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ABSTRACT 

Cognitive deficits in the domains of working memory (WM) and executive function are well 

documented following childhood Arterial Ischaemic Stroke (AIS). However, there are 

currently no evidence based cognitive interventions for this population. Computerized, 

implicit WM training has been demonstrated to generate generalised cognitive gains for 

children with WM and attention deficits and for adults following brain injury. This study 

used a pilot design to investigate the efficacy and feasibility of such an intervention program 

(Cogmed WM Training) for a childhood AIS population. Outcomes were measured via 

psychometric assessment pre- and post-intervention and again at one year follow-up. 

At longitudinal follow-up, participants were found to have significant and persistent cognitive 

difficulties, particularly with attention and response inhibition. Following the computerized, 

implicit working memory intervention, a significant improvement in phonological loop 

working memory was seen; however, this improvement was not maintained over 12 months. 

No additional significant improvements on standardized psychometric outcome measures 

were seen either immediately or at 12 month follow-up. Findings of this pilot study therefore 

did not currently support Cogmed as an effective intervention for children with AIS but 

highlight the need for further research, including randomised, controlled trials, to investigate 

cognitive interventions for the childhood AIS population. 
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INTRODUCTION  

Childhood Arterial Ischaemic Stroke (AIS) is an acute onset, cerebrovascular event, causing 

focal neurological damage which occurs between 30 days and 18 years of life. It is a rare 

condition which affects approximately 2.4 per 100,000 children per year (Numis & Fox, 

2014). Rates of diagnosis of AIS is increasing due to increased awareness amongst medical 

practitioners and advances in diagnostic techniques (Amlie-Lefond, Sebire & Fullerton, 2008; 

deVeber, Roach, Riela, & Wiznitzer, 2000; Numis & Fox, 2014), however, the majority of 

survivors are left with life-long neurological and neuropsychological impairments, making it 

a significant cause of disability and impairment in childhood (Cnossen et al., 2010; Gomes, 

Rinehart, Greeham & Anderson, 2014; Härtel et al., 2004; O’Keeffe, Ganesan, King & 

Murphy, 2012). 

Cognitive impairment is common following AIS. Group mean intelligent quotient 

scores for this population tend to fall within one standard deviation of the mean (i.e., Full 

Scale IQ between 90 and 95) and many children demonstrate considerable focal cognitive 

deficits (Ganesan et al., 2000; Hajek et al., 2014; Pavlovic et al., 2006; Westmacott et al., 

2010). Few domains of cognitive functioning are unaffected following childhood stroke, 

although attention, executive function and speed of processing abilities appear to be most 

vulnerable  (Anderson et al., 2009; Everts et al., 2008; Ganesan et al., 2000; Härtel et al., 

2004; O’Keeffe et al., 2014).  In particular, the domains of divided attention, response 

inhibition and verbal and visual working memory are reported to be more likely to be 

compromised in the childhood stroke population than typically developing children 

(Brandling-Bennett, White, Armstrong, Christ & deBaun, 2003; Kolk et al., 2011; O’Keeffe 

et al., 2014; Pavlovic et al., 2006; Westmacott et al., 2010). Cognitive deficits may be 

immediate and then remit following injury, they can persist or they may not be immediately 
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apparent following injury but a child may ‘grow into the deficit’ and fail to keep up with 

developmental trajectories of non-injured peers (Ross, Dorris & McMillan, 2011).   

Working memory (WM) is the flexible process of attending to, retaining and 

manipulating information over short periods of time and plays a fundamental role in 

cognition (Baddeley, 2000; Klingberg et al., 2005). The most widely used model of WM is 

that of Baddeley and Hitch (1974). This model conceptualizes WM as consisting of four 

components: 1) the phonological loop (limited capacity system for the passive storage of 

verbal information); 2) the visuospatial sketchpad (limited capacity system for the passive 

storage of visual and spatial information); 3) the central executive (an active memory system 

which coordinates the domain specific stores as well as closely related cognitive functions 

such as attention and goal directed behaviour), and 4) the episodic buffer (a domain general 

subsystem which integrates information from WM stores and long-term memory).  The 

capacity of WM increases throughout childhood, underpinning the development of further 

cognitive skills such as reading, logical reasoning and problem solving (Klingberg et al., 

2002).  

Both verbal and visuospatial working memory abilities have each been shown to have 

strong and distinct links with children’s attainments on national curriculum assessments 

(Jarvis & Gathercole, 2003; Gathercole, Tiffany, Briscoe, & Thorn, 2005). The majority of 

children with weak WM abilities (<10th centile), have been shown to underperform 

academically (Gathercole & Alloway, 2006). Children with impaired WM also experience 

functional difficulties in a classroom environment, making frequent errors in activities such 

as following multi-step instructions, concurrent processing and storage demands and keeping 

track in multi-level tasks such as writing (Gathercole et al., 2005). For children who have 

experienced AIS, an impaired capacity to store and process information in WM may 

significantly constrain their abilities to acquire complex skills during formal education, 
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particularly when in the context of co-existing cognitive difficulties (Kolk et al., 2011; 

Pavlovic et al., 2006; Westmacott et al., 2010).  

Despite the impact of AIS now being well documented, only limited information is 

available regarding the long-term outcome and rehabilitation needs of these children (Härtel 

et al., 2004). Research from heterogeneous Acquired Brain Injury (ABI) childhood 

populations indicates that intervention post brain-injury is beneficial and may be required 

throughout childhood and adolescence due to the possible late-effects of injury (Catroppa, 

Soo, Crowe, Woods & Anderson, 2012; Ross et al., 2011). However, there are currently few 

guidelines for evidence-based interventions following ABI. Caution must also be taken in 

applying findings from ABI cohorts to the AIS population due to the differences in aetiology 

and sequelae of different injuries (e.g. discrete lesions of ischemia compared to diffuse 

damage caused by traumatic brain injuries). 

Computer-based cognitive training programs have been evaluated in recent 

intervention studies and have demonstrated promise in non-brain injured children who have 

impairment in WM, attention and executive function (Morrison & Chein, 2011; Westerberg 

et al., 2007). Two blinded, randomized, placebo-controlled trials reported significant 

improvement in untrained tasks of verbal and nonverbal WM following 25 sessions of a WM 

training program (Cogmed) for populations of children with attention-deficit/hyperactivity 

disorder (ADHD) and low WM skills respectively (Klingberg et al., 2005; Holmes, 

Gathercole, and Dunning, 2009). In these trials, gains were maintained at 3-month follow-up. 

These findings have since been replicated across a number of studies, with consistently 

reported improvements in untrained tasks of WM (e.g., Chacko et al., 2013; Dahlin, 2011; 

Hardy, Willard, Allen & Bonner, 2013; Kronenberger et al., 2011; Lohaugen et al., 2010; 

Mezcapper & Buckner, 2010; Roughan & Hadwin, 2011), as well as some documented 

improvements in the domains of attention and executive function (Beck et al., 2010; Holmes 
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et al., 2010; Klingberg et al., 2005; Kronenberger et al., 2011). Although few studies have 

included long-term follow up of WM interventions, those which have (e.g. three to six 

months post training) indicate that training gains are maintained over time (Beck et al., 2010; 

Dahlin, 2010; Holmes et al., 2010; Lohaugen et al., 2010).   

Due to the lack of evidence based cognitive interventions for children who have 

experienced AIS, this study aimed to investigate the feasibility and efficacy of an implicit 

WM training program (Cogmed WM Training) for this population. The study aimed to 

address the following research questions: is an existing WM training program (developed for 

children with specific attention and WM deficits) appropriate, feasible and acceptable for 

children with AIS? Can implicit WM training generate measurable and sustainable changes in 

untrained tasks of WM for children who have had AIS?  

A pilot design with long term follow-up was undertaken to address the research 

questions. ‘Small n’ research designs enable the study of rare clinical conditions, such as 

childhood AIS, and are considered useful approaches when evaluating interventions with a 

new population or exploring areas which have been under-researched (Turpin 2001). A 

longitudinal design was used with outcome measures administered prior to the intervention 

(T1), at 1-2 weeks post intervention (T2) and at 12 months post intervention (T3). Since WM 

training has been shown to be beneficial for a diverse range of people with widely differing 

pre-training WM abilities, it was predicted that all participants in the study would see some 

generalised improvements of cognitive function following the intervention which would be 

maintained over time.  

 

Method 

Participants 

Seven participants (ages 10-16 years; M = 12.8 years, SD= 2.2; four boys; all White British), 

recruited via a Neurovascular Clinic at a specialist pediatric hospital, completed the Cogmed 
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intervention. Five of the seven participants agreed to complete a 12 month follow-up 

assessment to consider the longer term impact of the intervention. Participants were included 

if they were at least two years post AIS (time since stroke 4-10 years, M= 7.3, SD= 2.1), had 

general intellectual quotient scores within two standard deviations of the mean (as measured 

by the Wechsler Abbreviated Scale of Intelligence, Wechsler, 1999 or the Wechsler 

Intelligence Scale for Children UK 4th edition, Wechsler, 2004) and spoke English as a first 

language. The lateralisation and aetiology of AIS varied between participants (see Table 1). 

All participants had achieved average or below average range WM skills (as shown by scaled 

score of 10 or lower on the Digit Span subtest of the Wechsler Intelligence Scale for Children 

UK 4th edition; Wechsler, 2004) on cognitive assessment at least 12 months prior to 

intervention as part of their routine clinical care or a previous research trial. Participants were 

excluded if there was any history of neurological, psychiatric or major medical conditions 

unrelated to the AIS diagnosis. Participants were required to have home internet access but 

this was not an issue for any individuals approached for the study.  

 

Outcome measures 

Subtests from three standardised psychometric tests were administered as outcome measures. 

Change in WM capacity was measured via the Working Memory Test Battery for Children 

(WMTB-C; Gathercole & Pickering, 2001). Subtests were chosen to provide outcome data 

relating to each of the proposed domains of WM: (i) phonological loop (Digit Recall, Word 

List Matching, Word List Recall and Non-word list Recall); (ii) visuo-spatial sketchpad 

(Block Recall) and (iii) the central executive (Listening Recall and Backward Digit Recall). 

The WMTB-C was normed using a representative UK sample of 729 children aged between 5 

and 15 years 11 months. Norms for the highest age band available were used for the 

participant aged 16 year 2 months. Alternative forms of the WMTB-C are not available but it 
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is documented that practice effects from repeated administration does not lead to a significant 

improvement in performance (Holmes et al., 2009). Five subtests of the Test of Everyday 

Attention for Children (TEA-Ch; Manly, Robertson, Anderson & Nimmo-Smith, 1998) were 

administered. Subtests were chosen which tap into attentional capacities of interest relevant 

to this clinical group: selective attention (Sky Search), sustained attention (Score!), divided 

attention (Score! Dual Task and Sky Search Dual Task), and response inhibition (Walk/Don’t 

Walk). Parallel versions of the TEA-Ch and Wide Ranging Achievement Test 4 (WRAT-4) 

were administered at T2 to minimise the confounding impact of practice effects. The Wide 

Ranging Achievement Test 4 (Wilkinson & Robertson, 2006) mathematics subtest was used 

to measure academic attainment; this task requires participants to complete as many pencil 

and paper maths questions as they can in 15 minutes. 

 

Feasibility, acceptability and efficacy 

The feasibility, acceptability and efficacy of the intervention were also assessed via 

qualitative feedback from participants and their parents during a semi-structured interview at 

the end of the intervention. Participants and their parents were asked about their impressions 

of the training protocol and any functional or behavioural changes they had noticed since the 

intervention. Quotes from the interviews informed interpretation of the quantitative results. 

 

INSERT TABLE 1 HERE 

Intervention 

Cogmed WM Training (Klingberg et al., 2005) is a web-based program consisting of 12 

different auditory, visuospatial or combined auditory-visuospatial, short-term and working 

memory tasks, in a computer-game environment. Each training session consisted of eight of 

the possible twelve training exercises. Cogmed uses precision-based learning, meaning an 
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algorithm is used to adjust the difficulty of each trial (determined by the length of the 

sequence span), in real-time to match the upper limit of the user’s capacity. The Cogmed 

program features a number of in-built motivational features including a display of the 

individual’s best scores, positive verbal and visual feedback for correct trials and access to a 

computer-based racing game as a reward following completion of each session. A sticker 

chart and reward schedule provided additional motivation for participants. Participants’ 

Cogmed progress was monitored by researchers via the online Cogmed ‘Training Web’ 

facility, and a Cogmed-certified coach provided participants with weekly telephone support 

for motivation and troubleshooting.  

 

Procedure 

The study protocol was reviewed and approved by the London, Bentham Committee for the 

National Research Ethics Service, the Hospital’s Research and Development offices and the 

Royal Holloway, University of London Ethics Committee. Following recruitment to the 

study, a pre-training home visit was conducted during which the cognitive assessment was 

completed and the Cogmed program was explained to each participant and their parent(s) 

(T1, n=9). Participants completed 25, 30-40 minute sessions of the standard Cogmed WM 

Training (Klingberg et al., 2005) over a 5-7 week period (n=7). The parents of participants 

were required to be in the room during the training sessions in order to monitor progress and 

prompt breaks as planned.  

Two participants withdrew, both because of competing academic demands. Baseline data 

from these participants was not significantly different from group means but was not included 

in the analysis.  Follow-up assessments using the same neuropsychological test battery were 

conducted in participants’ homes one to two weeks (T2, n=7) and 12 months (T3, n=5) 
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following completion of the training. All participants were given a £5 shopping voucher upon 

completion of the intervention in return for their involvement.  

 

Statistical Analysis  

All scores were converted into standard scores for ease of comparison. Composite scores 

were calculated by averaging standard scores from subtests which tapped into specific 

domains of WM (phonological loop, visuo-spatial sketchpad and central executive) and 

attention (sustained attention, divided attention and impulsivity). Training effects were 

evaluated by comparing scaled or composite scores from neuropsychological measures 

between baseline (T1) and each follow-up time point (T2 and T3). Group means were 

compared using Wilcoxon Signed-Rank tests. Analysis at the individual level was via 

consideration of standardized change scores (SCS), calculated by dividing the difference 

between two time points by the standard deviation of T1 (e.g., T2-T1/SDT1). This reflects the 

number of standard deviations of change in a score at each follow-up time point, relative to 

the baseline. According to convention, SCSs of 0.20, 0.50 and 0.80 were considered ‘small’, 

‘medium’ and ‘large’ effects respectively (Cohen, 1988). Statistical analyses were conducted 

using IBM SPSS Statistics 20. Findings from the semi-structured interviews were drawn 

upon to aid in understanding the experience of participating in the intervention. 

 

Results  

Table 2 shows the mean values and Standard Deviations (SD) from standardized scores of the 

neuropsychological tests at each time point and standardized change scores for individual 

participants on each test are presented graphically in Figure 1. 

 

Immediate Effects of the Intervention 
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All seven participants who finished the training adhered to the protocol and completed 25 

training sessions. Performance on the training tasks was automatically recorded; the group 

mean of Cogmed performance scores at the end of training (two highest scoring days for each 

participant in the last five days of training; group mean = 5.12) was significantly higher than 

at the start of the training (training days 2 and 3; group mean = 4.06), T = 0, p < .05, r = -.63. 

 

Immediately following the intervention (T2) the mean group score for phonological-loop 

WM had increased significantly (Z = -1.992, p = 0.046), with a small SCS. Visuospatial 

sketchpad, central executive and WRAT-4 Mathematics scores did not change significantly 

between T1 and T2. Group means for attention tasks were at least 1SD below the population 

mean at T1 and this showed no change following the intervention.  

 

Longer Term Follow-Up from the Intervention 

At longer-term follow-up (T3), the improvement in phonological-loop WM was not sustained 

and the group mean was no longer significantly different from baseline (T3; Z -0.135, ns). 

Once again, there was no significant change in visuospatial sketchpad or central executive 

WM scores. At T3 the group mean on the WRAT-4 Mathematics task had decreased, but this 

change did not reach significance. Group means for attention tasks remained unchanged from 

baseline and continued to reflect deficits in this domain.  

  

INSERT TABLE 2 HERE 

 

 

Analysis at the Individual Level 

Figure 1. demonstrates individual participants standardized change scores on each cognitive 

outcome measure at T2 and T3 compared to T1.  Analyses at the individual level 
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demonstrated change in both directions (i.e., increases and declines in test scores) across 

participants, for all outcome measures at both T2 and T3; the exception to this was the 

response inhibition measure which showed no declines from T1, possibly due to floor effects. 

The largest gains were seen at T2 but, in general these were not maintained at T3. The most 

consistent gains (as determined by a medium or large standardized change score) were for 

central executive WM, however, only three participants maintained medium gains at T3. 

There was little consistency between individual participants’ gains across outcome measures; 

for example, if a participant demonstrated large gains on one measure, they did not 

necessarily show equivocal gains on other measures.  

 

INSERT FIGURE 1 HERE 

 

Qualitative Feedback 

All participants were able to access the intervention without the need for adaptations. Time 

limits within one of the training games were cited as a limitation by one participant’s mother: 

“I don’t think he got the mouse to it quick enough, and that added a level of frustration”. All 

parents and participants reported that maintaining motivation and finding time to complete 

the intervention was challenging.  

 

Three participants reported functional benefits which they attributed to the training: “I only 

have to look at my timetable once in the morning now, and then I know what lessons I have 

for the rest of the day” (P2); “I’m more organised in the mornings…you know, like 

remembering my diary and P.E. kit” (p3); and “my math teacher actually asked me if I was 

holding back before because he noticed I’ve got loads better…I find it easier to hold [a math 

problem] in my head and think about it” (P5). Two mothers also reported noticing changes in 
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their children’s behavior following the training: “actually, he hasn’t lost his P.E. kit once this 

term; he used to lose it almost once every couple of weeks” (mother of P2); and “she 

seems to be a bit better at thinking things through…for example thinking 

before saying stuff, like during arguments” (mother of P3).  

 

The majority of participants and their parents failed to notice any observable changes 

following the intervention. One mother reported changes in her child’s behavior but felt 

unable to attribute this to Cogmed: “I suppose he seems a little 

more grown-up…but maybe that comes normally with time, I don’t know” (mother of P7). 

 

Discussion  

This pilot study investigated the feasibility and efficacy of a computerized working memory 

training program for children who had experienced AIS.  

 

Retention, Adherence and Feasibility 

Seven of nine participants recruited to the study completed the intervention. The two 

participants who withdrew were unable to find time for Cogmed training in the context of 

demanding academic schedules. This demonstrates the importance of considering competing 

demands upon children and families when planning and implementing clinical interventions.  

All participants were successfully able to access the computer program and common physical 

or sensory difficulties following childhood AIS (e.g., hemiparesis or visual disturbances) 

were not barriers to engaging with the stimuli. The seven participants who completed the 

intervention all adhered to the protocol and completed the full 25 training sessions. 

 

Immediate Effects of the Intervention 
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All participants who completed the intervention showed improvement on the trained WM 

tasks. In terms of generalization of the training gains, there was a small but significant 

improvement in phonological loop working memory soon after the end of the intervention. 

However, no significant changes for other WM domains, attention or math were seen. At an 

individual level, participants showed both gains and declines on all measures at each time 

point. The greatest magnitude of improvements on cognitive measures was seen at T2. There 

was no clear pattern of training effects either between or within individual participant change 

scores. 

 

Qualitatively, some young people and parents reported functional changes by the end of the 

intervention period. Interestingly, improvements in participants’ ability to process 

information or behaviour were reported more often by the young people themselves than by 

their parents. Changes described by participants included being more organised (e.g., 

forgetting and losing fewer things), improvements in WM function (e.g., being better able to 

hold information in mind when doing maths calculations) and being able to remember 

information for longer periods of time (e.g., what lessons were on that day’s timetable).  In 

accordance with the young people’s reports, parents described that their children had been 

more organised, for example not losing their P.E. kits as often. In the absence of quantifiable 

cognitive change following the intervention, it is not possible to determine if these qualitative 

reports reflect subtle functional changes not detected by the measures, participant expectancy 

effects (the expectation of participants of parents that the child will improve as a result of the 

intervention due to priming) or the impact of another aspect of the intervention (e.g., 

increased attention from parents).  

 

Longer Term Effects of the Intervention 
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At longer term follow-up the significant improvement in phonological loop working memory 

was not maintained. No other scores changed significantly from baseline. These findings are 

in line with other recent studies which have investigated the benefits of computerized WM 

training and used rigorous methodologies (e.g., Chacko et al., 2014). 

 

Efficacy of Cogmed as an Intervention for the Childhood AIS Population 

 Following AIS, children present with discrete lesions of compromised brain tissue, 

meaning that neurologically these children are very distinct from those with ADHD, for 

whom this intervention has the largest evidence base (Klingberg, 2010). All participants in 

this study demonstrated improvement on the trained tasks, consistent with previously studied 

populations, demonstrating the potential benefit of computerised interventions for a 

childhood AIS population. However, despite a small benefit of training effects to 

phonological WM tasks, this was not sustained at 12 months follow-up and did not generalize 

to tasks of attention or mathematics. Findings of this pilot study therefore do not currently 

support Cogmed as an effective intervention for children following AIS although booster 

sessions spread out over a period of time or an adapted version of the package which 

incorporates real-life daily activities may indeed extend the benefits of the intervention.  

 

Clinical Implications 

 The significant cognitive difficulties in the domains of WM, attention and response 

inhibition found in children following AIS demonstrates the routine need for 

neuropsychological assessment and effective intervention. Cognitive and behavioural 

difficulties, the ‘invisible disabilities’ (Paediatric Stroke Working Group, 2004), are not 

necessarily apparent or of immediate importance during the post-acute phase of AIS, 

meaning they often remain unacknowledged (Limond & Leeke, 2005). Targeted interventions 
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should aim to reduce the impact of cognitive difficulties in order to maximize wellbeing and 

academic success.  The limited benefit of an implicit, WM intervention adds weight to 

ecologically valid interventions with a focus on reducing the functional impairment of the 

child by altering the  environment, rather than via attempts to modify the child themselves  

(Catroppa et al., 2012). Interventions also need to be responsive to the changing needs of the 

individual children and families over time. 

 

Limitations 

 Several limitations of the current study need to be considered when interpreting the 

findings. Firstly, the small sample size resulted in limited statistical power, increasing the risk 

of Type 1 errors. It is possible that some non-significant results would have reached 

significance with a larger sample. 

 Secondly, the study did not have a control group with which to compare the impact of 

the intervention. This meant that analysis was reliant on within-group comparisons between 

time points. Selecting appropriate control groups for childhood neurological research is not 

straightforward (as highlighted by O’Keeffe et al., 2014). An alternative methodology could 

have been to establish a baseline with two or more time-points prior to the intervention to 

allow for within-subject comparisons to a stable base-line period. However, this approach 

would still not be able to control for the impact of change over time due to natural 

development and maturation of participants.  

 Thirdly, despite limiting inclusion parameters, there was heterogeneity within the 

sample in terms of age, age at stroke and risk factors. Although this may limit the potential 

power of group analyses, for a small pilot study, it allowed for consideration and recognition 

of the clinical population in need of such interventions. The participant group of this study 

demonstrated greater homogeneity than many similar intervention studies which have used 
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all-encompassing and widely varying ABI populations (e.g., Johansson & Tornmalam, 2011; 

Sjö, Spellerberg, Weidner & Kihlgren, 2010). The nature of injury following childhood AIS 

differs both qualitatively and quantitatively from that of other ABI populations, meaning it is 

important for studies to consider the specific needs of these children.  

 Fourthly, despite using a greater range of cognitive outcome measures than many 

Cogmed studies, the use of standardized psychometric tests as outcome measures has its 

limitations. The aim of clinical interventions is to improve function in an individual’s 

environment, and the ecological validity of neuropsychological measures is known to be 

limited (Silver, 2000). Considering qualitative and proxy reports or observation of real world 

functioning, in addition to more traditional outcome measures, may provide a greater level of 

clinically relevant information about potentially beneficial interventions.  

 

Conclusions 

 This study demonstrated small short-term benefits but no sustained transfer effects of 

a computerised WM intervention to untrained tasks of WM, attention and mathematics in a 

small pilot study of children who had experienced AIS. Previous Cogmed intervention 

studies have demonstrated sustained generalized gains following the intervention, although 

findings across studies have not been consistent. More robust controlled research trials with 

long term follow-up are required to establish the mechanisms behind any benefits of the 

intervention as well as individual differences in outcomes to allow for targeted rehabilitation. 

This study does highlight the significant difficulties experienced by children following AIS, 

particularly in the areas of working memory and attention and the need for further research to 

find successful ways of limiting the negative impact of this condition. It is important that 

future studies consider the longer term impact of interventions, as well as individual 

differences in outcome. The childhood stroke population warrants focused consideration due 
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to the neurological and neuropsychological differences between AIS and other types of ABI. 



19 

 

 

References 

Amlie-Lefond, C., Sebire, G., & Fullerton, H. J. (2008). Recent developments in childhood 

ischaemic stroke. The Lancet Neurology, 7, 435-35. 

 

Anderson, V., Spencer-Smith, M., Leventer, R., Coleman, L., Anderson, P., et al. (2009). 

Childhood brain insult: can age at insult help us predict outcome? Brain, 132, 45-56. 

 

Baddeley. (2000). The episodic buffer: a new component of working memory? Trends in 

Cognitive Sciences, 4(11), 417-422. 

 

Baddeley, A. D., & Hitch, G. J. (1974). Working memory. In G. H. Bower (Ed.), The 

psychology of learning and motivation Vol. 8 (pp. 47–89). NY: Academic Press. 

 

Beck, S.J., Hanson, C.A., Puffenberger, S.S., Benninger, K.L., & Benninger, W.B. (2010). A 

controlled trial of working memory training for children and adolescents with ADHD. 

Journal of Clinical Child and Adolescent Psychology, 39, 825-836. 

 

Brandling-Bennett, E. M., White, D. A., Armstrong, M. M., Christ, S. E., & deBaun, M. 

(2003). Patterns of verbal long-term and working memory performance reveal deficits 

in strategic processing in children with frontal infarcts related to sickle cell disease. 

Developmental neuropsychology, 24(1), 423–434. 

 



20 

 

Catroppa, C., Soo, C., Crowe, L., Woods, D. & Anderson, V. (2012). Evidence-based 

approaches to the management of cognitive and behavioural impairments following 

paediatric brain injury. Future Neurology, 7, 719-731. 

 

Chacko, A., Bedard, A. C., Marks, D. J., Feirsen, N., Uderman, J. Z., Chimiklis, A., . . . & 

Ramon, M. (2014). A randomized clinical trial of Cogmed Working Memory Training 

in school-age children with ADHD: a replication in a diverse sample using a control 

condition. Journal of Child Psychology and Psychiatry, 55, 247-255. 

 

Cnossen, M. H., Aarsen, F. K., Akker, S., Danen, R., Appel, I. M., Steyerberg, E. W.. & 

Catsman-Berrevoets (2010). Paediatric arterial ischaemic stroke: functional outcome 

and risk factors. Developmental Medicine and Child Neurology. 52, 394–9. 

 

Cohen, J. (1988). Statistical power analysis for the behavioural sciences (2nd ed.). Hillsdale, 

NJ: Lawrence Erlbaum Associates. 

 

Dahlin, K. (2011). Effects of working memory training on reading in children with special 

needs. Reading and Writing, 24, 479-491. 

 

deVeber, G., Roach, E. S., Riela, A. R., & Wiznitzer, M. (2000). Stroke in children: 

Recognition, treatment, and future directions. Seminars in Pediatric Neurology, 7, 309-

317. 

 



21 

 

Everts, R., Pavlovic, J., Kaufmann, F., Uhlenberg, B., Seidel, U., et al. (2008). Cognitive 

functioning, behaviour and quality of life after stroke in childhood. Chid 

Neuropsychology, 14, 323-338. 

 

 

Ganesan, V., Hogan, A., Shack, N., Gordon, A., Isaacs, E., & Kirkham, F. J. (2000). 

Outcome after ischaemic stroke in childhood. Developmental Medicine & Child 

Neurology, 42, 455–461. 

 

Gathercole, S. E, & Alloway, T. P. (2006). Practitioner Review: Short-term and working 

memory impairments in neurodevelopmental disorders: diagnosis and remedial support. 

Journal of Child Psychology and Psychiatry, 47(1), 4–15. 

 

Gathercole, S. & Pickering, S. (2001). Working Memory Test Battery for Children (WMTB-

C). Harlow, Pearson Assessment. 

 

Gathercole, S. E, Tiffany, C., Briscoe, J., & Thorn, A. (2005). Developmental consequences 

of poor phonological short-term memory function in childhood: a longitudinal study. 

Journal of Child Psychology and Psychiatry, 46(6), 598–611. 

 

 

Gomes, A., Rinehart, N., Greenham, M. & Anderson, V. (2014). A critical review of 

psychosocial outcomes following childhood stroke (1995-2012). Developmental 

Neuropsychology, 39, 9-24. 

 



22 

 

Hajek, C. A., Yeates, K. O., Anderson, V… & Lo, W. (2014). Cognitive outcomes following 

arterial ischemic stroke in infants and children. Journal of Child Neurology. 29, 887-

894. 

 

Härtel, C., Schilling, S., Sperner, J., & Thyen, U. (2004). The clinical outcomes of neonatal 

and childhood stroke: review of the literature and implications for future research. 

European Journal of Neurology, 11, 431-438. 

 

Hardy, K. K., Willard, V. W., Allen, T. M. & Bonner, M. J. (2013). Working memory 

training in survivors of pediatric cancer: a randomized pilot study. Pycho-oncology, 22, 

1856-65. 

 

Holmes, J., Gathercole, S.E., Dunning, D.L. (2009). Adaptive training leads to sustained 

enhancement of poor WM in children. Developmental Sciences, 12, F9-F15. 

 

Holmes, J., Gathercole, S.E., Place, M., Dunning, D. L., Hilton, K. A., & Elliott, J. G. (2010). 

Working memory deficits can be overcome: Impacts of training and medication on 

working memory in children with ADHD. Applied Cognitive Psychology, 24(6), 827-

836.  

 

Jarvis, L. J., & Gathercole, S.E. (2003). Verbal and non-verbal working memory and 

achievements on National Curriculum teats at 11 and 14 years of age. Educational and 

Child Psychology, 20(3), 123-140. 

 



23 

 

Johansson, B. & Tornmalm, M. (2011). Working memory training for patients with acquired 

brain injury: effects in daily life. Scandinavian Journal of Occupational Therapy, Early 

Online, 1-8. 

 

Klingberg, T. (2010). Training and plasticity of working memory. Trends in Cognitive 

Sciences, 14(7), 317-324.  

 

Klingberg, T., Fernell, E., Olesen, P. J., Johnson, M., Gustafsson, P., Dahlström, K., Gillberg, 

C. G., et al. (2005a). Computerized training of working memory in children with 

ADHD-a randomized, controlled trial. Journal of the American Academy of Child & 

Adolescent Psychiatry, 44(2), 177–186. 

 

 

Klingberg, T., Forssberg, H., & Westerberg, H. (2002b). Training of working memory in 

children with ADHD. Journal of Clinical and Experimental Neuropsychology, 24(6), 

781–791. 

 

Kolk,  A., Ennok, M., Laugesaar, R., Kaldoja, M. & Talvik, T. (2011). Long-term cognitive 

outcomes after pediatric stroke. Pediatric Neurology, 44, 101-109. 

 

Kronenberger, W.G., Pisoni, D.B., Henning, S.C., Colson, B.G., & Hazzard, L.M. (2011). 

Working memory training for children with cochlear implants: a pilot study. Journal of 

Speech, Language and Hearing Researchm 54, 1182-1196. 

 



24 

 

Limond, J. & Leeke, R. (2005). Practitioner review: cognitive rehabilitation for children with 

aquired brain injury. Journal of Child Psychology and Psychiatry, 46, 339-352. 

  

Lohaugen, G., Antonsen, I., Häberg, A., Gramstad, A., Vik, T., Brubakk, A., & Skranes, J. 

(2011). Computerised working memory training improves function in adolescents born 

at extremely low birth weight. The Journal of Pediatrics, 158, 555-561. 

 

Manly, T., Robertson, I., Anderson, V., & Nimmo-Smith, I. (1998). Test of Everyday 

Attention for Children. Bury St Edmunds: Thames Valley Test Company.  

 

Mezzacappa, E., & Buckner, J. C. (2010). Working Memory Training for Children with 

Attention Problems or Hyperactivity: A School-Based Pilot Study. School Mental 

Health, 2(4), 202-208. 

 

Morrison, A.B., & Chein, J.M. (2011). Does working memory training work? The promise 

and challenges of enhancing cognition by training working memory. Psychonomic 

Bulletin & Review, 18, 46-60. 

 

 

Numis, A. L. & Fox, C. K. (2014). Arterial ischemic stroke in children: risk factors and 

etiologies. Current Neurology and Neuroscience Reports, 14, 422. 

 

O'Keeffe, F., Ganesan V., King, J., & Murphy, T. (2012). Quality of life and psychosocial 

outcome following childhood arterial ischaemic stroke. Brain Injury, 26, 1072-1083. 

 



25 

 

O’Keeffe, F., Liégeois, F., Eve, M., Ganesan, V., King, J. & Murphy, T. (2014). 

Neuropsychological and neurobehavioral outcome following childhood arterial 

ischemic stroke: Attention deficits, emotional dysregulation, and executive dysfunction. 

(2014). Child Neuropsychology, 20, 557-582. 

 

Pavlovic, J., Kaufmann, F., Boltshauser, E., Mori, A. C, Mercati, D. G., Haenggeli, C. A., … 

Steinlin, M. (2006). Neuropsychological Problems after Paediatric Stroke: Two Year 

Follow-Up of Swiss Children. Neuropediatrics, 37, 13-19. 

 

Ross, K. A., Dorris, L., & McMillan, T. (2011). A systematic review of psychological 

interventions to alleviate cognitive and psychosocial problems in children with acquired 

brain injury. Developmental Medicine & Child Neurology, 53, 692-701. 

 

Roughan, L.  & Hadwin, J.A. (2011). The impact of working memory training in young 

people with social, emotional and behavioural difficulties. Learning and Individual 

Differences, 21, 759-764. 

 

Silver, C. (2010). Ecological validity of neuropsychological assessment in childhood 

traumatic brain injury. Journal of Head Trauma Rehabilitation, 15, 973-988. 

 

Sjö, N. M., Spellerberg, S., Weidner, S., & Kihlgren, M. (2010). Training of attention and 

memory deficits in children with acquired brain injury. Acta Paediatrica, 99, 230-236. 

 

Turpin, G. (2001). Single case methodology and psychotherapy evaluation from research to 

practice. Chapter 7 in Evidence in the Psychological Therapies, a Critical Guide for 



26 

 

Practitioners. Mace, C., Moorey, S., & Roberts, B. (Eds.). Brunner-Routledge, Hove 

UK. 

 

Westerberg, H., Jacobaeus, H., Hirvikoski, T., Clevberger, P., Östensson, M.-L., Bartfai, A., 

& Klingberg, T. (2007). Computerized working memory training after stroke–A pilot 

study. Brain Injury, 21(1), 21-29.  

 

Westmacott, R., Askalan, R., Macgregor, D., Anderson, P., & deVeber, G. (2010). Cognitive 

outcome following unilateral arterial ischaemic stroke in childhood: effects of age at 

stroke and lesion location. Developmental Medicine & Child Neurology, 52, 386-393.  

 

Wilkinson, G. S. & Robertson, G. J. (2006). Wide Ranging Achievement Test 4 (WRAT-4). 

Belford, UK, Ann Arbor Publishers Limited. 

 

 

Acknowledgements 

Special thanks to the children and families who gave up their time to participate without 

whom this research would not have been possible.  



27 

 

Table 1. 

Demographic, educational and clinical characteristics of participants who completed the intervention 

Participant 1 2 3 4 5 6 7 

Demographics 

Gender Female Male Female Female Male Female Male 

Age (Years: Months)a 11:06 12:02 13:02 10:06 15:04 16:02 10:11 

Education 

School Yeara 7 7 9 5 10 11 5b 

Special educational provision No IEP No IEP No Classroom 

learning 

support  

Classroom 

learning 

support 

Clinical characteristics 

Age at AIS onset (Years) 3 4 9 3 10  6 

 

1 

Time since AIS onset (Years) 8 8 4 7 5 10  9 

Recurrent AIS/ TIAs Y Y Y Y N Y N 

Lateralisation of AIS Right Bilateral Left Bilateral Left Bilateral Right 

Subcortical involvement No No No No Yes (basal 

ganglia) 

No No 

Aetiology/risk factors NF-1 

Moyamoya 

Disease 

Moyamoya 

Disease 

Intercranial 

arterial 

dissection 

 

Moyamoya 

Disease 

Unknown Moyamoya 

Disease 

Congenital 

heart disease 

 

Hemiparesis None Left Right None Right None Left 

RV surgery Yes Yes No yes No Yes No 

Note. IEP= individual education plan; TIA= transient ischaemic attack; NF-1 = neurofibromatosis Type 1; RV surgery= revascularisation 

surgery 
aInformation refers to Time 1. bParticipant 7 had repeated  a school year 
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Table 2. Group mean standard scores and standard deviations (SD) from neuropsychological 

tests at each time point.  

 T1 

(SD) 

T2 

(SD) 

T3 

(SD) 

T1-T2 T1-T3 

p SCS p SCS 

Phonological loop WM 87.46 

(8.65) 

91.46 

(7.56) 

86.15 

(8.71) 

.05* 0.46 .89 -0.15 

Visuo-spatial sketchpad WM 80.43 

(14.41) 

88.29 

(30.53) 

82.00 

(17.99) 

.24 0.54 .50 0.10 

Central executive WM 85.50 

(9.50) 

90.07 

(10.20) 

85.80 

(7.27) 

.18 0.48 .23 0.03 

Sustained attention 79.29 

(20.90) 

82.86 

(18.45) 

80.00 

(22.36) 

.69 0.17 .50 0.03 

Divided attention 71.43 

(21.74) 

75.00 

(15.28) 

77.50 

(9.01) 

.59 0.16 1.0 0.28 

Response inhibition 72.86 

(22.15) 

76.43 

(21.74) 

70.00 

(13.23) 

.10 0.16 .16 -0.13 

Mathematics 83.29 

(7.91) 

85.29 

(10.36) 

76.80 

(12.70) 

.60 0.25 .08 -0.82 

*significant at p≤.05 

Standard scores have a mean of 100 and a standard deviation of 15. 
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A. Phonological loop WM  
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D. Sustained attention 
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G. Mathematics 

 

 
 

 

 

Figure 1. Individual participant change scores on measures of WM, attention and 

mathematics. Panel A: Phonological loop WM standardized change scores from T1 

(baseline) to T2 and T3. Panel B: Visuo-spatial sketchpad WM standardized change scores 

from T1 (baseline) to T2 and T3. Panel C: Central executive WM standardized change 

scores from T1 (baseline) to T2 and T3. Panel D: Sustained attention standardized change 

scores from T1 (baseline) to T2 and T3. Panel E: Divided attention standardized change 

scores from T1 (baseline) to T2 and T3. Panel F: Response inhibition standardized change 

scores from T1 (baseline) to T2 and T3. Panel G: Mathematics standardized change scores 

from T1 (baseline) to T2 and T3. 

T2 T3 


