
1 

 

Compartmental modeling of skin transport 

A.A. Amarah1,2, D.G. Petlin1,3, J.E. Grice4, J. Hadgraft5, M.S. Roberts4,6, Y.G. Anissimov1,7* 

 

1School of Environment and Science, Griffith University, Gold Coast, Queensland, 4222, 

Australia 

2 University of Basrah, College of Science, Physics Department, Basrah, Iraq 

3Tomsk Polytechnic University, 30 Lenin Avenue, Tomsk 634050, Russian Federation 

4Therapeutics Research Centre, The University of Queensland Diamantina Institute, 

Translational Research Institute, Brisbane, 4102, Australia 

5UCL School of Pharmacy, 29-39 Brunswick Square, London WC1N 1AX, United Kingdom 

6Sansom Institute, School of Pharmacy and Medical Sciences, University of South Australia, 

Adelaide, SA, Australia 

7Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 

Moscow, Russia  

* Correspondence: email:  y.anissimov@griffith.edu.au, phone: +617 55528496 

 

Abstract  

The primary objective of this study is to introduce a simple and flexible mathematical 

approach which models transport processes in skin using compartments. The main feature of 

the presented approach is that the rate constants for exchange between compartments are 

derived from physiologically relevant diffusional transport parameters. This allows for better 

physical interpretation of the rate constants, and limits the number of parameters for the 

compartmental model. The resulting compartmental solution is in good agreement with 

previously published solutions for the diffusion model of skin when ten or more 

compartments are used. It was found that the new compartmental model with three 

compartments provided a better fit of the previously publish water penetration data than the 

diffusion model. Two special cases for which it is difficult to implement the diffusion model 

were considered using our compartmental approach. In both cases the compartmental model 

predictions agreed well with the diffusion model.  
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Introduction 

Over the past decades, researchers have made significant efforts to better understand the skin 

and its functionalities. Morphologically, the skin is the largest organ with an area of 

approximately 2 m2 providing a natural barrier between the body and surrounding 

environment. Further, skin contributes to around 10% of the total body mass, and researchers 

have found that human skin is composed of 3-4 main layers [1, 2]. These layers are arranged 

from the outer to the inner layers as follows: stratum corneum (SC), viable epidermis, dermis, 

and subcutaneous tissues [1, 2]. One of the important properties of skin is its permeability 

which plays a critical role for development of new transdermal drug delivery systems 

(TDDS).  

Consequently, the understanding of drug transport from a TDDS into and through skin is 

crucial to the development of such systems, in order to achieve an optimal therapeutic effect 

[3]. Mathematical modeling of skin permeability is an important tool that can aid in the 

understanding of permeation mechanisms in dermal regions [4-6]. For example, modeling 

can help to predict the rate of penetration of drugs, as well as appropriate doses, exposure 

times, or sampling intervals. However, the validity of a mathematical model is largely 

dependent upon its capacity to predict experimental  observations well [7]. 

A considerable amount of literature has been published on mathematical models of drug 

permeability through skin. Fick’s first law deals with steady state diffusion phenomena and is 

used to predict exposure to TDDS over long time periods, when depletion in the system is not 

a significant factor [6]. In contrast, non–steady state diffusion can be analyzed by using 

Fick’s second law which is based on a time dependent approach [8]. Furthermore, 

mathematical models can be applied in transdermal drug delivery simulation to predict the 

effects of dermal exposure to external elements, as well as to analyze percutaneous 

absorption kinetics and kinematics of bio-transport phenomena [9-11]. These models can be 

developed to mathematically represent diffusional processes in the SC as either a continuum, 

or as a series of discrete compartments [12-14]. As a result, physiological complexities of the 

SC can be considerably reduced by adopting the compartmental technique [11]. In this 

approach, the skin is treated as a number of well-stirred compartments, each of which have 

uniformly distributed solute concentration. 

Compartmental or pharmacokinetic models (PK) are often used to describe the transport 

phenomena of material in biological systems, where compartments may represent different 
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sections of the body [15]. General mathematical approaches for compartmental models have 

been discussed in detail in the literature [16-18] and used for modelling drugs transport in 

skin [19, 20]. The compartmentalization of biological systems can aid in the elimination of 

space dependence in the mathematical formalism of the diffusion equation, which is 

generally a parabolic partial differential equation (PDE) [21]. As a result, a set of ordinary 

differential equations (ODEs) can be used to simulate transport processes in the transdermal 

drug delivery system instead of the PDE approach. Solving a set of ODEs is less 

computationally demanding than solving parabolic diffusion PDEs. Therefore, mathematical 

formalism of the compartmental system depends on the set of rate equations represented by 

ODEs [22]. In many instances, when rate coefficients are constant, the associated differential 

equations can be solved by Laplace transforms, but applying a numerical ODE solver is a 

more flexible and practical approach when using compartmental models.  

In this paper, we derived ODEs to simulate skin transport processes in a finite volume donor 

using a compartmental approach. We then demonstrated that the predicted flux and receptor 

concentrations using the compartmental approach were close to corresponding values for the 

previously published diffusion models [23, 24]. Although skin structural complexities and 

different types of exposure scenarios exist, they can be easily implemented in the 

compartmental approach. To illustrate the flexibility of our approach, two different cases 

were considered: i), when the diffusion coefficient is a function of concentration and ii), 

when the donor volume is reducing due to evaporation. Using the diffusion model in these 

cases necessitates a relatively complex numerical approach such as the finite difference 

method. However, the new compartmental model allows for simpler numerical solutions 

which are based on the application of standard ODE solvers and give accurate results when 

compared to the numerical solutions of the diffusion model.   
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Theory  

Anissimov and Roberts have used a diffusion model to theoretically describe two important 

cases of percutaneous absorption of a solute; firstly, when donor concentration is constant 

[23]; and secondly, when donor volume is finite [24]. In these works, models were developed 

to include such processes as donor-SC interfacial resistance, viable epidermal resistance, and 

clearance limitations in the receptor compartment. The Laplace transform technique was used 

for a wide variety of exposure scenarios of percutaneous penetration modeling [25-28]. 

However, this approach has significant limitations and cannot be applied when nonlinearities 

in the diffusion equation or time dependency in its coefficients are present [6, 29].  

Zatz has developed a five compartments model of skin in which the rate constants are 

“analogous” to the diffusion coefficient of stratum corneum [4]. Hadgraft later used a similar 

approach to check the validity of the tape stripping technique for prediction of the steady 

state flux through the skin [30]. The compartmental approach was further formalized and 

compared to the diffusion model by considering how the number of compartments influences 

the precision of the model [10]. For a constant donor concentration, ten compartments were 

found to provide sufficient accuracy [10]. In the present work, the compartmental approach is 

extended to cover situations previously addressed only within the framework of the diffusion 

model [23, 24].   
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Figure 1. (A) Schematic diagram of the diffusion model, and (B) the corresponding 

compartmental model for the constant donor concentration, and the finite vehicle volume 

systems applied on membrane (SC). 

 

Fig. 1 schematically illustrates the diffusional and the compartmental approaches. Generally, 

solute transport through the SC is assumed to be approximately described by a one 

dimensional diffusion equation [31]:  

2

2

( , ) ( , )m m
m

C x t C x t
D

t x

 


 
                                                                                                                    

(1) 

where mD  is the diffusion coefficient,  ,mC x t  is the concentration of solute in the 

membrane as a function of distance  x  and time  t . At the beginning ( 0t  ), it is assumed 

that no solute is present in the membrane and therefore the initial condition is: 

( ,0) 0mC x                                                                                                                                            

(2) 
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A second order space derivative in Equation (1) imposes two boundary conditions. The 

boundary conditions are illustrated in Fig. 1A. Firstly, at the donor surface  0x   it is given 

as [23, 24]: 

 
0

( , ) (0, )dm m
m p d

x m

C x t C t
D k C t

x K

 
   

  
                                                                                           

(3) 

Secondly, the boundary condition at the receptor surface  mx h  is: 

 ( , ) ( , ) rvem m m
m p

m rmx h

C tC x t C h t
D k

x K K

 
   

  
                                                                                     

(4) 

where  dC t and  rC t  are the concentrations in the donor and receptor phase, respectively, 

which are defined as: 

 
0

( , )d m
d m ev d

x

dC C x t
V AD Cl C t

dt x 


 


                                                                                                

(5) 

 
( , )mr

r m r r

x hm

C x tdC
V AD Cl C t

dt x 


  


                                                                                           

(6) 

where mh  is the total membrane thickness, mK , rK  are the partition coefficients between 

donor-membrane, and donor-receptor. d

pk , ve

pk  are the permeability coefficients of donor, and 

viable epidermis layers interface,  ,d rV V  are the volume of donor and receptor respectively, 

evCl is the clearance from the donor phase due to the evaporation of the solute, and rCl  is the 

removal rate of solution containing solute from the receptor phase. 

We aimed to introduce the compartmental model that approximates Equation (1) with the rate 

constants related to physiological parameters. The permeability coefficient pk  is often used to 

describe diffusion of a solute across biological membranes [32]. Fig. 1B shows a 

diagrammatical representation of the compartmental model, in which the SC is transformed 

into a chain of n compartments that are separated by n+1 sub-membranes with individual 
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permeability coefficients ( )i

pk . Based on this scheme and the conservation of mass principle, 

the internal compartment differential equations can be given as:  

 ( ) ( 1) ( ) ( 1)

1 1            ,  2 1i i i ii
i p i p i p i p i

dC
V A k C k C k C k C i n

dt

 

                                                               

(7) 

where A  is the area of application, iV  is the volume of the i-th compartment and ( )i

pk  is the 

permeability coefficient of the sub-membrane between compartment i-1 and i. Generally, the 

volumes of compartments and the permeability coefficients can be non-identical   

 ( ) ( )i.e.  , for i j

i j p pV V k k i j   , but here we assume that  1i mV V n  , where mV  is the 

volume of the membrane. As will be shown later, unequal permeability coefficients can 

describe a variable diffusion coefficient. Also, the number of internal compartments (n) is a 

parameter that should be selected from practical considerations, and it should not be higher 

than the number of corneocyte layers in the SC, which is about 25 [33].   

It is not practical to have more than about 4-6 unknown parameters (such as ( )i

pk ) in a model, 

as determining these parameters from experimental data is problematic. Therefore, ( )i

pk  must 

be related to physiologically based parameters, such as diffusion coefficient. One of the ways 

of achieving this is to make sure that the steady state flux  ssJ  for the compartmental model 

is equal to that of the diffusion model and all ( )i

pk  are the same. Therefore, we can impose the 

following condition on the total resistance of the membrane R: 

     

1 1

1 1

1 1 1
1

n n

m

i i i
mi ip p p

hn
R

Dk k k

 

 


      

Therefore  

( ) ( 1) , 1 1i m
p

m

D
k n i n

h
                                                                                                                

(8) 

As a result, the total permeability of the SC is defined through the sum of resistances of sub-

membranes  ( )1 i

pk , where the partitioning coefficient between the donor and membrane is 

taken into account by: 
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1
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1

1n
sc m m
p m i

i p m

K D
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k h






 
  

  
                                                                                                                

(9) 

As described in Fig. 1B, the permeability between the donor and the first compartment (
(1)

pk ) 

and the last compartment and the receptor (
( 1)n

pk 
) can be influenced by donor-stratum 

corneum interfacial resistance (1 d

pk ) and the unstirred aqueous diffusion layer in the viable 

epidermis  (1 ve

pk ) respectively. Therefore, these permeability coefficients are defined as:  

   

(1)

(1)

1 1

1

(1)

( 1)

1 1 1 1

1 p m
p

d d m

m

d

p p

K

k k

k Dn
k

n n h 



 

 
   



 
  

      
                                                  (10) 

   

( 1)

( 1)

1 1

1

( 1)

( 1)

1 1 1 1

1 m

n

n

pn

ve

p

m
p

ve ep v m

kK

k

Dn
k

n n hk  





 





 
  



 
   

      
                                            (11) 

where d sc

p pd k k  is the relative permeability of the donor-stratum corneum interfacial 

resistance, and ve sc

p pve k k   is the relative permeability of the unstirred aqueous diffusion 

layer in the viable epidermis in [23]. Thus, the compartmental model equations are: 

 
11

 
1 +1 1

     
       1+ 1

m

d
d ev d

dN d d

dC n
C C C

dt V t Kn


 

 
  
 
 

 
    

                                                                      

(12) 

for donor compartment,  

 

 
 1

1 2 11

  1 1
      

1+ 1
d

d d

m

n ndC
C C C C

d
K

t t n  
  

 
    

                                                                       

(13) 

for the first SC compartment,  

 
 1 1

  1
    2    , 2,  ,  1i

i i i

d

n ndC
C C C i n

dt t
  


                                                                                

(14) 

for all SC internal compartments. The equation for the last SC compartment: 
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 

 1 1

  1 1
     

1+ 1

n
n n r

d v

m

r

n

e

n ndC
C C C C

dt n Kt

K


 
  

   
       

                                                                   

(15) 

while the equation for receptor compartment is: 

  1

1 +1
           

  1+ 1

r
n r rN r

r d

r

mN ve

KdC n
C C Cl C

dt V t n K 
 

  
       

                                                                      

(16) 

where      2

0  ,  , ,d m m dN d

sc

e m m rN r mv ev p r mt h D V V V K V V KCl A k V K    and 

 rN r

sc

r pK Al l kC C  are the characteristic time of diffusion through a membrane, 

dimensionless parameter describing ratio of the rate of solute evaporation to the rate of the 

solute absorption, donor volume number, receptor volume number, and the dimensionless 

removal rate from the receptor phase, respectively [23].  

Therefore, the flux can be given as: 

      ( 1)m
n r

r

n

p

K
J t C t C t

K
k  

  
 

                                                                                                       

(17) 

and the total amount of solute absorbed in receptor phase is: 

   
0

t

Q t A J d                                                                                                                               

(18) 

Notably, when there is no donor-SC interfacial resistance, the unstirred aqueous diffusion 

layer in the viable epidermis i.e.  ,d ve    and the sink condition applies in the receptor 

compartment   0rC t  , the Equations (12)-(15) are identical to those previously published 

[10]. Furthermore, the compartmental model equations of the constant concentration donor 

system can be solved analytically for  Q t  with any number of compartments (n) as: 

  2

1

1 1
n i

d i ii

a r t

Q t
t e

t n r
Q

P




 
  



 
  

 



                                                                                                          

(19) 
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where 0

sc

p d dQ k A C t  , , , andi iP r a  are given as: 

 
1

 
n

i

i

j jj iP r r 


                                                                                                                              

(20)     

2 2cos , for 1  , ,
1

i

i
r i n

n

 
     

 
                                                                                                   

(21) 

( 1) / da n n t   and symbol i j  is the Kronecker delta function  1, and 0i j i j    . The 

derivation of Equation (19) is consistent with published work by Noschese et al. [34] in the 

applications of eigenvalues of special types of matrices. 

Equations (13)-(15) with dC and rC  set to zero can be used to describe the desorption of 

solute from the membrane [35, 36]. In this case the membrane is initially saturated with the 

solute, so the initial conditions are   00 for 1, ,i mC K C i n  , where 0mK C  refers to the 

initial concentration in the membrane. Also, the resultant ordinary differential equations can 

be solved analytically. 

A diagrammatic approach can be used to represent Equations (12)-(16) as a flowchart, which 

can be used in STELLA or Berkeley Madonna to perform simulations (Fig. 2).  

 

Figure 2. Diagrammatic approach for the compartmental equations, where the parameters are 

defined as:     1

1 11 / , , , 1/ 1 1d n dk n n t k k k k n    

       , 

  11/ 1 1 ven     and /i mV A h n . 

 

Diffusion coefficient as a function of concentration 

In percutaneous solute penetration scenarios, using a penetration enhancer is an example of a 

model with a diffusion coefficient as a function of concentration [29]. In this case, Equation 

(1) should be rewritten as [37-40]: 
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 m m
m m

C C
D C

t x x

   
  

   
                                                                                                                 

(22) 

Finding a closed form solution of the Equation (22) [41] or even numerical solution [42, 43] 

is a challenging task. For example, solving a nonlinear partial differential equation such as 

Equation (22) can be done numerically using different sophisticated methods such as the 

finite difference method [44], or the finite element method (FEM) [45].  However, the present 

compartmental approach can be used for modeling the variable diffusion coefficient by 

modifying Equation (8) for ( )i

pk   to take  m mD C  into account. The diffusion coefficient 

 m mD C  can be represented as:  

   0m m m mD C D F C                                                                                                                        

(23) 

where 0mD  is the diffusion coefficient when the concentration of the solute in the membrane 

approaches zero, and dimensionless  mF C  (where F(0) = 1) is an explicit form of the 

diffusion coefficient as a function of the membrane concentration, which will be specified 

later. Equation (23) needs to be substituted into Equations (8), (10) and (11) with the 

concentration (Cm) replaced by the concentration in the appropriate compartment to find 

permeability coefficients between compartment, yielding: 

 
 

   

   

1

0

(1)

0

1

(1)

1

1

1

1

( 1) + 1

1 m dm m m m

d d

p p m d m p

p

m d d m

F K CK h K D

k k n F K C D k F K C h

n
k

n 






  

  
  

 
    

  

     (24) 

 ( ) 0
1( 1) , 2, ,i m

p i

m

D
k n F C i n

h
                                                                                      (25) 

 

   

   

1

0

( 1)

( 1)

0

1

1

11

( 1)

1

1+ 1

nm m m m

n ve ve

p p n m p n

n

m

p

ve

F CK h K D

k k n F C D k F Cn h

n
k



 





  
  

 

 
   

  

            (26)  

In these equations 
0( )d

p md m mk Dh K   and 
0( )v

v p m

e

mme k h D K  .  

Numerically solving differential equations with concentration dependent coefficients is a 

relatively straightforward (see Appendix A) procedure, reflecting the flexibility of the new 

approach to accommodate concentration dependent diffusion coefficient. 
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Various explicit forms of  mD C  have been reported [37, 44, 46-49], in this work the 

exponential form will be considered:   0

C

m mD C D e , where   is a constant with the unit 

of reciprocal concentration. The total flux of the solute into the receptor compartment 

becomes:  

     
 

 

 
  1

0
1

1 1

n
m m

n r
nr m

ve

C t

C t

eK D
J t C t C t

K

n

hn e




 

 
 




  
                                                                     

(27) 

where  nC t , and  rC t  can be calculated numerically (see Appendix A). The total amount 

of solute (  Q t ) can then be found using Equation (18). 

 

Reduction of donor volume due to evaporation  

Solute evaporation from the finite volume donor was previously considered [10, 50]. 

However, only the constant donor volume which is unaffected by evaporation was 

considered, so that the Laplace technique can be applied [10]. The new compartmental 

approach allows us to address the scenario where the volume of the donor reduces due to 

solvent evaporation of the donor phase. For this case, Equation (5) has to be modified to take 

the variation of donor volume into account:  

      
0

( , )m
d d m ev d

x

C x td
V t C t AD Cl C t

dt x 


 


                                                                             

(28) 

 dV t  can be expressed as:  

   0d dV t V v t                                                                                                                                   

(29) 

where 0dV  is the volume of the donor at t = 0, and  v t  determines the relative rate of solvent 

evaporation, which can be obtained from experiments. Substituting Equation (29) in (28) 

yields after some algebra: 
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   
  11

 
1 1 1

       
       1+ 1

d
d ev dN d d

dN d md

C v t
v

dC n
C V t C

dt n Kt tV


 

 
 
 
 


 

    
                                  

(30) 

where  v t dv dt  . Combining Equation (30) with Equations (13)-(16) yields the 

compartmental approach for the finite donor volume with evaporation of the solvent in the 

donor phase, and this emphasizes the flexibility of the new approach to include evaporation 

scenario only by modifying equation of the donor compartment.    

As an example, an exponential reduction in the donor volume due to the solvent evaporation 

process will be considered. Such a scenario is reasonable when a volatile part of the donor 

phase evaporates. In this case  dV t  can be presented as: 

      k tnv v se
d d dV t V V e


                                                                                                                      

(31) 

where 
 nv

dV  is the volume of the non-volatile part of the donor, 
 v

dV  is fraction of volume 

reduction due to evaporation, and parameter 
sek  is related to the rate of solvent evaporation. 

Substituting Equations (31) and (29) in (30) yields: 

      
  11

1 1
     

1+ 1      

1 vd
ev se d dN dnv v

dd dN

k t
se

dk t
se

dN m

e
K

dC n
C C k t V C

dt nt V V e






 

  
         

   (32) 

where dimensionless donor volume number of non-volatile and volatile parts are 

     nv nv

dN d m mV V K V and      v v

dN d m mV V K V respectively.  

 

Miller and Kasting [51] modelled simultaneous absorption and evaporation from a 

multicomponent formulation applied to skin and developed a spreadsheet-based computer 

program using the diffusion model with finite difference approach. It should be possible to 

extend the compartment model to include multicomponent formulations, but is believed to be 

beyond the scope of this paper.   

 

Simulations and Data Analysis 
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The experimental SC water penetration data from previous work [36] was used. 

Compartmental model numerical simulations were performed using ode23s solver in 

MATLAB. The numerical simulations of the diffusion PDE were performed using COMSOL 

Multiphysics®. Talbot method [52] implemented in MATLAB was used for inverting Laplace 

transformations numerically to calculate      , and rJ t Q t C t  [23, 24].  

 

Results and Discussion  

Constant concentration donor: Experimental data for Percutaneous water penetration  

In Fig. 3 experimental data for water penetrating the SC [36] were fitted by compartmental 

and diffusion models. For the diffusion model, the cumulative amount absorbed was taken as 

   2

0
ˆ sinhsc

p d d d d dQ s k A C t st s t st  [53], and the compartmental model  Q t  was 

found by numerically solving compartmental equations together with Equation (19). The 

fitted parameters using nonlinear regression in the compartmental model, which are in this 

case the characteristic diffusion time dt  and the steady state flux ssJ , have been calculated 

for a different number of compartments. Graphically, it can be seen from Fig. 3A-C that all 

models provide a good quality of fit. However, the regression quality for the compartmental 

model with 3 compartments is noticeably better for the first 30 minutes than for the diffusion 

model and compartmental models with higher number of compartments (see Fig. 3 A). Table 

1 provides the results obtained for the fitted parameters and the summary regression statistics. 

It can be seen from the table that the compartmental model with 3 compartments produces the 

highest value for MSC (model selection criterion [54], parameter similar to the Akaike 

information criterion [55, 56]). This result indicates that even for a small number of 

compartments the compartmental model has a potential to fit some data better than the simple 

diffusion model. However, applying slow binding model [36], and therefore explicitly 

accounting for a slow binding/partitioning process in the transport through SC, improves the 

fitting quality (Table 1) compared to simple diffusion model. Such direct inclusion of 

transport processes is evidently superior and we plan to explicitly include slow 

binding/partitioning to the compartmental approach in the future.    
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Figure 3. Experimental data for water penetration profiles in SC (■) and their regression 

profiles for diffusion model (▬ ▬) and compartmental model (▬) with (A) three, (B) five, and 

(C) ten compartments.  

Table 1. The results of fitting using compartmental and diffusion models 

Compartmental Model (n)  mindt  Jss (g/(cm 2 min)) Model Selection Criteria 

3 

5 

10 

1000 

165 ± 3.5 

170 ± 4.9 

178 ± 6.1 

192 ± 7.1 

11.6 ± 0.12 

11.4 ± 0.16 

11.3 ± 0.18 

11.3± 0.2 

9.02 

8.26 

7.83 

7.66 

Diffusion model [53] 

Slow Binding model [36]* 

192± 7.1 

166.5±4.9 

11.3 ± 0.2 

11.5±0.2 

7.66 

8.23 
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* (kon = 0.019 min-1, koff  = 0.061 min-1)  

 

Comparisons with the diffusion model 

Anissimov and Roberts solved Equations (3)-(6) for constant concentration donor and finite 

vehicle volume systems using Laplace domain solutions [23, 24].  In Fig. 4, fluxes for the 

compartmental model with 3, and 10n   and the diffusion model for selected values of 

and , ,  ve d rN rNClV   are presented for infinite donor volume.  It can be seen from Fig. 4 that 

both models reach the same steady state flux value, as expected. Also, Fig. 4A-C shows that 

there are slight differences between models especially in the early stage with three 

compartments, whereas the impact of these differences is negligible for ten compartments, 

and this agrees with Fig. 3C. However, as shown in Fig. 4D, when the total resistance is 

mainly caused by the SC i.e. ve d   , the deviation between the models is significant.  

 

Figure 4. Comparison between normalized flux calculated by diffusion model (●) and 

compartmental model n = 3 (dashed lines), and n = 10 (solid lines) for 

 0.5, 0.5,rN rNV Cl    versus normalized time  dt t ; (A) absence of vehicle-SC 

resistance; (B) absence of epidermal resistance; (C) effect of epidermal and vehicle-SC 

resistance; (D) absence of epidermal and vehicle-SC resistance. 
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The differences between the diffusional and compartmental models (with n = 3, 5, and 10 

compartments) can be investigated by considering the maximum relative difference between 

the models for normalized flux  J  and relative difference for peak flux  peakJ  as: 

   

 

max max

max

100 %
diffusion compartment

diffusion

J t J t
J

J t



                                                                                   

(33) 

   

 

peak peak

peak

peak

100 %
diffusion compartment

diffusion

J J
J

J


                                                                               

(34) 

where maxt  is the moment when    
diffusion compartment

J t J t  reaches maximum value. 

Experimentally measuring the flux of a substance at a very early time is often not possible or 

imprecise, as the concentration in the receptor compartment is very low; therefore, the 

comparison between models for J  will only be considered for times when peak0.15t t , 

where peakt is the time to reach the maximum flux. Notably, in the constant concentration 

donor system peak ssJ J , and for peak ssJ J the relative difference for peak flux is zero. 

While varying the parameters , , , andd ve rN rNV Cl   independently over the set of values 

 0.5,1,2,4, in Equations (33) and (34), the derived median values of J for n = 3, 5, and 

10 compartments are 45%, 19%, and 7% respectively, whereas the median values of peakJ  

are 1.4%, 0.8% and 0.3% respectively. As expected, there is a clear decreasing trend in both 

J and peakJ   with the increase in the number of compartments. 

In the finite vehicle volume, varying , , , andd ve rN dN rNV V Cl   independently over the set of 

values  0.5,1,2,4, in Equations (33) and (34), the derived median values of J for n = 3, 5 

and 10 compartments are 49%, 21% and 7% respectively, whereas the median values for 

peakJ  are 1.4%, 0.7% and 0.3% respectively. Thus, the compartmental model deviation 

from the diffusion model, in both finite vehicle volume and constant concentration donor, 

reduces with the increase of the number of compartments.  
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Diffusion coefficient as a function of concentration 

Fig. 5 shows the flux for finite volume donor when the diffusion coefficient is exponentially 

dependent on concentration. Calculations were performed for 1dNV   and 0 0,1, 5dC   for 

compartmental and diffusion models. 

 

 

Figure 5. Normalized flux calculated by diffusion (solid lines) and compartmental models 

with n 3 (dotted lines), 5 (dash dotted lines) and 10 (dashed lines) versus the normalized 

time profiles  dt t  for   0 ;C

m mD C D e (A) 0 0 ;dC  (B) 0 1dC  ; (C) 0 5.dC   

 

Fig. 5 shows that the flux for compartmental model approaches that of the diffusion model as 

the number of compartments increases. It can be seen that a difference between models in 

terms of peak flux  maxJ  and peak time  max  reduces with the number of compartments.  
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Figure 6. Cumulative amount absorbed calculated by the compartmental model with ( 25n 

▬) and diffusion model (▲▲▲ 0 0dC  ; ●●● 0 1dC  ; ■■■ 0 5dC  ) versus 

normalized time profile  dt t  for 1dNV  .  

 

Fig. 6 shows a cumulative amount absorbed for the diffusion model and compartmental 

model with 25 compartments. It can be seen that the difference between the models is 

negligible when large number of compartments are considered. Notably, increasing the 

parameter   reduces the time when 90% of the dose is absorbed through the SC. This is 

expected, as  describes the rate of increase of the diffusion coefficient, and thus the rate of 

permiation, with the icrease in concentration.   

 

Reduction of vehicle volume due to solvent evaporation 

In Fig. 7, the normalized flux  J t  is plotted versus normalized time ( dt t ) for the following 

parameters: , , , , 0d ve rN rN evV Cl    , and two different values of 1, and 5dk t  , which 

describe different rates of solvent evaporation. Fig. 7 illustrates that for the higher value of 

solvent evaporation ( 5dk t  ) the higher values of flux are achieved. This is expected, as the 

concentration in the donor phase would be higher when the donor volume reduces faster due 

to the faster solvent evaporation. In addition, as in previous cases, the compartmental model 

predictions approach rapidly to that of the diffusion model with the increase in the number of 

compartments.  
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Figure 7. Normalized flux calculated by diffusion model using FEM approach (solid lines) 

and compartmental model with n  (3 dotted lines, 5 dash dotted lines, 10 dashed lines) 

versus normalized time profile  dt t  for the case where solvent evaporates exponentially 

with    
0 ; 0 51; .5 .

nv

Nd dNN

v

dV V V  . 

 

Conclusion 

In this work, a new compartmental model describing solute transport in the SC has been 

developed. The present model offers a simplified approach for modeling a wide variety of 

exposure scenarios in percutaneous drug delivery systems, including the simulation of skin 

transport processes in transdermal drug delivery systems with a finite volume donor. The 

results were in good agreement with the diffusion model. The mathematical flexibility of the 

new approach should be easily expandable to include modelling transport in different skin 

layers. In addition, our study provides a flexible framework for assessing performance 

characteristics of various TDDS. In summary, the present compartmental approach is a 

relatively simple technique with wide ranging applicability to solving problems related to 

transport phenomena in skin and other membranes. 
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Appendix A 

The compartmental model equations with a diffusion coefficient as a function of 

concentration can be given, after substituting  ( )

0 1( 1)i

p m i mk n D F C h   in Equations (12)-

(16), as: 

Donor compartment: 

   
   

 1

1

11
   

       1+ 1

m dd
d ev d

dN d d

d

mm d

m

F K
F K

KF K

n CdC C
C C C

dt V t n C


 

   
   
    

                               

(A.1)                          

 First SC compartment:                                                                    

   

   
     1

1 2 1 11

  1
      

1+ 1

d

d

d d

m

m d

m

Cn n F K
K F

F K

dC
C C C C C

dt t n C  

 
      

                                 

(A.2)                                                  

All SC internal compartments:                                                                                           

 
        11 1

  1
           , 2,  ,  1i

i ii i i i

d

n ndC
C C C C C C i n

dt t
F F 


                                         

(A.3)                                              

Last SC compartment:                                                                                                   

 
   

 

   
11 1

  1
     

1+ 1

nn
nn n r n

d n ve

m

r

F K
F

F

Cn ndC
C C C C C

dt t n C K
 

   
         

                            

(A.4)                                           

Receptor compartment:                                                                                       

   

    1

11
           

  1+ 1

nr
n r rN r

rN d n ve

r

m

n CdC
C C Cl C

dt V t n

F K

KCF  

   
        

                                                 

(A.5)                                                                                                                                                                                                          

Solving the new equations can be done numerically with initial conditions such as  

   00 , 0 0, 1, ,d d iC C C i n    after the function  mF C  is specified. 
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