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Highlights 

 NUSAP clarifies the strengths and weaknesses of the modelling  knowledge base  

 Highly influential model assumptions on CCS and bioenergy shown to have a weak 

pedigree 

 The approach employs broad peer engagement, which engenders understanding and critique 

 Recommendation that such an approach is embedded in analytical processes supporting 

policy 

 

Abstract 

Strategic planning for the low carbon energy transition is characterised by a high degree of 

uncertainty across many knowledge domains and by the high stakes involved in making decisions. 

Energy models can be used to assist decision makers in making robust choices that reflect the 

concerns of many interested stakeholders. Quantitative model insights alone, however, are 

insufficient as some dimensions of uncertainty can only be assessed via qualitative approaches. This 

includes the strength of the knowledge base underlying the models, and the biases and value-

ladenness brought into the process based on the modelling choices made by users. To address this 

deficit in current modelling approaches in the UK context, we use the NUSAP (Numeral Unit Spread 

Assessment Pedigree) approach to qualify uncertainty in the energy system model, ESME. We find 

that a range of critical model assumptions that are highly influential on quantitative model results 

have weaknesses, or low pedigree scores, in aspects of the knowledge base that underpins them, and 

are subject to potential value-ladenness. In the case of the UK, this includes assumptions around 

CCS deployment and bioenergy resources, both of which are highly influential in driving model 

outcomes. These insights are not only crucial for improving the use of models in policy-making and 

providing a more comprehensive understanding of uncertainty in models, but also help to 

contextualise quantitative results, and identify priority future research areas for improving the 

knowledge base used in modelling. The NUSAP approach also promotes engagement across a 

broader set of stakeholders in the analytical process, and opens model assumptions up to closer 

scrutiny, thereby contributing to transparency. 
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1.0 Introduction 

1.1 Energy and climate strategy under uncertainty 

Strategic planning for the low carbon energy transition is characterised by a high degree of 

uncertainty across many knowledge domains and by the high stakes involved in making decisions. 

The future availability and costs of transition technologies, the political environment under which 

they may be deployed, and the role of changing societal preferences and individual behaviours are 

key uncertainties for decision makers to contend with, and which will impact numerous stakeholders 

[1]. The UK has long identified the need for decarbonisation of the energy system, with legally 

binding national targets on emissions reduction that remain among the most ambitious globally [2]. 

A well-developed science policy architecture has developed over the last decade to explore and 

implement the transition [3,4], and some progress has been made in recent years, particularly in the 

power generation sector [5]. However, strategic decisions in a number of critical sectors have yet to 

be taken, for example in areas such as switching away from natural gas for heating in buildings, the 

decarbonisation of freight transportation, and how to address the growing emissions from aviation. 

The long-lived nature of critical infrastructures for supplying energy makes path dependencies and 

lock-in to legacy assets a real risk [6]. 

This type of challenge, where urgent near-term choices must be made in an environment where 

perfect information and universal agreement amongst key stakeholders is impossible to achieve, is 

characterised in the scientific literature as the domain of post-normal science [7,8]. This is in direct 

contrast to the definition of normal science by Kuhn [9], where observations are used to iteratively 

resolve testable hypotheses through experimentation. The assessment of strategic options in a post-

normal science context, such as long term energy policy, must contend with multiple epistemic 

uncertainties that arise from our imperfect knowledge, including those that can be quantified in 

modelling tools, but also those that are not easily quantifiable.  

Van der Sluijs [10] argues that most quantitative-only approaches do not adequately deal with those  

dimensions of uncertainty that are non-quantifiable. These include the strength of the underlying 

knowledge base, the level of theoretical understanding of the processes modelled, and the value-

ladenness coproduced by modellers themselves because of the requirement to make choices across 

key model assumptions. As an illustration, a quantitative analysis performed for a particular policy 

problem might produce modelling results which suggest that a given input parameter is highly 

influential on the distribution of costs of meeting a given objective. But what is typically missing 

from such an exercise is an assessment of the uncertainty arising from the strength of the knowledge 

base underpinning that quantified model outcome. Such non-quantifiable uncertainty, were it 

exposed to decision-makers, might reduce the perceived robustness of the model-derived quantitative 

insight, and lead to different conclusions for policy. 

Approaches that recognise this multi-dimensional nature of uncertainty, as described in the next 

section, can provide decision makers with a more comprehensive understanding of uncertainty and 

improve the robustness of the resulting choices made. They help avoid quantitative-only approaches 

which only consider a “restricted agenda of defined uncertainties – ones that are tractable” [11]. 

When faced with policy challenges in the post-normal domain, a broad approach to uncertainty 

assessment is vital. It is entirely possible that “unquantifiable uncertainties dominate the 

quantifiable ones” [10] and excluding them from the analysis will risk giving decision makers a 

highly restricted perspective on the range of possible outcomes.  The challenge is that uncertainties 

are numerous and appear, as per Walker’s typology [12], at different stages across the modelling 

process, from the problem framing itself, the selection of model input parameters, the structural 

design and process of defining relationships, and from the subjectivity of model users.   
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1.2 Existing approaches and knowledge gaps 

Energy models are likely to continue to play a key role in ongoing energy transitions by providing 

the evidence base for planning policies on climate mitigation [13], which in turn serve as key drivers 

behind many transitions towards sustainability [14]. The Paris Agreement [15] recommends mid-

century low emission strategies and states that individual signatories must provide regular updates on 

their strategic plans for low carbon development (Nationally Determined Contributions, NDCs), 

forcing a requirement for policymakers to assess low carbon energy transitions at the country-scale 

[16]. Energy models provide a clear framework for systematic experiments that explore the possible 

consequences of the multiple different options in systems that are otherwise difficult to grapple with 

[17]. In the UK, for the last 15 years, energy models have been critical in providing guidance on 

system decarbonisation, notably in relation to the affordability and feasibility of achieving targets, on 

issues of path dependency, and on identifying critical feedbacks and linkages between sectors [3,4]. 

However, the treatment of uncertainties in strategic analysis has had a number of limitations, and 

practitioners in the modelling community have repeated calls for increased use and improvement of 

methods for uncertainty analysis [18–20]. This is mirrored by calls from strategy analysts, industry 

experts and government decision makers, who are cognisant of a broad spectrum of future 

uncertainties facing the energy transition and also the limitations of current modelling and scenario 

analysis practices to capture them [1,21]. 

Energy systems analysis in the UK (and in many other national and regional contexts) has typically 

focused on the use of scenarios for exploring different futures [22–25]. Historically it has been 

common for analysts to employ a handful of scenarios with deterministic inputs, using a coupled 

storyline-and-simulation approach [26]. This approach has been shown to have limitations – ex post 

analysis of modelled energy futures based on scenario analyses often finds that real world 

developments occur that are completely outside of the anticipated range [27,28]. Modelling 

practitioners are increasingly drawing from a range of more advanced quantitative techniques to 

assess parametric uncertainties as a means of capturing more of the problem space in their work. 

Techniques found in the UK context include probabilistic analysis [19,20], stochastic programming 

[18], and modelling-to-generate-alternatives (MGA) [29,30] using parameter uncertainty ranges 

supported through expert elicitation [1,31,32].  

While valuable for opening up dialogue and highlighting the uncertain nature of the knowledge 

claims made in this field, none of the above techniques alone are able to adequately identify and 

assess those non-quantifiable dimensions of uncertainty discussed earlier.  An innovative approach to 

assessing uncertainties in model-based analysis is the NUSAP system [10]. NUSAP, or Numerical 

Unit Spread Assessment Pedigree, was first proposed by Funtowicz and Ravetz [7], before 

undergoing substantial development and implementation in the Dutch Government’s applied policy 

research institutes [33]. NUSAP retains the strengths of quantitative uncertainty assessment but 

brings a focus on the qualitative assessment of the quality or ‘pedigree’ of the underlying model 

assumptions. This framework, which includes both standard uncertainty analysis techniques but also 

assessment of non-quantifiable uncertainties, increases the robustness of emerging conclusions from 

models, providing decision makers with an enhanced understanding of the strengths and weaknesses 

of model insights. 

 
1.3 Aims and objectives of the paper 

In this paper, we demonstrate how practitioners can broaden the scope of strategic advice given to 

energy system decision makers by holistically considering both qualitative and quantitative 

dimensions of uncertainty using the NUSAP approach. For this research, we have used a prominent 

UK energy systems model, the Energy Systems Modelling Environment (ESME) [34], which is 

under active development and has been used for academic [35,36], industry [37] and government 

[38] applications. We describe the application of the NUSAP protocol for assessing the qualitative 

dimension of uncertainty and show how this can be combined with insights from a quantitative 

mathematical sensitivity analysis (using the Morris Method).  



4 

 

The NUSAP system has been used before in diverse scientific fields such as the assessment of acid 

rain and transboundary air-pollution impacts, the global integrated assessment of climate policies, 

and the effects on human health of waste disposal practices [10,39–41]. The life cycle assessment 

community have also effectively used pedigree scoring of underlying data assumptions, which is a 

key element of the NUSAP approach, to better recognise its impact on uncertainty [42,43]. This is 

the first time such an approach has been applied to a national energy model used to inform thinking 

on energy transitions towards deep decarbonisation. Additionally, we incorporate novel elements 

into the NUSAP approach, such as the assessment of model pedigree in multiple time horizons.  

The key research questions for this study were as follows: 

i. What are the key non-quantifiable uncertainties arising from limitations in the knowledge 

base underlying the ESME model? 

ii. How do they inform and complement our understanding of uncertainty from quantitative 

uncertainty approaches, and what are the implications for strategic energy transition 

planning, in terms of policymaking and future research needs? 

The paper is structured as follows; in Section 2, we describe the approach taken to the uncertainty 

analysis. This includes descriptions of the NUSAP-based workshop used to elicit non-quantifiable 

uncertainties and of the Morris Method global sensitivity analysis that was used to explore the 

quantitative uncertainties. Section 3 presents the results from the workshop, while Section 4 provides 

a discussion of the results. The paper concludes with recommendations for modelling uncertainty, 

particularly in support of decision-making, and a discussion on future research needs. 

 

2.0 Research design and methods 

In this section, we first describe the NUSAP approach, followed by a brief overview of the model 

ESME, the subject of the approach. We then describe how we selected the model assumptions to 

focus on, and the process of designing and implementing a NUSAP workshop, to elicit an 

understanding of uncertainties in ESME.  

2.1 NUSAP 

The NUSAP approach1 was proposed in 1990 [7] and further developed to meet the need to revise 

the approach to uncertainty assessment following strong criticism of the Netherlands Environmental 

Assessment Agency, MNP,2 in the late 1990s, on the credibility and reliability of the assumption and 

models used in environmental policy [33,44]. At the core of the approach is the recognition that 

uncertainty is multi-dimensional, with dimensions including technical (inexactness), methodological 

(unreliability), epistemological (ignorance) and societal (social robustness) [10]. Quantitative 

uncertainty assessments, particularly those using global sensitivity analysis, typically representing 

the technical dimension, provide information on the uncertain quantifiable assumptions that have the 

greatest influence on the results [45].  

However, missing from such assessments is information on the quality of the underlying knowledge 

base that allows users of the model results to form a view on the robustness of the emerging 

conclusions. Applying the NUSAP approach allows for scrutiny of the ‘pedigree’ or quality of model 

assumptions by a range of experts. Pedigree is judged based on scoring against multiple criteria, 

capturing different aspects of (non-quantifiable) uncertainty (Table 2, Section 2.3). The term ‘model 

                                                 
1 NUSAP stands for Numeral-Unit-Spread-Assessment-Pedigree. ‘Numeral’ is the numbers used in the 

analysis; Unit is the units for the numbers; ‘Spread’ is the variance in the model outputs due to input 

uncertainty; ‘Assessment’ represents qualitative judgements about assumptions; and ‘Pedigree’ represents the 

strength of knowledge and use of knowledge in the analytical approach.  
2 MNP was merged with Netherlands Institute for Spatial Research (RPB) in 2008 to form the PBL 

Netherlands Environmental Assessment Agency (Planbureau voor de Leefomgeving) 
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assumption’ relates to the following aspects of the model where uncertainty could manifest itself, 

and follows the typology proposed in Walker et al. [12] and subsequent PBL guidance [46]; i) model 

structure (relationships embedded in equations), and ii) model inputs, such as data, boundary 

conditions, and analysis framing.  

For each model assumption considered, experts score against the selected criteria, as described in 

section 2.3. The resulting pedigree scores provide insights into qualitative dimensions of uncertainty, 

which can then be used to compliment the quantitative uncertainty analysis. A key strength of the 

approach is that both components can be brought together using a diagnostic diagram, as shown in 

Figure 1 [47]. The pedigree scores highlight the ‘strength’ of the model assumption, reflecting the 

methodological and epistemological limitations of the knowledge base, while the quantitative 

sensitivity analysis shows the influence of the model assumptions on the results via statistical 

methods.  

The diagnostic diagram can be separated into four quadrants. In Q1, the influence of assumptions on 

model outputs is low, and the underlying knowledge base is strong, resulting in limited cause for 

concern. The same may also be true for Q3, where despite a weaker knowledge base, the influence of 

assumptions on outputs is low. In Q2, the assumptions have a strong effect on the overall modelled 

outcome, but the strong pedigree of the knowledge base can give decision makers confidence that the 

model is providing useful information to inform decisions about the real world system. In Q4, 

assumptions have high statistical influence over model outcomes, but a weak pedigree. This quadrant 

can be characterised as the ‘danger zone’. In this region, what appears to be an important outcome 

from a quantitative perspective may need to be treated with caution as the quality of the knowledge 

underpinning the assumption has been revealed to be weak or contested. The application of this 

diagnostic diagram is further considered in the results section (Section 3.3). 

 

Figure 1. Diagnostic diagram used to combine quantitative and qualitative dimensions of 

uncertainty 

Another important feature of the NUSAP approach is that it allows for in-depth scrutiny of model 

assumptions through expert stakeholder involvement, highlights the strengths and weaknesses of the 

model analysis (and areas to prioritise for improvement), and also explicitly clarifies the distinct 

areas of disagreement across assumptions. In effect, it provides greater transparency to the analytical 

process, for example through identifying a diversity of views on the strength of the underlying 

knowledge base, and the level of consensus across different assumptions. The evaluation of previous 

NUSAP exercises by participants has consistently highlighted broad agreement amongst 

stakeholders regarding their value [39,48]. However, the NUSAP process of eliciting expert 
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perspectives via a workshop is time intensive and therefore not necessarily always appropriate in a 

fast-moving policy context. Kloprogge et al. [40] suggest therefore that it may be most appropriate to 

apply the NUSAP approach in high value analysis cases – for example, where decision stakes are 

high and uncertainty can have a large impact on policy development, and also in cases where societal 

controversies are prevalent. Hence, analysis for climate and energy policy is a good example of 

where such an approach can be highly relevant. 

2.2 The ESME model 

In this paper, we apply the NUSAP approach to ESME3, a regionally disaggregated model of the UK 

energy system, used to determine the role of different low carbon technologies for achieving the 

mid- to long-term climate mitigation goals set in UK legislation. The model has been used 

extensively for informing government and industry strategies, and underpins a range of research 

papers on different aspects of energy system decarbonisation [19,20,35,49]. Built in the AIMMS 

environment, the model uses linear programming to assess cost-optimal technology portfolios. It 

covers the key sectors of the UK energy system, including power generation, industry, buildings, 

transport and other conversion sectors e.g. biofuel production, hydrogen production.  

A set of energy service demands that capture requirements for industrial and building heating, 

electricity supply and mobility needs are provided as exogenous inputs, and largely reflect 

Government projections. The model then endogenously determines how to meet these demands in a 

cost-optimal manner, through investment in end use technologies (including energy efficiency 

measures), and in production and supply options to provide for different energy forms. Primary 

resource supply is characterised by commodity price and resource availability, with no distinction 

between imports and domestic indigenous production (except for biomass), and no explicit 

representation of resource and upstream sectors (although these are accounted for implicitly through 

the energy balances, prices and other statistics used as inputs). For emissions accounting, the model 

accounts for CO2 but not other greenhouse gases (GHGs), such as methane (CH4) and nitrous oxide 

(N2O). Therefore, the CO2 emissions constraints applied in the model that are used to understand the 

implications of the UK’s GHG emission reduction plans make an exogenous assumption about the 

level of non-CO2 GHG levels in future years, taking account of expected abatement, and are adjusted 

accordingly. In this version of the model, a total constraint of 160 MtCO2e is assumed, based on an 

assumed non-CO2 GHG level of 55 MtCO2e [50], allowing for of CO2 emissions of 105 Mt in 2050. 

The uncertainties around the future costs and performance of different technologies and resource 

prices are captured via a probabilistic approach, where multiple scenarios are generated to explore a 

wide range of pathways. A full list of the assumptions considered in this NUSAP exercise are 

provided in Table 1, with further background information on each in Appendix B. A full description 

of the model is provided in Heaton [34], while the data assumptions and sources are also published 

[51].  

2.3 Selecting the model assumption for assessment 

The large number of model assumptions, the structural complexity of the ESME model (which 

contains numerous equations), and the in-depth nature of the NUSAP assessment process meant that 

careful consideration was needed regarding which assumptions to prioritise during the workshop in 

order to keep the process manageable. The guiding principle was to focus our analysis on the most 

influential model assumptions. Following the practice observed in earlier NUSAP workshops [39], a 

dual-layer approach was used for their selection; firstly, the model inputs which were ranked the 

highest in terms of their influence on model results (expressed in terms of the costs of meeting 

decarbonisation targets) were selected, based on two previously published global sensitivity analyses 

using ESME [20,52]. Such approaches allow for an understanding of ‘how uncertainty in the output 

of a model can be apportioned to different sources of uncertainty in the model input’ [53]. One such 

approach is the Morris Method [54], also known as the Elementary Effects Method, which provides a 

                                                 
3 Assumptions reviewed were in v4.1 
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computationally efficient means of screening a model in order to determine the set of input 

parameters to which the model solution is the most sensitive. A wide range of input parameters are 

first characterised as uncertain, and then subjected to the Morris Method sampling approach that 

captures the uncertainty space across the parameter value ranges. The ESME model is then run 

multiple times, in each case to meet the UK’s climate legislation across the carbon budget periods 

and 2050 target. The sensitivity metrics are then calculated based on their influence on total system 

costs. This sensitivity analysis approach detailed in Usher [52] was used here to inform the 

uncertainty analysis presented in the results section of this paper, the approach for which is described 

in detail in Appendix E. 

Secondly, an interview was held with expert modellers from the Energy Technologies Institute 

(ETI), the developers of ESME, to elicit their views on what they considered to be the critical 

assumptions affecting the model output. Prior to the interview, participants were provided with an 

overview of the NUSAP approach, and the purpose of identifying key uncertainties for discussion at 

a workshop. The interview was exploratory in style [1], with participants free to discuss any issues 

relevant to model uncertainty. This gave a broader perspective based on the developers’ experience 

of using the model for different applications, and led to the inclusion in the workshop assessment of 

specific model features associated with analysis framing and model structure, which can also be 

considered within the NUSAP framework [55].  

Table 1 lists the model assumptions selected. Five were chosen on the basis of the global sensitivity 

analysis (GSA) and four from expert elicitation (EE) via the interviews with model experts, 

including two structural assumptions. The end result was a set of critical assumptions for modelling 

decarbonisation pathways, covering a range of different aspects of the modelling.  

Table 1. Selection of assumptions for pedigree assessment 

Assumption 
category 

Assumption 
code 

Assumption 
Uncertainty 
location 

Method of 
determination* 

Resources 

BioRES 
Bioenergy resource potential: limits the 
level of domestic biomass available for use 
in the energy system 

Input data GSA 

BioEF 

Bioenergy emission factors: reflecting 

assumptions around carbon neutrality, 
impacting on the attractiveness of 
bioenergy as a zero or low carbon source 
of energy 

Input data / 
boundary 
conditions 

EE 

GasPRC 
Gas resource costs: based on UK 
Government projections reflecting 
international market prices 

Input data GSA 

Technologies 

CCSmbr 

Combined Cycle Gas Turbines (CCGT) w/ 
CCS build rate: expressed as a constraint 
in the model as maximum capacity 
deployment per annum 

Input data GSA 

CCScap 
Combined Cycle Gas Turbines (CCGT) w/ 
CCS Capex: expressed as expenditure 
requirement to install a unit of capacity 

Input data GSA 

NUCcap 
Nuclear Gen. III** Capex: expressed as 
expenditure requirement to install a unit of 
capacity 

Input data GSA 

Emissions 
accounting 

NonCO2 
Non-CO2 GHG emissions (implicit in CO2 
trajectory): level of emissions that has an 
impact on the CO2 target trajectory 

Input data / 
boundary 
conditions 

EE 

Model 
structure 

TchLRN 

Technology learning rates: approach to 
incorporating projections in the model of 
the technology costs reductions over time, 
due to learning effects 

Model 
structure 

EE 

PerFOR 

Perfect foresight optimisation: model 
formulation where all economic ‘decisions’ 
are made with a full knowledge of 
information relating to the future. 

Model 
structure 

EE 
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* GSA = global sensitivity analysis; EE = expert elicitation. ** Nuclear Gen III is a shorthand reference for 
third generation nuclear reactors, intended to represent the latest class of nuclear build designs, e.g. Areva's 
EPR, Westinghouse’s AP1000 

 

 
2.4 NUSAP workshop for eliciting information on the qualitative dimension of uncertainty 

A NUSAP workshop was held on 14th September 2017 to explore the qualitative dimensions of 

uncertainty across a range of assumptions used in the ESME model. In this section, we describe the 

selection of experts for the workshop, the approach to appraising the assumptions, and the process of 

running the workshop. 

Expert selection 

19 experts attended the NUSAP workshop, from a range of disciplinary backgrounds and 

professions, and all with different perspectives on modelling, including data providers, developers, 

and users of outputs. Just over half of the participants were from academia (across eight universities), 

with the other half equally split between government, industry, and other research organisations and 

institutes. All participants were primarily UK-based, although a number of the academic group had 

overseas affiliations.  

Approximately 30 experts were originally contacted to be involved in the workshop. Determining 

invitations was based on the requirement for the workshop to include a mix of three different types 

of stakeholders: i) recognised subject experts on the model assumptions of focus; ii) experienced 

users of energy models who interact with the decision making community; and iii) users of energy 

model outputs in the decision making community. All three groups bring different perspectives on 

the use of models, and the knowledge base underpinning the different analyses undertaken.  

Similar to other approaches to expert selection found in energy policy research (e.g. [56,57]), our list 

of experts was based on purposive selection, identifying the relevant expert community. The 

resulting 19 experts who attended provided a broad range of expertise and a diverse range of 

perspectives on possible energy system developments, based on their disciplinary backgrounds and 

professional experience. Prior to the workshop, all participants were contacted and provided with an 

advance information pack that contained a description of the NUSAP concept, the list of assumptions 

for assessment, and the pedigree criteria and scoring framework. This was particularly to allow for 

familiarisation of the criteria definitions. 

Criteria selection for pedigree assessment 

Table 2 lists the criteria used to assess the pedigree of the model assumptions in Table 1. In broad 

category terms, the NUSAP assessment focuses on the methodological, epistemic, and societal 

dimensions to model pedigree. These criteria have been used in many previous NUSAP assessments; 

in particular, we draw from Van der Sluijs et al. [10,39] on methodological and epistemological 

dimensions, and Kloprogge et al. [40] and Van der Sluijs [58] on the societal dimension. The 

methodological dimension focuses on uncertainty related to the perceived reliability of the estimates 

made for model inputs. The criteria for appraising reliability (in view of model purpose) considers 

how good a proxy a given assumption is, its empirical grounding, and whether it has been, or even if 

it can be, validated. The epistemological dimension focuses on areas of ignorance, in this case 

whether or not we think we have a sufficient and adequate theoretical understanding of the process to 

allow us to make meaningful assumptions about it.   

The societal dimension recognises that the choice of model inputs is typically subjective, due to the 

different disciplinary backgrounds of model users, their political leanings, their preferences, whether 

there is limited information to inform assumptions, or whether there is wide range of possible 

choices that could be considered plausible. This value-ladenness is essentially unavoidable in 

sufficiently complex problems. Following the post-normal science tradition (see Section 2.1), 

NUSAP does not seek to reduce or minimise subjectivity, but instead considers that if there is a 



9 

 

plurality of viewpoints and perspectives then they must be recognised, and properly recorded as part 

of the assessment, to better understand the bearing that this might have on the conclusions that can 

be drawn.  

Five criteria focus on the methodological and epistemological underpinning of modelling 

assumptions. These include: the extent to which the model is a good proxy for the real world system, 

the quality of the empirical basis for assigning values to model parameters, the perceived rigour of 

the methods used to derive input values for models from available empirical data, the extent to which 

input validation has been carried out, and the extent to which the theoretical understanding of the 

real world process is viewed as providing a reliable basis for estimates. A further three criteria focus 

on the societal robustness of the assumptions made. These include the choice space for making 

assumptions (i.e. how different could plausible input values be from one another) the justification for 

the choice of value used and how defensible this is perceived to be by others and whether or not 

there is likely to be agreement amongst peers in choosing model parameter values.   

Table 2. Pedigree criteria used in NUSAP assessment 

Uncertainty 
dimension 

Criteria Description 

Methodological 

Proxy 

The extent to which the assumptions that we use in the model are proxies 
for the reality that we seek to represent, given the purpose of the model. 
Examples include over simplifications, first order approximations, 
incompleteness. 

Empirical 
Basis 

The degree to which observations, measurements and statistics are used 
to estimate a parameter. 

Rigour 

Refers to the norms for methodological rigour in this process applied by 
peers. Well-established and respected methods for measuring and 
processing the data would score high on this metric, while untested or 
unreliable methods would tend to score lower. 

Validation 
The extent to which assumptions have been cross-checked and validated 
against other observations and measurements 

Epistemological 
Theoretical 
Understanding 

The extent to which our theoretical understanding of the real world 
processes provides a reliable basis for estimates 

Societal 

Choice Space 
The degree to which alternative choices of assumptions could be made i.e. 
the degree to which other acceptable / plausible assumptions are available 

Justification 
The degree to which the approximation made in the model can be justified 
as a reasonable, plausible or acceptable assumption, given one's 
understanding of the reality. Can these assumptions be defended? 

Agreement 
Amongst 
Peers 

The degree to which the assumption made in the model (by the analyst) is 
likely to coincide with other experts in the field 

 

Development of scorecards 

To guide the expert assessment of pedigree and provide a common platform for discussion and 

intercomparison, a structured scoring system was provided (as per NUSAP practice). This was based 

on successful systems used in past NUSAP assessments but was specifically tailored to the featured 

model and the model parameters chosen for the assessment. Scores between 0 to 4, where 0 denotes 

a weak pedigree and 4 a strong one, could be given for each criterion discussed in Table 2, and 

applied to each model assumption listed in Table 1. For each score, a description was provided to 

guide the experts in making judgments on assumption pedigree. A full scoring matrix is provided in 

Appendix A. 

Our research for this paper added a novel component to the traditional NUSAP analysis process. Past 

assessments have typically explored the pedigree of models that explore research questions relating 
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to the present day or the near future. However, the ESME model is designed to assess energy and 

climate policy pathways across a very long time horizon from 2010 to 2050, and clearly many of the 

assessment criteria outlined above in Table 2 can be interpreted differently when considering the 

recent past as compared to the far future. In our pedigree assessment therefore, we introduced a 

separate scoring for those assumptions relating to the model base year (2010) and those relating to 

the long term future (2050). In the case of CCS technologies, which are not commercially deployed 

at scale and accordingly do not have 2010 base year assumptions, the years 2030 and 2050 were 

considered. It was important to recognise the considerable differences in the underlying knowledge 

base in these near-to-mid term (2010/2030) and longer term time periods, and therefore the 

associated level of uncertainty.  

The scorecard, for use by the experts, included a range of information for assisting in scoring, 

including a description of each of the model assumptions, how it was incorporated into the ESME 

model, and the mathematical ranking of the input assumptions in terms of how much they affect 

model outputs (where relevant) from previous global sensitivity analyses. The full set of scorecard 

templates used are provided in Appendix B. A description of how the workshop was structured and 

how the scoring was undertaken is also provided in Appendix B. 

 

3.0 Results 

Selected results from the NUSAP workshop are presented in this section. We first note some general 

observations from the aggregated results before a discussion of the individual criteria scores across 

the groups of assumptions, including resources, technologies, emissions accounting and model 

structure. We conclude by describing a diagnostic diagram, which brings results from the workshop 

together with results from quantitative uncertainty analysis. Further detailed results, including the 

scoring by all participants for all of the individual assumptions from the workshop, are provided in 

Appendices C and D.  

3.1 Aggregate pedigree scores 

Aggregate scores for the pedigree of assumptions were calculated based on averaging the five 

methodological and epistemological criteria from each expert. These scores were then averaged for 

each of the assumptions, to provide aggregate pedigree scores, as shown in Figure 2. Standard 

deviations provide an indication of divergence in score between experts. The three value-ladenness 

criteria focus on the nature, not the strength, of the assumptions and are therefore not included in the 

aggregation. A clear difference emerges in scores between time periods, with near-term scores 

always being higher than those for 2050, reflecting the lower levels of uncertainty across the 

knowledge base for the current energy system. This distinction is particularly strong for bioenergy 

resource (BioRES) and gas prices (GasPRC), where average scores in 2010 are typically around 3.0 

and 3.5 respectively, compared to the ranges 1.0-2.0 and 1.5-2.0 in 2050. Recognising that pedigree 

decreases in future years is important when considering the robustness of model insights in the long 

term. 
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For current or near term assumptions (

 

Figure  Figure 2a), high scores for BioRES and GasPRC are observed. Lower scores are found for 

bioenergy emission factors (BioEF), nuclear capital expenditure (NUCcap), and build rates of gas 

CCS plant (CCSmbr). For BioEF, this reflects uncertainty in our knowledge of emissions from a 

very diverse resource base, and the highly aggregated proxy representation of the resource in the 

model. The ESME model only distinguishes between average emission factors for domestic and 

imported biomass, whereas in reality, almost every single bioenergy resource stream (based on type, 

location, processing, transport, end use technology) will have different emission factors. Given the 

diversity of emission factors found across the resource base, this assumption was given a relatively 

low proxy score, while the possible range of plausible values (choice space) was viewed as large 

(section 3.2). 

A lower score for NUCcap reflects the limited evidence on the costs of contemporary nuclear power 

plant designs, particularly given the small number of existing projects from which to draw from. This 

uncertainty was further reflected in the low scores for the choice space criteria (many respondents 

suggested that the plausible range for nuclear capital costs is wide) and the agreement amongst peers 

criteria (respondents suggested that there is only limited agreement amongst experts). Across all 

assumptions, CCSmbr scored lowest, perhaps predictably as an assumption relating to the year 2030. 

Additional reasons for the low pedigree score for CCSmbr include the limited evidence base from 

which to draw from, and the fact that the non-cost barriers that this constraint includes are poorly 

understood, such as the societal acceptability of large-scale CCS, and the political will behind any 

successful future deployment. Interestingly, workshop participants rated the model assumptions 

about the capital cost level for the same technology (CCScap) as scoring higher due to empirical 

evidence today on the costs of different components of the CCS system, based on existing projects, 

and a view amongst the experts that a stronger knowledge base underpins this assumption. 

The average scores for all model assumptions being assessed in 2050, shown in Figure 2b are lower 

and much more clustered together than their equivalent scores for 2010, reflecting the increasing 

uncertainty in the longer term. The lack of spread between 2050 average scores (in the range of 1.4 

to 2.2), and similar score variation between assumptions sees most experts suggesting a much 
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weaker pedigree. For example, BioRES drops from a score of 3 in 2010 to 2 in 2050, reflecting 

expert views that future bioenergy resources are likely to be subject to multiple complex factors that 

are highly uncertain, around land use planning, competition between energy and food crops, and 

competition between the production of biomass for energy and the other non-energy uses of biomass 

(such as wood used in manufacturing). This weaker epistemic status of future values is not 

surprising; the implications of this for how decision makers think about model outputs is an 

important issue to further consider. For the CCS assumptions, the difference between the 2030 and 

2050 scores is not marked, as the understanding of key parameters relating to this technology are 

uncertain at both points in time due to its low technology readiness level and the lack of real world 

examples where it has been deployed.   

 

Figure 2. Mean aggregated pedigree scores.  a) presents 2010 scores, except for the two CCS assumptions 

which relate to 2030. b) presents 2050 scores, and c) structural assumptions, technology learning and perfect foresight, 

which are both time independent. These pedigree scores show the mean and standard deviation of the participants mean 

scores based on the five pedigree criteria. The red line provides a reference point for comparison, as the central score value 

of 2. Model assumption labels are described in Table 1. 

All assumptions see their relative scoring positions maintained between 2010 and 2050 with the 

exception of GasPRC and Non-CO2. The level of non-CO2 GHG emissions in the model is important 

because it determines the stringency of the cap on CO2 emissions, which is the target that the ESME 

model tries to work towards (as covered earlier in Section 2.2). These future levels were considered 

much more uncertain by participants due to the many different factors influencing  these emissions, 

from policy action, environmental factors such as land use management, and lifestyle choices around 

diets. On gas prices, the lower pedigree score (relative to other assumptions) in 2050 is related to 

multiple factors. These include uncertainty as to the how global supply and demand dynamics for 

natural gas play-out in future, given geo-political uncertainties, and the future potential role for gas 

in a future decarbonised energy system, which may be largely determined by the availability and 

deployment of CCS technologies. 

Two structural assumptions are also shown in Figure 2b. The modelling approach to technology 

learning (TchLRN), has the highest average score of any 2050 assumption. “Technology learning” is 
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a term used to refer to how models capture future changes to technology costs resulting from factors 

like better and cheaper manufacturing processes (improvements over time). In the ESME model this 

is handled as an exogenous parameter i.e. the future cost pathways for key technologies are input 

assumptions that are decided in advance of the model being run. More complex approaches that link 

the change in technology costs to the level of technology deployment in the model are also possible. 

Experts’ comments reveal a sense of pragmatism here given the model purpose, scale and practices 

across the modelling community; ESME is a model of national scale, and the UK typically has not 

been observed to drive learning across energy technologies in recent years. Furthermore, the 

practicalities of endogenising domestic learning effects is technically challenging, with limited data 

to parameterise such an approach.  

Conversely, the other structural assumption, perfect foresight (PerFOR), gains a lower score. 

“Perfect foresight” is a structural feature of the model whereby the pathway solutions generated are 

made by taking into account the various changes to technology performance and costs in all future 

time periods. A number of experts did not view this as a structural assumption to be replaced by an 

alternative formulation but rather a core part of the model framework. There was also concern as to 

why this was being subject to appraisal as perfect foresight was not intended to be representative of 

how real systems work given the behaviour of different actors, but is rather a basis for understanding 

the role of different technologies from a techno-economic perspective. With differences of opinion as 

to how this should be scored, a number of experts (5) decided not to, and therefore the distribution of 

pedigree scores shown for this assumption has a smaller number of data points than the other scores.  

3.2 Pedigree scores by criteria and assumption 

The aggregate pedigree scores are useful for providing a summary but mask the wide variation in 

how individual assumptions were scored against each criterion, as shown in  Figure 3 to Figure 5. 

For example, these figures show the extent to which participants thought that the representation of 

bioenergy in the model (as a relatively small number of homogenous feedstocks) is a good proxy for 

reality, and the quality of the empirical basis used to generate estimates of that bioenergy resource. 

Appendix D provides an alternative set of graphics, where the criteria for each model assumption are 

presented, instead of all assumptions for each criterion.  

Of all the criteria, validation scores lowest in 2050 (range 1.0-1.5), reflecting that long-term model 

assumptions cannot be checked against real-word systems (Figure 3). For nearer term estimates, it is 

particularly useful to assess how well the modelled system is sense checked against current real-

world system. For example, the nuclear Capex assumption (NUCcap) is the only assumption to have 

a score of less than 2.0, highlighting a potential weakness in validation against current nuclear 

projects, most of which are experiencing delays and incurring large cost-overruns. The empirical 

basis criterion, the degree to which observations, measurements and statistics are used to estimate a 

parameter has a similar pattern of scores to validation, albeit higher. Again, higher scores in 2050 are 

not obtainable as assumptions cannot be based on observations or measurements, but rather rely on 

estimates from other models (in a score range of 1.5-2.0). In 2010, scores are in the main between 

2.5 and 3.5, where 3.0 represents a mix of observations and model-based estimates. As per the 

validation criterion, empirical basis scores for NUCcap and BioEF are lower, and are found closer to 

the central score of 2.0. 
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Figure 3. Mean and standard deviation for scores relating to validation and empirical basis 

criteria. The graphs on the left of the panel are for nearer term assumptions (2010, except 2030 for CCS) and on the right, 

for 2050. The red line provides a reference point for comparison, indicating the central score value of 2. Descriptions of the 
mode assumption abbreviations on the vertical axis can be found in Table 1. Scores across the structural assumptions can 
be found in Annex D (Figure D3). 

Methodological rigour and theoretical understanding (typically in the range of 1.5-2.5) in 2050 tend 

to score better than validation and empirical basis (Figure 4). These scores reflect a stronger 

pedigree based on the use of rigorous methods for deriving assumptions, and a reasonable level of 

understanding of how the real world works that allows these assumptions to be determined. The 

relative scores across assumptions reflect the aggregate pedigree scores in Figure 2. For 2010, only 

two assumptions (GasPRC / BioRES) with a score of over 3.0 were deemed to have ‘good theoretical 

understanding’ and a ‘reliable method’. This highlights that for other assumptions, greater efforts 

may be needed to increase the pedigree with which the model represents base year conditions. 

NUCcap scores higher on theoretical understanding relative to other criteria, highlighting that for 

some assumptions, while a technology may be well understood, corresponding model estimates may 

still be poorly validated and have limited empirical grounding (as discussed above).  

For the proxy criterion, or model representation of a given assumption, the scores in 2050 are 

clustered around a score of 2.0, described as a moderate or acceptable representation. It is notable 

that the two bioenergy assumptions score relatively lower against other assumptions under this 

criterion, reflecting the concern previously highlighted that the resource representation is too 

aggregated (as a single resource type) in the model. Given that the representation in the model of the 

different assumptions is the same in 2010 as it is in 2050, the divergence in scores is surprising, but 

perhaps reflects experts’ view of the proxy criterion as relating to both model representation in terms 

of methodological approach and in terms of data availability. 

Value-ladenness criteria - choice space, justification, and agreement amongst peers - provide insight 

into the potential for modeller bias and subjectivity when making assumptions. The 2050 scores, 

particularly for the criteria choice space and agreement amongst peers, suggests a much greater 

opportunity for individual values, biases and subjective judgements to enter the frame, for long term 

assumptions (Figure 5). This is intuitive; as the knowledge base underpinning assumptions weakens, 

there is less agreement amongst the expert community about the correct value range or appropriate 

structural assumptions to employ, and also a wider range of plausible choices that could be assumed 

in the model.   
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Figure 4. Mean and standard deviation for scores relating to proxy, methodological rigour and 

understanding criteria. The graphs on the left of the panel are for nearer term assumptions (2010, except 2030 for 

CCS) and on the right, for 2050. The red line provides a reference point for comparison, indicating the central score value 

of 2. Descriptions of the mode assumption abbreviations on the vertical axis can be found in Table 1. Scores across the 

structural assumptions can be found in Annex D (Figure D3). 

 

Figure 5. Mean and standard deviation for scores relating to choice space, justification and 

agreement amongst peers criteria. The graphs on the left of the panel are for nearer term assumptions (2010, 

except 2030 for CCS) and on the right, for 2050. The red line provides a reference point for comparison, indicating the 

central score value of 2. Descriptions of the mode assumption abbreviations on the vertical axis can be found in Table 1. 

Scores across the structural assumptions can be found in Annex D (Figure D3).  
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3.3 NUSAP diagnostic diagram 

As described earlier, the NUSAP approach employs a diagnostic diagram to provide a 

comprehensive view of model uncertainty by bringing together insights on qualitative dimensions of 

uncertainty and from quantitative analysis. Figure 6 plots the aggregate pedigree scores, based on the 

five pedigree criteria as in Figure 2 (horizontal axis), against the sensitivity measure (vertical axis), 

derived from a Morris Method global sensitivity analysis performed on the ESME model [59], which 

is further described in Appendix E. The global sensitivity analysis reports the magnitude of the 

influence on the model results given movement over the full range of possible input values, 

providing a global measure of influence, or importance. The analysis here broadly replicates that 

undertaken by Usher [52], one of the two papers used to determine which assumptions to focus on 

for the NUSAP workshop (as described earlier in Section 2.3). The figure only includes the five data 

input parameters considered in the sensitivity analysis (see Figure E1, Appendix E). 

While the sensitivity analysis shows the strong influence of the CCS build rate assumption 

(CCSmbr) on the overall costs of decarbonising the UK energy system to hit 2050 climate targets, 

such an assumption scores weakest across the pedigree criteria. The assumption therefore lies in Q4, 

or the ‘danger zone’. Such a result matters for decision makers, as the weaker pedigree score 

explicitly highlights the limits of knowledge underlying this assumption (not necessarily apparent 

just because an input assumption has a wide uncertainty range), and questions the robustness of any 

decisions supported by the quantitative analysis. The NUSAP analysis also highlights the large 

choice space that is possible in the future for this parameter, and limited consensus across experts. 

Two important conclusions from low scores are that further research and demonstration is needed to 

enhance the underlying knowledge base for CCS, which is limited, and that decision makers need to 

be circumspect about developing a strategy underpinned by this yet-to-be commercialised 

technology. While gas prices and biomass resource level have stronger pedigree scores in 2050, the 

significant impact of these parameters on the model solution suggests that additional research could 

help improve the pedigree of these model assumptions further. They perhaps merit stronger attention 

in future than assumptions about nuclear and CCS capex, which can be seen in Figure 6 to have less 

of an impact on the results of the sensitivity analysis. 

 

Figure 6. Diagnostic diagram to compare qualitative (pedigree scores) against quantitative 

uncertainties (sensitivity measure). The sensitivity measure (based on the Morris Method approach) highlights the 
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influence of the modelled uncertainty on the variance across the model objective function, the total discounted system 

costs.  

The two model structural assumptions (technology learning rates, TchLRN, and perfect foresight 

optimisation, PerFOR) do not feature in the sensitivity analysis we have undertaken, nor do the 

assumptions NonCO2 and BioEF. This is because the emissions accounting for non-CO2 GHG 

emissions (NonCO2) is not an explicit model input assumption while emissions accounting that 

would capture bioenergy emission factors (BioEF), is not yet featured in the ESME simulation 

model. On Non-CO2, there is evidence to suggest that this assumption, scoring 1.5 in 2050, could be 

in or near the danger zone (Q4). Usher [52] considered the impact of changing the UK’s emission 

reduction target, which non-CO2 GHG emissions would impact, on the results, and found that this is 

the second most influential model parameter. 

 

4 Discussion and conclusions 

The application of the NUSAP approach to energy models such as ESME can help improve the 

modelling process by making clearer what the knowledge base behind model assumptions actually 

is, and its strengths and weaknesses. A key benefit of undertaking a NUSAP assessment is that the 

process specifies for decision-makers which model-based parameters are perceived to be particularly 

weak and exactly how they are weak. The diagnostic diagram in particular simplifies large amount of 

information into an easily digestible graphic for policy stakeholders, highlighting key findings from 

both the NUSAP workshop and quantitative analysis. Once recognised, decision makers can make 

better judgments about the robustness of quantitative insights from models, while modellers can seek 

to improve the transparency and quality of assumptions.  

In our assessment presented in this paper, the pedigree scores highlighted which of the most 

influential model parameters had the weakest underlying knowledge bases. We found that some of 

the factors with a weak pedigree are those which crucially underpin elements of UK energy and 

climate policy. These include those on bioenergy (particularly in relation to emission factors), which 

is viewed as being critical for mitigation in hard to decarbonise sectors like aviation; the treatment of 

non-CO2 emissions, which has a direct bearing on the stringency of CO2 emission targets; and  the 

possible deployment rates for natural gas fired power plant with carbon capture and storage (CCS). 

For CCS, the deployment assumption is highlighted as being found in the diagnostic diagram’s 

‘danger zone’ in Figure . This suggests that decision makers using this type of model should proceed 

with caution when drawing policy conclusions from model solutions that rely heavily on CCS.   

The novel application of a NUSAP assessment that employs differentiated scoring for near and long-

term assumptions has highlighted the weaker pedigree for assumptions in 2050, and their greater 

potential for value-ladenness.  For nearer term assumptions, this points to an opportunity for 

strengthening pedigree through wider consultation with sector experts, development of model 

structure, and further research across different technologies. It also highlights those assumptions that 

are well understood, and where there is greater confidence in the knowledge base e.g. for gas prices 

and current bioenergy resource levels. For assumptions about longer term futures, the analysis 

highlights a need to recognise that these assumptions are fundamentally different from those relating 

to the present day, and that strengthening pedigree may not be an option. However, the recognition 

of a much weaker knowledge base is important in itself, for transparency to users of model outputs, 

to highlight the need for more research, and also the fundamental need for uncertainty analysis. This 

includes recognising the socio-political uncertainty that was highlighted by participants when 

scoring, particularly in relation to long term assumptions on gas prices, bioenergy resources and CCS 

deployment. 

On value-ladenness, the criteria scores highlight that there are frequently many plausible choices that 

can be made for different assumptions, which often makes the justification of choices challenging, 

and also that there is sometimes disagreement amongst peers regarding which choices are 
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appropriate. This confirms the need for more debate on specific model assumptions, for the 

transparency of choices to be increased, and for broadening the range of opinions to be tested, even 

those that are perceived as being outside of the ‘mainstream’. Such insights were only gained 

through having a diverse set of stakeholders, in terms of discipline and organisational background, 

involved in the workshop scoring exercise.  

Of equal interest to the specific findings of the study are the general insights from the process of 

undertaking the NUSAP workshop. Such a process allowed for extended consultation with a wide 

range of stakeholders, and revealed the logic and data behind critical model assumptions. While a 

formal evaluation of the workshop by the participants was not undertaken ex post, specific feedback 

from a range of stakeholders was that the workshop had succeeded in enhancing the understanding of 

the modelling approach, and the strengths and weaknesses across the underpinning assumptions. 

This suggests an opportunity for such a process to help engender higher levels of trust in the 

analytical process, and across the broader expert base. With this type of complex modelling often 

having been viewed as a black box in the past, opening up the detailed workings to critical scrutiny 

should contribute to the process of making energy systems analysis more transparent for decision 

makers [60,61]. This also helps avoid any risks of models gaining authority on or legitimising a 

specific position based on poor data and the opinions of anaysts [62,63].  

This  constructive dialogue also allowed for participation in the modelling process by outside 

experts, and enabled the sharing of new perspectives that are often absent from conversations within 

established modelling teams, or for which the plurality of views are insufficiently recognised. The 

NUSAP workshop also provided key learning opportunities for those modellers who were present, 

forcing consideration of the strength of the relationships between elements of the modelled system 

and the real world system that it is trying to represent, partly as a result of the interactions with 

experts in specific domains of interest. It also provided the opportunity for modellers to learn about 

how model input and outputs are perceived and interpreted by others.  

The ability of NUSAP to highlight the most critical uncertainties in models can also represent a 

structured method of selecting the most relevant dimensions for assessment in scenario-based 

analyses. This brings increased methodological rigour to the often chaotic and ad hoc process that 

characterise much scenario development activity [64–66] and potentially avoids the all-too-common 

situation where scenario-and-simulation exercises simply vary 1 or 2 parameters of interest without a 

thoroughly grounded understanding of whether these are really critical to influencing modelled 

outcomes. 

This first foray into the application of this approach on a national model of this kind has thrown up a 

number of issues that future research should consider. First, there is an open question as to whether 

some of the qualitative assessment criteria we employed worked equally well for both model input 

and structural model assumptions. We observed that many participants who were comfortable using 

our pedigree scoring system for model inputs were at the same time unsure as to their applicability 

when it came to discussing model structural features. For example, as noted in the results, 

participants found it difficult to apply scoring for the proxy criterion when considering model perfect 

foresight, as this is not intended to directly represent real-world decision making. Nevertheless, we 

would argue that the inclusion of structural parameters in addition to input parameters in our 

assessment enhanced the overall learning process for our workshop participants by forcing 

contemplation and discussion of the nature of the model and its relationship to reality in detail. 

Future work could consider how to integrate a wider set of model assumptions into the pedigree 

assessment, be they input assumptions, features of the model structure, or broader underlying socio-

political assumptions being used in the model analysis. Second, a broader stakeholder base could 

have been consulted as part of the workshop, including a wider set of disciplines and more domain 

experts, for example on bioenergy, CCS, and gas markets. However, their absence was not by design 

but reflected the challenges of workshop organisation.  

The NUSAP approach is clearly a time-intensive process that requires the active participation of a 

group of highly engaged stakeholders, and one that may well push up against the resource and time 
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constraints of the policy making process. Despite this, we would argue that for major new policy 

proposals or strategies, using energy models that encompass high complexity and large uncertainties, 

and which may not be well known, such an exercise is well worth the investment. The analytical 

process for such proposals will anyway require transparency, broad stakeholder engagement, 

transdisciplinary framing, scrutiny of assumptions, and recognition of uncertainty, all of which the 

NUSAP approach covers. Streamlining the NUSAP process to be more light touch would be 

extremely challenging. While it might be an attractive idea to develop a cut-down NUSAP approach 

that might fit better with the policy making timetable, we believe that all of the elements described in 

our example approach are actually needed to strengthen the science-policy interface.  

We therefore would recommend that such an approach is integrated into government guidance on 

policy analysis, recognising the qualitative dimension of uncertainty and an approach to deal with it. 

For example, in the UK it could be integrated into the formal guidance document for the use of 

model-based evidence in government policy, the Aqua book [67]. The addition of the NUSAP 

approach to this guidance would enable practitioners to assess the strength of the knowledge base 

underpinning their analytical approaches, and reflect any implicit value ladenness in model outputs. 

If the time-pressure and demands of the policy cycle mean that this cannot be employed on a routine 

basis, then it should at least be used following the introduction of new analysis techniques to the 

decision-making process or especially in advance of using models for any major policy decisions. To 

do otherwise would risk stripping quantitative model outputs of their qualitative context, with the 

result that decision makers may find themselves flying blind. 

In conclusion, the NUSAP approach allows for the recognition of non-quantifiable uncertainties that 

are often co-produced as part of a highly inter-disciplinary modelling process. Whilst providing a 

more comprehensive pathway for uncertainty assessment, the approach also enhances the modelling 

process by facilitating both engagement with outside experts and enabling the necessary scrutiny of 

model assumptions. Given the importance of uncertainty assessment in modelling for public policy, 

not only in the UK but internationally, a stronger recognition of non-quantifiable uncertainty, and its 

inevitable coproduction in the policy assessment process, as well as techniques for addressing it, are 

all important elements to integrate into formal guidance 
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