
Towards a High Accuracy Wearable Hand Gesture 

Recognition System Using EIT 

Yu Wu1, Dai Jiang1, Jifang Duan1, Xiao Liu1, Richard Bayford2, and Andreas Demosthenous1 
1Department of Electronic and Electrical Engineering, University College London, Torrington Place, London WC1E 7JE, UK 

2Department of Natural Sciences, Middlesex University, The Burroughs, London, NW4 4BT, UK 

e-mail: yu.wu.09@ucl.ac.uk; a.demosthenous@ucl.ac.uk 

 
Abstract—This paper presents a high accuracy hand gesture 

recognition system based on electrical impedance tomography 

(EIT). The system interfaces the forearm using a wrist wrap with 

embedded electrodes. It measures the inner conductivity 

distributions caused by bone and muscle movement of the forearm 

in real-time and passes the data to a deep learning neural network 

for gesture recognition. The system has an EIT bandwidth of 500 

kHz and a measured sensitivity in excess of 6.4 Ω per frame. 

Nineteen hand gestures are designed for recognition, and with the 

proposed round robin sub-grouping method, an accuracy of over 

98% is achieved. 

I. INTRODUCTION  

Hand gesture recognition is an attractive communication 

method that can be widely used for human-computer interaction 

(HCI). This seamless link between humans and machines can 

enhance quality of life, with applications ranging from better 

controlling a smart device, safely handling hazardous material 

to restoring a degree of normality to amputees. Given the 

exciting potential of the HCI link, many systems have been 

reported [1]. They comprise two building blocks: the user 

intention capturing (UIC) block, which is the main focus of this 

work, and the feature extraction and classification or machine-

learning block. Machine operation can be implemented after a 

classification is given.  

One popular UIC method is camera-assisted hand gesture 

recognition [2]; a picture is taken for a single gesture and passed 

on for classification. This UIC method is simple but with many 

practical limitations, such as requirement for line-of-sight, and 

application constraints e.g. not suitable for building a prosthetic 

hand.  An alternative UIC method is electromyography (EMG), 

as most of the muscles responsible for hand motion are within 

the forearm. With skin preparation and careful electrode 

placement, voltage potentials ranging up to tens of mV with 

frequencies up to 500Hz can be measured near these muscles 

when they contract. Because different motions activate 

different muscle groups, successive recorded data can be used 

for gesture classification [3], [4].  

Electrical impedance tomography (EIT) is a non-invasive 

bio-impedance measurement method that can be used to 

estimate the inner structural conductivity distribution of any 

enclosed conductive object. EIT has been developed mainly as 

an imaging technique for biomedical applications such as 

cancer detection and lung aeration monitoring. Typically, an 

array of electrodes in the shape of a band is wrapped around the 

subject under test (SUT), and by injecting ac currents through a 

pair of electrodes, voltage potentials are developed and can be 

measured differentially around the SUT. Using a defined 

injection and measurement sequence, a set of data can be 

collected for conductivity distribution estimation. While a hand 

gesture is performed, bones and muscles move under the skin 

resulting in a temporal alteration of conductivity distribution 

which can be measured by EIT for recognition. Compared to 

EMG, EIT may offer more design flexibility such as signal 

amplitude and frequency, which is related to the excitation 

source, number of electrodes in the array, and measurement 

pattern.  

A wearable EIT system for hand gesture recognition is 

reported in [5], [6]. These studies show good results, but the 

hardware performance (e.g. EIT bandwidth) is limited by the 

AD5933, a commercial bio-impedance analyzer integrated 

circuit (IC) using two-electrode measurements. Although the 

hardware in [6] implemented a four-electrode measurement 

scheme, it employs a single-ended current driver that produces 

large common-mode voltages on the measuring side [7]. 

Moreover, the system does not produce impedance values with 

real and imaginary parts, which is often more useful than the 

measured voltage RMS value. 

This paper presents a high performance EIT system using 

commercial ICs, complemented by a deep auto-encoder neural 

network for implementing hand gesture recognition. It features 

a novel common-mode feedback (CMFB) current driver driven 

by a high-speed direct digital synthesizer (DDS) signal 

generator, and high-resolution digital I-Q demodulators. The 

rest of the paper is organized as follows. Section II presents the 

system design architecture and Section III the system 

 

Fig. 1. Cross-section of the forearm with position of electrodes. 
 



implementation with circuit details. Section IV presents 

measured results and Section V concludes the paper. 

II. SYSTEM ARCHITECTURE 

Hand motion is heavily related to the physical movement of 

muscles and bones in the forearm. The proposed system aims 

to measure these movements using EIT technology. The system 

measures and represents these movements in terms of bio-

impedance distribution alterations in the cross-section plane 

that the electrode-band is wrapped around. A cross-section 

view of the forearm is shown in Fig. 1. The forearm muscles 

that control hand motions can be generally grouped into flexors 

in the anterior surface, and extensors in the posterior surface 

surrounding the radius and ulna bones. As the system detects a 

slice of the forearm, band position and electrode array 

distribution play a critical role in high accuracy recognition. 

Mid-forearm measured half hand distance away from the elbow 

and the wrist are the preferred band positions. The former is 

where the belly of these muscles lie, and towards muscle 

tendons change can be observed for the latter. As wrist position 

may be unavailable for some applications, mid-forearm is 

chosen as the band position for this study. Eight electrodes are 

chosen to ensure easy and firm electrode contact and are placed 

as shown in Fig. 1 to high EIT mesh to the flexors. 

Fig. 2 shows the overall high-level system architecture. 

Based on the principle of EIT, the system can be divided into 

the current excitation and voltage measurement parts. A voltage 

signal is generated with a digital-to-analog converter (DAC) 

driven by a look-up table (LUT) based DDS. This signal is fed 

to a voltage controlled current source (current driver). The 

current driver is required to be floating so that the load is driven 

differentially. This reduces the common-mode signal and gives 

optimum sensitivity for the voltage amplifier to detect small 

impedance changes. The voltage measurement consists of an ac 

coupled instrumentation amplifier with dynamic gain controls, 

followed by a band-pass filter and a gain amplifier that 

interfaces to an analog-to-digital converter (ADC). After the 

FPGA receives a trigger signal from the PC, it initiates the DAC 

and controls the analog switches according to adjacent EIT 

drive pattern [6], then takes the ADC results for I-Q 

demodulation. 

For adjacent EIT drive pattern with four-electrode 

measurements, 4 × N number of analog switches are often used, 

where N is the total number of electrodes. In this design, the 

odd or even numbered of electrodes are connected by 4 SPST 

switches to a single node; this enables the adjacent EIT drive 

method but halves the number of switches required. Not only 

does this reduce the parasitic capacitance in parallel with the 

output node of the current driver, but it also enables a 

symmetrical layout at the input of the instrumentation amplifier, 

so a higher CMRR can be achieved. Because of this switch 

interconnection, certain voltage measurements are 180 degrees 

out of phase to the waveform in the look-up table, which can be 

easily inverted in the digital domain before demodulation. 

Demodulated data is transferred to a PC for processing of hand 

gesture recognition. 

III. SYSTEM IMPLEMENTATION 

A. Current Excitation 

The detailed circuit schematic is shown in Fig. 3. The FPGA 

SPI communicates with a 16-bit, high-speed DAC to generate 

a voltage signal drive excitation. The coarse sinewave is applied 

to amplifier low-pass filter the output of which excites the 

current driver. The default excitation frequency is 200 kHz with 

a filter cut-off frequency around 350 kHz, but the frequency can 

vary up to 500 kHz if required. 

In a high performance EIT system, the current driver is 

required to be fully differential to reduce the common mode 

signal.  However, any mismatch or imbalance between the 

current source and sink parts also generates a common-mode 

signal that adds to the small signals measured by the 

instrumentation amplifier [7]. Many studies have reported 

novel current drivers for EIT using CMOS technology [8], [9], 

however the mismatch-sensitive Howland current driver is still 

commonly adapted in discrete EIT systems. In this work, a 

master-slave current driver is presented that employs a CMFB 

 

Fig. 2. Top-level system architecture. 



technique to minimize the mismatches and thus reduce 

common-mode errors. 

 The sourcing current is provided by an AD830 configured in 

a resistive feedback topology. Its transfer function can be written 

as: 

     𝐺𝑚 =
Iout

Vin
=

𝐴𝑜𝑝𝑒𝑛−𝑙𝑜𝑜𝑝

𝑅𝑓+𝑅𝑙𝑜𝑎𝑑+𝐴𝑜𝑝𝑒𝑛−𝑙𝑜𝑜𝑝𝑅𝑓
≈

1

𝑅𝑓
.            (1)  

The master outputs a constant current that is independent of the 

load. The CMFB slave driver AD8132 measures the voltages 

across the load through pins 8 and 5, and by connecting pins 1 

and 4 to ground to form a feedback loop. This feedback loop 

adjusts the output voltage V𝑝𝑖𝑛−6  until the common-mode 

voltage across the load is zero. Consequently, the slave produces 

a voltage that is differential to the output of the AD830; thus it 

sinks the same amount of current that is sourced by the master. 

This feedback can be also seen as a resistor-less inverter with its 

transfer function written as: 

𝑉𝑝𝑖𝑛−8 = V𝑝𝑖𝑛−6 × (
1−𝐴𝑜𝑝𝑒𝑛−𝑙𝑜𝑜𝑝

𝐴𝑜𝑝𝑒𝑛−𝑙𝑜𝑜𝑝
) ≈ −V𝑝𝑖𝑛−6        (2)  

Overall, this topology requires only a single feedback resistor 
and it can achieve the targeted 500 kHz bandwidth. 

B. Voltage Data Acquisition 

The voltage is measured differentially between two selected 

electrodes using AD8250. The potential developed gets smaller 

as the measuring electrode becomes further away from the 

current driver [7]. Dynamic gain control is employed according 

to the selected electrode position to enhance the system pick-up 

dynamic range. After band-pass filtering, the signal passes 

through a non-inverting gain amplifier and a THS4130 circuit, 

seen in Fig. 3, to offer additional gain control and anti-aliasing 

filtering. Then the signal is level shifted to half the ADC supply 

range for digitization using AD7357, a high performance 14-bit 

4 MSPS ADC. 

C. Digital Control and I-Q Demodulation 

The digital modules include the LUT-based DDS, electrode 

multiplexing, ADC control, digital I-Q demodulation and 

UART data communication to the neural network. They 

implemented on a Xilinx Spartan-6 FPGA XC6SLX4. The 

device is operated at a 50 MHz clock and two multiplier-

accumulator (MAC) units are used for I-Q demodulation [10] 

with a resolution of 40-bit. 

D. Data Processing and Classifications 

After receiving the I-Q data, it is processed to obtain the 

impedance values which are then passed to a deep neural 

network for gesture classification. It consists of an auto-encoder 

followed by a Softmax classifier (a generalization of the binary 

logistic regression classifier). The auto-encoder is an 

unsupervised network that learns the feature representations 

from its input data. These learnt features are used after training 

by the Softmax classifier to give classification. During the 

training process, the data captured for training is labelled and 

its corresponding category is known. The neural network 

constantly adjusts its weights and bias in the auto-encoder and 

classifier through a back-propagation algorithm until it gets to 

the desired state. All the parameters in the neural network are 

stored at the end of the training process and are used for gesture 

recognition when a new dataset is received. 

IV. RESULTS AND DISCUSSION 

 The full EIT system is shown in Fig. 4 with individual circuit 

blocks labelled. It was first tested on a resistive phantom, which 

has resistive elements changing its values from 0Ω to 128Ω with 

a step increase of 6.4Ω. Results showed the system can detect 

the smallest step change.  

 Nineteen different hand gestures are designed as shown in 

Fig.5 with their corresponding EIT images. These coarse 

gestures cover hand motions from basic function, direction, and 

pinch motion, to number indications. The gesture recognition is 

divided into two phases. The first phase is the neural network 

training phase. After moisturizing the skin with hand cream, 

volunteers put on the band and perform single gesture while the 

system captures 50 training data sets before the user proceeds to 

the next gesture. Each data set contains 40 impedance values that 

represent the conductivity distribution of the forearm slice at the 

measurement instant. Classification phase begins after the 

neural network training is completed. The user is asked to re- 

perform the gesture trained in the training phase. 100 data sets 

are taken for each gesture and accuracy is calculated as 𝜎 =
correct classfication

total data set under test 
× 100%. The system achieves an accuracy 
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Fig. 3. Detailed current injection circuit schematic of the EIT system 

 
Fig. 4.  Full EIT system illustration with the custom-made EIT wearable 
band. 



less than 60% if all gestures are trained together. This is because 

certain gestures are difficult to distinguish in the same neural 

network, e.g. ‘Cross’ and ‘Num-2’. Thus, it is proposed to use a 

round robin method to separate gestures into sub-groups as 

shown in Fig. 5 and to train different neural networks. This 

forms a round robin and the user can select sub-groups by 

rotating the robin e.g. using an accelerometer sensor embedded 

into the band (other sub-grouping methods are also reported in 

[4], [5]). With a double robin classification circled in orange in 

Fig. 5, the accuracy increased dramatically to 90% and with 

four-robin classification circled in green, the accuracy reaches 

98%.  

 Live recognition has also been tested. Glitch classification 

occurs when the user switches from one gesture to another. This 

is because the ‘in-between gesture’ is not known to the neural 

network. To avoid glitches, the EIT sampling speed was reduced 

to five data-sets/s to achieve satisfactory results.  

V. CONCLUSION 

 A high performance EIT hand gesture recognition system 

using commercial ICs has been implemented. The system 

comprises an EIT hardware, a wearable electrode band, and a 

deep-learning neural network. It can detect a minimum of 6.4Ω 

impedance changes in the phantom, and can classify nineteen 

hand gestures with 98% accuracy using the proposed round 

robin method. 

 Future work will entail optimizing the system by exploring 

a more advanced round robin rotating method as well as 

investigating possible ways of reducing the number of robins 

while maintaining high classification accuracy, and possibly 

comparing the EIT method with other hand-gesture recognition 

techniques.  
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Fig. 5. Nineteen hand gestures are designed with their corresponding EIT diagrams shown above. Gestures are divided into four groups: functional gesture, 
directional gesture, pinch gesture and number indication gesture. With the round robin classification, the system achieves a recognition accuracy of 98%.  

 


