaluate if these curves are distinguishable. However, this is problematic for 127 

several reasons. Firstly, M&B-O correctly note that the archaeological counts in each age class are 128 

discrete variables, but argue that by presenting as survivorship curves the data becomes continuous. 129 

Clearly this is not the case, the survivorship curves are merely the cumulative counts in each age 130 

class, scaled such that the total sample size equals 100%.  Secondly, M&B-O’s conclusion that ‘Many 131 

theoretical survivorship curves are not statistically different” suggests a muddle between data and a 132 

model. A KS test can evaluate if two datasets are significantly different, or if a dataset can be 133 

reasonably explained by a model, and its power to detect this is largely a matter of the sample size 134 

of the data. The theoretical survivorship curves are models, not data, and therefore do not have 135 

sample sizes. As such, a KS test is not applicable since there are no data to test. Instead M&B-O used 136 

the model percentages to act a sample size of 100. Finally, M&B-O proposed aggregating data into 137 

fewer broader age classes, but this results in a loss of information content, and therefore cannot 138 

logically offer any improvements. 139 

Gerbault, et al. (2016) and Gillis, et al. (2017) focused on estimating the uncertainty in the death 140 

probabilities in each age class resulting from small sample sizes by resampling the data from a Dirichlet 141 

distribution then using correspondence analysis to compress the information into two dimensions. 142 

Whilst the Dirichlet distribution provides a valid means of assessing uncertainty in population 143 

frequency estimates due to sampling error, and correspondence analysis provides a useful graphical 144 

representation, this remains a descriptive approach and does not provide an objective statistical test 145 

of any specific hypothesis. Nor does this approach account for multi-class assignments. 146 

Calculating likelihoods exactly 147 

Payne (1973) first proposed the discrete age classes A to I which represent a practical compromise 148 

between the resolution at which it is possible to confidently assign ages to archaeological teeth, and 149 

the resolution at which the data can then inform on competing hypotheses. Since a particular kill-off 150 

strategy model is defined by the chance of death in each of these age classes, and provided 151 

archaeological count data is available in the same age classes, the likelihood of the model (the 152 

probability of the data given the model) can be calculated exactly using the multinomial distribution. 153 

This can be thought of as a 9-sided die where the chance of death in each age class (the model 154 

parameters) are the chance of the die landing on each face, and the total observed counts are the 155 

number of rolls.   156 

This relationship between model parameters and observed counts requires some simplifying 157 

assumptions. Firstly, we assume no differential taphonomy between age classes, which is generally 158 

justified by the use of tooth data, rather than bone fusion data.  Secondly, we define ‘slaughter’ as any 159 

cause of death that could be represented in our archaeological data (for example natural deaths of 160 
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new-borns would likely be included in the archaeological record whilst the predation and removal of 161 

a lamb would not). This is partly because we cannot determine a cause of death for our teeth, and 162 

partly because other causes of death are influenced by husbandry practices; for example providing 163 

shelter to avoid new-born deaths from predation or poor weather. Finally, we assume that the number 164 

of teeth in each age class is a good proxy for the number of individuals slaughtered. 165 

Multi-class age assignments 166 

A tooth may not fall neatly into one or another age class. A well-preserved tooth will contain more 167 

information, whilst another may have more uncertainty. As exemplified by our dataset, the 168 

archaeologist may be only able to assign it to a broader aggregate of multiple classes. For example, 169 

the observation of one tooth belonging to either A or B [AB = 1]. A persistent problem in previous 170 

studies has been the coercion of these counts into Payne’s age classes by either removing teeth that 171 

cannot be assigned to a single class (losing information), or by ‘spreading’ counts across the individual 172 

classes, such that [A=0.5 and B=0.5] e.g. (Gerbault, et al., 2016) or sometimes weighted by the age 173 

class width; e.g. Payne 1973). Clearly these approaches are not equivalent, and the latter generates 174 

false precision in the data, resulting in incorrect probabilities downstream. The importance of handling 175 

multi-class assignments properly is not restricted to calculating likelihoods; representing the data 176 

graphically becomes challenging as even the humble histogram requires counts that fall into only one 177 

class. In fact, the example above is equivalent to [(A=1) or (B=1)]. Therefore, to correctly calculate the 178 

probability of the observed data where some counts are assigned to more than one age class, we must 179 

calculate the probabilities under every possible arrangement using the multinomial distribution, and 180 

these individual probabilities must then be summed. 181 

Goodness of fit: Calculating p-values under each model 182 

An archaeological profile may look very different to a model profile, even where the observed data 183 

could easily be generated under that model. Similarly, the observed data may be a fair outcome of 184 

several models, or none. This equifinality is a particular problem for small sample sizes, where there 185 

are many possible ideal profiles that could generate the same outcome and is confounded further by 186 

multi-class assignments. 187 

We approach this by asking the question ‘what is the probability of getting the observed data or more 188 

extreme (i.e. any outcome that is less likely than the observed data), from the proposed  model’? This 189 

is the definition of a p-value when testing a null model (Pearson, 1900). Thus, we make the a priori 190 

assumption that the data could have been generated under any of the ideal models, and if the p-value 191 

is suitably low (e.g. below 0.05) we can then reject that model. We achieve this using a Chi-squared 192 

test (Pearson, 1900), and account for uncertain data assigned to multiple age classes by calculating a 193 

p-value for each arrangement of the observed data, then calculating the average p-value weighted by 194 

the frequency of each arrangement. Calculating the frequencies of each arrangement first requires 195 

clarity of what an uncertain assignment means (e.g. AB=1). We assume that the archaeologist’s belief 196 

is that A or B are equally likely (0 to 2 months, or 2 to 6 months), based on the view that the age classes 197 

were devised to reflect the limits at which morphological differences in teeth can be distinguished. 198 

This contrasts with the view that the archaeologist is determining the tooth as having uniform 199 

probability distribution between 0 and 6 months, which would then require the relative probabilities 200 

to be adjusted for the different time width of these age classes.  201 

In practice, an exact approach is computationally expensive, so we approximate this by sampling one 202 

million possible arrangements of the observed data under the above assumptions, from which we 203 

calculate an average p-value. Table 4 reports p-values from the goodness of fit tests, which evaluate 204 
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the probability of each archaeological profile (or more extreme) being generated under each model 205 

profile. P-values are extremely low in all tests, allowing us to reject all five proposed ideal models for 206 

every archaeological assemblage considered.  207 

  Payne Redding 

Site n Meat Milk Wool Energy Security 

FON1 35 1.4E-04 7.7E-11 5.0E-07 1.6E-04 1.6E-03 

TRA1 47 4.6E-13 4.4E-30 9.5E-18 8.9E-07 1.9E-06 

MOLD 55 4.0E-06 1.9E-22 1.0E-12 1.5E-04 3.2E-05 

TES 57 3.5E-14 1.0E-37 3.8E-22 4.8E-07 4.7E-06 

TRA2 70 5.0E-10 5.3E-38 2.8E-24 1.5E-06 3.9E-07 

PPI 73 2.1E-34 2.2E-56 1.5E-36 7.9E-25 2.9E-30 

WIK 75 9.7E-20 2.1E-46 8.9E-32 6.9E-16 1.0E-22 

PFE 82 2.0E-41 5.9E-78 1.9E-41 8.3E-17 4.4E-11 

PCS 103 4.6E-57 3.5E-124 1.1E-70 2.5E-17 4.2E-07 

LAD 122 5.9E-19 8.2E-92 1.3E-69 2.6E-16 5.1E-25 

 208 

Table 4: summary of Goodness of fit tests, showing none of these models are plausible explanations for the observed data 209 
(n= tooth counts). 210 

The Gamma distribution as a model for idealised profiles 211 

The failure of all five tested idealised profiles to provide a statistically plausible model for any of the 212 

archaeological data sets suggests the need to re-evaluate the appropriateness of these models. This 213 

failure may be partly due to poor specification of the slaughter probabilities in each age class. 214 

However, each model is described using eight parameters, (the ninth age-class probability is not free 215 

as they must all sum to 1), which suggests they may also suffer from unjustified model complexity. 216 

Occam’s razor requires us to first consider the simplest models with the fewest parameters, and to 217 

increase model complexity only where this can be justified by providing a substantial improvement in 218 

their fit to data. The Gamma distribution uses just two parameters µ and k, representing the mean 219 

slaughter age and the shape of the dispersion around this mean, respectively. The general properties 220 

and shape of the Gamma distribution fit well with the expectation of age-at-death under a single 221 

simple theoretical subsistence strategy – as a unimodal probability distribution it naturally represents 222 

the distribution of slaughter ages with a single peak (the most common kill age), and has a domain 223 

greater than zero (an age below which no kills can occur).  224 

Using Gamma parameters to summarise age-at-death data 225 

Archaeological age-at-death profiles are usually represented using histograms. This can work well for 226 

a single profile provided each count falls into a single age class, but becomes problematic for multi-227 

class assignments. Furthermore, the comparison of several profiles cannot be achieved on the same 228 

axes, since each profile requires its own histogram. Any attempt to represent several profiles on a 229 

single two-dimensional plot requires some information compression. Gerbault, et al. (2016) 230 

approached this by using Correspondence Analysis, which illustrates the two dimensions with the 231 

most variation whilst the remaining dimensions (which together typically comprise a substantial 232 

fraction of variation) are lost.  233 

A common strategy when representing complex or large data (either graphically or numerically) is to 234 

compress the information content into a few summary statistics. The objective is to communicate the 235 

largest amount of information as simply as possible. For example, box and whisker plots might be used 236 

to represent a large univariate dataset using just five statistics (minimum, maximum, median, first and 237 
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third quartile), or the data might be compressed further and described using just the mean and 238 

variance.  239 

We build on this approach by fitting a Gamma distribution to our age-at-death data using Markov 240 

Chain Monte Carlo (MCMC) (see MCMC section details) which provides the full joint parameter 241 

likelihood distribution. This has the advantage of representing the entire age-at-death profile using 242 

Gamma parameters µ and k, and the clear graphical representation and comparison of datasets in 243 

two-dimensions, with less information loss. Furthermore, since the Gamma distribution is a 244 

continuous probability distribution, it provides the flexibility to summarise and compare datasets with 245 

different age classes, such as modern ethnographic data, where the age at death may be known with 246 

an accuracy of just a few days. 247 

We illustrate this in Fig 1, showing best fit Gamma distributions as a continuous function of age, for 248 

each archaeological dataset (using joint Maximum Likelihood Estimates (MLE) of µ and k), and in Fig 2 249 

showing the 90% confidence interval (CI) of these Gamma parameters, representing the uncertainty 250 

due to small sample sizes and multi-class assignments.  251 

252 
Fig 1: Best fit Gamma distributions as continuous functions of age, for each archaeological dataset, based on Maximum 253 
Likelihood Estimates of the Gamma parameters (k and µ). Note, the distribution of TRA1 is obscured behind the PCS 254 
distribution, since their MLE are almost identical. 255 
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 256 

Fig 2: Summary of joint Gamma parameter distribution (k and µ) for each archaeological dataset, using 90% CI contours 257 
(lines) and MLE (dots) for each archaeological dataset. CI represents the uncertainty from sample sizes, and multi-class 258 
assignments. Note, although the MLE of TRA1 is obscured behind the PCS, the uncertainty contour lines of both sites 259 
clearly differ. 260 

Fitting a Gamma distribution using MCMC 261 

In order to estimate Gamma parameters for a dataset, we are interested in calculating the likelihood, 262 

which is the probability of the observed dataset given some proposed parameters of the Gamma 263 

distribution. To do this, our likelihood function first discretises the gamma probability density function 264 

(PDF) to match the Payne age classes (this is simply the PDF area within each class). This gives the 265 

probability of observing a tooth in each age class, given the Gamma parameters. Finally, the overall 266 

likelihood is calculated using these derived age class probabilities in a multinomial distribution. Data 267 

with uncertain assignments requires the likelihood to be calculated for every possible arrangement, 268 

before finally summing. 269 

This approach of calculating likelihoods exactly allows us to find both the MLE and confidence intervals 270 

of Gamma parameters for a given archaeological profile, which we estimate using Markov Chain 271 
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Monte Carlo (MCMC) by implementing the Metropolis-Hastings algorithm (Hastings, 1970) (10 chains, 272 

each of 30,000 iterations, removing 2000 for burn-in, thinning to every 5th iteration).  273 

 274 

Assessing the quality of the Gamma model using Information Criteria 275 

Although the Gamma model provides the benefit of fewer parameters, its unimodal shape is more 276 

constrained than the current age class models. Whilst we have previously argued that the existing 277 

models of Payne and Redding cannot explain any of our datasets, it is plausible that a new age-class 278 

model with different probabilities might not be rejected.  279 

Therefore, to compare the Gamma model with the age-class model without the constraint of Payne 280 

and Redding’s specific probabilities, we use a model selection approach, using both the Akaike 281 

Information Criterion (AIC) (Akaike, 1974) and the Bayesian Information Criterion (BIC) (Schwarz, 282 

1978). These provide estimators of the relative quality of both models, given our data, by balancing 283 

model likelihood against model complexity. For each dataset, we use a search algorithm to find the 284 

Maximum Likelihood Gamma parameters and the Maximum Likelihood age class probabilities, 285 

therefore estimating the MLE under both types of model. These are used to calculate the AIC and BIC 286 

of each model using the following formulas, where p is the number of parameters, and n is the sample 287 

size: 288 

AIC = 2p - 2 ln(MLE) 289 

BIC = ln(n)p – 2 ln(MLE) 290 

The results (Table 5) show that for most of the datasets the Gamma model provides the lower 291 

estimator, and therefore the better model (12/20 when aggregating all AIC and BIC comparisons, or 292 

11/17 after excluding very similar IC scores). In all ten cases the maximum likelihood of the age class 293 

model is greater, which is to be expected since the age class model is more complex and therefore 294 

free to fit the data more closely. However, the model comparison shows that in most cases the amount 295 

of this improved fit cannot be justified by the amount of increased model complexity. This shows that 296 

the age class model often overfits, whilst the Gamma model provides a more justified and 297 

conservative model.  298 

Nevertheless, in datasets PPI, PFE and PCS we observe enough structure in the data to warrant a model 299 

of greater complexity than the two parameter Gamma model can provide. This does not provide a 300 

counter argument in favour of the 8-parameter age class model, since it is likely that a slightly more 301 

complex model comprising just three parameters (for example a bimodal distribution) may provide a 302 

close enough fit to provide the lower IC estimator. This remains an area for further investigation, and 303 

the main objective of this model comparison is not to explore the entirety of model space to provide 304 

the best possible model, but merely to show that the current approach of using a 9-age class model is 305 

unjustifiably complex and overfitted. 306 

 Gamma model Age class model 

Code n Log MLE parameters AIC BIC Log MLE parameters AIC BIC 

FON1 35 -3.00 2 9.99 13.10 -1.47 8 18.93 31.37 

TRA1 47 -11.21 2 26.42 30.12 -5.13 8 26.26 41.07 

MOLD 55 -4.43 2 12.87 16.88 -1.95 8 19.91 35.97 

TES 57 -11.53 2 27.05 31.14 -5.47 8 26.95 43.29 

TRA2 70 -2.24 2 8.49 12.98 -0.96 8 17.92 35.91 

PPI 73 -21.10 2 46.19 50.77 -5.03 8 26.06 44.38 
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WIK 75 -12.97 2 29.94 34.58 -7.27 8 30.53 49.07 

PFE 82 -30.79 2 65.58 70.39 -5.62 8 27.24 46.50 

PCS 103 -36.03 2 76.06 81.33 -5.55 8 27.11 48.19 

LAD 122 -4.63 2 13.26 18.86 -1.82 8 19.65 42.08 
Table 5: Summary of information criteria tests. The Gamma model has a lower Information Criterion score (considering 307 
both AIC and BIC together) for the majority the 10 data sets (dark blue representing clear superiority, light blue only a 308 
marginal superiority), showing that in most cases, the Gamma model is a better explanation of the observed data. 309 

Discussion 310 

The mortality models proposed by Payne (1973) and Redding (1981) were derived from specialised 311 

market economies using modern improved breeds. Over the last few centuries intensive selective 312 

breeding has increased the capacity for animals to produce milk/wool and develop muscle/fat faster, 313 

which has been driven by the development of economic specialisation within market economies.  As 314 

such it is unsurprising that these models can be statistically rejected as plausible explanations for 315 

archaeological data. Intensive slaughter strategies require developed social organisation to process 316 

animal products into storable products, or large-scale consumption, and furthermore require 317 

developed trade networks between economic specialists to ensure herder security (Davies, 2015, 318 

Sikana, et al., 1993). Early Neolithic herders would not have optimised for a single product, but would 319 

have managed their herds for a mix of products, including milk, meat and wool (Halstead, 1998, 320 

Helmer and Vigne, 2007) as indicated by the wide range of slaughter ages. The archaeological record 321 

for the early Neolithic in Europe indicates a diversified agro-pastoral economic system with 322 

supplementation from wild resources (Rowley-Conwy, et al., 2013); meaning labour input would have 323 

also been spread across a diverse range of economic activities. For this reason, the slaughter practices 324 

of modern subsistence agro-pastoralists keeping unimproved stock are likely to be more similar to 325 

those practiced in the Neolithic than the slaughter strategies of specialised market economy pastoral 326 

systems. 327 

The Gamma parameters k and µ can be estimated for any archaeological profile, and represented 328 

either directly in two dimensions (as in Fig 2), or as a function of age (as in Fig 1). In either case, where 329 

the objective is to draw an inference about the true parameters of herd slaughter ages assuming our 330 

data is a random sample, confidence intervals around the joint parameter estimates can also be 331 

represented in order to reveal the uncertainty in these distributions, given small sample sizes and 332 

multi-class assignments (Figs 2 and 3).  333 

Whether k and µ are used as summary statistics to describe archaeological data, or as model 334 

parameters to infer a slaughter strategy, their numerical values provide useful representations. Firstly, 335 

µ can be interpreted directly as the mean slaughter age of the herd. Secondly, the mode of each 336 

distribution can be calculated exactly as (k – 1)( µ/ k), for k ≥1, which can be interpreted as the most 337 

likely slaughter age. However, it should be noted that although the mode is not mathematically 338 

defined for distributions where k <1 (since the probability density = zero when age = 0), the probability 339 

density function asymptotically increases as the age approaches zero, so in terms of summarising real 340 

data this constraint becomes irrelevant, and such distributions can be described as having a peak kill 341 

age of ‘new-born’, which may be natural mortality given that this is highest in the first month (Mellor 342 

and Stafford, 2004). 343 

Furthermore, we can estimate the 50% Highest Density Interval (HDI) of the Gamma distribution, 344 

which indicates the age range for the majority (nominally) of slaughters. For example, at FON1 we 345 

observe a peak death of newborns coupled with a relatively intensive slaughter strategy where the 346 
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majority of animals were being killed across a narrow one year age range (0 to 1.09 yrs), as expected 347 

for a rock shelter site being used as a seasonal camp during the birthing season. The intensive 348 

slaughter may also be a reflection of milk exploitation; given that milk lipids have been recovered from 349 

ceramics and that caprine milk let-down is not sensitive to the removal of infants in comparison to 350 

cattle (Balasse, 2003). An element of natural mortality of young infants may also explain the Gamma 351 

distributions for TRA1, TES and PFE. In comparison, the peak slaughter was around 1.5 yrs at MOLD, 352 

TRA2 and LAD with a much broader range of kill ages (around 2 years).  353 

 354 
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Fig 3: 2000 Gamma distributions drawn from the joint parameter distributions of shape (k) and mean (µ). The (nominal) 355 
majority slaughter range is the 50% HDI, using the MLE parameter values. The Slaughter mode is calculated exactly from 356 
the MLE parameters. 95% CI for both the Mode and Mean are calculated from the MCMC samples.   357 

Conclusion 358 

Because we know that the human past was complex, it is often assumed that more complex models 359 

of that past are more realistic. However, more complexity means more parameters, and so more ways 360 

(or degrees of freedom) for a model to differ from reality. This means that unless specified by secure 361 

information, more complex models are typically more wrong, not more realistic. We show that the 362 

Gamma distribution provides a better model for a theoretical slaughter strategy than the current age-363 

class models of 9 probabilities, which are unjustifiably complex. Furthermore, we show how the 364 

Gamma distribution can be used to provide a more robust summary of archaeological age-at-death 365 

profile data using just two summary statistics, µ and k, with minimal information compression. This 366 

opens up the potential for in-depth exploration of animal husbandry practices over time and space by 367 

comparing the parameter distances between sites. Finally, we highlight the problems inherent in 368 

analysing and representing (both numerically and graphically) data with multi-class assignments, and 369 

show how the Gamma distribution permits the representation of data that accounts for uncertainty 370 

from both small sample sizes and multi-class assignments.  371 

GammaModel R package 372 

Tools to replicate the analyses performed in this paper are freely available as the R package 373 

GammaModel. (Timpson A, 2018) All source files are available from the Github repository 374 

https://github.com/UCL/GammaModel and users are advised to work through the vignette 375 

‘guide.pdf’ which includes details of how to install, load and use the package. Help files can be 376 

accessed within the package, or from the manual.pdf. GammaModel utilises functions from R 377 

packages dplyr (Wickham H. et al. 2018), combinate (Chasalow S. 2002), DEoptimR (Conceicao L.T. et 378 

al. 2016), LaplacesDemon (Statisticat L. L. C. 2018) and stats (R Core Team 2018). 379 

The GammaModel manual and vignette can be found at https://doi.org/10.1016/j.jas.2018.08.015 380 
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