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BACKGROUND AND PURPOSE

The connexin 43 (Cx43) mimetic peptide Gap27 was designed to transiently block the function of this gap junction. This study
was undertaken to investigate the effect of Gap27 on corneal healing, inflammation and neovascularization.

EXPERIMENTAL APPROACH

The effect of Gap27 on wound healing, inflammation and vascularization was assessed in primary human corneal epithelial cells
(HCEC) in vitro and whole human corneas ex vivo, and in an in vivo rat wound healing model.

KEY RESULTS

Gap27 enhanced the wound closure of HCEC in vitro and accelerated wound closure and stratification of epithelium in human
corneas ex vivo, but did not suppress the corneal release of inflammatory mediators IL-6 or TNF-a. in vivo. In human corneas ex vivo,
F4/80 positive macrophages were observed around the wound site. In vivo, topical Gap27 treatment enhanced the speed and
density of early granulocyte infiltration into rat corneas. After 7 days, the expressions of TNF-a and TGFB1 were elevated and
correlated with inflammatory cell accumulation in the tissue. Additionally, Gap27 did not suppress VEGF release in organotypic
culture, nor did it suppress early or late VEGFA expression or neovascularization in vivo.

CONCLUSIONS AND IMPLICATIONS

Gap27 can be effective in promoting the healing of superficial epithelial wounds, but in deep stromal wounds it has the potential
to promote inflammatory cell migration and accumulation in the tissue and does not suppress the subsequent neovascularization
response. These results support the proposal that Gap27 acts as a healing agent in the transient, early stages of corneal epithelial
wounding.

Abbreviations
Cx43, connexin 43; K12, cytokeratin 12; GJA1, gap junction o 1; IHC, immunohistochemistry; ODN, oligodeoxynucleotides;
HCEC, primary human corneal epithelial cells; sa, superfusion apparatus
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Introduction

The success rate of ophthalmic procedures such as glaucoma
filtration surgery, cataract extraction and corneal transplanta-
tion is greatly affected by post-operative wound healing in
the cornea. Corneal wound healing is a multistep process
where the stromal extracellular matrix proteins and growth
factors excreted by the epithelium send the first signals of cell
injury, followed by re-shaping of the epithelial cell. After ini-
tial closure of the wound, the limbus is activated to initiate
the delivery of transient amplifying cells, which differentiate
into basal epithelial cells. Basal epithelial cells start accumu-
lating at the wound site and eventually migrate upwards to
form a thicker, stratified corneal epithelium (Lu et al., 2001;
Castro-Munozledo, 2013).

Gap junctions form channels between adjacent cells. The
gap junction a 1 (GJA1) gene encoding human connexin 43
(Cx43) was previously reported to be differentially expressed
during wound healing (Coutinho et al., 2003; Kretz et al.,
2003; Qiu et al.,, 2003; Brandner, et al.,, 2004; So6hl and
Willecke, 2004). Alteration in the expression of Cx43 is asso-
ciated with heart disease (Akar et al.,, 2007) and cancer
(McLachlan et al., 2006; Li et al., 2008). The basal layer of
the corneal epithelium is known to exhibit Cx43 positivity,
and the expression of Cx43 is down-regulated at the migrat-
ing edges of open wounds (Goliger and Paul, 1995; Matic
etal., 1997; Saitoh et al., 1997; Coutinho et al., 2003). A tran-
sient down-regulation of Cx43 is important in the initiation
of the epithelial cell migration process in the early wound
healing stages. This facilitates the uncoupling of adjacent
connexons between cells, which is essential for epithelial cell
migration to close the wound gap. This assertion has been
validated by pharmacological and genetic targeting of Cx43,
which can transiently block gap junctions’ hemichannels to
accelerate wound healing of vascular and avascular tissue.
For example, antisense oligodeoxynucleotides (ODN) (Qiu
et al., 2003; Law et al., 2006; Nakano et al., 2008; Grupcheva
et al., 2012; Ormonde et al., 2012) and siRNA (Nakano et al.,
2008) targeting Cx43 were successfully used to enhance the
wound healing process in skin models. In rat models, ODN
targeting Cx43 was also shown to promote corneal wound
healing (Nakano et al., 2008; Grupcheva et al., 2012).

Gap27 is a synthetic peptide mimicking a sequence on the
second external loop of the Cx43 hemichannel (Evans and
Boitano, 2001). Treatment with the Cx43 mimetic peptide
Gap27 has been reported to accelerate the healing in ex vivo
skin models (Pollok et al., 2011), human dermal fibroblasts
in vitro (Wright et al., 2012) and oral mucosal tissue in vitro

(Tarzemany et al., 2015); however, Gap27 has not yet been
tested in the cornea, as a potential therapeutic agent for en-
hancing wound healing. In the present work, we evaluated
the performance of Gap27 as a putative wound healing agent
to accelerate the rate of wound healing in the cornea in the
context of wounds of differing severity. The effect of Gap27
on corneal wound healing was tested on human corneal epi-
thelium in vitro and in whole human corneas ex vivo. To inves-
tigate the effect of Gap27 on inflammation and angiogenesis,
which are processes that cannot be accurately reproduced
in vitro, a rat corneal in vivo model was used.

Methods

Human corneas for organotypic models

Human corneas were obtained with written consent from the
donor’s next of kin. The corneas with a previous history of in-
juries, stromal abnormalities, scars or major defects were ex-
cluded. The epithelial integrity and viability were checked
using fluorescein dye (Sigma-Aldrich, Italy) and a Trypan blue
(0.2%) exclusion assay (Sigma-Aldrich, Italy) respectively. Ep-
ithelium dehydration, oedema or defects were checked by
light microscopy to confirm the presence of a healthy epithe-
lium. Stromal opacity and the presence of scars or Descemet’s
folds were checked by slit lamp microscopy. Morphology of
the endothelium, endothelial density, intracellular borders,
polymorphism (pleomorphism and polymegathism), degen-
eration and dystrophy were evaluated by light microscopy.
The inclusion criterion of endothelial cell density for this
study was set at 1700-2200 cells-mm 2, while for transplan-
tation, corneas with at least 2200 cells-mm 2 are used.

Human corneal epithelial wound closure assays
The corneas were obtained from conventional organ culture
conditions within 1 week post-mortem. Epithelial cells from
limbal biopsies were used in in vitro wound healing assays.
Co-culture of limbal stem cells with 3T3 cells was performed
as previously reported (Di lorio et al.,, 2010). Biopsies of
1 mm? from the limbal region of five human donor corneas
were minced and trypsinized (0.05% trypsin/0.01% EDTA;
Life Technologies, Italy) at 37°C for 3-4 cycles of 30 min each.
Once isolated, cells were plated (4.8 x 10* cm~2) onto lethally
irradiated 3T3-J2 cells (2.4 x 10* cm™?) and cultured in 5%
CO,, using a mixture of DMEM (Life Technologies, Italy)
and Ham’s F12 (Life Technologies, Italy) media (2:1) contain-
ing FCS (10%; Life Technologies, Italy), penicillin-
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streptomycin (50 U-mL~' 1%; Euroclone, Italy), glutamine
(4 nM 2%; Euroclone, Italy), insulin (Humulin 5 ug~mL’1;
Eli Lilly Canada), adenine (0.18 mM; Merck Millipore, Italy),
hydrocortisone (0.4 pg-mL~% Merck Millipore, Italy), cholera
toxin (8.1 pg; Sigma-Aldrich, Italy), triiodothyronine (2 nM;
Sigma-Aldrich, Italy) and EGF (10 ng-mL~"; Austral Biologi-
cal, USA ). Sub-confluent primary cultures were trypsinized,
plated at a density of 1.1 x 10* cells-cm 2 and cultured in tis-
sue culture inserts (Ibidi, Germany) in an organ culture incu-
bator (31°C, 5% CO,). The inserts has two chambers in which
primary human corneal epithelial cells (HCEC), and 3T3-J2 fi-
broblasts were co-cultured, with a 0.5 mm barrier between the
chambers. When the insert is removed, two islets of cells are
formed and the cells migrate to close a gap. When cells
reached confluence, 10 cultures were treated (for 1 h prior
to the removal of the insert) with either Gap27 or scGap27
(Gap27 is the test agent, and the control peptide, scGap27,
is the scrambled version of Gap27) in serum-free medium
(five cultures each) at a final concentration of 0.1 mM (Pollok
etal., 2011). Gap27 was reported to lose its effect after 12 h in
culture (Wright et al., 2009). The insert was then removed,
and cells were allowed to migrate to close the gap. Treatment
was then repeated every 24 h after removal of the insert.
From each biopsy, one culture served as a control treated
with scGap27 (n = 5) and the second was treated with
Gap27 (n = 5). Images were taken at fixed time points,
and the width of the gap was measured from microscopic
images using ZEN software (Carl Zeiss, Germany). Investi-
gators were blinded to the treatment by masking the label-
ling of the eye drops, and blinding was continued
throughout the experimental and image analysis phase.

Human corneal wound healing ex vivo model

The human corneal superfusion apparatus (sA) is an artificial
human corneal environment designed and developed in our
lab to mimic the human cornea in its natural environment
(Elbadawy et al., 2015). Organ culture corneas used for these
experiments were maintained at 31°C in storage media. Stor-
age media consisted of a base of Eagle’s MEM supplemented
with penicillin, streptomycin, fungicide (amphotericin B or
nystatin) and 10% FCS. A storage period of 30 days can be
achieved without significant loss of endothelial cells. The ex-
periments were performed under sterile conditions and con-
trolled temperature (31°C) with regular flow of artificial
tears (PBS with 10% FBS; two drops of 30 uL-min ). Ten pairs
of corneas were used for wound healing ex vivo experiments
using a fluorescein penetration test to follow the healing of
the epithelium (n = 10). The corneas were equilibrated in
the sA for 1 day prior to experimentation. On the following
day, a wound was induced across the corneal surface using
an AlgerBrush II (Alger Company, Inc, Lago Vista, TX, USA)
equipped with a rotating 0.5 mm burr to reproduce a regular
wound by brushing away approximately 500 pm of corneal
tissue epithelium without penetrating the Bowman layer.
The corneas were incubated with either Gap27 or scGap27
(1 mM) in serum-free medium, maintained in organ culture
for 1 h after injury, and the treatment was repeated once daily.
The corneas were returned to the sA with constant tear flow
and were allowed to heal for up to 7 days. Time points se-
lected were pretreatment, post injury, 6 h, 1, 3, 5 and 7 days.
At each time point, the fluorescein penetration test was
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performed to follow the wound closure progress, and trypan
blue was used prior to measuring the wound width using mi-
croscopic images analysed by ZEN software.

To examine corneal wound healing in different layers of
the cornea, 42 corneas incubated in organ culture for 2 to
3weeks post-mortem were divided into two equal groups.
The first group was treated with Gap27 and the second with
scGap27, and the wound healing assay was performed using
the SA as above. At each time point, six corneas were fixed in
4% PFA, sectioned (sections of 10 um) and were used for im-
munohistochemistry (IHC) and apoptosis assays.

For quantification of the release of proteins, including
TNF-q, IL-6 and VEGF after inducing a wound to the ocular
surface of human corneas using the AlgerBrushlI as detailed
above, a submerged culture model of human corneas was
used as described in the protein detection using ELISA sec-
tion. Investigators were blinded to the treatment by masking
the labelling of the eye drops, and blinding was continued
throughout the experimental and image analysis phase by
the use of randomly assigned numeric identifiers.

Rat corneal stromal wounding in vivo model
Animal studies are reported in compliance with the ARRIVE
guidelines (Kilkenny et al., 2010; McGrath and Lilley, 2015).

Animal experiments were reviewed by the Linkoping Re-
gional Animal Ethical Committee, and permission to con-
duct the experiments was granted (Protocol No. 7-13). The
care and use of animals followed the guidelines set out in
the EU Directive 2010/63/EU on the protection of animals
used for scientific purposes and adhered to the principles of
the Association for Research in Vision and Ophthalmology
Guidelines for the Use of Animals in Ophthalmic and Vision
Research. A model of corneal injury in Wistar rat was chosen
because preclinical studies of ocular therapeutics are often
conducted in rodents, which have similar pathological char-
acteristics to human (Peebo et al., 2011). Rat cornea is large
enough to enable in vivo imaging of inflammation while still
being a small animal model. Animals were maintained in a
licensed care facility in a room with ventilation (15 air
changes h'), temperature 22 + 2°C, humidity 55 + 10%,
12 h light/dark cycle, with a background sound of max
55 dB. The rats were housed per rectangular cage, with cage
volume of 1760 cm?. Cages were outfitted with wood chips,
shredded paper products, tunnels to hide in and wooden
pegs. Access to food and water was ad libitum. Humane
endpoints were used according to an institutional scoring
system. Specifically, if the general health condition, move-
ments, breathing, skin and hair were noticeably affected,
then a score was given, and if a minimum score was exceeded,
the animal was humanely killed.

The model consisted in a surgical suture-induced corneal
inflammation and neovascularization in rats, as described
previously (Mirabelli ef al., 2014). 32 male Wistar rats
12-16 weeks old and weighting 300-400 g (Scanbur AB,
Sollentuna, Sweden) were used. For general anaesthesia, each
animal received the anaesthetic Ketanest (esketamine 25-
mg-mL’l, 0.4 mL; Pfizer, Sollentuna, Sweden) and analgesic
Dexdomitor (dexmedetomidine hydrochloride 0.5 mg-mL ™,
0.2 mL; Orion Pharma, Espoo, Finland) by i.p. injection. Ad-
ditionally, one drop of topical anaesthesia was also applied
to the eye prior to surgical and ophthalmic imaging
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procedures (tetracaine hydrochloride 1%; Chauvin Pharma-
ceuticals, London, UK). Under local and systemic anaesthe-
sia, a corneal stromal suture was placed 1.5 mm from the
temporal limbus in one eye per animal. Immediately follow-
ing surgical suture placement, antibiotic eye ointment was
applied (Fucithalmic, fucidic acid 1%; Abcur, Helsingborg,
Sweden) as an antiseptic and lubricant. After suturing, rats
were randomly assigned to two groups and treated with ex-
perimental eye drops prepared from ice-cold peptide dis-
solved in PBS (calcium-free and magnesium-free). The first
group (16 rats) was treated with scGap27 and the second
group (16 rats) with Gap27. Eye drops were instilled in the su-
tured eye four times daily at a concentration of 1 mM. Ani-
mals were euthanized while under general anaesthesia by
intracardial injection of 1 mL of sodium pentobarbital 60-
mg-mL~'(APL, Stockholm, Sweden). Following an experi-
mental session, anaesthesia was reversed by s.c. injection of
, 0.1 mL of antisedan (atipamezole 5 mg mL™'; Orion
Pharma, Espoo, Finland). All animals recovered conscious-
ness after surgery, and no postoperative analgesia was applied
as the procedure is considered very mild and the general be-
haviour of the animals did not indicate ocular pain or dis-
comfort. The first application of experimental or sham
substances was given while animals were under general an-
aesthesia, whereas all subsequent applications were given
while animals were fully awake.

Half of the rats of each group were killed after 2 days and
the second group after 7 days. At 2 or 7 days, corneas were col-
lected and frozen at —80°C for histology (one cornea per
group per time point) or —20°C for RNA extraction for RT-
PCR (seven corneas per group per time point). In vivo confocal
microscopy was performed longitudinally in rat corneas as
described previously (Mirabelli et al., 2014). Rats were ran-
domized to different experimental groups after surgery by
assigning a study number to each rat. Analysis of experimen-
tal data (photographs, in vivo confocal images) was performed
in a masked manner with only study numbers visible and
without knowledge of group membership. After completion
of measurements, group data were compiled for statistical
comparisons.

Investigators were blinded to the treatment by masked
labelling of the eye drops, and blinding was continued
throughout the experimental and image analysis phase by
the use of randomly assigned numerical identifiers for each
rat and labelling as Group 1 and 2 to mask the treatment.

Immunohistochemistry

Corneal sections from the 7 days ex vivo wound healing assay
were brought to room temperature (RT), washed twice with
PBS, permeabilized with 0.5% Triton X-100 (Sigma-Aldrich,
Life Technologies, Milan, Italy) at RT for 30 min then washed
three times with PBS. Two hours coating was performed in
blocking buffer composed of 0.2% BSA (Sigma-Aldrich, Life
Technologies, Milan, Italy), 2% goat serum (Sigma-Aldrich,
Life Technologies, Milan, Italy) and 0.2% Triton X-100 in
PBS at RT. Primary antibodies (1:100 unless in the blocking
mix) were added and incubated overnight at 4 °C then for
2 h at RT. Primary antibodies used were F4/80 (Abcam, UK),
myeloperoxidase (MPO; Abcam, UK), Cx43; Cell signalling
biotechnologies, Italy) and actin (Santa Cruz, Italy). All pri-
mary antibodies were used at a concentration of 1:100. Three

washing steps (5 min each) with PBS were carried out.
Anti-mouse, rat or rabbit (1:1000) conjugated with FITC sec-
ondary antibodies (Santa Cruz, Terracina, Italy) diluted in
0.2% BSA/PBS were added for 2 h at RT. Three washing steps
(5 min for each) with PBS were then carried out. Sections were
then mounted in DAPI-containing media and an LSM-510
meta confocal laser microscope (Carl Zeiss, Oberkochen,
Germany) was used to detect fluorescence.

Protein detection using ELISA

Six corneas from three donors were used so that for each pair,
one eye was treated with scGap27 and the other with Gap27.
The corneas were obtained from conventional organ culture
conditions after storage for 1 to 2 weeks post-mortem. The cor-
neas were maintained submerged in 3 mL of storage media,
and quantification of VEGF, TNF-a and IL-6 released in the
media was performed using ELISA kits for human TNF-a and
IL-6 (Sigma-Aldrich, Italy), and for VEGF (Life Technologies,
Milan, Italy), by following the manufacturers’ protocols. A
wound was induced across the corneal surface using an
AlgerBrush 1II, and corneas were treated for 1 h with either
1 mM of scGap27 or Gap27 in serum-free medium. For each
time point, the media was changed 1 h before collection;
therefore, the amount of protein detected in each collected
sample corresponded to the release of this protein during
the 1 h before the collection time point. Media collected for
ELISA were given numbers in the same manner as described
above, and ELISAs were performed blindly by three investiga-
tors, and results were analysed independently then combined
for statistical analysis.

Real time quantitative PCR on rat corneal
extracts

Total RNA from each corneal sample was isolated with Qiagen
RNeasy Mini Kit (Qiagen, Hilden, Germany). RNA concentra-
tions were determined using a Nanodrop ND-2000 spectro-
photometer (Nano Drop Technologies Inc, Wilmington,
Delaware, USA), and the cDNA was synthesized from the total
RNA (100 ng) using a SuperScript® VILO" cDNA Synthesis Kit
(Invitrogen, UK) in accordance with the manufacturer’s in-
structions. PCR reactions were performed on all corneal sam-
ples using TagMan Fast Advanced Master Mix and TagMan
Gene Expression Assays (Applied Biosystems, Carlsbad,
California, USA) in a total volume of 20 mL. Real-time PCR
conditions were 50°C for 2 min, 95°C for 1 min and then
40 cycles of 95°C for 15 s, 60°C for 20s. The primers (Applied
Biosystems, Carlsbad, California, USA) used for PCR analysis
were as follows: rat IL-6, VEGFA, TNF-o, IL-18, TGFp and
GJA1l. The mRNA expression level for each gene was calcu-
lated by the ACt method using GAPDH as a housekeeping
control gene. Real-time PCR was run in triplicate for each cor-
neal sample, and gene expression of triplicates was averaged,
referenced to GAPDH, and reported relative to the average rel-
ative expression level in three negative control samples (cor-
neas from non-sutured rats). All reactions were carried out
using an ABI PRISM 7900HT Real-Time PCR system (Applied
Biosystems, Carlsbad, California, USA). RT-PCR data are
expressed as fold change normalized to naive corneas to indi-
cate the level of gene expression relative to healthy, non-
operated tissue.
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Biodistribution of Gap27 in human corneas

To study the penetration of Gap27 in the corneal layers, a cus-
tom Gap27 was synthesized containing a fluorescent probe
(FITC). The sequence of the protein was FITC-SRPTEKTIFII
designed and synthesized by ProteoGenix (France). Five cou-
ples of corneas were used. Left eye corneas were treated with
the regular Gap27 and corresponding right eye corneas were
treated with the labelled Gap27 peptide (Gap27-FITC). The
corneas were rinsed thoroughly and then incubated in organ
culture media for 2 h then fixed in 4% PFA. Sections were cut
as described before and stained with DAPI and dye stabilizer.
Dye-only controls were performed using FITC dye added after
fixing in PFA. Positivity was checked using an LSM-510 meta
confocal laser scanning microscope (Carl Zeiss, Germany) to
detect fluorescence.

Histology of rat corneal tissue

The corneas were fixed in 4% paraformaldehyde (PFA; Santa
Cruz, DBA, Italy) overnight and washed in 7.5, 15 then 30%
sucrose solution sequentially for 30 min each. The corneas
were then incorporated in optimal cutting temperature com-
pound, flash frozen and stored at —80°C. Sections (10 um)
were obtained for histological and immunofluorescence.
Haematoxylin and eosin staining was performed for standard
histology. Fixed samples (4% PFA) were rehydrated in dis-
tilled water, exposed to Harris haematoxylin (Sigma Aldrich,
Milan, Italy) for 8 min and then washed three times with
tap water for 5 min each. Differentiation solution (Sigma-Al-
drich, Italy) was added then the samples were briefly washed
with tap water. Samples were further exposed to Eosin (Sigma-
Aldrich, Italy) for 2 min then washed with tap water as before.
Sections were washed in an increasing concentration of alco-
hol (70, 90 and 100%) followed by xylol (Sigma-Aldrich,
Italy) treatment for 3 min each. Xylene-based mounting me-
dium (Sigma-Aldrich, Italy) was used to mount and preserve
the samples, which were examined using light microscopy.
ZEN software was used to capture the images.

TUNEL assay of human corneas ex vivo model
Cell apoptosis was assessed using a TUNEL assay. The manu-
facturer’s protocol was followed for the TACS 2 terminal
deoxynucleotidyl transferase diaminobenzidine (DAB) in situ
apoptosis detection kit (Trevigen, USA). Three samples
treated with scGap27 or Gap27 were analysed for each time
point (pretreatment, 6 h, 1, 3, 5 and 7 days). Images were
analysed using the ZEN software.

Data analysis
Prior to statistical analysis of in vivo data, treatment and
group identity were unmasked. To compare inflammatory
cell density and migration distance between Gap27 and
scGap27 groups in vivo, the Mann-Whitney rank sum test
was used. Gene expression differences, vascularized area, in-
flammatory cell density, cell migration and distance and
limbal vessel diameter were independently assessed by three
observers following a previously published protocol
(Mirabelli et al., 2014), and the average values across ob-
servers were used for analysis.

For all in vitro results, data from three blinded investiga-
tors were used for independent t-test. Statistical analyses were
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performed using SigmaStat 3.1 software for Windows (Systat
Software Inc., Chicago, USA) and GraphPad InStat (GraphPad
Software, Inc. USA). Tests were two-tailed, and the level of
probability (P) deemed to constitute the threshold of statisti-
cal significance was set at P < 0.05 for all experiments. The
data and statistical analysis comply with the recommenda-
tions on experimental design and analysis in pharmacology
(Curtis et al., 2015).

Materials

The pharmacological agent Gap27 peptide (SRPTEKTIFII) was
purchased from Tocris (UK) and Eurogentec (Belgium), and
its scrambled (sham) version scGap27 (REKIITSFIPT) was pur-
chased from Eurogentec (Belgium). Gap27-tagged peptides
were custom-made by ProteoGenix (France). Peptides were
dissolved in calcium- and magnesium-free sterile saline solu-
tion, and treatment was carried out using 1 mM of either
Gap27 or scGap27 for in vivo and ex vivo experiments and
0.1 mM for in vitro experiments.

Results

Gap27 accelerates wound closure in vitro
Treatment with Gap27 primed HCEC to initiate the closure of
the 0.5 mm gap faster than cultures treated with scGap27
(Figure 1, P < 0.001). The rate of gap closure varied between
cells obtained from biopsies of different donors. However,
the healing process started 6 h post injury and progressed to
close the gap completely after 24-27 h in five cultures treated
with Gap27 (Figure 1B). In cultures treated with scGap27, the
commencement of gap closure was delayed by 24 h. Com-
plete gap closure was seen within 9 h thereafter in three cul-
tures and after a total of 48 h in two cultures (Figure 1A).

Wound healing of human corneas ex vivo is
accelerated by Gap27

An organotypic wound healing assay using human corneas
maintained in an artificial environment, the sA, was per-
formed over 7 days. Pairs of corneas from 10 donors were used
so that for each pair, one eye was treated with scGap27 and
the other with Gap27. Wound closure occurred after 3 days,
when no fluorescein uptake was noticed. Afterwards, until
day 7 of these experiments, all corneas were negative for fluo-
rescein dye uptake (Figure 2A). Transverse sections were taken
from each time point and stained with anti-actin antibody
using IHC (Figure 2B). The epithelialization profile showed
that after 6 h, wound edges were clearly seen under both con-
ditions. However, after 1 day, a monolayer of migrating cells
closed the wound in Gap27-treated corneas (P < 0.05) but
not in the scGap27 group (Figure 2C). On day 3, Gap27-
treated corneas had regenerated a multi-layered epithelium
with uniform thickness and actin distribution, whereas
scGap27-treated corneas exhibited irregular epithelial thick-
ness and actin distribution. By day 5, a full epithelium had re-
generated under both conditions, but the Gap27-treated
corneas had a more uniformly stratified epithelium with a
well-defined basal epithelial layer. By day 7, the wounded area
appeared identical to the unwounded epithelial layer under
both treatments. In the Gap27 group, the wound completely
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Gap27 promotes corneal epithelial wound closure in vitro. Each image is representative of five images (n = 5) taken using a light microscope (20X).
The migrating edges were outlined using the white dotted line (A). The gap width was calculated as a percentage of that at 0 h (100%) until total
closure of the gap (0%). Epithelialization rate of cultures treated with scGap27 is significantly lower than those treated with Gap27 (B). * Indicates
significant differences in Gap27-treated cultures compared with scGap27 where P < 0.05.

closed on day 1 in eight corneas and on day 3, in two corneas;
in the scGap27 group, the wound closed after 3 days in all cor-
neas (Figures 2A and B). Gap27-FITC showed positivity near
the wound edges and in the adjacent peripheral area, in the
basal layer of the epithelium (Figure 2D). Additionally, stro-
mal positivity was detected in close proximity to the nuclei
of the stromal keratocytes, which were counterstained with
DAPI nuclear staining indicating good penetration of
Gap27-FITC through the damaged epithelium and into the
stroma of human corneas (Figure 2D). However, fluorescence
was not seen in the stroma underneath intact epithelium. No
fluorescence was observed in any of the corneas treated with
non-fluorescent Gap27.

The expression pattern of Cx43 during the healing of cor-
neal epithelium in Gap27-treated corneas was not different
from corneas treated with scGap27 for 7 days (Supporting In-
formation Figure S1). Cx43 expression was concentrated in
the basal layer of the epithelium and stroma, while at the
wound edges, Cx43 was also detected in the upper epithelial
layers. Gap27 treatment did not change the expression pat-
tern of Cx43, nor did it alter the expression of zonula
occludens-1, a major component of the tight junction, which
was expressed at all times. This indicated that Gap27 had no

effect on the epithelial barrier function (Supporting Informa-
tion Figure S1). The expression of the epithelialization marker
cytokeratin 12 (K12) and the limbal stem cell marker p63 was
performed on all sections to ensure general quality of the cor-
neas throughout the experiment and normal wound healing
response of the corneas. The expression of the epithelializa-
tion marker K12 was detectable in the epithelium of all cor-
neas, while the limbal stem cells marker p63 was expressed
in the limbus area as well as in the basal layer of the epithe-
lium. There were no significant differences between groups
treated with scGap27 or Gap27 throughout the experimental
period (Supporting Information Figure S1). To study the ef-
fect of Gap27 on the viability of the layers of the cornea, cor-
neal sections from each time point were used for the TUNEL
assay. Treatment with Gap27 or scGap27 did not appear to
cause cell apoptosis in any layer of the corneas at any time
(Supporting Information Figure S2). Additionally, the unin-
volved areas of the epithelium were negative for Trypan blue
staining at all stages.

Gap27 and corneal inflammation
The ex vivo submerged culture model was used to study cor-
neal release of inflammation mediators in the media using
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Gap27 accelerates epithelial wound closure and stratification of the corneal epithelium in an ex vivo model. In a human corneal ex vivo model, pro-
gression of corneal wound closure was observed using fluorescein ophthalmic dye. Each image is representative of 10 images for pairs of corneas
treated with either scGap27 or Gap27 (A). Transverse sections stained with FITC-conjugated antibody attached to anti-actin primary antibody
(green) showed the re-epithelialization of corneas treated with scGap27 (top row) or Gap27 (bottom row). Nuclei were labelled with DAPI (blue).
Images were taken using the 40x lens and scale bars are 10 um (B). Each image is representative of three corneas per time point (n = 3). Wound
closure rate during 7 days was calculated (n = 10) as a percentage of that at 0 h (100%) until total closure of the gap (0%) and is shown in (C). In
(D), Gap27 peptide labelled with a fluorescent probe (FITC) was detectable in the stroma (top row) and epithelium (bottom row) of corneas (n =
5) treated with Gap27-FITC (green). Nuclei were labelled with DAPI (blue). Images were taken using 40x lens of the laser scanning confocal mi-
croscope. * Indicates significant differences in Gap27-treated cultures compared with scGap27 where P < 0.05.
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Figure 3

Gap27 enhances inflammatory cell migration and accumulation in response to injury in the organotypic culture and in vivo corneal inflammation
models. The release of TNF-a (A) and IL-6 (B) during the early wound healing stage of human corneas (n = 3) ex vivo treated with either scGap27 or
Gap27. The expression of the marker of activated macrophages F4/80 (C) detected using specific antibody labelled with FITC-conjugated second-
ary antibody (green). Nuclei were labelled with DAPI (blue). Images are representative of three images from three corneas taken using 40x lens of
the laser scanning confocal microscope. Using the in vivo rat model, a representative cornea from each treatment group was used, showing dis-
tinct changes in corneas stained with haematoxylin and eosin (D). Images were taken using the 10x lens of a light microscope fitted with a digital
camera. Scale bars are 100 pm, and arrows indicate dilated limbal vessels. Quantification of inflammatory cell densities (E) and their migration
distances (F) from the limbus using in vivo confocal microscopy are shown. A grading system was used to evaluate inflammatory cells’ densities
as shown in (E; top panel). Images are 400 x 400 um. Gene expression of IL-1B, TGFp1, TNF-q, IL-6 and Gja-1 was quantified using RT-PCR after
2 (G) and 7 days (H) using corneas from the rat in vivo model (n = 7). Error bars represent SD. * Indicates significant differences in Gap27-treated
cultures compared with scGap27 where P < 0.05.
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ELISA. The release of TNF-a was decreased after 1 h in both
scGap27- and Gap27-treated corneas. This decrease was re-
versed after 3 h in both cases (Figure 3A). The release of IL-6
from corneas at 1 h after treatment was reduced compared
with pretreatment levels in scGap27-treated corneas but not
in Gap27-treated corneas, where IL-6 levels were maintained
(Figure 3B). No absolute changes in TNF-o or IL-6 expression
were noted between scGap27 and Gap27 treatment groups
(Figure 3A and 3B).

To detect the expression of inflammatory cell markers
during a prolonged wound healing assay (7 days), transverse
corneal sections were taken at all time points from the
ex vivo wound healing experiment using our culture system
(the sA). Sections from three corneas per treatment per time
point were stained against the marker of activated macro-
phage F4/80. Macrophage marker F4/80 was detectable in
the epithelium and the stroma and was more abundant in
the stroma underneath uninvolved epithelium in Gap27-
treated corneas. The expression of F4/80 was detected in the
stroma underneath the wound site and in the epithelium of
scGap27-treated corneas to a lesser extent, compared with
the Gap27 group. After 1 day, Gap27-treated corneas exhib-
ited strong F4/80 staining, which was barely detectable at 3-

days, when F4/80 was abundant in the epithelium of
scGap27-treated corneas. By 7 days, the corneas recovered
with minor fluorescence detected in the stroma below the
wound site in both scGap27- and Gap27-treated groups
(Figure 3C).

In the in vivo rat model, placing a suture in rat corneas in-
duced a mild thickening of the epithelium in the Gap27
group at 2 days and substantial stromal swelling and inflam-
matory cell accumulation at 7 days (Figure 3D). Real-time im-
aging of inflammatory cell migration from the limbus
towards the suture site 5 h after suture placement by in vivo
confocal microscopy indicated significantly greater density
and migration distance of granulocytes into Gap27-treated
corneas relative to scGap27 (Figure 3E and F). After 2 and
7 days, inflammation was detectable at and beyond the suture
site. Gene expression of IL-1f8, TGF, IL-6 and TNF-a in the
cornea did not differ between groups in the early phase of
the wound healing process after 2 days (Figure 3G). However
by day 7, TGFp and TNFa were expressed at higher levels in
Gap27-treated corneas (Figure 3H). The expression of Cx43
under both conditions did not differ after 2 or 7 days
(Figure 3G and 3H), confirming that Gap27 blocks Cx43
without changing the expression of GJA1 or protein distribu-
tion of Cx43.

Effect of Gap27 on VEGHA expression and
corneal neovascularization

Using the ex vivo human corneal sA model, the expression of
VEGFA was detectable in all corneal layers. The positivity or
pattern of VEGFA staining was not influenced by Gap27 treat-
ment 6 h after injury. After 3 and 5 days, increased VEGFA ex-
pression towards the surface of the epithelial layer was
observed in scGap27-treated corneas, while by day 7, both
groups had similar expression profiles in the epithelium
(Figure 4A). In terms of stromal expression, on day 1, VEGFA
was detectable below the wound site in corneas treated with
scGap27, while it was almost undetectable in the stroma of
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Gap27-treated corneas. Stromal positivity for VEGFA, how-
ever, had reversed by 7 days, when scGap27 corneas had al-
most absent staining, while staining in Gap27-treated
corneas was apparent.

To determine VEGF release dynamics from human
corneas after wounding, three pairs of corneas from three do-
nors were incubated in the submerged culture system. A sharp
decline in VEGFA release in scGap27 corneas was noted after
1 and 3 h (P < 0.05). In Gap27-treated corneas, however,
VEGFA significantly decreased (P < 0.05) only after 3 h
(Figure 4B).

In the in vivo rat corneal suture model, gene expression of
VEGFA after 2 and 7 days from injury was not altered in
Gap27-treated corneas as compared with corneas treated
with scGap27 (Figure 4C). Additionally, there were no differ-
ences in the average limbal vessel dilation in vivo (Figure 4D).
After 7 days, new invading blood vessels had reached past
the sutured area (Figure 4G) in all corneas, and the
vascularized area of the cornea did not differ between treat-
ments (Figure 4E and F).

Discussion

Treatment with the Cx43 mimetic peptide Gap27 accelerated
the rate of wound closure of human corneal epithelium
in vitro and ex vivo. Formation of a fully differentiated layer
of corneal epithelium was accelerated with Gap27 treatment;
however, no suppression of inflammatory or angiogenic me-
diators was observed. Furthermore, treatment of rat corneas
with Gap27 after deep stromal injury resulted in an increased
rate of early granulocyte infiltration, late gene expression of
TNF-a and TGFB1 and there was no inhibitory effect on path-
ological neovascularization.

The beneficial wound healing properties evoked by
blocking the gene expression of Cx43 are well documented
(Kretz et al., 2003; Brandner et al., 2004; Cronin et al., 2006;
Nakano et al., 2008; Bajpai et al., 2009; Grupcheva et al.,
2012; Ormonde et al., 2012). Cx43 knock-down accelerates
the healing of corneal endothelial cells in vivo (Nakano
et al., 2008) and the re-epithelialization of persistent human
corneal ulcers (Ormonde et al., 2012). Additionally, blocking
the protein function of Cx43 hemichannels using a specific
peptide (a carboxy-terminus 1) was shown to be effective in
accelerating the healing of corneal epithelial injuries in dia-
betic rats in vivo (Moore et al., 2014). A recent clinical trial
showed that the use of Cx43 mimetic peptides, a carboxy-
terminus 1, enhanced the healing of persistent skin ulcers as-
sociated with chronic neuropathic diabetic patients (Grek
et al., 2015). With regard to Gap27, it has been shown to ac-
celerate the wound healing of human organotypic skin
model and human dermal fibroblasts in vitro (Pollok et al.,
2011; Wright et al., 2012). In line with these findings, we ob-
served that the treatment of human corneal epithelium with
Gap27 accelerates cell migration and promotes wound clo-
sure rates.

Although this study and work by other groups has shown
the potential of Gap27 as a wound healing agent, the under-
lying mechanisms of the effect of Gap27 on corneal wound
healing requires an in-depth investigation. Hypotheses can
be tested, for example, regarding the involvement of
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Gap27 treatment does not suppress VEGFA expression, vasodilatation or neovascularization. In the ex vivo model using the sA, VEGFA (green) was
detected using specific antibodies labelled with FITC-conjugated secondary antibody (A). Nuclei were labelled with DAPI (blue). Images were
taken using 40x lens of the laser scanning confocal microscope. Each image is representative of three images from three corneas. The concentra-
tion of VEGFA in media containing human corneas (submerged cultures) was detected using ELISA (B). Using the in vivo rat model, limbal vessels’
diameters were measured using Image] software in three vessels in each of cornea and averaged (D). The total area of vascularization was mea-
sured (E) after 7 days of placing the suture in rat corneas. Each column in (D) and (E) represents an average from eight corneas (n = 8). Images
taken by in vivo confocal microscopy (400 x 400 um) are presented in (F) and slit lamp images of vascularized areas are represented in (G). * In-
dicates significant differences in Gap27-treated cultures compared with scGap27 where P < 0.05.
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extracellular matrix (ECM) proteins in cell migration, which
may be altered by Cx43 regulation. It was found that a Cx43
deficiency can induce the expression of ECM mediators
(Zieske, 2001; Brandner et al., 2008; Cogliati et al., 2015).
Blocking the gene expression of Cx43 using antisense oligo-
nucleotides or blocking Cx43 channel function using specific
peptides can alter collagen fibril organization, affecting cell
motility (Lorraine et al., 2015). However, non-channel func-
tions of Cx43 such as ECM are proposed not to be directly af-
fected by Gap27. Cx43 is also involved in gap junction-
mediated intercellular communication. Using a dye transfer
assay, gap junction communication was shown to be reduced
by 40% in Cx43-deficient mice (Kretz et al., 2003). Addition-
ally, Gap27 was previously shown to reduce dye uptake in hu-
man keratinocytes (Pollok et al., 2011). This can affect the
exchange of inflammation and apoptosis signalling mole-
cules, along with other molecules including ATP (Kang
et al., 2008). Not only is the channel function altered by
Gap27, Ki67 positive cells were reported to increase after
Gap27 treatment indicating an enhanced proliferation ca-
pacity (Pollok et al., 2011), in line with previous findings
(Mori et al., 2006). Early wound closure appeared to be inde-
pendent of limbal activity as the epithelium in the centre of
the cornea migrates to close the gap (Huang and Tseng,
1991; Chang et al., 2008). Hence, it is believed that the
wound in the central corneal epithelium can heal indepen-
dently from the limbal stem cells activity (Chang et al.,
2008). In line with these findings, we did not find any
changes in the limbal stem cell marker P63 in scGap27- and
Gap27-treated corneas (Supporting Information Figure S1).
Finally, post-translational Cx43 phosphorylation has re-
cently been proposed as a mechanism of action for Cx43 role
in wound healing. Gap27 was shown to induce phosphoryla-
tion of Cx43 at Ser*®®, reducing gap junction communication
(Richards et al., 2004; Solan and Lampe, 2014). These interest-
ing data require further investigation to elucidate the rela-
tionship between cell migration and Cx43 blocking.

Cx43 is expressed by macrophages (Beyer and Steinberg,
1991), neutrophils (Jara et al., 1995), lymphocytes (Oviedo-
orta et al., 2000) and mast cells (Vliagoftis et al., 1999). The
immune response secondary to tissue damage commences
with an acute phase, when the neutrophils migrate to the
wounded area and release inflammatory mediators affecting
subsequent macrophage chemotaxis to the affected area.
Cx43 mimetic peptides were reported to reduce inflammatory
reactions to injury; however, the expression of TGFp1 was not
reduced after 1 day of treatment with siRNA against Cx43 in a
rat model of endothelial injury (Nakano et al., 2008), and a
significant increase in TNF-o was detected in a diabetic rat
model of epithelial injury after 3 days (Moore et al., 2014).
This increase was reversed after 5 days indicating that
blocking Cx43 may promote an early inflammatory response.
Our result of a delayed but significant increase in TGFp1 and
TNF-a expression in vivo provides further evidence for the pro-
motion of inflammation. Similarly, a recent study confirmed
that the expression to TGFp1, alongside collagen types I and
IIT and MMP?2, increases after 7 days of inducing a skin wound
in Cx43 heterozygous knockout mice as compared with con-
trols (Cogliati et al., 2015). A possible explanation may be
due to the ability of Gap27 to penetrate to the stroma and pro-
mote early inflammatory cell migration, as noted in the early
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hours after corneal stromal wounding by a suture. After
wound closure, the effect of Gap27 on the stroma is minimal,
and therefore, the inflammation is not directly affected. How-
ever, contrary to our findings, inflammation was reported to
be reduced in human corneas treated with ODN against
Cx43 (Ormonde etal., 2012). After Cx43 antisense ODN treat-
ment, the number of neutrophils were reported to be 20% less
around the lesion area after 1 and 2 days of inducing a wound
in the skin of rats (Qiu et al., 2003). Additionally, macrophage
infiltration was reduced at days 2 and 7 post injury, while neu-
trophils were also detected in fewer quantities in days 1 and 2
in skin keratinocytes (Mori et al., 2006). Down-regulation of
Cx43 by ODN in the skin was shown to significantly reduce
in fibroblasts the (C-C motif) ligand 2 after 2 days of injury
and TNF-a by day 7, while no changes were observed after
1 day (Mori et al., 2006). Our results suggest that in stromal
wounds of the cornea, inflammation can be promoted by
Cx43 inhibition-mediated cytokine expression and an associ-
ated accumulation of granulocytes and macrophages. The ef-
fects of Cx43 inhibition on cell migration and proliferation
may therefore be limited not only to epithelial cells around
the wound site where cytokine expression may be beneficial
in a transient phase but also to inflammatory cells in the un-
derlying stroma. A extended stromal inflammatory response
in the avascular cornea may upset the immune balance lead-
ing to pathological neovascularization.

In the present study, an in vivo model was used as a better
model to investigate inflammation and neovascularization
because in vitro models are devoid of circulation-derived fac-
tors and effects. However, we attempted to minimize the use
and the number of animals required to perform statistical
analysis. In spite of the great deal of progress that has been
made, there are currently few accepted non-animal alterna-
tive test methods for ocular irritancy. None of them uses hu-
man corneas. An ex vivo human cornea or whole eye can
provide an essential contribution to the reduction of animal
experiments in pharmaceutical and scientific research. The
organ culture system we used is intended to reduce animal
use in research (following the 3R principles). The advantages
include the use of a human cornea, which is anatomically dif-
ferent from animal corneas, the sterile environment to pre-
vent any interference with results, low-cost transferable
technology and research-attractive features (Elbadawy
et al., 2015). This model is based on the well-established
eye irritation tests and organ culture systems using living
corneas obtained from animal eyes. The isolated rabbit, bo-
vine or chicken eye test methods (Doucet et al., 2006) are
currently accepted by several regulatory agencies; however,
a main negative aspect of such methods is the use of animal
eyes, which differ anatomically from the human eye. For
instance, an important protective layer of the cornea
(Bowman's layer) is absent in rabbits (Cooper et al., 2001;
Cater and Harbell, 2006).

Corneal neovascularization is a threat to corneal transpar-
ency and visual acuity, which can ultimately result in
compromising the vision significantly. Of note, tissue vascu-
larization after injury can be helpful for certain tissues such
as the skin or oral mucosal healing, but in the case of the cor-
nea, it is desirable that wound healing agents suppress VEGF
expression. The expression of VEGF in the cornea is a main
indicator of possible neovascularization, and therefore, the
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levels of VEGF are usually studied when testing new ocular
medications of pharmacological agents. Using ODN to
down-regulate Cx43 gene expression, re-epithelialization of
the corneas with severe and persistent defects in five patients
was achieved; however, vascularization of the corneas was ev-
ident after 1 year of treatment in two out of five patients
(Ormonde et al., 2012). Regarding the expression of VEGF in
human gingival fibroblasts treated with Gap27, an increased
expression of VEGF was reported (Tarzemany et al. 2015).
The accelerated re-epithelialization could be hypothesized
to reduce corneal vascularization due to faster resolving of
the initial wound since damaged epithelium can also be an
important source of VEGF. However, our results suggested
no beneficial effects of Gap27 on the suppression of VEGF
or the subsequent vasodilation in limbal vessels, infiltration
of granulocytes or vascularization after superficial or deep
corneal injuries.

Overall, Gap27 could be effective in accelerating the
healing of epithelial wounds in an early phase, but prolonged
and frequent use in stromal wounds could elicit an
undesirable inflammatory response. Accordingly, Gap27 use
in the early stages of wound healing of the superficial corneal
epithelial wounds can be proposed for promoting corneal
epithelial healing in cases of persistent corneal ulcers, limbal
stem cell deficiency and dry eye syndrome. However, Gap27
is not recommended for more invasive wounds involving
the potential for stromal inflammation, such as with severe
alkali burns, corneal transplantation and glaucoma filtration
procedures.
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Figure S1 Gap27 did not affect the expression pattern of
Cx43, ZO-1, K12 or p63. In the ex vivo model using the SA,
Cx43, ZO-1, K12 and p63 (all in green) were detected using
specific antibodies labelled with FITC conjugated secondary
antibody. Nuclei were labelled with DAPI nuclear staining
(blue). Images were taken using 40x lens of the laser scanning
confocal microscope. Each image is a representative of three
images from three corneas at each time point.

Figure S2 Gap27 treatment did not induce apoptosis of cells
in any corneal layer. Cell apoptosis analysis was done using
TUNEL assay. Positive controls are corneas treated with hy-
drogen peroxide and negative controls are corneas treated
with PBS. Images were taken using the 10x lens of a light mi-
croscope fitted with a digital camera.
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