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Abstract 

Variance of the outcomes associated with an option often 
provides a measure of the riskiness of that option. Hence, it is 
important for organisms are able to detect any sudden changes 
in outcome variance. In Experiment 1, we presented people 
with graphs of share price time series or water level time 
series. In half the graphs, variance (financial or flooding risk) 
changed at some point. People were better at detecting 
increases than decreases in risk - maybe because it is more 
important to detect increases in danger than decreases in it. 
However, in Experiment 2, people were still better at 
detecting increases than decreases in variance even when 
those changes did not reflect altered levels of risk. Our 
findings may reflect the fact that the actual change in variance 
exceeds the change needed to identify a regime change in 
variance by a larger amount for upward than for downward 
changes. 

Keywords: volatility; variance; risk; change detection; 
judgment 

Introduction 

In many domains, variance of outcomes associated with an 

option is taken as a measure of level of risk of that option. 

For example, in modern finance theory, level of risk 

associated with an asset is defined as the standard deviation 

of the returns on that asset (Jorion, 2006). Similarly, as 

variability in water levels increases, so does the risk of 

flooding or drought (Crowell, Coulton, Johnson, Westcott, 

Bellomo, Edelman, and Hirsh, 2010). Finally, in foraging 

theory, the risk associated with different food sources is 

defined in terms of the variance of the energy gains that an 

animal can derive from those sources (Kacelnik and 

Bateson, 1996). In all these cases, higher variance in the 

data is treated as a signal that risk levels are higher. 

Most work in these and other domains has been based on 

the assumption that the riskiness of different options 

remains constant over time. For example, Diacon and 

Haseldine (2007), Duxbury and Summers (2004, 2017), 

Sobolev and Harvey (2016), and Weber, Siebenmorgen and 

Weber (2005) have used various methods to examine the 

relation between volatility of financial indicators (e.g., 

returns) and financial risk perception. However, level of risk 

can change: variance of outcomes may increase or decrease, 

often quite suddenly. As far as we are aware, there have 

been no studies of people’s ability to perceive a change in 

volatility and, hence, to detect onset of a new level of risk. 

Here we ask how easily people are able to detect such a 

change when they are given a graphical record of the 

outcomes that have occurred. More specifically, we 

examine how well people are able to detect a structural 

break in the variance of a time series and study whether the 

level of their ability is influenced by whether that variance 

is framed as representing level of risk.  

We varied task frame. In Experiment 1, any structural 

break in the series signified an increase or decrease in the 

level of risk over time. Changes in financial trading risk and 

water flooding risk were of this type. In Experiment 2, any 

structural break in the series did not represent any change or 

difference in risk level. Instead, participants needed to 

detect it because it represented an opportunity rather than a 

risk. These experiments were used to address two questions. 

First, is there any asymmetry in ability to detect increases 

and decreases in volatility? Second, is any such asymmetry 

limited to tasks in which changes in volatility should be 

interpreted as temporal changes in level of risk? It can be 

argued that it is more important to detect an increase in risk 

so that protective measures can be adopted. Removing those 

protective measures when there is a decrease in risk is likely 

to be less critical. 

Experiment 1 

In this first experiment, participants performed the task 

within a temporal risk frame. They were presented with one 

of two scenarios: a finance scenario and a flooding scenario. 

Method 

Participants One hundred and sixty-five students acted as 

participants: 59 were assigned to the financial risk scenario 

and 106 were assigned to the flooding risk scenario. 

Stimulus materials Each graphically presented series 

comprised 50 data points generated uniquely for each 

participant. They were drawn from a Gaussian distribution 

with a mean of 500 and a standard deviation of either 5.00 

(low volatility) or 15.0 (high volatility). Of the 60 graphs 

seen by each participant, 15 were of low volatility 

throughout, 15 were of high volatility throughout, 15 

contained a change from low volatility to high volatility, 

and 15 contained a change from high volatility to low 

volatility. The 60 graphs were presented in random order. 

When there was a change in volatility, it occurred between 

points 11 and 40 inclusive and with equal likelihood. One 

third of the graphs of each of the four types contained no 

trend, one third contained a shallow upward trend, and one 
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third contained a shallow downward one. When there was a 

trend, the series still started at 500 but was then incremented 

or decremented by 0.1 on each successive point. Labelling 

of graphs depended on the task frame. 

Procedure In the financial risk scenario, the vertical axis 

was labelled as ‘price’ and the horizontal axis as ‘hours’ 

(Figure 1). Participants were told that the series represented 

a record of recent stock prices and told that increased 

volatility represented increased trading risk. They needed to 

detect whether a change in risk had occurred because their 

trading strategy would need to change if it had done.  

 

Figure 1: Example graph from the finance scenario in 

Experiment 1 showing prices that change every hour for a 

period of 50 hours and volatility shifting from high to low. 

 

 
In the flooding risk scenario, the vertical axis was labelled 

as water depth and the horizontal axis as ‘hours’. 

Participants were told that each graph represented a record 

of water levels in various locations and that increased 

volatility represented increased risk of flooding. They 

needed to detect whether a change in flood risk had 

occurred in order to implement flood control measures if it 

had increased or to stand them down if it had decreased. 

For each graph, participants first gave a yes/no response 

to signal whether they had detected a change in the volatility 

in it. They then estimated the likelihood that their response 

was correct on a 50-100% scale.  

Results 

Here we report analyses of participants’ detection responses 

using signal detection theory (Macmillan and Creelman, 

1991). We extracted measures of sensitivity (d) and 

response criterion (β) for a) trials starting with low volatility 

on the left of the graph that either stayed low or that 

changed to high volatility and b) trials starting with high 

volatility on the left that either stayed high or that changed 

to low volatility. Data were analysed in this way so that we 

could use the signal detection measures to compare 

detection of change when the series started with low 

volatility to that when it started with high volatility. To 

obtain d and β, the z-transformations of the hit rate (z(H)) 

and false alarm rate (z(F)) were first obtained. Then 

 d = z(H) – z(F) 

 β = exp((z(F)
2
 – z(H)

2
)/2) 

The sensitivity measure d’ reflects how discriminable 

signal (change) trials are from noise (no change) trials, with 

higher values indicating better detection performance. The 

response criterion measure β reflects the relative strength 

the evidence has to reach in order for the organism to 

respond that the trial was a change trial, with a value of 1 

indicating no response bias, while values below 1 indicating 

a bias towards responding ‘change’ (i.e., the evidence for 

‘no-change’ has to be stronger than the evidence for 

‘change’).  

As we are interested only in the effect of increasing as 

compared to decreasing volatility, we collapse the data over 

the presence and types of trend. Also, note that the signal 

detection measures are based on both signal (change) and 

noise (no change) trials, and hence we cannot compare 

sensitivity and response bias between change and no-change 

trials.  

 

Table 1: Mean values of sensitivity (d) and response 

criterion (β) in the two types of scenario for detection of 

changes in volatility in graphs that started with low 

volatility and in those that started with high volatility. 

 

 Sensitivity (d) Response criterion (β) 

 Low 

Starting 

Volatility 

High 

Starting 

Volatility 

Low 

Starting 

Volatility 

High 

Starting 

Volatility 

Financial 

risk 

scenario 

(n = 59) 

.95 .26 .22 .19 

Flooding 

risk 

scenario 

(n = 106) 

.79 .43 .10 .22 

 

Mean values of d and β are shown in Table 1. A two-way 

analysis of variance on d using starting volatility as a 

within-participant variable and temporal frame as a 

between-participant variable revealed a strong main effect 

of starting volatility (F (1, 163) = 43.82; p < .001; η
2
 = .21) 

and some evidence of an interaction between this variable 

and frame type (F (1, 163) = 4.57; p = .034; η
2
 = .03).  

An ANOVA using the same variables on β failed to reveal 

any significant effects. 

Discussion 

The experiment showed that people find it easier to detect 

increases in volatility than decreases in volatility. Given that 

increases in volatility in the task scenarios corresponded to 

increases in risk, this result can be interpreted as showing 

that people are better at detecting increases than decreases in 

risk. This corresponds to what would be expected from a 

functional perspective: it is more important to be sensitive 

to increases in risk (so that protective measures can be 
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implemented) than to decreases in risk (as removal of 

protective measures is less urgent). Differences in the size 

of the effect in the two scenarios may be related to beliefs 

about the nature of the risks and the ease of managing them 

in the two cases.  

Before committing to this risk-based interpretation of the 

effects, it is important to ascertain whether they appear 

when the same graphs are presented within a scenario that 

does not involve risk. 

Experiment 2 

In this experiment, participants were presented with a 

version of the task in which risk assessment was not 

involved. Results were then compared to those obtained in 

the previous experiment. 

Method 

Participants A total of 80 new participants drawn from the 

same pool as before performed a risk-free version of the 

task.  

Procedure Participants were told that the data points 

represented the contours of a mountain range. The vertical 

axis represented height in meters and the horizontal one 

degrees of visual angle. Mountains could be formed of soft 

rock that had eroded (low variance) or harder rock that had 

not (high variance). They were told that they needed to 

detect differences in the contours of the mountains because 

mineral deposits tended to occur at the interface of hard and 

soft rocks. Identifying such interfaces would trigger ground-

based surveys to confirm the presence of mining 

opportunities. Thus, a left/right difference in variance was 

associated with identification of an opportunity rather than a 

risk. 

In all other respects, the experiment was the same as 

Experiment 1. 

Results 

In the same way as before, the d and β values were 

extracted from the data (Table 2). Then an ANOVA was 

used to compare the values obtained from the temporal risk 

scenarios of Experiment 1 with those obtained from the 

risk-free scenario in the current experiment. Starting 

volatility (low versus high volatility on the left side of the 

graph) was a within-participants variable and task frame 

(risk-free versus temporal risk scenarios) was a between-

participants variable. 

Again, there was a strong main effect of starting volatility 

(F (1, 243) = 30.00; p < .001; η
2
 = .11). However, in this 

case, though there was an effect of frame type (F (1, 243) = 

10.34; p = .001; η
2
 = .04), there was no interaction between 

frame type and starting volatility. Thus, while people were 

better at detecting differences in volatility in the risk-free 

scenario, they were better in both types of scenario at 

detecting changes in volatility from low to high (assuming 

left-to-right scanning in the risk-free scenario) than at 

detecting volatility changes from high to low.  

As before, an ANOVA using the same variables on β 

failed to reveal any significant effects. 

 

Table 2: Mean values of sensitivity (d) and response 

criterion (β) in the two types of scenario for detection of 

changes in volatility in graphs that started with low 

volatility and in those that started with high volatility. 

 

 Sensitivity (d) Response criterion (β) 

 Low 

Starting 

Volatility 

High 

Starting 

Volatility 

Low 

Starting 

Volatility 

High 

Starting 

Volatility 

Temporal 

risk 

scenario 

(n = 165) 

.85 .37 .15 .21 

Risk-free 

scenario 

(n = 80) 

1.01 .75 .17 .24 

 

Discussion 

We obtained the same effect reported in Experiment 1 

when participants performed the task within a risk-free 

scenario. Assuming left-to-right attentional scanning of the 

graphs (Bergen and Lau, 2012; Eviater, 1995; Maas and 

Russo, 2003), we can say that they were more sensitive to 

an increase in volatility than to a decrease in volatility. 

Furthermore, this was true whether or not greater volatility 

represented greater risk. The asymmetry uncovered in 

Experiment 1 is of a more general nature than we originally 

assumed. However, its implications for detection of changes 

in levels of risk remain. 

There was also a main effect of scenario type on d: 

sensitivity was higher in the risk-free scenario. Focusing on 

opportunities rather than risks appears to have made the task 

simpler for participants. 

General discussion 

The experiments show that people find it easier to detect an 

increase than a decrease in the variance of a graphically 

presented time series. Though changes in risk are realized as 

changes in variance in many domains, Experiment 2 

indicated that increases in variance are easier to detect than 

decreases in variance even when changes in variance do not 

correspond to changes in risk level. Here we will outline 

two possible explanations for our findings: an explanation in 

terms of the processes needed to detect upward and 

downward changes in variance and a functional explanation 

based on the relative importance of upward and downward 

changes in variance. 

 

A process-based account 
 

It is possible that our findings arose because increases in 

variance are statistically easier to detect than decreases in 
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variance. For example, we could ask whether it is 

statistically easier to detect the presence of a data point 

outside a given distribution (an outlier) than to detect the 

absence of a data point expected within that distribution. 

Conceivably, more data might be needed to perform the 

latter detection reliably.  

In fact, to detect an increase in variance, it is not 

sufficient to detect a single anomaly: in normal 

distributions, we expect one in 22 data points to be more 

than two standard deviations away from the mean. To detect 

a change in variance, the presence of unexpected data points 

outside a reference distribution or the absence of expected 

data points within that reference distribution must be 

persistent. In other words, there must be evidence of a 

regime shift in the variance of the distribution. 

There are many different approaches to detecting regime 

shifts in the mean of time series but relatively few have 

been developed for detecting shifts in the variance of series. 

Downton and Katz (1993) developed a non-parametric 

bootstrap technique to compute confidence intervals for 

discontinuities in variance. However, their approach 

requires the series containing the putative regime shift in 

variance to be compared to a separate reference series 

known to be characterized by homogeneous variance. We 

presented our participants with series in which variance did 

not change but we did not inform them of this constancy for 

particular series. Thus they had no series that they could 

treat as a reference series in the manner that Downton and 

Katz (1993) require. 

Rodionov (2004) developed a sequential algorithm for 

early detection of regime shifts in the mean of series. The 

advantage of his approach is that it does not require large 

amounts of data to be accumulated and can automatically 

detect regime shifts in real time. Later, Rodionov (2005) 

extended his approach so that it could be used to detect 

regime changes in variance in short series in real time. 

These features of his approach render it a suitable one for 

modeling detection of variance change in our experiments. 

The first step is to identify the regime length (l). In our 

task, this value would initially be set to 10 because 

participants knew there was no shift in the first 10 data 

points. The next step is to use an F-test to determine the 

critical variance ratio (Fcrit) of two successive regimes that 

would be statistically significant. For an l value of 10 and a 

p-value of 0.05 (one-tailed), this ratio is 4. The variance of 

the initial l values of the series is then used to estimate the 

variance of the current regime (Vcur). For the new regime to 

be statistically different from the current regime, its 

variance (Vnew) should be equal to or greater than the critical 

variance (Vcrit↑) if the variance is increasing or equal to or 

less than the critical variance (Vcrit↓) if the variance is 

decreasing, where 

 Vcrit↑ = Vcur ∙ Fcrit 

 Vcrit↓ = Vcur / Fcrit↓ 

The variance, Vcur, is the sum of squares of zi, where i 

spans from the first point of the current regime to i = tcur – 1. 

If, at time tcur, the current value zcur satisfies either z
2
cur > 

Vcrit↑ or z
2

cur < Vcrit↓, this time is marked as a potential point 

where a regime shift in the variance has occurred. 

Subsequent values (zcur+1, zcur+2 …) are used to verify this 

hypothesis by using a Residual Sum of Squares Index 

(RSSI).  

𝑅𝑆𝑆𝐼 = 1/𝑙 ∑ (𝑧𝑖
2

𝑚

𝑖=𝑡𝑐𝑢𝑟

− 𝑉𝑐𝑟𝑖𝑡),  

where m = tcur, tcur  + 1, …, tcur  + l - 1. 

If, at any time during the testing period from tcur to tcur  +  l 

– 1, the index turns negative for the case where Vcrit = Vcrit↑ 

or positive for the case where Vcrit =  Vcrit↓, the hypothesis of 

a regime shift in variance at time tcur is rejected and zcur is 

included in the current regime. Otherwise, time tcur is taken 

as a break point at which a regime shift in variance 

occurred.  

In essence, Rodionov’s (2005) approach first detects an 

anomaly and then goes on to determine whether that 

anomaly persists over time. A regime shift in variance is 

identified only when it does. Because his approach is simple 

and requires little accumulated data, it is appropriate for the 

statistical detection of regime changes in variance in the 

type of task that our participants completed.  

In our task, the value of the lower variance was 25 and, 

hence, Vcrit↑ = 25 x 4 = 100. The value of the higher 

variance (225) exceeded this critical value by a large 

amount (125). The value of the higher variance was 225 

and, hence, Vcrit↓ = 225/4 = 56.25. The value of the lower 

variance (25) was less than this critical value by only a 

small amount (31.25). However, the relative difficulty of 

two comparative judgments does not depend on the size of 

the absolute difference between the stimuli.  

According to Weber’s Law, “The stimulus increase which 

is correctly discriminated in any specified proportion of 

attempts (except 0 and 100 per cent) is a constant fraction of 

the stimulus magnitude" (Thurstone, 1959, p. 61).  In the 

case of upward changes in variance, the change in variance 

that participants had to detect (125) as a proportion of the 

critical variance (100) was 1.25. In the case of downward 

changes in variance, the change in variance that participants 

had to detect (31.25) as a proportion of the critical variance 

(56.25) was 0.56. Hence the task of deciding whether there 

was evidence of a new variance regime would have been 

more difficult when the variance decreased from the high to 

the low value than when it increased from the low to the 

high value. 

In terms of Rodionov’s (2005) approach, for each current 

value, zcur, it would have been harder to determine whether 

z
2

cur was less than Vcrit↓ than to determine whether it was 

greater than Vcrit↑. As a result, the initial assessment of 

whether a potential anomaly had occurred at tcur would have 

been harder for a downward than for an upward anomaly. 

Furthermore, using the RSSI to verify whether the potential 

anomaly should be confirmed would have been less 

effective for a downward than for an upward anomaly. 

We have outlined this process-based account using the 

parameters of our experimental task but it could be applied 

to any task in which comparative judgments of variance are 

made. Of course, other process-based accounts are possible: 
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the strategy outlined by Rodionov (2005) is not the only 

statistical approach to detecting regime change in variance. 

Indeed, it is possible that no unitary process-based 

explanation would be appropriate to account for the 

asymmetry in our data. We may have evolved so that the 

characteristics of the processes that detect upward and 

downward changes in variance are different. It is to this 

possibility that we turn next.  

 

A functional explanation 
 

A sudden increase in volatility can be regarded as a signal 

onset and a sudden decrease in volatility as a signal offset. 

Work in psychophysics indicates that people are better at 

detecting the onset of a signal than the offset of one (e.g., 

Ahumuda, Marken, and Sandusky, 1975). This phenomenon 

can be given a functional interpretation, albeit a more 

general one than that we proposed when discussing the 

results of Experiment 1.  The onset of a signal is likely to be 

of greater importance to an organism than the offset of one. 

Signal onsets (e.g. the appearance of a predator) are more 

likely to require urgent and rapid action than signal offsets 

(e.g., the disappearance of a predator). 

One objection to this account is that differences in signal 

importance should be expected to affect response bias (β) 

rather than sensitivity (d). If a signal is more important, the 

response criterion should be shifted to the left to increase 

the proportion of hits. In other words, there should be no 

difference in d values for detecting signal onsets and 

offsets. Instead, responses should be more biased in favour 

of saying there is a change when signals start low but may 

change to high (potential signal onset) than when they start 

high but may change to low (potential signal offset). 

The problem with this approach is that shifting the 

response criterion to the left will also serve to increase the 

proportion of false alarms. Responding to these false alarms 

is likely to be costly. For example, animals reacting to a 

non-existent predator may lose foraging time and flee into a 

more dangerous environment. These high costs would tend 

to force the response criterion rightwards and so counteract 

the benefit-driven increase in hit rate arising from moving it 

leftwards. According to this functional account, evolution 

resolved this dilemma over time by increasing sensitivity to 

signal onsets.  Such a strategy would avoid the increased 

costs arising from the additional false alarms associated 

with a laxer response criterion while still assuring the 

benefits of a high hit rate.   

Implications 

Although the phenomenon that we have identified is not 

specific to identification of changes in risk, it still has 

implications for risk perception. In finance, sudden changes 

in series variance occur (Hammoudeh and Li, 2008; Todea 

and Petrescu, 2012). Although attempts to predict these 

changes have been made using autoregressive conditional 

heteroskedasticity (ARCH) and generalized autoregressive 

conditional heteroskedasticity (GARCH) models 

(Bollerslev, 1986; Engle, 1982), severe problems in 

forecasting them remain.  

For Mandelbrot (1997), this was not surprising. He argued 

that bursts of high volatility are inherently unpredictable and 

emerge naturally as a consequence of the nonlinear 

processes responsible for generation of financial series. He 

claimed that these series do not meet the assumptions of 

modern financial theory (e.g., Markowitz, 1959; Sharpe, 

1964; Black and Scholes, 1973) but are, instead, fractal. If 

he is correct, technical analysts and traders cannot possibly 

predict sudden volatility changes in financial series. Instead, 

all they can do is to be alert to the possibility that such 

changes will occur and then react to them appropriately as 

soon as possible.  

Assuming that sudden volatility changes in financial 

series are not predictable, how would the asymmetry that we 

have identified here affect trading behavior? Increases in 

risk may lead investors to sell winning shares to lock in 

their profits but to keep losing ones in the hope that high 

volatility will provide an opportunity of selling them later at 

a higher price. Decreases in risk should lead to investors 

keeping their winning shares because nothing untoward will 

happen but to sell their losing shares because there is no 

chance of their bringing in a higher price later if they are 

retained. Easier detection of an increase than a decrease in 

volatility will lead responses to increases in risk to dominate 

responses to decreases in risk. In other words, the tendency 

to sell winning shares but to retain losing ones will 

dominate. This is the disposition effect (Shefrin and 

Statman, 1985). While we would not wish to claim that 

easier detection of increases than decreases in risk is the 

only driver of the effect, it may be contributory. 

In our experiments, we presented time series graphically. 

We could explain our results by assuming a) that graphs 

were scanned left to right so that earlier data points were 

encountered before later ones, and b) that signal onsets are 

easier to detect than signal offsets. Both these assumptions 

are supported by existing evidence in the literature. 

Consider now the case where the data points are 

encountered sequentially in real time. We would no longer 

need to make the first assumption: the earlier points would 

be encountered before later ones anyway. Hence, given that 

the second assumption holds, we would expect the 

asymmetry to be maintained. In other words, our findings 

could be expected to generalize to situations in which 

people experience data points successively over a period in 

real time. 

For example, situations in which operators of some 

system receive readings in this way but assess volatility 

judgmentally rather than formally may produce a greater 

tendency to implement measures to protect against 

increased risk than to remove those measures once the 

period of increased risk has passed. Such situations could 

include those associated with natural hazards, such as 

evacuation decisions in the case of potential volcanic 

eruptions or hurricanes.  

We would not wish to claim that asymmetric tendencies 

to respond to increases and decreases in risk in such cases 
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should be characterized as cognitive biases. In line with the 

functional approach discussed above, they may represent 

sensible ways of responding to changes in risk levels.  
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