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Abstract 

The purpose of this study is to evaluate the methods of reducing elevated-road 
traffic-noise levels in rural residential areas by controlling the relative locations and 
morphological parameters and to investigate the effect of noise barriers on noise 
attenuation along elevated roads and building facades in villages. This study selected 
six morphological parameters and used noise-mapping techniques to estimate the 
noise attenuation in 60 village sites. The results indicate that ‘quiet areas’ increase by 
approximately 10% for each additional 100 m increase in the distance between the 
elevated road and the village. The best strategy for noise reduction is keeping the 
elevated road 1,000 m away from the village and raising the road height to 20 m. The 
building façade conditions only affect the traffic noise level attenuation when the 
buildings are within 100 m of the elevated road. It was found that the cost-effective 
length of the road noise barrier is 600 m on both sides of the village parallel to the 
road. The results highlight the importance of using morphology to improve the traffic 
noise resistance of villages. The landscape shape indices of buildings and roads are 
the most important parameters that affect the traffic noise attenuation of elevated 
roads.  
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1. Introduction 

People's health and standard of living are significantly affected by the acoustic 

properties of their living environment (Sobotova et al., 2010; Fritschi et al. 2011). 

Thus, traffic noise is a public hazard that causes harm to the masses because of its 

large area of influence and long action time (Ko et al., 2011). With the acceleration 

of urban and rural integration processes in China, traffic systems between rural and 

urban areas have improved. Villages are rural residential areas where villagers live 

and engage in all types of production activities. Hence, it is important to address the 

serious problem of disturbance to villagers due to traffic noise (He and Kang, 2014; 
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Meng and Kang, 2014; Murthy et al., 2010; Rey Gozalo, BarrigónMorillas, and 

Gómez Escobar, 2012; Rey et al., 2013; Xi, et al., 2015; Yari, et al., 2016). 

To solve the problems related to traffic, ecology, geology, land resources, etc., 

elevated roads are preferred for inter-city traffic (Li and Yang, 2013; Liu, 2008; 

Wang and Kang, 2011; Wu, 1998). However, raising the sound source position will 

enlarge the noise diffusion area (Zhang, 2004), which inevitably aggravates the 

traffic noise pollution along these elevated roads (Chen et al., 2007; Yang, 2016; Ye , 

Xia and Hu, 2016). To reduce traffic noise and increase the proportion of quiet areas, 

various solutions have been suggested: solutions based on road traffic volume, 

vehicle speed, and surface materials (Avsar and Gonullu, 2005; Li, Zhu, and Sun, 

2007); those based on predictions of noise from elevated roads by using noise map 

techniques (Chen and Xiong, 2013; Li, Li and Li., 2012; Sun, Liu, and Wang, 2010; 

Zhang, 2014); controlling the propagation of traffic noise from elevated roads by 

using sound barriers (Ma and Li, 2009; Mei, Kang and Huang, 2016; Wang and Gai, 

2012; Yu, 2008; Yu and Gao, 2013); using urban forms such as the influence of 

morphological parameters (Hao et al., 2015; Liu et al., 2014; Salomons and Pont, 

2012); and improving the properties of buildings affected by the noise, e.g. through 

the design of architectural monomers (Kim and Kim, 2007; Wong et al., 2010; Yang 

Kang, and Choi, 2012). 

Rural areas are significantly affected by the natural environment. Owing to the lack 

of professional guidance, the layout planning of buildings in rural areas is rather 

haphazard (Zhang and Yin, 2014). Because of high construction cost, buildings in 

rural areas are generally low-rise types, and their numbers have been growing 

rapidly (Shao, Jin, and Zhao, 2016; Wang, 2014). As previously mentioned (Chen et 

al., 2007; Chen and Xiong, 2013; Li , Li and Li., 2012; Ma and Li, 2009; Mei, Kang, 

and Huang, 2016; Sun, Liu and Wang, 2010; Wang and Gai, 2012; Yang, 2016; Ye, 

Xia and Hu, 2016; Yu, 2008; Yu and Gao, 2013; Zhang, 2004; Zhang, 2014), the 

numerous research results aimed at reducing noise along elevated roads in cities and 

towns are not entirely applicable to the village environment owing to economic 

constraints; however, there are even fewer studies on the subject of improving the 

resistance of villages to elevated-road traffic noise.  

Therefore, this study aims to examine the influence of distance between villages and 

elevated roads, the height and sound barriers of elevated roads, and the materials of 

building facades in villages. It also aims to explore methods of integrating the effects 

of urban morphological parameters to improve the traffic noise resistance and create 
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more quiet environments in rural residential areas in China (Hao and Kang, 2014; 

Lam et al., 2013; Wang and Kang, 2011). To analyse these parameters, a sequential 

noise mapping was performed for the selected typical villages. 

2. Methodology 

2.1. Selection of sample village sites  

In this study, 60 villages in the Sanjiang and Songnen Plain in Heilongjiang (Fig. 1a) 

- the severely cold area and northernmost province of China - were selected because 

of their unique geographical location, variety of natural reserves, large 

peasant population, and the prominence of the plain area in Heilongjiang as a 

major grain-producing area according to the Heilongjiang Statistical Yearbook 

(2014). As shown in Fig. 1b, Heilongjiang has a transportation network comprising a 

motorway/elevated road and hierarchical traffic roads throughout the province. It has 

a plentiful river system: large rivers Heilong Jiang, Songhua Jiang, Wusuli Jiang, 

and Suifenhe. Moreover, many small-scale rivers have anastomosing reaches, where 

many viaducts are built, most of them for motorways that generate widespread traffic 

noise. Sixty research samples were chosen from Sanjiang Plain (Shuangyashan S1 to 

S14 and Kiamusze K1 to K16) and Songnen Plain (Harbin H1 to H30). Fig. 2 shows 

the serial numbers of the villages, range of the studied areas of the village, and the 

positional relationship between the villages and virtual (designed) elevated road (Yu 

and Kang, 2016; Yu and Kang, 2017). The red lines representing the range of the 

studied areas of the village indicate the area enclosed by expanding the building zone 

of the villages and the outside edge line of the road by 20 m. 

 

(a) 
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(b) 

Figure 1. Locations of the study sites. (a) Contour map of Heilongjiang. (b) Roads and rivers in 

Heilongjiang. 

2.2 Selection of morphological parameters 

This study used previous research as a reference (Burian, Han, and Brown, 2005; 

Hao et al, 2015; Oke, 1988; Yu and Kang, 2016; Yu and Kang, 2017) and explored, 

developed, and used 12 morphological parameters to describe the characteristics of 

village forms in severely cold areas and comprehensively summarised the potential 

influencing factors of outdoor sound propagation such as geometric divergence, 

ground effects, canyon effect, and barrier effect (Kang, 2007). The building plan 

area fraction (BPAF), complete aspect ratio (CAR), landscape shape index of 

buildings (LSI_B), and patch density (PD) were mainly related to barrier attenuation, 

screening, and reflection. The landscape shape index of roads (LSI_R), road length 

fraction (RLF), distance of first-row building from the road (DFBR), and 

height-to-width ratio (HWR) were mainly related to geometric divergence, ground 

effects, and canyon effect. The edge density (ED), road intersections fraction (RIF), 

T-ratio (TR), and cell ratio (CR) were mainly associated with the village planning 

forms (Table 1) (Yu and Kang, 2016; Yu and Kang, 2017).  

The morphological parameters of the villages failed to satisfy the mutually 

independent statistical properties (Table 2) (Yu and Kang, 2016; Yu and Kang, 

2017). Therefore, the method of factor analysis with equamax rotation was applied 

for screening and reducing the parameters. Four factors were identified which can 

explain approximately 88.14% of the variation in the 12 parameters (Table 3). In  
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Figure 2. CAD image of the village sites based on Google Maps. Scale = 1:1000. S, K, and H are 

the abbreviation for city names where the village sites are located. The range of the studied areas 

of the village is shown in red lines; Elevated roads are coloured green, buildings are coloured blue, 

and roads are coloured black (Yu and Kang, 2016; Yu and Kang, 2017). 

 

addition, an SRC analysis based on nonparametric estimation (He and Zhang, 2009) 

was used to examine the sensitivity of various parameters to the influence of 

subordinate common factors. Finally, the parameters that have higher absolute 

values of sensitivity coefficients are determined and retained from each factor, that is 

factor I: CAR and PD, factor II: LSI_B and LSI_R, factor III: RIF, and factor IV: 

RLF. The following six representative parameters that could objectively reflect the 

form of villages in severely cold areas were selected: CAR, LSI_B, PD, RLF, RIF, 

and LSI_R (Yu and Kang, 2016; Yu and Kang, 2017).  
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Table 1. Formula for the calculation of the 12 urban morphological parameters (Yu and Kang, 

2016; Yu and Kang, 2017).  

 

A: Mainly related to barrier attenuation, screening, and reflection 

Parameter Definition Formula Notes Range 

BPAF The ratio of the plan area 

of buildings to the total 

surface area of the study 

region 

BPAF 

= Ap/AT 

Ap is the plan area of buildings at ground level,  

and AT is the total plan area of the region of interest 

(Burian et al., 2005). 

 

0.069–0.224 

CAR The summed area of 

buildings and exposed 

ground divided by the 

total surface area of the 

study region (Voogt and 

Oke, 1997) 

CAR = 

 

 
 

AC is the combined surface area of the buildings and 

exposed ground, AW is the wall surface area, Ar is the 

roof area, and AG is the area of the exposed ground  

(Burian et al., 2005). CAR > 1. 

1.113–1.253 

LSI_B Landscape shape index of 

buildings 

LSI = E is the total circumference boundary of buildings, 

A is the total plan area of the region of buildings, and 

LSI reflects the shape complexity of the whole landscape. 

5.824–24.103 

PD Patch density PD 

= 106 N/A 

Patch density has the same basic utility as the number of 

patches as an index but facilitates comparisons among 

landscapes of varying size. It is used as a measure of 

landscape fragmentation. 

0.039–0.143 

B: Mainly related to geometric divergence, ground effects, and canyon effect 

Parameter Definition Formula Notes Range 

LSI_R Landscape shape index of 

village roads 

LSI = E is the total circumference boundary of village roads, 

A is the total plan area of the region of village roads. 

6.688–25.420 

RLF Road length fraction RLF 

= LR/AT 

LR is the length of the village roads at ground level. 0.007–0.023 

DFBR The mean of the distances 

from the front façades of 

the first row of buildings 

to the elevated road 

DFBR n is the total number of first-row buildings, and di is the 

distance from the first-row buildings to the elevated road. 

 

9.604–42.393 

HWR Height-to-width ratio HWR Havg is the average of the building heights, 

Savg is the average of the horizontal distances between 

two adjacent buildings in the direction vertical to the 

elevated road direction in the whole site region. 

0.053–0.162 

C: Mainly associated with the village planning forms 

Parameter Definition Formula Notes Range 

ED The ratio of total length 

of all patch boundaries 

to the total patch area 

ED 

= 106 E/A 

ED ≥ 0, non-capped. 

 

0.193–0.391 
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RIF Road intersections 

fraction 

RIF 

= NI/AT 

NI is the total number of road intersections, 

AT is the total plan area of the region of interest, 

0.125–1.506 

CR Cell ratio 

(Stephen, 2004) 

CR NCE is total number of cells and NCU is the total number 

of cul-de-sacs. 

 

0.000–1.000 

TR T-ratio 

(Stephen, 2004) 

TR 

= NT/NI 

NT is the total number of T-junctions and 

NI is the total number of intersections. 

0.000–1.000 

 

Table 2. Spearman’s rho correlations between urban morphological parameters (2-tailed). Significant correlations 

are marked with * (p ＜ 0.05) and ** (p ＜ 0.01) (Yu and Kang, 2016; Yu and Kang, 2017).  

 

  BPAF CAR LSI_B PD ED RLF CR TR RIF LSI_R DFBR HWR 

BPAF 1            

CAR .602** 1           

LSI_B   1          

PD .323* .840**  1         

ED -.709**   .299* 1        

RLF    .337** .323* 1       

CR      .573** 1      

TR .295* -0.066 -.326*  -.371** -.276*  1     

RIF    .309*  .804** .599**  1    

LSI_R   .842**   .297* .337** -.403**  1   

DFBR  -.297*  -.388**       1  

HWR .622** .768**  .601**      -.392** -.411** 1 

* p < 0.05 (2-tailed)  

** p < 0.01 (2-tailed) 

 

Table 3. The results of the factorial analysis. 

Factors Parameters Explained 

（%） 
Factor I CAR, BPAF, PD, ED, and DFBR 33.91 

Factor II LSI_B, LSI_R, and HWR 28.46 

Factor III RIF, CR, and TR 15.75 

Factor IV RLF 10.02 

 

2.3 Noise map 

To simulate the propagation and attenuation of traffic noise in villages in severely 

cold areas, noise maps were calculated with a commonly used noise-mapping 

package Cadna/A in this study [DataKustik, 2006]. The speed was taken into 

account according to the chosen standard, RLS 90. The measurement speed and 

CE

CE CU

N

N N
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speed limit were between 40 km/h and 80 km/h for trucks, and 60 km/h and 100 

km/h for cars. The design speed was 80 km/h for trucks and 100 km/h for cars. The 

calculation was based on the calculation of road traffic noise model for roads, with 

values embedded in the software package, Cadna/A. The accuracy of the calculation 

was validated using the measurements obtained from villages in severely cold areas, 

although calculation errors were relatively higher at few measuring points, which 

were far away from the sound source. The average calculation error was less than 2 

dBA (Mei, 2014; Meng, 2014). The sound absorption coefficient of the buildings 

was set as 0.2, the number of times the propagated sound was reflected was set as 2, 

the height of the receiving point was set as 1.5 m, and the grid size of the analogy 

computation was set as 10 m × 10 m (Meng and Kang, 2014; Yu and Kang, 2016; 

Yu and Kang, 2017).  

Through field research, it was found that the majority of buildings in the villages in 

Heilongjiang Province are one-story buildings with pitched roofs (Shao, Jin and 

Zhao, 2016), indicating a typical, low-rise residential rural morphology. To reduce 

the time required for model construction and calculation, pitched roofs were 

simplified into flat roofs in the modelling. Therefore, it was necessary to increase the 

height of the eaves by 0.7 m and establish a model according to the building height 

of 4.5 m (Kang, 2007; Mei and Kang, 2014; Meng and Kang, 2014; Yu and Kang, 

2016; Yu and Kang, 2017). Elevated roads comprise a series of bridges that are 6 m 

above the ground (net height including the structural height of the bridge). Table 4 

shows the scenarios of the study in detail. When studying the reflection of sound 

from the building facades on the sound environment, this study compared and 

simulated the influence of two types of building facades. One type of building facade 

was composed of smooth hard materials (expressed as R3). The other type of 

building facade was composed of rough materials with a greening function or a good 

sound absorption effect (expressed as R0). The number of reflections for the 

simulation analysis of R3 and R0 was set as 3 and 0, respectively, and the sound 

absorption coefficient of the building facades was set as 0.1 and 0.9, respectively 

(Hao and Kang, 2014; Kang, 2007). The traffic volume per day of the motorway and 

rural road conform to the ‘Design Specification for Highway Alignment’ (JTG 

D20-2006). In this study, the traffic volume rates of the elevated road were set as 

30,000 vehicles per day. If the traffic flow were doubled, the sound pressure level 

would increase by 3 dBA (Avsar and Gonullu, 2005). Based on previous research 

results (Meng and Kang, 2014; Hao et al., 2015; Yu and Kang, 2016; Yu and Kang, 

2017), this study divided the evaluation of sound pressure in outdoor spaces in the 
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villages into three levels: SPL (LAeq) ≤ 50 dBA represented a quiet environment 

(quiet area), 50 dBA ＜  SPL (LAeq) ≤ 60 dBA represented a normal sound 

environment with potential for improvement (less noisy area), and SPL (LAeq) ＞ 

60 dBA represented a noisy environment (noisy area) in Table 4. Details of all scenarios 

in the study. 

Scenarios 

Elevated road data 

based on virtual 

(designed) road 

3.1 

Influence of 

distance 

between 

elevated 

road and 

village on 

sound 

environment 

3.2  

Influence of height of elevated road on sound 

environment of villages 

3.3  

Influence of sound barrier of 

elevated road 

3.2.1  

Influence 

of height 

of 

elevated 

road 

3.2.2  

Influence of sound barrier of 

elevated road 

3.3.1  

Relationship 

between 

sound 

evaluation 

indices and 

morphological 

parameters 

3.3.2 

Relationship 

between the 

sound index 

of traffic noise 

and 

morphological 

parameters 

Horizontal 

distances 

between the site 

and elevated 

road 

0 m, 100 m, 

300 m, 600 m, 

and 1,000 m 

0 m 0 m 0 m, 100 m, and 300 m 

Building facades R2 R2 R2 R2 

R3 and R0 

Height of 

elevated road 

10 m 10 m, 20 

m, and 

30 m 

10 m, 20 m, and 30 m 30 m 10 m 

Sound 

barrier  

Height No sound barrier. 

Set up a parapet for the 

self-screening road on both 

sides by entering a height 

left/right =1 m. 

3m 2 m, 3 m, 

4 m, and 

5 m 

3 m sound barrier (village side) and 1 

m parapet (on the side away from the 

village ) 

Length 0 m, 200 m, 400 m, 600 m, 

800 m, 1,000 m, 2,000 m, 

3,000 m, and 4,000 m 

4,000 m more than 1,000 m 

 

the subjective opinion of villagers in severely cold areas. In such an environment, 

villagers engaging in outdoor activities had an obvious aversion to traffic noise 

(Meng and Kang, 2014). However, in this study, quiet areas are defined in 

qualitative rather than in quantitative terms, which only presents a relative, rather 

than an absolute,  definition of a quiet area; quiet areas are defined as areas having 

relatively low transport-related noise levels (during the daytime), even though 50 dB 
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is still high as compared to the current noise evaluation criteria for night-time noise 

levels in the Class 2 standard (Environmental Quality Standard for Noise 

GB3096-2008). In addition, Lavg and Lmax were the average and maximum values, 

respectively, of the predicted sound pressure levels in the sample research areas. The 

statistical sound level Ln (L10–L90) refers to the value in the top n% of the rankings 

of the spatial noise level values. Statistical sound levels, including L10, L50, and 

L90, are the acoustic parameters generally used to conduct studies and express the 

intrusive, median, and background sound levels respectively (Kang, 2007). 

3 Results 

3.1 Influence of distance between elevated road and village on sound environment 

This study summarised the influence of the distance between five types of elevated 

roads and a village on the acoustic variable data of 60 sample villages, i.e. 0 m, 100 

m, 300 m, 600 m, and 1,000 m (based on the principles of inverse square law of 

sound, the greater the distance, the larger the distance interval) in which 100 m is in 

line with the rules of Beijing Environmental Protection Agency: Within 100 m from 

the red line of the Third Ring Road, it is not allowed to create noise-sensitive 

buildings along the road (Zhang and Rao, 2012). This study found that the noise 

reduction effects of the various sample villages were evident and showed great 

differences with the increase in distance. To show that the noise reduction effects of 

the various sample villages have great differences with the increase in distance by a 

sensitive index, L10 was selected as it is more sensitive, with a higher variance, 

compared to L20–L90. This study considered an elevated road with a height of 10 m 

as an example. When the distance increased from 0 m to 100 m, 300 m, 600 m, and 

1,000 m, the smallest decrease in L10 was observed for village K9, from among the 

60 villages, for which L10 decreased by 2.1 dBA, 5.3 dBA, 8.9 dBA, and 12.9 dBA, 

respectively. For the various aforementioned distances, the village that exhibited the 

greatest noise reduction varied. When the distance increased from 0 m to 100 m, 

K10 showed the greatest reduction in noise of 4.2 dBA. When the distance increased 

from 0 m to 300 m and 600 m, H1 showed the greatest noise reduction of 8.9 dBA 

and 13.1 dBA, respectively. When the distance increased from 0 m to 1,000 m, H20 

showed the greatest noise reduction of 17.9 dBA. The difference in the reduction of 

L10 among the villages reached a maximum of 5 dBA with the increase in distance.  

On comparing the results obtained using the inverse square law of sound, i.e. the 

sound field situation of the line sound source at a height of 10 m in an open space, it 
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could be observed that the average noise reduction amplitudes in the open space 

were 4.7 dBA, 12.6 dBA, 18.9 dBA, and 24.9 dBA, which were greater than the 

sound attenuation amplitudes at the various villages with maximum noise reduction 

when the distance increased from 0 m to 100 m, 300 m, 600 m, and 1,000 m, as 

shown in Table 5. Thus, by comparing the two scenarios (village and open space), it 

is shown that villages were less affected by the distance between the elevated road 

and the village than the effects of the inverse square law of sound propagation on 

open space. According to this comparison and the simulation, the effect of the 

reflection of sound from the ground decreased while that from the buildings became 

significant. Therefore, it was necessary to consider the design of the building facades 

and urban morphological parameters in sites. 

 
Table 5. Noise decreases in the two scenarios (village and open space). 

Distance increased

（m） 

Noise decreases in 60 village sites 

(dBA)  

Noise decrease in the open 

space (dBA) 

Min Average Max Average 

0 m to 100 m 2.1 (K9) 3.2 4.2 (K10) 4.7 

0 m to 300 m 5.3 (K9) 7.4 8.9 (H1) 12.6 

0 m to 600 m 8.9 (K9) 11.5 13.1 (H1) 18.9 

0 m to 1,000m 12.9 (K9) 15.9 17.9 (H20) 24.9 

 
In the case of some samples of a typical village form, the proportion of quiet areas 

could increase by approximately 10% for each increase of 100 m in distance. When 

the distance was equal to or greater than 300 m, N60 was 0 and there was no ‘noisy 

area’ in the villages. When the distance was greater than 1,000 m, Lmax ＜ 50 dBA, 

and all the sample villages became ‘quiet areas’ (Table 6). In accordance with ‘7.2 

Determination of Sound Environmental Functions in Rural Areas’ of China’s 

Environmental Quality Standard for Noise (GB3096-2008), the requirements of the 

quality of sound environment ‘LAeq’ are generally as follows: convalescence and 

rehabilitation areas in villages follow the provisions of Class 0 sound environment 

functional areas (these refer to areas that specifically require quietness and at which 

the environmental noise LAeq should be maintained at a value less 50 dBA in the 

daytime); villages that follow the requirements of Class 1 sound environment 

functional areas in principle (these refer to areas that require low noise, such as 

buildings, medical health, and cultural sports, as the main functions, and the 

environmental noise LAeq is limited to within 55 dBA in the daytime); villages that 

engage in numerous industrial activities and have traffic arteries passing through 

them can partly or completely follow the requirements of Class 2 sound environment 
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Table 6. Variances of  the mean  traffic noise  level, noise area categories  (%), and spatial noise 

level  indices  Ln  (dBA)  among  the  60  sites  with  horizontal  distances  between  the  site  and 

elevated roads of 0 m, 100 m, 300 m, 600 m, and 1,000 m. 

Distance（m） Noise area categories (%)  Spatial noise level indices, dBA 

 Quiet area Less Noisy Area Noisy Area  Lmax L10 L50 L90 

0 9.84 68.60 21.56  64.40 61.43 55.64 51.35 

100 18.28 77.04 4.68  61.63 58.19 53.21 49.30 

300 48.44 51.56 0.00  56.32 54.03 50.05 46.26 

600 89.75 10.25 0.00  51.72 49.94 46.53 42.74 

1,000 100.00 0.00 0.00  47.02 45.58 42.69 38.93 

 

functional areas (these refer to areas that require maintenance of residential quietness, 

that include country fair trade as the main function or single dwelling, commerce, 

and industry, and in which the environmental noise LAeq is limited to within 60 dBA 

in the daytime). Therefore, in these cases, the standard of Class 2 sound environment 

functional areas would be satisfied when the distance between an elevated road and a 

site is 300 m; that of Class 1 environment would be satisfied when the distance 

between an elevated road and a site is 600 m, and Class 0 standard would be 

satisfied when the distance between an elevated road and a site is more than 1,000 m. 

For a distance of less than 300 m, this study compared and studied two types of 

building facades, namely R3 (very smooth) and R0 (very rough or covered with 

greenery). When the distance between the village and elevated road (10 m high) is 

0 m, changing the building facades from R3 to R0 could cause a decrease in N60 of 

the 60 samples by an average of 11.27%. When the distance is 100 m, N60 could 

decrease by 3.17% on average. When the distance is greater than 100 m, the 

influence is negligible. Therefore, the effective distance seems to be approximately 

100 m (Fig. 3) for the noise reduction design of building facades. In terms of Q50, 

when the distance is 0 m, 100 m, and greater than 100 m, Q50 could only increase by 

0.52%, 0.27 %, and 0, which have negligible influence.  



Wenluo Yu & Jian Kang: Environmental Planning and Management  [DOI:10.1080/09640568.2018.1427560] 

Environmental Planning and Management , Volume 61, Feb 2018, Pages 1–25	 	 Page	15	

 

 

Figure 3. Effective distance of building façade condition on the traffic noise level attenuation 

analysis histogram. 

3.2 Influence of height of elevated road on sound environment of villages 

3.2.1 Influence of height of elevated road 

To understand the influence of the height of elevated road on sound propagation, this 

study compared and investigated the influence of various heights of elevated roads 

on the resistance of villages to noise when the distance between the road and the 

village was 0 m. The greater the height of the elevated road is, the larger the formed 

sound shadow area is, which seems to be more favourable for noise reduction. When 

the height of the elevated road was 0 m, the first row of village buildings close to the 

road became effective noise barriers. When the height of elevated road was 18 m, the 

first row of village buildings close to the road was affected by the sound shadow area 

of the elevated road and a low sound pressure level was observed there. The 

elevation of the sound source led to the increase in the direct sound of road traffic 

experienced in the village. The second row of village buildings close to the elevated 

road exhibited a sound barrier effect (Fig. 4a and Fig. 4b). 

This study further verified the conclusion that the greater the height of the elevated 

road, the lesser the N60 level. When the height of the elevated road increased from 

0 m to 30 m, N60 decreased by 25.7%. When the height of the elevated road 

increased from 10 m to 20 m, N60 of the sample village decreased from 21.57% to 

4.57%, which is a 17% reduction, showing a significant noise reduction effect. The 

tendencies of ‘noisy areas’ with varying height can basically be illustrated by a 

logarithmic regression analysis, with R2=0.868. The reason for this difference with 

ISO 9613-2 might be related to the self-screening of the elevated road and the 1 m 



Wenluo Yu & Jian Kang: Environmental Planning and Management  [DOI:10.1080/09640568.2018.1427560] 

Environmental Planning and Management , Volume 61, Feb 2018, Pages 1–25	 	 Page	16	

 

parapet. Q50 increased from a minimum value of 6.67% to a maximum value of 

9.83% and experienced a change of approximately 3% when the height of the 

elevated road increased from 0 m to 10 m. When the height of the elevated road 

increased to 30 m, Q50 decreased to 7.4%. It could be observed that the relationship 

between the evaluation indices of the sound pressure level and the height of the road 

was nonlinear. In this case, through a comprehensive comparison, the height of 

elevated road at about 20 m was found to be the most effective height for achieving 

noise reduction (Fig. 5). 

 
（a）0 m 

 
（b）18 m 

Figure 4. Cross-section of sound maps of road and elevated road (18 m high). 

 
Figure 5. Variances of the noise area category indices among the 60 sites with the height of 

elevated road. 
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The above observation might have been made because the pavement of the elevated 

road and the protection walls could be considered as sound barriers, which means 

that the acoustic path difference due to the screening effect was the difference in the 

value between the straight-line distance of the noise source of the elevated road to 

the village and the indirect distance of the noise source of the road after bypassing 

the sound barriers. The screening effect of the sound path difference was found to be 

significant when the height of the road was approximately 20 m. 

3.2.2 Influence of sound barrier of elevated road 

The research area of the villages was a plane area. Therefore, in this study, 

considering the maximum, median, and minimum area, and CAR and PD, three 

typical villages H13 (50 hectares), K11 (32 hectares), and H20 (11 hectares) were 

chosen from the 60 sites for analysis (Fig. 2). 

An example was considered in which the distance between the road and the village 

was 0 m and the height of the sound barrier was 3 m. When the height of the 

elevated road was 10 m and 20 m respectively, the effective length of the sound 

barrier for the small villages was 800 m along both sides of the village parallel to the 

direction of the road, and the effective length of the large- and medium-sized 

villages was 2,000 m along both sides of villages parallel to the direction of the road. 

When the height of the elevated road was 30 m, the effective lengths of the sound 

barrier for all the villages were 2,000 m along both sides of the villages parallel to 

the direction of the road. In addition, the most efficient length of the sound barrier 

was approximately 600 m on both sides of the villages regardless of the area of 

villages (Fig. 6).  

 
Figure 6. Variances of spatial traffic noise attenuation Lavg with changing length of road barrier 

(3 m high) and height of elevated road between the three sites (H13, K11, and H20) and the 

elevated road. 
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The sound barrier of elevated roads is generally 1 m to 5 m. In order to eliminate the 

influence of the length of the sound barrier (the length of barrier extended by 

4,000 m along both sides of villages), this study considered an elevated road with a 

height of 30 m as an example because the variances observed with this consideration 

would be greater than those observed for the elevated road heights of 0 m, 10 m, and 

20 m. Lavg was reduced by approximately 1.5 dBA on average among three typical 

samples for each increase of 1 m in the height of the sound barrier. However, the 

increase in the height of the sound barrier did not show a simple linear relationship 

with the attenuation of Lavg. It was observed that the influence of the increase in the 

height of the road on the sound environment of large- and medium-sized villages 

was slightly greater than that on small villages. The noise experienced in large- and 

medium-sized villages was reduced by 2 dBA, which was more than that in small 

villages, on average (Fig. 7). 

 
Figure 7. Variances of the spatial traffic noise attenuation Lavg with changing height of road 

barrier between the three sites (H13, K11, and H20) and the 30 m high elevated road. 

3.3 Influence of morphological parameters of villages 

3.3.1 Relationship between sound evaluation indices and morphological parameters 

Considering that the two noise area categories (area ratio N60 of noisy areas and 

area ratio of quiet areas Q50) of villages in severely cold areas were potentially 

correlated with the six morphological parameters, SPSS 21.0 was used in this study 

to compute the Spearman correlation (the results of the Pearson correlation 

coefficients were very close to those of the Spearman correlation analysis; however, 

because not all the variables satisfy the normal distribution, it is not appropriate to 

use the Pearson correlation analysis) (Du, 2010). When the distance was 0 m, N60 
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was significantly correlated with LSI_B, PD, and RLF (p < 0.01) as well as with 

CAR, RIF, and LSI_R (p < 0.05). When the distance was more than 100 m, N60 was 

0. In addition, Q50 was significantly correlated with LSI_B and LSI_R (p <  0.01) 

for distances of 0 m, 100 m, and 300 m, as well as with CAR when the distance was 

0 m and 100 m (p < 0.05) (Table 7).  

Table 7. Spearman’s rho correlations between the noise area category indices Q50 in the villages 

and the urban morphological parameters (2-tailed). Significant correlations are marked with * 

(p ＜ 0.05) and ** (p ＜ 0.01). 

Distance

（m） 

Indices 

(%) 
Urban morphological parameters 

    CAR  LSI_B  PD  RLF  RIF  LSI_R 

0  N60  .300*  ‐.416**  .346**  .358**  .257*  ‐.297* 

0  Q50  ‐.287*  .684**  ‐.228  ‐.106  ‐.018  .692** 

100  Q50  ‐.256*  .640**  ‐.213  ‐.054  .045  .662** 

300  Q50  ‐.099  .403**  ‐.097  ‐.107  ‐.046  .402** 

** p < 0.01 (2‐tailed) 

  * p < 0.05 (2‐tailed)   

 

Furthermore, a regression analysis was conducted on the significantly correlated 

parameters (p < 0.01). Because the regression analysis results (R2) of N60 

(N60-LSI_B inverse regression analysis R2 = 0.269; N60-PD cubic regression 

analysis R2 = 0.164; N60-RLF cubic regression analysis R2 = 0.096) were less than 

0.3 and the regression effect was poor, a stepwise multiple regression analysis was 

performed after considering the other parameters, HWR_V (0.40), LSI_B (−0.35), 

and RLF (0.26), that caused a change in N60. The results showed that R2 = 0.436 ＜ 

0.5, and the regression effect was still poor. 

In this study, a regression analysis was conducted on Q50-LSI_B and Q50-LSI_R, 

and the representative distances of 0 m and 100 m were considered as examples. 

When the distance was 0 m, two groups of parameters could be related linearly (Fig. 

8). 

Q50 could be increased by approximately 68% with the increase in LSI_B from 

5.824 to 24.103, as can be seen in Fig. 8a. This was probably because increasing the 

complexity of the buildings in villages could improve the sound barrier effect of 

those buildings. On comparing the village samples with various LSI_B values, it was 

found that large villages with multiform buildings or a mixed layout showed a strong 

anti-noise performance. As R2 ＜ 0.5, a multiple stepwise regression analysis was 
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conducted. The results showed that LSI_B and HWR were significantly correlated 

with Q50. When R2 = 0.645, Q50 was positively correlated with LSI_B (0.587) and 

negatively correlated with HWR (−0.418). As a result, a reduction in the distance 

between the village buildings along the vertical direction of the elevated road would 

be conducive to enhancing the anti-noise performance of the village. The reason for 

this might be the increase in the sound barrier effect of the buildings. 

Q50 could be increased by about 65% with an increase in LSI_R from 6.688 to 

25.420, as can be seen in Fig. 8b. This was probably because increasing the 

complexity of the road form contributed to reducing the transmissivity of the sound 

propagation from the road and thus achieved the effect of noise reduction. As R2 ＜ 

0.5, a multiple stepwise regression analysis was conducted. The results showed that 

LSI_R and RLF were significantly correlated with Q50 and R2 = 0.650. Q50 was 

positively correlated with LSI_R (0.849) and negatively correlated with RLF 

(−0.427). Therefore, reducing the length of the road and cutting down the number of 

main village roads running through the villages or complicating the road form would 

be conductive to enhancing the anti-noise performance of villages. 

 

  

（a）LSI_B                        （b）LSI_R 

Figure 8. Respective relationships between quiet areas Q50 in the villages and the landscape 

shape index of buildings (LSI_B) and the landscape shape index of roads (LSI_R) for a distance 

of 0 m. 

 

When the distance was 100 m, Figs. 9a and 9b show the results of a quadratic 

regression analysis: LSI_B and LSI_R caused an increase in the ‘quiet areas’ of 

villages by 49.1% and 51%, respectively. Because the values of R2 were both less 

than 0.5, a multiple stepwise regression analysis was conducted. The results showed 
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that LSI_B, CAR, and BPAF were significantly correlated with Q50, and R2 = 0.632. 

Q50 was positively correlated with LSI_B (0.733) and BPAF (0.278), and negatively 

correlated with CAR (−0.574). Therefore, reducing the area of roofs and height of 

buildings would contribute to reduction in the sound reflection between buildings 

and achieve the effect of noise reduction. Reducing the ratio of the bare ground area 

AG would contribute to improving the sound barrier and sound absorption effect of 

buildings and enhance the anti-noise performance of the villages. In addition, RLF 

and RIF were the other two variables associated with Q50 in addition to LSI_R with 

R2 = 0.605. Q50 was positively correlated with LSI_R (0.791) and RIF (0.321) and 

negatively correlated with RLF (−0.606). Therefore, reducing the length of roads or 

using complex and diversified road connections would be conducive to enhancing 

the anti-noise performance of villages. 

 

  
（a）LSI_B                        （b）LSI_R 

Figure 9. Respective relationships between quiet areas Q50 in the villages and LSI_B and 

LSI_R for a distance of 100 m. 

3.3.2 Relationship between the sound index of traffic noise and morphological parameters 

This study simulates the entire process of spatial sound attenuation in the context of 

various urban morphologies in villages. Accordingly, sets of indices that represent 

the entire attenuation process are investigated in order to identify the most sensitive 

indices with the highest variances caused by urban morphology. 

For the various distances, the greater the difference between the maximum and 

minimum values (Lnmax − Lnmin) of the statistical sound levels from L10 to L90, the 

greater the sensitivity to the attenuation of sound propagation. A diagram showing 

the sensitivity of the acoustic parameters was thus extracted. When the distance was 

0 m, the maximum difference in noise occurs at L80, and a difference of more than 
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10 dBA was observed with the mean of the difference between the maximum and 

minimum values. When the distance was 100 m and 300 m, the value of 

Lnmax − Lnmin of L10 was the largest, varying by more than 8 dBA and 6 dBA, 

respectively, with the mean of the difference between the maximum and minimum 

values (Fig. 10). Therefore, the selection of sound indices of sensitivity is as follows: 

L80 for 0 m and L10 for 100 m to 300 m. 

 

Figure 10. Statistical sound level indices of the 60 sites with the mean difference between the 

maximum and minimum values shown for each index. The various coloured lines represent 

distances of 0 m, 100 m, and 300 m between the site and the elevated road. 

This study computed the Spearman correlation between the indices of the sound 

pressure levels and morphological parameters. For the various distances, LSI_B and 

LSI_R were significantly correlated with the indices of the statistical sound levels 

(p < 0.01). RLF and RIF were not correlated with any other acoustic indices (Table 

8). Similarly, the distances of 0 m and 100 m were considered as examples. This 

study further conducted a regression analysis on the related parameters. When the 

distance was 0 m, L80-LSI_B and L80-LSI_R could be predicted using an inverse 

function and a quadratic relationship, respectively (Fig. 10). 

Table 8. Correlations between spatial traffic noise levels in the villages and urban morphological 

parameters (2‐tailed). Significant correlations are marked with * (p ＜ 0.05) and ** (p ＜ 0.01). 

Distance

（m） 

Indices 

(dBA) 
Urban morphological parameters 

  CAR LSI_B PD RLF RIF LSI_R 

0 L80 .289* -.686** .249 .117 .012 -.690** 

100 L10 .259* -.470** .284* .133 .036 -.424** 

300 L10 021 -.481** .029 .056 .015 -.490** 

** p < 0.01 (2-tailed) 

* p < 0.05 (2-tailed) 
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When LSI_B ≤ 12, L80 sharply decreased by 6.2 dBA with the increase in LSI_B, 

and when LSI_B ＞ 12, L80 gradually decreased by 3 dBA (Fig. 11a). This was 

probably because increasing the complexity of building form in the villages could 

lead to more sound reflection between buildings and thus reduce the sound barrier 

effect of the buildings. L80 could decrease by approximately 8.4 dBA with the 

increase in LSI_R (Fig. 11b). This was probably because increasing the complexity 

of the road form in rural residential areas was conducive to reducing the sound 

propagation through the streets along the roads and achieving the effect of noise 

reduction.  

When the distance was 100 m, there was no specific change rule between the 

variables of the scatter diagram of L10-LSI_B and L10-LSI_R. In various instances 

in the curve regression, R2 was less than 0.2. In addition, R2 was less than 0.4 in the 

multiple regression equations. Therefore, it could be neglected. 

  

（a）LSI_B                        （b）LSI_R 

Figure 11. Respective relationships between the spatial noise level indices L80 in the villages 

and LSI_B and LSI_R for a distance of 0 m. 

 

4. Conclusions  

The problem of traffic noise from elevated roads is extremely serious in rural 

villages. In this study, the methods of improving the anti-noise properties of villages 

through a systematic design were investigated, and the following conclusions were 

drawn: 

1. Increasing the distance between villages and elevated roads could effectively 

reduce the influence of traffic noise on villages; however, there would be significant 

differences in the noise reduction effect for villages of different forms. Thus, it was 
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necessary to consider the design of building facades and the noise reduction effect 

caused by the village forms. For samples of a typical village form, the proportion of 

‘quiet areas’ could increase by approximately 10% for each increase of 100 m in the 

distance between the elevated road and the village. When the distance was 300 m, 

the proportion of noisy areas was 0, which would satisfy the standard of Class 2 

sound environment functional areas according to the ‘Environmental Quality 

Standard for Noise’ (GB3096-2008). When the distance was 600 m, the Class 1 

living standard could be satisfied. The Class 0 standard could be satisfied when the 

distance between the elevated road and the village was more than 1,000 m. The 

effective distance in the design for the noise reduction of building facades was 

approximately 100 m. When the distance was more than 100 m, there would be no 

requirement for considering noise reduction measure such as changing the materials 

of the building facades or designing vertical greenery systems. 

2. The sound shadow area formed by a higher elevation road would be more 

conducive to noise reduction. When the height of the elevated road increased from 

0 m to 30 m, N60 decreased by 25.7%. The influence of the height of elevated road 

on the occurrence of ‘noisy areas’ was more significant than that of Q50. In 

comparison, the sound barrier effect of the sound path difference caused by the 

elevated road with a height at about 20 m was the most significant. When the height 

of the elevated road was 10 m to 30 m, the sound barrier was 3 m high. Regardless 

of the village area, the most economical and efficient length of the sound barrier was 

approximately 600 m along both sides of the village parallel to the road. In addition, 

the influence of the length of the sound barrier was neglected. For each increase of 

1 m in the height of the sound barrier, Lavg of the three typical samples reduced by 

approximately 1.5 dBA, on average. The sound environments of large- and 

medium-sized villages were affected by the height of the sound barrier to some 

extent, and a noise reduction of approximately 0.2 dBA more than Lavg in small 

villages was observed. 

3. Decreasing the spatial traffic noise levels of an elevated road and enlarging the 

quiet areas in villages by controlling the urban morphological parameters of villages 

are efficient measures of noise reduction. As shown in the single element and 

multiple regression analyses, there are a series of significant relationships between 

the spatial traffic noise levels and the urban morphological parameters, with R2 ＞ 

0.5. In addition, the morphological parameters affecting the noise attenuation were 

different for the various distances. When the distance was 0 m, the ‘quiet areas’ had 

a positive relationship with the indices of the buildings, LSI_B and LSI_R, and a 
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negative relationship with HWR and RLF. When the distance was 100 m, the ‘quiet 

areas’ are positively associated with LSI_B, BPAF, LSI_R, and RIF and negatively 

associated with CAR and RLF. In terms of the spatial noise level indices, L80 has a 

negative relationship with LSI_B and LSI_R. In addition, the ‘noisy areas’ did not 

show an obvious relationship with the morphological parameters of the villages 

when the distance was 0 m, and L10 did not show an obvious relationship with 

LSI_B or LSI_R when the distance was 100 m.  

This study examines the methods of reducing elevated-road traffic-noise levels in 

rural residential areas. Based on previous research results, it systematically revealed 

whether and how relative locations and morphological parameters influence the 

spatial noise level attenuation of elevated roads. In addition, the effects of noise 

barriers and building facades in villages on noise attenuation were also examined. 

Overall, by filling the gaps in previous studies, this study is expected to provide 

guidance and data for village and elevated road designers and local authorities, 

particularly relating to the village planning system in cold areas in China. However, 

the results cannot be applied to other climates and geographical environments, such 

as rural villages in severely hot areas (for a larger building density, a larger number 

of reflections will be set up) and mountainous regions, whose terrain has a great 

influence on the noise prediction results. The influence of topography on the acoustic 

environment should be considered in actual elevated composite road projects. 

Mountainous regions, being huge acoustic barriers, require consideration of 

more influencing factors owing to the complexity of the acoustic environment (form, 

layout, scale, and the sound absorption coefficient of the mountain). Research 

methods are available for reference on similar issues in other climates and 

geographical environment. 
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