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THE OPTIMAL DEGREE OF DISCRETION IN MONETARY POLICY

BY SUSAN ATHEY, ANDREW ATKESON, AND PATRICK J. KEHOE1

How much discretion should the monetary authority have in setting its policy? This
question is analyzed in an economy with an agreed-upon social welfare function that
depends on the economy’s randomly fluctuating state. The monetary authority has pri-
vate information about that state. Well designed rules trade off society’s desire to give
the monetary authority discretion to react to its private information against society’s
need to prevent that authority from giving in to the temptation to stimulate the econ-
omy with unexpected inflation, the time inconsistency problem. Although this dynamic
mechanism design problem seems complex, its solution is simple: legislate an inflation
cap. The optimal degree of monetary policy discretion turns out to shrink as the sever-
ity of the time inconsistency problem increases relative to the importance of private
information. In an economy with a severe time inconsistency problem and unimportant
private information, the optimal degree of discretion is none.

KEYWORDS: Rules vs. discretion, time inconsistency, optimal monetary policy, infla-
tion targets, inflation caps, activist monetary policy.

SUPPOSE THAT SOCIETY CAN CREDIBLY IMPOSE on the monetary authority
rules that govern the conduct of monetary policy. How much discretion should
be left to the monetary authority in setting its policy? The conventional wis-
dom from policymakers is that optimal outcomes can be achieved only if some
discretion is left in the hands of the monetary authority. However, starting
with Kydland and Prescott (1977), most of the academic literature has contra-
dicted that view. In summarizing this literature, Taylor (1983) and Canzoneri
(1985) argue that when the monetary authority does not have private informa-
tion about the state of the economy, the debate is settled: there should be no
discretion; the best outcomes can be achieved by rules that specify the action
of the monetary authority as a function of observables. The unsettled question
in this debate is Canzoneri’s: What about when the monetary authority does
have private information? What, then, is the optimal degree of monetary policy
discretion?

To answer this question, we use a model of monetary policy similar to that
of Kydland and Prescott (1977) and Barro and Gordon (1983). In our legisla-
tive approach to monetary policy, we suppose that society designs the optimal
rules governing the conduct of monetary policy by the monetary authority.
The model includes an agreed-upon social welfare function that depends on
the random state of the economy. We begin with the assumption that the mon-
etary authority observes the state and individual agents do not. In the context

1The authors thank the editor and the referees for very useful comments, Kathy Rolfe
for excellent editorial assistance, and the NSF for generous financial assistance under Grants
SES-0351500, SES-9983820, SES-9618152, SES-0419213, SBR-0419213. The views expressed are
those of the authors and not necessarily those of the Federal Reserve Bank of Minneapolis or the
Federal Reserve System.
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of our model, we say that the monetary authority has discretion if its policy is
allowed to vary with its private information.2

The assumption of private information creates a tension between discretion
and time inconsistency.3 Tight constraints on discretion mitigate the time in-
consistency problem in which the monetary authority is tempted to claim re-
peatedly that the current state of the economy justifies a monetary stimulus to
output. However, tight constraints leave little room for the monetary authority
to fine-tune its policy to its private information. Loose constraints allow the
monetary authority to do that fine tuning, but they also allow more room for
the monetary authority to stimulate the economy with surprise inflation.

We find the constraints on monetary policy that, in the presence of private
information, optimally resolve this tension between discretion and time incon-
sistency. Formally, we cast this problem as a dynamic mechanism design prob-
lem. Canzoneri (1985) conjectures that because of the dynamic nature of the
problem, the resulting optimal mechanism with regard to monetary policy is
likely to be quite complex. We find that, in fact, it is quite simple. For a broad
class of economies, the optimal mechanism is static and can be implemented
by setting an inflation cap, an upper limit on the permitted inflation rate.

More formally, our model can be described as follows. Each period, the mon-
etary authority observes one of a continuum of possible privately observed
states of the economy. These states are i.i.d. over time. In terms of current
payoffs, the monetary authority prefers to choose higher inflation when higher
values of this state are realized and lower inflation when lower values are real-
ized. Here a mechanism specifies what monetary policy is chosen each period
as a function of the history of the monetary authority’s reports of its private
information. We say that a mechanism is static if policies depend only on the
current report by the monetary authority and dynamic if policies depend also
on the history of past reports.

Our main technical result is that, as long as a monotone hazard condition is
satisfied, the optimal mechanism is static. We also give examples in which this
monotone hazard condition fails and the optimal mechanism is dynamic.

We then show that our result on the optimality of a static mechanism implies
that the optimal policy has one of two forms: either it has bounded discretion
or it has no discretion. Under bounded discretion, there is a cutoff state: for
any state less than this, the monetary authority chooses its static best response,
which is an inflation rate that increases with the state, and for any state greater

2Our approach here is different from that in the early literature on rules vs. discretion, as is our
notion of discretion. The early literature assumes that society has no mechanism for committing
to rules governing monetary policy. As does Taylor (1983), we find the legislative approach more
appealing for advanced economies.

3For some potential empirical support for the idea that the Federal Reserve possesses some
nontrivial private information, see the work of Romer and Romer (2000). As we discuss below,
we interpret this private information in our economy along the lines of Sleet and Yeltekin (2003)
and Sleet (2004).



DISCRETION IN MONETARY POLICY 1433

than this cutoff state, the monetary authority chooses a constant inflation rate.
Under no discretion, the monetary authority chooses some constant inflation
rate regardless of its information.

We then show that we can implement the optimal policy as a repeated static
equilibrium of a game in which the monetary authority chooses its policy sub-
ject to an inflation cap and in which individual agents’ expectations of future
inflation do not vary with the monetary authority’s policy choice. In general,
the inflation cap would vary with observable states, but to keep the model sim-
ple, we abstract from observable states and the inflation cap is a single number.
Depending on the realization of the private information, sometimes the cap
will bind and sometimes it will not.

These results imply that the optimal constraints on discretion take the form
of an inflation cap: the monetary authority is allowed to choose any inflation
rate below this cap, but cannot choose one above it. We say that a given infla-
tion cap implies less discretion than another cap if it is more likely to bind. We
show that the optimal degree of discretion for the monetary authority is smaller
in an economy the more severe the time inconsistency problem is and the less
important private information is. It is immediate that we can equivalently im-
plement the optimal policy by choosing a range of acceptable inflation rates.
The optimal range will decrease as the time inconsistency problem becomes
more severe relative to the importance of private information.

Here the rationale for discretion clearly depends in a critical way on the
monetary authority having some private information that the other agents in
the economy do not have. Of course, if the amount of such private information
is thought to be very small in actual economies, relative to time inconsistency
problems, then our work argues that in such economies the logical case for a
sizable amount of discretion is weak and the monetary authority should follow
a rather tightly specified rule.

One interpretation of our work is that we solve for the optimal inflation
targets. As such, our work is related to the burgeoning literature on inflation
targeting. (See the works of Cukierman and Meltzer (1986), Bernanke and
Woodford (1997), and Faust and Svensson (2001), among many others.) In
terms of the practical application of inflation targets, Bernanke and Mishkin
(1997) discuss how inflation targets often take the form of ranges or limits on
acceptable inflation rates similar to the ranges we derive. Indeed, our work
here provides one theoretical rationale for the type of constrained discretion
advocated by Bernanke and Mishkin.

Here we have assumed that the monetary authority maximizes the welfare
of society. As such, the monetary authority is viewed as the conduit through
which society exercises its will. An alternative approach is to view the mone-
tary authority as an individual or an organization motivated by concerns other
than that of society’s well-being. If, for example, the monetary authority is mo-
tivated in part by its own wages, then, as Walsh (1995) has shown, the full-
information, full-commitment solution can be implemented. Hence, with such
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a setup, monetary policy has no binding incentive problems to begin with. As
Persson and Tabellini (1993) note, there are many reasons such contracts are
either difficult or impossible to implement, and the main issue for research
following this approach is why such contracts are, at best, rarely used.

Our work is related to several other literatures. One is some work on pri-
vate information in monetary policy games. See, for example, that of Backus
and Driffill (1985), Ireland (2000), Sleet (2001), Da Costa and Werning (2002),
Angeletos, Hellwig, and Pavan (2003), Sleet and Yeltekin (2003), and Stokey
(2003). The most closely related of these is the work of Sleet (2001), who con-
siders a dynamic general equilibrium model in which the monetary authority
sees a noisy signal about future productivity before it sets the money growth
rate. Sleet finds that, depending on parameters, the optimal mechanism may
be static, as we find here, or it may be dynamic.

Our work is also related to a large literature on dynamic contracting. Our
result on the optimality of a static mechanism is quite different from the typ-
ical result in this literature, that static mechanisms are not optimal. (See, for
example, Green (1987) and Atkeson and Lucas (1992).) We discuss the rela-
tionship between our work and these literatures in more detail after we present
our results.

At a technical level, we draw heavily on the literature on recursive ap-
proaches to dynamic games. We use the technique of Abreu, Pearce, and
Stacchetti (1990), which has been applied to monetary policy games by Chang
(1998) and is related to the policy games studied by Phelan and Stacchetti
(2001), Albanesi and Sleet (2002), and Albanesi, Chari, and Christiano (2003).

The mechanism design problem that we study is related, at an abstract level,
to some work on supporting collusive outcomes in cartels by Athey, Bagwell,
and Sanchirico (2004), work on risk-sharing with nonpecuniary penalties for
default by Rampini (2004), and work on the trade-off between flexibility and
commitment in savings plans for consumers with hyperbolic discounting by
Amador, Werning, and Angeletos (2004). However, our paper is both sub-
stantively and technically quite different from those. We discuss the details
of the relationship with Athey, Bagwell, and Sanchirico (2004) and Amador,
Werning, and Angeletos (2004) after we present our results.

1. THE ECONOMY

A. The Model

Here we describe our simple model of monetary policy. The economy has a
monetary authority and a continuum of individual agents. The time horizon is
infinite, with periods indexed by t = 0�1� � � � �

At the beginning of each period, agents choose individual action zt from
some compact set. We interpret z as (the growth rate of) an individual’s nomi-
nal wage and let xt denote the (growth of the) average nominal wage. Next, the
monetary authority observes the current realization of its private information
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about the state of the economy. This private information θt is an i.i.d., mean 0
random variable with support θ ∈ [θ� θ̄], with a strictly positive density p(θ)
and a distribution function P(θ). Given this private information θt , referred
to as the state, the monetary authority chooses money growth µt in some large
compact set [µ� µ̄].

The monetary authority maximizes a social welfare function R(xt�µt� θt)
that depends on the average nominal wage growth xt , the monetary growth
rate µt , and a privately observed state θt . We interpret θt to be private infor-
mation of the monetary authority regarding the impact of a monetary stimulus
on social welfare in the current period. Throughout, we assume that R is strictly
concave in µ and twice continuously differentiable.

A leading interpretation of the private information in our economy follows
that of Sleet and Yeltekin (2003) and Sleet (2004). Individual agents in the
economy have either heterogeneous preferences or heterogeneous informa-
tion regarding the optimal inflation rate, and the monetary authority sees an
aggregate of that information that the private agents do not see. (Informally,
we imagine this private information takes resources to acquire, so that while
agents in the economy feasibly can acquire the information, the costs involved
in doing so outweigh the benefits.) When we pose our optimal policy prob-
lem as a mechanism design problem, we are presuming that the mechanism
designer is a separate agent with no independent information of its own. We
interpret the society’s objective as a weighted average of the preferences of the
heterogeneous agents.

As a benchmark example, we use the function

R(xt�µt� θt)= −1
2
[(U + xt −µt)

2 + (µt − αθt)
2]�(1)

We interpret (1) as the reduced form that results from a monetary authority
that maximizes a social welfare function that depends on unemployment, in-
flation, and the monetary authority’s private information θ. Each period, infla-
tion πt is equal to the money growth rate µt chosen by the monetary authority.
Unemployment is determined by a Phillips curve. The unemployment rate is
given by

ut =U + xt −µt�(2)

where U is a positive constant, which we interpret as the natural rate of un-
employment. In (1), α is a weight on the private information. Social welfare in
period t is a function of ut and πt and the state θt . Our benchmark example is
derived from a quadratic objective function of the form

−u2
t

2
− (πt − αθt)

2

2
�(3)
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which is similar to that used by Kydland and Prescott (1977) and Barro and
Gordon (1983). Using (2) and πt = µt in (3), we obtain (1). Here the mon-
etary authority’s private information is about the social cost of inflation, but
we develop our model for general specifications of the social welfare func-
tion R(xt�µt� θt) that subsume (1) as a special case. Notice that in our gen-
eral formulation, we allow the current payoff to vary with expected inflation,
through xt ; with actual inflation, through µt ; and with the state θt . This for-
mulation thus subsumes many other versions of the Kydland–Prescott and
Barro–Gordon models in the literature.4

Throughout, a policy for the monetary authority in any given period, de-
noted µ(·), specifies the money growth rate µ(θ) for each level of the state θ.
For any x, we define the static best response to be the policy µ∗(θ;x) that solves
Rµ(x�µ(θ)�θ) = 0. We assume that if x = ∫

µ(θ)p(θ)dθ, then
∫

Rx(x�µ(θ)�θ)p(θ)dθ < 0�(4)

B. Two Ramsey Benchmarks

Before we analyze the economy in which the monetary authority has private
information, we consider two alternative economies. The optimal policies in
these economies are useful as benchmarks for the optimal policy in the private
information economy.

One benchmark, the Ramsey policy, denoted µR(·), yields the highest payoff
that can be achieved in an economy with full information. The gap between
that Ramsey payoff and the payoff in the economy with private information
measures the welfare loss due to private information.

The other benchmark, the expected Ramsey policy, denoted µER, yields the
highest payoff that can be achieved when the policy is restricted to not de-
pend on private information. In our environment, there is no publicly observed
shock to the economy; hence, this policy is a constant. The expected Ramsey
policy is a useful benchmark because it is the best policy that can be achieved
by a rule that specifies policies as a function only of observables. This policy is
analogous to the strict targeting rule discussed by Canzoneri (1985).

For the Ramsey policy benchmark, consider an economy with full infor-
mation with the following timing scheme. Before the state θ is realized, the

4Note that the inflation rate that enters the period t social welfare function is the current in-
flation rate, that from period t − 1 to period t. As has often been noted, this formulation captures
the distortions in a sticky price model with multiple sectors. As the current inflation rate rises
or falls, the prices of goods in sectors that can currently change prices rise or fall relative to the
prices in sectors that cannot. Movements in the current inflation rate thus create resource allo-
cation distortions. Also, for simplicity, our formulation abstracts from direct costs due to future
inflation. One interpretation of this feature is that it captures what happens in the cashless limit
of a sticky price model.
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monetary authority commits to a schedule for money growth rates µ(·). Next,
individual agents choose their nominal wages z with associated average nom-
inal wages x. Then the state θ is realized and the money growth rate µ(θ) is
implemented. The optimal allocations and policies in this economy solve the
Ramsey problem

max
x�µ(·)

∫
R(x�µ(θ)�θ)p(θ)dθ

subject to x = ∫
µ(θ)p(θ)dθ. For our example (1), the Ramsey policy is

µR(θ)= αθ/2. Note that the Ramsey policy has the monetary authority choos-
ing a money growth rate that is increasing in its private information. Thus, with
full information, it is optimal to have the monetary authority fine-tune its pol-
icy to the state of the economy. This feature of the environment leads to a
tension in the economy with private information between allowing the mon-
etary authority discretion for fine tuning and experiencing the resulting time
inconsistency problem.

For the other benchmark, consider an economy in which the monetary au-
thority is restricted to choosing money growth µ that does not vary with its
private information. The equilibrium allocations and policies in the economy
with these constraints solve the expected Ramsey problem

max
x�µ

∫
R(x�µ�θ)p(θ)dθ(5)

subject to x= µ. For our example (1), the expected Ramsey policy is µER = 0.
For our example (1), the Ramsey policy obviously yields strictly higher wel-

fare than does the expected Ramsey policy. More generally, when
Rµθ(x�µ�θ) > 0, the Ramsey policy µR(·) is strictly increasing in θ and yields
strictly higher welfare than does the expected Ramsey policy.

C. The Dynamic Mechanism Design Problem

To analyze the problem of finding the optimal degree of discretion, we use
the tools of dynamic mechanism design. Without loss of generality, we formu-
late the problem as a direct revelation game. In this problem, society specifies
a monetary policy, the money growth rate as a function of the history of the
monetary authority’s reports of its private information about the state of the
economy. Given the specified monetary policy, the monetary authority chooses
a strategy for reporting its private information. Individual agents choose their
wages as functions of the history of reports of the monetary authority.

A monetary policy in this environment is a sequence of functions {µt(ht� θ̂t) |
all ht� θ̂t}∞

t=0, where µt(ht� θ̂t) specifies the money growth rate that will be cho-
sen in period t following the history ht = (θ̂0� θ̂1� � � � � θ̂t−1) of past reports to-
gether with the current report θ̂t . The monetary authority chooses a reporting
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strategy {mt(ht� θt) | all ht , θt}∞
t=0 in period 0, where θt is the current realization

of private information and mt(ht� θt) ∈ [θ� θ̄] is the reported private informa-
tion in t. As is standard, we restrict attention to public strategies, those that
depend only on public histories and the current private information, not on
the history of private information.5 Also, from the Revelation Principle, we
need only restrict attention to truth-telling equilibria, in which mt(ht� θt) = θt

for all ht and θt .
In each period, each agent chooses the action zt as a function of the history

of reports ht . Since agents are competitive, the history need not include either
agents’ individual past actions or the aggregate of their past actions.6

Each agent chooses nominal wage growth equal to expected inflation. For
each history ht , with monetary policy µt(ht� ·) given, agents set zt(ht) equal to
expected inflation,

zt(ht)=
∫

µt(ht� θ)p(θ)dθ�(6)

where we have used the fact that agents expect the monetary authority to
report truthfully, so that mt(ht� θt) = θt . Aggregate wages are defined by
xt(ht)= zt(ht).

The optimal monetary policy maximizes the discounted sum of social wel-
fare,

(1 −β)

∞∑
t=0

∫
βtR

(
xt(ht)�µt(ht� θt)� θt

)
p(θt)dθt�(7)

where the future histories ht are recursively generated from the choice of mon-
etary policy µt(·� ·) in the natural way, starting from the null history. The term
1 − β normalizes the discounted payoffs to be in the same units as the per-
period payoffs.

A perfect Bayesian equilibrium of this revelation game is a monetary policy,
a reporting strategy, a strategy for wage setting by agents {zt(·)}∞

t=0, and aver-
age wages {xt(·)}∞

t=0 such that (6) is satisfied in every period following every
history ht , average wages equal individual wages in that xt(ht) = zt(ht), and
the monetary policy is incentive-compatible in the standard sense that, in every
period, following every history ht and realization of the private information θt ,
the monetary authority prefers to report mt(ht� θt) = θt rather than any other
value θ̂ ∈ [θ� θ̄]. Note that since average wages xt(ht) always equal wages of
individual agents zt(ht), we need only record average wages from now on.

5For a discussion of the large class of environments for which this restriction does not alter the
set of equilibrium payoffs, see Fudenberg and Tirole’s (1991) text.

6For details of why this is true, see the work of Chari and Kehoe (1990).
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Note that this definition of a perfect Bayesian equilibrium includes no no-
tion of optimality for society. Instead, it simply requires that in response to a
given monetary policy, private agents respond optimally and truth-telling for
the monetary authority is incentive-compatible. The set of perfect Bayesian
equilibria outcomes is the set of incentive-compatible outcomes that are im-
plementable by some monetary policy.

The mechanism design problem is to choose a monetary policy, a reporting
strategy, and a strategy for average wages, the outcomes of which maximize
social welfare (7) subject to the constraint that these strategies are incentive-
compatible.

D. A Recursive Formulation

Here we formulate the problem of characterizing the solution to this mech-
anism design problem recursively. The repeated nature of the model implies
that the set of incentive-compatible payoffs that can be obtained from any pe-
riod t on is the same that can be obtained from period 0. Thus, the payoff from
any incentive-compatible outcome for the repeated game can be broken down
into payoffs from current actions for the players and continuation payoffs that
are themselves drawn from the set of incentive-compatible payoffs. Following
this logic, Abreu, Pearce, and Stacchetti (1990) show that the set of incentive-
compatible payoffs can be found using a recursive method that we exploit here.

In our environment, this recursive method is as follows. Consider an oper-
ator on sets of the following form. Let W be some compact subset of the real
line and let w̄ be the largest element of W . The set W may be interpreted as a
candidate set of incentive-compatible levels of social welfare. In our recursive
formulation, the current actions are average wages x and a report θ̂ =m(θ) for
every realized value of the state θ. For each possible report θ̂, there is a cor-
responding continuation payoff w(θ̂) that represents the discounted utility for
the monetary authority from the next period on. Clearly, these continuation
payoffs cannot vary directly with the privately observed state θ.

We say that the actions x and µ(·) and the continuation payoff w(·) are
enforceable by W if

w(θ̂) ∈W for all θ̂ ∈ [θ� θ̄]�(8)

x=
∫

µ(θ)p(θ)dθ�(9)

and the incentive constraints

(1 −β)R(x�µ(θ)�θ)+βw(θ) ≥ (1 −β)R(x�µ(θ̂)� θ)+βw(θ̂)(10)

are satisfied for all θ and all θ̂, where µ(θ) ∈ [µ� µ̄]. Constraint (8) requires that
each continuation payoff w(θ̂) be drawn from the candidate set of incentive-
compatible payoffs W , while constraint (9) requires that average wages equal
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expected inflation. Constraint (10) requires that for each privately observed
state θ, the monetary authority prefers to report the truth θ rather than any
other message θ̂. That is, the monetary authority prefers the money growth
rate µ(θ) and the continuation value w(θ) rather than a money growth rate
µ(θ̂) and its corresponding continuation value w(θ̂).

The payoff corresponding to x�µ(·), and w(·) is

V
(
x�µ(·)�w(·)) =

∫ [
(1 −β)R(x�µ(θ)�θ)+βw(θ)

]
p(θ)dθ�(11)

Define the operator T that maps a set of payoffs W into a new set of payoffs as

T(W ) = {
v | there exist xv�µv(·)�wv(·) enforceable by W�(12)

s.t. v = V
(
xv�µv(·)�wv(·)

)}
�

As demonstrated by Abreu, Pearce, and Stacchetti (1990), the set of incentive-
compatible payoffs is the largest set W that is a fixed point of this operator:

W ∗ = T(W ∗)�(13)

For any given candidate set of incentive-compatible payoffs W , we are in-
terested in finding the largest payoff that is enforceable by W or the largest
element v̄ ∈ T(W ). We find this payoff by solving the problem, termed the best
payoff problem,

v̄ = max
x�µ(θ)�w(θ)

∫ [
(1 −β)R(x�µ(θ)�θ)+βw(θ)

]
p(θ)dθ(14)

subject to the constraint that x�µ(·), and w(·) are enforceable by W , in that
they satisfy (8)–(10). Throughout, we assume that µ(·) is a piecewise, continu-
ously differentiable function.

The best payoff problem is a mechanism design problem of choosing an
incentive-compatible allocation x�µ(·)�w(·) that maximizes utility. Follow-
ing the language of mechanism design, we now refer to θ as the type of the
monetary authority, which changes every period. When we solve this problem
with W = W ∗, (13) implies that the resulting payoff is the highest incentive-
compatible payoff. We will prove our main result in Proposition 1 for any W .
Hence, we will not have to explicitly solve the fixed-point problem of find-
ing W ∗.

Moreover, to prove our main result, we also need focus only on the best
payoff problem, which gives the highest payoff that can be obtained from
period 0 onward. For completeness, however, notice that given some w0(θ)
from the best payoff problem, a period 1 policy and continuation value,
µw0(θ)(·) and ww0(θ)(·), that satisfy

w0(θ)=
∫ [

(1 −β)R(xw0(θ)�µw0(θ)(z)� z)+βww0(θ)(z)
]
p(z)dz(15)



DISCRETION IN MONETARY POLICY 1441

exist by the definition of T . Equation (15) and its analog for other periods are
sometimes referred to as a promise-keeping constraint. In our approach, we do
not need to mention this constraint since it is built into the definition of the
operator T .

2. CHARACTERIZING THE OPTIMAL MECHANISM

Now we solve the best payoff problem and use the solution to characterize
the optimal mechanism. Our main result here is that under two simple condi-
tions, a single-crossing condition and a monotone hazard condition, the opti-
mal mechanism is static. To highlight the importance of the monotone hazard
condition for this result, we discuss in an Appendix three examples that show
that if the monotone hazard condition is violated, the optimal mechanism is
dynamic.

A. Preliminaries

We begin with some definitions. In our recursive formulation, we say that a
mechanism is static if the continuation value w(θ) = w̄ for (almost) all θ. We
say that a mechanism is dynamic if w(θ) < w̄ for some set of θ that is realized
with strictly positive probability.

Our characterization of the solution to the best payoff problem does not
depend on the exact value of β. Hence, to simplify the notation, we suppress
explicit dependence on β and think of the term β as being subsumed in the
w function and 1 −β as being subsumed in the R function.

We assume that the preferences are differentiable and satisfy a standard
single-crossing assumption, that

Rµθ(x�µ�θ) > 0�(A1)

This implies that higher types of monetary authority have a stronger preference
for current inflation. Standard arguments can be used to show that the static
best response µ∗(θ;x) is strictly increasing in θ.

Under the single-crossing assumption (A1), a standard lemma lets us replace
the global incentive constraints (10) with some local versions of them. We say
that an allocation is locally incentive-compatible if it satisfies three conditions:
µ(·) is nondecreasing in θ;

Rµ(x�µ(θ)�θ)
dµ(θ)

dθ
+ dw(θ)

dθ
= 0(16)

wherever dµ(θ)/dθ and dw(θ)/dθ exist; and for any point θi at which these
derivatives do not exist,

lim
θ↗θi

R(x�µ(θ)�θi)+w(θ)= lim
θ↘θi

R(x�µ(θ)�θi)+w(θ)�(17)
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Standard arguments give the following result: under the single-crossing as-
sumption (A1), the allocation (x�µ(·)�w(·)) satisfies the incentive con-
straints (10) if and only if the allocation is locally incentive-compatible. (See,
for example, Fudenberg and Tirole’s (1991) text.)

Given any incentive-compatible allocation, we define the utility of the alloca-
tion at θ to be

U(θ)=R(x�µ(θ)�θ)+w(θ)�

Local incentive-compatibility implies that U(·) is continuous and differentiable
almost everywhere, with derivative U ′(θ) = Rθ(x�µ(θ)�θ). Integrating U ′(·)
from θ up to θ gives that

U(θ)=U(θ)+
∫ θ

θ

Rθ(x�µ(z)� z)dz(18)

while integrating U ′(·) from θ̄ down to θ gives that

U(θ)=U(θ̄)−
∫ θ̄

θ

Rθ(x�µ(z)� z)dz�(19)

With integration by parts, it is easy to show that for interval endpoints θ1 < θ2,
∫ θ2

θ1

U(θ)p(θ)dθ(20)

= P(θ2)U(θ2)− P(θ1)U(θ1)−
∫ θ2

θ1

Rθ(x�µ(θ)�θ)P(θ)dθ�

Using (18) and (20), we can write the value of the objective function∫ θ̄

θ
U(θ)p(θ)dθ as

U(θ)+
∫ θ̄

θ

1 − P(θ)

p(θ)
Rθ(x�µ(θ)�θ)p(θ)dθ or(21)

U(θ̄)−
∫ θ̄

θ

P(θ)

p(θ)
Rθ(x�µ(θ)�θ)p(θ)dθ�

Next we make some joint assumptions on the probability distribution and
the social welfare function. Assume that, for any action profile x�µ(·) with
µ(·) nondecreasing,

1 − P(θ)

p(θ)
Rθµ(x�µ(θ)�θ) is strictly decreasing in θ�(A2a)
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and

P(θ)

p(θ)
Rθµ(x�µ(θ)�θ) is strictly increasing in θ�(A2b)

We refer to assumptions (A2a) and (A2b) together as (A2) and, in a slight
abuse of terminology, call them the monotone hazard condition. In our bench-
mark example (1), Rθµ(x�µ(θ)�θ) = 1, so that (A2) reduces to the standard
monotone hazard condition familiar from the mechanism design literature,
that [1 − P(θ)]/p(θ) be strictly decreasing and P(θ)/p(θ) be strictly increas-
ing.

B. Showing that the Optimal Mechanism Is Static

Here we show that the optimal mechanism is static by proving this proposi-
tion:

PROPOSITION 1: Under assumptions (A1) and (A2), the optimal mechanism
is static.

The approach we take in proving Proposition 1 is different from the stan-
dard approach used by Fudenberg and Tirole (1991, Chapter 7.3) for solving a
mathematically related principal-agent problem. To motivate our approach, we
first show why the standard approach does not work for our problem. We dis-
cuss the forces that lead to the failure of the standard approach here because
these forces suggest a variational argument we use to prove Proposition 1.

The best payoff problem can be written as follows: Choose µ(θ) to maximize
social welfare

U(θ)+
∫ θ̄

θ

1 − P(θ)

p(θ)
Rθ(x�µ(θ)�θ)p(θ)dθ

subject to the constraints that (i) x = ∫
µ(θ)p(θ)dθ, (ii) µ(θ) is nondecreas-

ing, and (iii) the continuation values defined by

w(θ)≡U(θ)+
∫ θ

θ

Rθ(x�µ(z)� z)dz −R(x�µ(θ)�θ)

satisfy w(θ) ≤ w̄ for all θ. Alternatively, we can write the best payoff problem
as choosing µ(θ) to maximize

U(θ̄)−
∫ θ̄

θ

P(θ)

p(θ)
Rθ(x�µ(θ)�θ)p(θ)dθ
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subject to the constraints (i), (ii), and (iii), with the continuation values de-
fined by

w(θ)≡U(θ̄)−
∫ θ̄

θ

Rθ(x�µ(z)� z)dz −R(x�µ(θ)�θ)�

satisfying w(θ)≤ w̄ for all θ.
The standard approach to solving either version of this problem is to guess

that the analogs of constraints (ii) and (iii) do not bind, take the corresponding
first-order conditions of either version to find the implied µ(·), and then verify
that constraints (ii) and (iii) are in fact satisfied at that choice of µ(·). If we take
that approach here, it fails. The first-order conditions with respect to µ(θ) are

1 − P(θ)

p(θ)
Rθµ(x�µ(θ)�θ) = λ(22)

for the first version of the best payoff problem and

−P(θ)

p(θ)
Rθµ(x�µ(θ)�θ)= λ(23)

for the second version, where λ is the Lagrange multiplier on constraint (i).
The solution to these first-order conditions (22) and (23), from the relaxed
problem in which we have dropped constraints (ii) and (iii), implies a decreas-
ing µ(·) schedule. To see why, note, for example, that the left-hand side of
equation (22) is the increment to social welfare from marginally increasing µ(·)
at some particular θ and adjusting the continuation values w(·) for θ′ ≥ θ to
preserve incentive-compatibility, while the right-hand side is the cost in terms
of welfare from raising expected inflation x. Under assumption (A2a), the ben-
efits of raising µ(·) are higher for low values of θ than for high values of θ.
Thus, in the relaxed problem, it is optimal to have a downward sloping µ(·)
schedule. Similar logic applies to (23). Clearly, then, the solution to the re-
laxed problem violates at least one of the dropped constraints (ii) or (iii), and
hence, we cannot use this standard approach.

We also cannot use the ironing approach designed to deal with cases in which
the monotonicity constraint (ii) binds, because in our problem, the constraint
that binds is constraint (iii), which is not dealt with in that approach. Instead, in
the proof of Proposition 1 that follows, we use a variational argument to show
that constraint (iii) binds for all θ at the solution to the best payoff problem.
(We discuss below the reason our model differs from others in the literature.)

Before proving Proposition 1, we sketch our basic argument. Our discus-
sion of the first-order conditions of the relaxed problem (22) and (23) suggests
that, given any strictly increasing µ(·) schedule, a variation that flattens this
schedule will improve welfare if it is feasible in the sense that the associated
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continuation value satisfies constraint (iii). Our proof of Lemma 1 formalizes
this logic.

Our objective is to show that the optimal continuation value w(·) is constant
at w̄. We prove this by contradiction. We start with the observation that w(·) is
piecewise differentiable since µ(·) is piecewise differentiable and (16) holds.
We first show that w(·) must be a step function. If not, there is some interval
over which w′(θ) is nonzero and, hence, from local incentive-compatibility,
µ(·) is strictly increasing. In Lemma 2, we show that a variation that flat-
tens µ(·) over that interval is feasible. From Lemma 1, we know it is welfare-
improving.

We next show that w(·) must be continuous, and since it is a step function,
it must be constant. We prove this by showing that if either µ(·) or w(·) is
discontinuous at some point θ, then (17) implies that µ(·) must be increasing
in the sense that it jumps up at that point. In Lemma 3, we show that a variation
that flattens µ(·) in a neighborhood of that point is feasible, and again from
Lemma 1, we know that it is welfare-improving.

It is convenient in the proof of Proposition 1 to use a definition of increasing
on an interval that covers the cases we will deal with in Lemmas 2 and 3. This
definition subsumes the case of Lemma 2 in which dµ(θ)/dθ > 0 for some
interval and the case of Lemma 3 in which µ(·) jumps up at θ̃. We say that
µ(·) is increasing on (θ1� θ2) if µ(·) is weakly increasing on this interval and
there is some θ̃ in this interval such that µ(θ) < µ̃ for θ < θ̃ and µ(θ) > µ̃ for
θ > θ̃, where µ̃ is the conditional mean of µ(·) on this interval, namely,

µ̃=
∫ θ2
θ1

µ(θ)p(θ)dθ

P(θ2)− P(θ1)
�(24)

In words, on this interval, the function µ(·) is weakly increasing and is strictly
below its conditional mean µ̃ up to θ̃ and strictly above its conditional mean af-
ter θ̃.7 Throughout, we will also say that the policy µ(·) is flat at some particular
point θ if the derivative µ′(θ) exists and equals zero at that point.

Consider now some dynamic mechanism (x�µ(·)�w(·)) in which the policy
µ(·) is increasing on some interval, say, (θ1� θ2). In our variation, we marginally
move the function µ(·) toward its conditional mean on this interval and adjust
the continuation values to preserve incentive-compatibility. In particular, our
variation moves our original policy µ(·) marginally toward a policy µ̃(·) de-
fined by

µ̃(θ)=
{
µ̃� if θ ∈ (θ1� θ2),
µ(θ)� otherwise.

(25)

7Note that this definition of increasing is stronger than the definition of a function weakly in-
creasing on an interval because our definition rules out a function that is constant over the inter-
val. However, our definition is weaker than the definition of a function strictly increasing over an
interval because ours allows for subintervals over which µ(·) is constant.
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This policy µ̃(·) differs from the original policy µ(·) only on the interval
(θ1� θ2), and there the original policy µ(·) is replaced by the conditional
mean µ̃ of the original policy over the interval. Clearly, the expected inflation
under µ̃(·) is the same as the expected inflation under the original policy.

We let (x(a)�µ(·;a)�w(·;a)) and U(·;a) denote our variation and the asso-
ciated utility. The policy µ(·;a) in our variation is a convex combination of the
policy µ̃(·) and the original policy µ(·), and is defined by

µ(θ;a)= aµ̃(θ)+ (1 − a)µ(θ)(26)

for a ∈ [0�1]. (For a graph of µ(·;a), see Figure 1.) Clearly, the expected
inflation in our variation x̃(a) equals that of the original allocation x for all
a ∈ [0�1].

The delicate part of the variation is to construct the continuation value
w(·;a) so as to satisfy the feasibility constraint w(θ;a) ≤ w̄ for all θ, in addi-
tion to incentive-compatibility. It turns out that we can ensure feasibility if we
use one of two ways to adjust continuation values. In the up variation, we leave
the continuation values unchanged below θ1 and pass up any changes induced
by our variation in the policy to higher types by suitably adjusting the continua-
tion values to maintain incentive-compatibility. In the down variation, we leave

FIGURE 1.—A welfare-improving policy variation.
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the continuation values unchanged above θ2 and pass down any changes in-
duced by our variation in the policy to lower types by suitably adjusting the
continuation values to maintain incentive-compatibility.

In the up variation, we determine the continuation values by substituting
U(θ;a) =R(x�µ(θ;a)�θ)+w(θ;a) into (18) to get that w(θ;a) is defined by

w(θ;a)=U(θ)+
∫ θ

θ

Rθ(x�µ(z;a)� z)dz −R(x�µ(θ;a)�θ)�(27)

In the down variation, we use (19) in a similar way to get that w(θ;a) is de-
fined by

w(θ;a)=U(θ̄)−
∫ θ̄

θ

Rθ(x�µ(z;a)� z)dz −R(x�µ(θ;a)�θ)�(28)

By construction, these variations are incentive-compatible. In the following
lemma, we show that, if either variation is feasible, it improves welfare.

LEMMA 1: Assume (A1) and (A2), and let (x�µ(·)�w(·)) be an allocation in
which µ(·) is increasing on some interval (θ1� θ2). Then the up variation and the
down variation both improve welfare by increasing the objective function (21).

PROOF: To see that the up variation improves welfare, use (21) to write the
value of the objective function under this variation as

V (a) =U(θ)+
∫ θ̄

θ

1 − P(θ)

p(θ)
Rθ

(
x�aµ̃(θ)+ (1 − a)µ(θ)�θ

)
p(θ)dθ�(29)

To evaluate the effect on welfare of a marginal change of this type, take the
derivative of Ṽ (a) and evaluate it at a= 0 to get

dV (0)
da

=
∫ θ̄

θ

1 − P(θ)

p(θ)
Rθµ(x�µ(θ)�θ)[µ̃(θ)−µ(θ)]p(θ)dθ�(30)

which, with the form of µ̃(·), reduces to

dV (0)
da

=
∫ θ2

θ1

1 − P(θ)

p(θ)
Rθµ(x�µ(θ)�θ)[µ̃−µ(θ)]p(θ)dθ�(31)

If we divide (31) by the positive constant P(θ2) − P(θ1), then we can in-
terpret (31) to be the expectation of the product of two functions, namely,
f (θ) defined as [1 −P(θ)]Rθµ(x�µ(θ)�θ)/p(θ) and g(θ) defined as µ̃−µ(θ),
where p(θ)/[P(θ2) − P(θ1)] is the density of θ over the interval (θ1� θ2). By
assumption (A2a), we know that the function f is strictly decreasing. Be-
cause the function µ(θ) is increasing on the interval (θ1� θ2), the function
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g is decreasing on this interval in the sense that g(θ) is weakly decreasing
and lies strictly below its conditional mean for θ < θ̃ and strictly above its
conditional mean for θ > θ̃� By the definition of a covariance, we know that
Efg = cov(f�g)+ (Ef )(Eg), where the expectation is taken with respect to the
density p(θ)/[P(θ2) − P(θ1)]. By the construction of µ̃ in (24), we know that
Eg = 0, so that Efg = cov(f�g), which is clearly positive because f is strictly
decreasing and g is decreasing on the interval (θ1� θ2). Thus, (31) is strictly
positive and the variation improves welfare.

The down variation also improves welfare. The value of the objective func-
tion under this variation is

V (a)= U(θ̄)−
∫ θ̄

θ

P(θ)

p(θ)
Rθ

(
x�aµ̃(θ)+ (1 − a)µ(θ)�θ

)
p(θ)dθ�

Hence,

dV (0)
da

=
∫ θ2

θ1

P(θ)

p(θ)
Rθµ(x�µ(θ)�θ)[µ(θ)− µ̃]p(θ)dθ > 0(32)

by arguments similar to those given before. Q.E.D.

To gain some intuition for how these variations improve welfare, we begin by
emphasizing a critical insight: changing the inflation for any given type not only
has direct effects on the welfare of that type, but also has indirect effects on the
welfare of other types through the incentive constraints. For example, making
a given type better off not only helps that type, but also makes that type less
tempted to mimic higher types. Thus, the continuation values of those higher
types can then be increased, if that is feasible, as in the up variation. In that
variation, the term 1−P(θ)

p(θ)
measures the importance of higher types 1 − P(θ)

relative to the rate at which changing µ(θ) affects expected inflation as mea-
sured by p(θ). When continuation values are adjusted for types below a given
type θ (as in the down variation)� the term P(θ)

p(θ)
measures the importance of

lower types P(θ) relative to p(θ). In each variation, the term Rθµ(x�µ(θ)�θ)
relates to the rate at which changing inflation for type θ relaxes incentive con-
straints.

Using these ideas, let us now focus on the up variation and consider the ef-
fects of increasing a as formalized in (31). The variation affects inflation within
the interval (θ1� θ2), and the expression inside the integral represents, for each
θ ∈ (θ1� θ2), the direct and indirect effects of changing inflation for type θ. We
now argue that the flattening of the inflation schedule has a positive effect for
a type in the bottom part of the interval, namely, for some θ′ ∈ (θ1� θ̃), due to
an increase in the inflation, which in turn relaxes the incentive constraint for θ′

and enables the continuation value w(θ′) to increase. This also creates a posi-
tive indirect effect for all types θ > θ′, since the increase in continuation values
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can be passed upward without violating incentive constraints. In contrast, for
a type in the top part of the interval, namely, for some θ′′ ∈ (θ̃� θ2), the flat-
tening of the inflation schedule has a negative effect, an effect that is passed
on through the incentive constraints in the form of lower continuation values
for all types θ > θ′′. Our monotone hazard rate assumption (A2a) ensures that
the positive effect outweighs the negative effect: when appropriately normal-
ized, help to lower types is more important than harm to higher types, because
relative to θ′′, type θ′ < θ′′ exerts greater indirect effects on types above θ′.

More formally, let us derive expressions for the impact of the flattening of
the policy on the current payoffs R of the directly affected types on (θ1� θ2) as
well as the continuation values w of directly and indirectly affected types. The
impact of increasing a on the current payoff for type θ ∈ (θ1� θ2) is

Rµ(x�µ(θ)�θ)[µ̃(θ)−µ(θ)]�
while the impact on R is zero outside (θ1� θ2). In the up variation, the impact
of increasing a on the continuation value for a type θ is

dw̃(θ;0)
da

=
∫ θ

θ

Rθµ(x�µ(z)� z)[µ̃(z)−µ(z)]dz(33)

−Rµ(x�µ(θ)�θ)[µ̃(θ)−µ(θ)]�
Hence, the impact on the utility of type θ is simply the sum of these pieces or

dŨ(θ;0)
da

=
∫ θ

θ

Rθµ(x�µ(z)� z)[µ̃(z)−µ(z)]dz�(34)

Notice from (34) that any change in the policy for some particular type z has
an indirect effect (through the incentive constraints) on the utility of all types θ
above z. Thus, each term

[1 − P(z)]Rθµ(x�µ(z)� z)[µ̃(z)−µ(z)](35)

in the integral (30) can be thought of as the sum of the change in welfare for
all types z and above resulting from the change in the inflation schedule for
the type z. Under our single-crossing assumption, Rθµ(x�µ(θ)�θ) > 0, so the
impact of changing the policy at θ depends on the sign of µ̃(θ)−µ(θ). On the
interval (θ1� θ2)� µ̃(θ)= µ̃, where µ̃ is the conditional mean on this interval. By
definition of the type θ̃, on the interval (θ1� θ̃), µ̃−µ(θ) > 0, and on the inter-
val (θ̃� θ2), µ̃−µ(θ) < 0� Under assumption (A2a), it is more beneficial to help
lower types and hurt higher types once the cross-type externalities generated
by the incentive constraints are accounted for.

In the down variation, the intuition for the derivative (32) is the same as
that for (31), except that, in this variation, a change in the inflation rate cho-
sen by type θ affects the continuation value of all types below θ. Making a
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type θ′′ ∈ (θ̃� θ2) at the top of the interval worse off (by flattening the inflation
schedule) leaves nearby types less tempted to mimic θ2; thus, the continuation
value for θ2 can be increased without inducing mimicry, and this increase can
be passed on to all types θ < θ2. Making a type θ′ ∈ (θ1� θ̃) at the bottom of
the interval better off necessitates a lower continuation value for θ1 to deter
mimicry by nearby types, and again this decrease is passed on to types θ < θ1.
Condition (A2b) ensures that, when weighted by the effects on average infla-
tion, the indirect effect generated by θ′′ dominates that generated by θ′ < θ′′,
so that flattening the schedule increases expected welfare.

The following lemma proves that if w(·) is not a step function, then µ(·) is
increasing on some interval, and there is a feasible variation that flattens µ(·)
and improves welfare.

LEMMA 2: Under (A1) and (A2), in the optimal mechanism, the continuation
value function w(·) is a step function.

PROOF: Since by assumption µ(·) is piecewise differentiable, we know
from (16) that w(·) is too. By way of contradiction, assume that w(·) is not
a step function. Then there is an interval over which w′(θ) exists and does not
equal zero. Clearly, then, there is a subinterval (θ1� θ2) over which w′(θ) is
either strictly positive or strictly negative, and w(θ) ≤ w̄ − ε for some ε > 0.
From local incentive-compatibility, we know that

Rµ(x�µ(θ)�θ)
dµ(θ)

dθ
+ dw(θ)

dθ
= 0;

so regardless of the sign of w′(θ), we have that µ′(θ) > 0 on this inter-
val. Hence, µ(·) is increasing on (θ1� θ2) in the sense defined above. From
Lemma 1, we know that if the up and down variations are feasible, then they
both improve welfare.

To complete the proof, we show that either the up variation or the down
variation is always feasible. Under the up variation, (26) and (27) imply that
w(θ;a) equals w(θ) for θ ≤ θ1 and w(θ)+∆(a) for θ ≥ θ2, where

∆(a)≡
∫ θ2

θ1

[Rθ(x�µ(z;a)� z)−Rθ(x�µ(z)� z)]dz�(36)

Figure 2 is a graph of w(θ;a) in the up variation. This graph illustrates sev-
eral features of w(θ;a): it coincides with w(θ) for θ ≤ θ1, it differs from w(θ)
by the constant ∆(a) for θ ≥ θ2, and it jumps at both θ1 and θ2. This last feature
follows from (17) and the fact that µ(θ;a) jumps at these points. Notice in the
graph that w(θ)≤ w̄ − ε for θ ∈ (θ1� θ2).

Under the down variation, (26) and (28) imply that w(θ;a) equals

w(θ)−∆(a)(37)
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FIGURE 2.—The continuation value function: the up variation.

for θ ≤ θ1 and equals w(θ) for θ ≥ θ2. Figure 3 is a graph of w(θ;a) in the
down variation.

To ensure that the continuation value satisfies feasibility, we use the up varia-
tion when the term ∆(a)≤ 0 and the down variation when that term is positive.
By doing so, we ensure that outside the interval (θ1� θ2) the continuation value
under this variation is no larger than the original continuation value w(θ),
which, by assumption, is feasible. We know that inside the interval (θ1� θ2),
w(θ) ≤ w̄ − ε. Since R is continuous in µ, we can choose a small enough to
ensure that w(θ;a) ≤ w̄. Q.E.D.

In the next lemma, we show that µ(·) and w(·) are continuous. Since we
know from Lemma 2 that w(·) is a step function, we conclude that w(·) is a
constant. Optimality implies that this constant is w̄.

LEMMA 3: Under (A1) and (A2), µ(·) and w(·) are continuous.

In Appendix A, we prove that w(·) is continuous by contradiction. We show
that if w(·) jumps at some point θ̃, then the same up variation and down vari-
ation we used in Lemma 1 will improve welfare. The only difficult part of the
proof is showing that when the appropriate interval (θ1� θ2) is selected that
contains the jump point θ̃, the associated continuation values are feasible. Here
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FIGURE 3.—The continuation value function: the down variation.

it may turn out that the feasibility constraint binds inside the interval (θ1� θ2),
in that the original allocation has w(θ) = w̄ for some θ in (θ1� θ2). Thus, we
cannot simply shrink the size of the weight a in the variation to ensure feasi-
bility on (θ1� θ2), as we did in the proof of Lemma 2. Instead we show that the
variation is feasible inside the interval (θ1� θ2) with arguments that we relegate
to Appendix A.

Together Lemmas 2 and 3 establish Proposition 1, that under our assump-
tions, the optimal mechanism is static. Our characterization of optimal pol-
icy relied on the monotone hazard condition (A2). Under this condition, we
showed that the dynamic mechanism design problem has a static solution.
In Appendix B, we give three simple examples in which the monotone haz-
ard condition (A2) is violated and the dynamic mechanism design problem
does not have a static solution. In the first two examples, (A2) fails because
[1 − P(θ)]/p(θ) is not monotone; in the third, (A2) fails because Rµθ is in-
creasing at a sufficiently rapid rate.

3. THE OPTIMAL DEGREE OF DISCRETION

So far we have demonstrated that the optimal mechanism is static. Now we
describe three key implications of an optimal static mechanism for monetary
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policy: The optimal policy has either bounded discretion or no discretion; the
optimal policy can be implemented by society setting an upper limit, or cap,
on the inflation rate that the monetary authority is allowed to choose; and the
optimal degree of discretion is decreasing the more severe is the time inconsis-
tency problem and the less important is private information.

A. Characterizing the Optimal Policy

In the optimal static mechanism, the monetary policy µ(·) maximizes
∫

R(x�µ(θ)�θ)p(θ)dθ(38)

subject to the constraints that x = ∫
µ(θ)p(θ)dθ and R(x�µ(θ)�θ) ≥

R(x�µ(θ̂)� θ) for all θ� θ̂.
We say that a monetary policy µ(·) has bounded discretion if it takes the form

µ(θ)=
{
µ∗(θ;x)� if θ ∈ [θ�θ∗),
µ∗ = µ∗(θ∗�x)� if θ ∈ [θ∗� θ̄],(39)

where µ∗(θ;x) is the static best response given wages x = ∫
µ(θ)p(θ)dθ.

Thus, for θ < θ∗� the monetary authority chooses the static best response, and
for θ ≥ θ∗, the monetary authority chooses the upper limit µ∗. A policy has no
discretion if µ(θ) = µ for some constant µ, so that regardless of θ, the mon-
etary authority chooses the same growth rate. Clearly, the best policy with no
discretion is the expected Ramsey policy.8

We now show that the optimal policy has either bounded discretion or no dis-
cretion. Here, as before, we can replace the global incentive constraint in (38)
with the local incentive constraints, with the restriction that w(θ) = w̄. In par-
ticular, Lemma 3 implies that µ(·) is continuous, while (16), the condition that
Rµ dµ/dθ = 0, implies that for all θ, µ(θ) is either flat or equal to the static
best response. Clearly, if µ(·) is flat everywhere, it is a constant; hence, it equals
the expected Ramsey policy, which by definition is the best constant policy. If
µ(·) is not flat everywhere, then it must be of the form for some θ1 and θ2,

µ(θ)=


µ1 = µ∗(θ1;x)� if θ ∈ [θ�θ1),
µ∗(θ;x)� if θ ∈ [θ1� θ2],
µ2 = µ∗(θ2;x)� if θ ∈ (θ2� θ̄],

(40)

8Note that the best policy with no discretion, the expected Ramsey policy, will not typically be
a special case of a policy with bounded discretion. Specifically, when θ∗ = θ, the form (39) yields
one particular policy with no discretion: µ(θ) = µ∗(θ;x) for all θ. However, this policy does not
typically coincide with the expected Ramsey policy µER since the best response of the lowest type
is not typically the expected Ramsey policy.
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where x = ∫
µ(θ)p(θ)dθ. In words, the policy must be constant up to some

point θ1 ≥ θ and equal to the static best response of type θ1; it must be equal
to the static best response of type θ ∈ [θ1� θ2] with θ2 ≤ θ̄; and then it must be
constant and equal to the static best response of type θ2.

In the following proposition, we show that if the optimal policy is not the
expected Ramsey policy, then it must be of the form (40) with θ1 equal to θ, so
that the policy’s form reduces to the bounded discretion form (39).

PROPOSITION 2: Under assumptions (A1) and (A2), the optimal policy µ(·)
has either bounded discretion or no discretion.

PROOF: We have argued that if the optimal policy is constant, then it must
be an expected Ramsey policy, which has no discretion. If the optimal pol-
icy is not constant, then it must be of the form (40). However, µ(θ) having
the form (40) with θ1 > θ cannot be optimal. To see this, observe that an al-
ternative policy µ̃(θ) of the same form would exist with θ̃1 < θ1 and θ̃2 = θ2.
We illustrate this alternative policy in Figure 4. This alternative policy µ̃(θ)
would be closer to µ∗(θ�x) wherever it differs from µ(θ) and would satisfy∫
µ̃(θ)p(θ)dθ <

∫
µ(θ)p(θ)dθ = x. Hence, this alternative policy µ̃(θ) would

be strictly preferred to µ(θ); the change from µ(θ) to µ̃(θ) directly improves
welfare for all types θ < θ1, with x held fixed. The change also reduces x,
which by (4) contributes to improving total welfare. More formally, observe
that the marginal impact on welfare of a marginal reduction in θ1 is given by dṼ

FIGURE 4.—An alternative welfare-improving policy variation.
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equal to
∫ θ1

θ

[
Rµ(x�µ

∗(θ1;x)�θ)∂µ
∗(θ1;x)
∂θ

�θ1

]
p(θ)dθ

+
∫ θ̄

θ

[
Rx(x�µ(θ)�θ)�x

]
p(θ)dθ�

which is positive since Rµ(x�µ
∗(θ1;x)�θ) < 0, ∂µ∗(θ1;x)/∂θ > 0, �θ1 < 0,

�x< 0, and (4). Q.E.D.

B. Implementing Optimal Policy with an Inflation Cap
or a Range of Inflation Rates

We have characterized the solution to a dynamic mechanism design prob-
lem. We now imagine implementing the resulting outcome with an inflation
cap, a highest allowable level of inflation π̄. We imagine that society legislates
this highest allowable level and that doing so restricts the monetary author-
ity’s choices to be µt ≤ π̄. If this cap is appropriately set and agents simply
play the repeated one-shot equilibrium of the resulting game with this infla-
tion cap, then the monetary authority will optimally choose the outcome of the
mechanism design problem. In this sense, the repeated one-shot game with an
inflation cap implements the policy that solves the best payoff problem.

The intuition for this result—that a policy with either bounded discretion
or no discretion can be implemented by setting an upper limit on permissi-
ble inflation rates—is simple. In our environment, the only potentially benefi-
cial deviations from either type of policy are ones that raise inflation. Under
bounded discretion, the types in [θ�θ∗] are choosing their static best response
to wages and, hence, have no incentive to deviate, whereas the types in (θ∗� θ̄]
have an incentive to deviate to a higher rate than π̄� Similarly, from Proposi-
tion 3 (stated and proved below), we know that if the expected Ramsey policy
is optimal, then at this policy all types have an incentive to deviate to higher
rates of inflation. Hence, an inflation cap of π̄ = µER implements such a policy.
(For completeness, we formalize this argument in Appendix C.)

Clearly, we can also implement the optimal policy with a range of inflation
rates denoted [π� π̄]. The top end of such a range is the inflation cap, π̄, just
discussed. The bottom end of the range, π, is simply the optimal policy cho-
sen by the lowest type θ in the optimal static mechanism. Under a policy of
bounded discretion, π < π̄, while under a policy of no discretion, π = π̄.

C. Linking Discretion with Time Inconsistency and Private Information

So far we have shown that the optimal policy has either bounded discre-
tion or no discretion, and we have discussed how to implement such a policy.
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Here we link the optimal degree of discretion to the severity of the time in-
consistency problem and the importance of private information. We show that
the optimal degree of discretion shrinks as the time inconsistency problem be-
comes more severe and private information becomes less important.

The literature using general equilibrium models to study optimal monetary
policies suggests a qualitative way to measure the severity of the time incon-
sistency problem. In most of this literature, the time inconsistency problem is
extremely severe, in that the static Nash equilibrium is always at the highest
feasible inflation rate µ̄. This result follows because the static best response
of the monetary authority to any given level of expected inflation is always
above that level; thus, the monetary authority is always tempted to generate
a monetary surprise. Examples of the models with the more severe problems
are those of Ireland (1997), Chari, Christiano, and Eichenbaum (1998), and
Sleet (2001). In the rest of the literature, the problem is less severe, in that the
static Nash equilibrium is interior. Examples of the models with the less severe
problems are those of Chang (1998), Nicolini (1998), and Albanesi, Chari, and
Christiano (2003).

In our reduced-form model, we can mimic the general equilibrium mod-
els with the more severe problems by choosing a payoff function R for which
Rµ(x�x�θ) > 0 for all θ. That is, in response to any choice of wages x, the
monetary authority wants to choose inflation higher than x, regardless of its
type. Under (A1), this condition is equivalent to requiring that the static best
response function satisfies µ∗(θ�x) ≥ x for all x ∈ [µ, µ̄]. We show in the next
proposition that this condition implies that the optimal policy has no discre-
tion.

We can mimic the general equilibrium models with less severe problems by
choosing a payoff function R for which the static Nash equilibrium best re-
sponse is interior. For such a payoff function, the optimal policy will typically
depend on parameters. When the time inconsistency problem is sufficiently
mild, however, we can show a general result: that optimal policy must have
bounded discretion. Here, by mild, we mean that when wages are set at the
expected Ramsey level, the lowest type wants to set inflation at some level
lower than the expected Ramsey level. Technically, we can state this condition
as that the static best response satisfies µ∗(θ�µER) < µER or, equivalently, that
the payoff function satisfies Rµ(µ

ER�µER� θ) < 0.
We summarize this discussion in a proposition:

PROPOSITION 3: Assume (A1) and (A2). Two cases follow: (i) if the static best
response satisfies µ∗(θ�x) ≥ x for all x ∈ [µ� µ̄], then the optimal policy has no
discretion, and (ii) if the static best response satisfies µ∗(θ�µER) < µER, then the
optimal policy has bounded discretion.
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PROOF: Under (A1) and (A2), the optimal mechanism is static. To prove (i),
note that in any equilibrium with bounded discretion,

x=
∫ θ∗

θ

µ∗(θ�x)p(θ)dθ+ [1 − P(θ∗)]µ∗(θ∗�x)�(41)

Under (A1), µ∗(θ�x) is strictly increasing in θ whenever µ∗(θ�x) < µ̄. Thus,
µ∗(θ�x) ≥ x for all x ∈ [µ, µ̄] implies that whenever θ∗ > θ, the right-hand
side of (41) is greater than the left-hand side for any x < µ̄. The only feasible
policies of the bounded discretion form must have θ∗ = θ or x= µ̄ and, hence,
reduce to policies with no discretion. The optimal policy with no discretion, the
expected Ramsey policy, by definition yields higher welfare.

We prove (ii) by contradiction. Assume that µ∗(θ�µER) < µER, but that the
optimal policy has no discretion. The variation used in Proposition 2 imme-
diately implies that such a policy cannot be optimal. Thus, the optimal policy
must have bounded discretion. Q.E.D.

In Proposition 3 we have characterized the form of the optimal policy for
two cases for which this can be done independently of parameters. To charac-
terize the optimal policy in the remaining case (iii) in which µ∗(θ�µER) > µER

but there exists an x such that µ∗(θ�x) < x, we return to our benchmark ex-
ample (1).

In general, the choice of the optimal inflation cap depends on the impor-
tance of private information relative to the severity of the time inconsistency
problem. In our benchmark example, the parameter α indexes the importance
of private information and the parameter U indexes the severity of the time
inconsistency problem. To see why α indexes the importance of private infor-
mation, note that the Ramsey policy is µR(θ) = αθ/2, so that the slope of the
policy increases with α. Hence, as α increases, the Ramsey policy responds
more to the private information θ, and the gap in welfare between the Ram-
sey policy and the expected Ramsey policy grows. To see why U indexes the
severity of the time inconsistency problem, note that the Nash inflation rate is
xN = U and the Nash policies are µ∗(θ;U)= U +αθ/2. The Ramsey inflation
rate is xR = 0 and the Ramsey policies are µR(θ)= αθ/2. Thus, for each type θ,
the Nash policies are simply the Ramsey policies shifted up by U . As U gets
smaller, the Nash policies converge to the Ramsey policies. When U is zero,
the Nash and Ramsey policies coincide.

When the objective function satisfies (1), the condition µ∗(θ;µER) < µER in
Proposition 3 reduces to U/α < −θ, where θ is a negative number. Proposi-
tion 3 thus implies that bounded discretion is optimal when private informa-
tion is important relative to the severity of the time inconsistency problem. We
characterize the optimal mechanism in the benchmark case more fully in the
next proposition, to get a more precise link between the severity of the time
inconsistency problem and the optimal degree of discretion.
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FIGURE 5.—Optimal discretion with different severity of time inconsistency problems and im-
portance of private information (UH >UL).

For policies of the bounded discretion form (39), we think of θ∗ as indexing
the degree of discretion. If θ∗ = θ̄, then all types θ are on their static best
responses; hence, we say there is complete discretion. As θ∗ decreases, fewer
types are on their static best responses; hence, we say there is less discretion.
We then have this proposition:

PROPOSITION 4: Assume (1), (A1), and (A2a). If U/α = 0, then the optimal
policy has complete discretion. If U/α ∈ (0�−θ), then that policy has bounded
discretion with θ∗ < θ̄. The optimal degree of discretion θ∗ is decreasing in U/α.
As U/α approaches −θ, the cutoff θ∗ approaches θ . If U/α ≥ −θ, then the opti-
mal policy is the expected Ramsey policy with no discretion.

We prove this proposition in Appendix D. Figure 5 illustrates the proposi-
tion for two economies with different degrees of relative importance of private
information and severity of time inconsistency problems, (U/α)H > (U/α)L.
In these two economies, we denote the optimal policies by µH(·) indexed by
θ∗
H and µL(·) indexed by θ∗

L, along with the inflation caps π̄H and π̄L.

4. COMPARISON TO THE LITERATURE

Our result on the optimality of a static mechanism is quite different from
what is typically found in dynamic contracting problems, that static mecha-
nisms are not optimal. Using a recursive approach, we have shown how our dy-
namic mechanism design problem reduces to a simple quasilinear mechanism
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design problem. Our result is thus also directly comparable to the large liter-
ature on mechanism design with broad applications, including those in indus-
trial organization, public finance, and auctions. (See Fudenberg and Tirole’s
(1991) book for an introduction to mechanism design and its applications.)
In this comparison, the continuation values in our framework correspond to
the contractual compensation to the agent in the mechanism design literature.
Our result that the optimal mechanism is static, so that the continuation values
do not vary with type, stands in contrast to the standard result in the mecha-
nism design literature that under the optimal contract, the compensation to the
agent varies with the agent’s type. In this sense, our result is also quite different
from what is found in the mechanism design literature.

The key feature of our model that distinguishes it from much of the dynamic
incentive literature is the feasibility constraint

w(θ)≤ w̄�(42)

The implication of this constraint is that in our model the continuation values
of one type cannot be traded off against other types as they can be in many
other models. To highlight the importance of this constraint, we consider a
highly stylized example in Appendix E that replaces the constraint (42) with

∫
w(θ)p(θ)dθ ≤ w̄(43)

and we show that the resulting optimal value of w then differs radically from
our result: the optimal value of w then varies with θ. In providing incentives
under (43), a low continuation value for one type can be traded off against a
high continuation value for another. This feature is common in a wide variety
of incentive problems, and in them, the optimal incentive scheme has w(θ)
varying with the type θ. In contrast, when providing incentives under (42), this
trade-off cannot be made: a low value of w(θ) for one type does not let us
raise the value of w(θ) for some other type. Hence, under (42), using w(θ) to
provide incentives is akin to burning money.

A large class of dynamic incentive models include a feature like (43); they
might usefully be thought of as debt models. Early versions of these include the
private debt models of Green (1987), Thomas and Worrall (1990), Atkeson
(1991), and Atkeson and Lucas (1992, 1995), while later versions include the
government debt models of Sleet and Yeltekin (2003) and Sleet (2004). All of
these models share the feature that optimal contracts are dynamic, because in
each of these settings a low continuation for one type can be traded off against
a high continuation value for another type. In this sense, the debt models share
many of the features of models with constraints of the form (43) rather than
those with constraints of the form (42).

Having a constraint like (42) rather than (43) is important for our result that
the optimal mechanism is static, but it is not sufficient, for at least two reasons.
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First, even in our model, we have given examples in which the optimal mech-
anism is dynamic when our monotone hazard condition is violated. Second,
the information structure also matters. In our model, private agents receive
no direct information about the state of the economy. If private agents receive
a noisy signal about the state before the monetary authority takes its action,
then our result goes through pretty much unchanged; the noisy signal is just a
publicly observed variable upon which the inflation cap is conditioned. If, how-
ever, private agents receive a noisy signal about the information the monetary
authority received after the monetary authority takes its action, then dynamic
mechanisms in which continuation values vary with this signal may be optimal.

Sleet (2001) considers such an information structure and shows that the op-
timality of the dynamic mechanism depends on the parameters governing the
noise. He finds that when the public signal about the monetary authority’s in-
formation is sufficiently noisy, having the monetary authority’s action depend
on its private information is not optimal; hence, the optimal mechanism is sta-
tic. In contrast, when this public signal is sufficiently precise, the optimal mech-
anism is dynamic. The logic of why a dynamic mechanism is optimal is roughly
similar to that in the literature of industrial organization that follows Green
and Porter (1984) on optimal collusive agreements that are supported by pe-
riodic reversion to price wars, even though these price wars lower all firms’
profits.

Also related to our paper is the one by Amador, Werning, and Angele-
tos (2004). In it they consider a two-period single-agent problem with pref-
erences that change between periods 1 and 2, as in Strotz (1955). A standard
parable in the early literature used to motivate that problem is that of a single
agent stranded on a raft who must decide how quickly to drink a fixed amount
of water. Their problem can be written as

max
∫ [

θU(c1(θ))+ V (c2(θ))
]
p(θ)dθ(44)

subject to the incentive constraints and resource constraints for the first and
second periods.

θ

β
U(c1(θ))+ V (c2(θ)) ≥ θ

β
U(c1(θ̂))+ V (c2(θ̂)) for all θ� θ̂�(45)

c1(θ)+ c2(θ) ≤ y�(46)

These authors find conditions under which (46) binds with equality and c1(·) is
constrained by an upper and a lower limit. Examination of (46) makes it clear
that this problem is literally that of a single agent in isolation from society. If
we embedded this agent into a society with other such agents, the resource
constraint (46) would become∫

[c1(θ)+ c2(θ)]p(θ)dθ ≤ y�(47)
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Here would occur the standard trade-off between incentives and insurance,
and lifetime consumption c1(θ)+ c2(θ) would vary with type.

Their paper is quite different technically from ours. To see this, compare
their key assumption (A) to our assumption (A2). Their assumption uses the
parameter β, which measures the difference in the objective function between
the “principal” and the “agent” in a critical way. If they set β = 1, so that
the objective functions agreed, there would be no incentive problem. In our
paper the divergence in incentives arises from subtle timing issues. Since the
monetary authority (the agent) maximizes the same objective function as that
of society (the principal), the divergence in incentives comes not because the
primitive objective functions differ, but rather because the monetary authority,
when making its decisions, takes as a state variable the wages set by agents
while society does not.

Our work here is also related to some of the repeated game literature in
industrial organization about supporting collusion in oligopolies. Athey and
Bagwell (2001) and Athey, Bagwell, and Sanchirico (2004) solve for the best
trigger strategy-type equilibria in games with hidden information about cost
types. Athey and Bagwell (2001) show that, in general, the best equilibrium is
dynamic (nonstationary). In this equilibrium, a firm that sets low prices gets a
lower discounted value of profits from then on. Athey, Bagwell, and Sanchirico
(2004) show that when strategies are restricted to be strongly symmetric, so
that all firms receive the same continuation values even though they take ob-
servably different actions, a different result emerges. In particular, under some
conditions, the best equilibrium is stationary and entails pooling of all cost
types. When those conditions fail and when firms are sufficiently patient, there
may be a set of stationary and nonstationary equilibria that yield the same pay-
offs. (The latter result relies heavily on the Revenue Equivalence Theorem
from auction theory.)

5. CONCLUSION

What is the optimal degree of discretion in monetary policy? For economies
in which private information is not important and time inconsistency problems
are severe, the optimal degree of discretion is zero. For economies in which pri-
vate information is important and time inconsistency problems are less severe,
it is not zero, but bounded. More generally, the optimal degree of discretion is
decreasing the more severe is the time inconsistency problem and the less im-
portant is private information. For all of these economies, the optimal policy
can be implemented by legislating and enforcing a simple inflation cap.

In our simple model, the optimal inflation cap is a single number because
there is no publicly observed state. If the model were extended to have a pub-
licly observed state, then the optimal policy would respond to this state, but
not to the private information. To implement optimal policy, therefore, soci-
ety would need to specify a rule for setting the inflation cap, where the cap
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would vary with public information. Equivalently, society could specify a rule
for setting ranges for acceptable inflation, where these ranges would vary with
public information. We interpret these rules as a type of inflation targeting
that is broadly similar to the types actually practiced by a fair number of coun-
tries. (For a discussion of inflation targeting in practice, see Bernanke and
Mishkin (1997).)

To keep our theoretical model simple, we have abstracted from exotic events
that are both unforeseeable and unquantifiable. Anyone interpreting the impli-
cations of our results for an actual society, therefore, should keep in mind that
to handle such exotic events, the optimal policy rule would need to be adapted
to deal with them, perhaps by the addition of some type of escape clauses.
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APPENDIX A: PROOF OF LEMMA 3

Here we prove Lemma 3, that under (A1) and (A2), the optimal allocation
(µ(θ)�w(θ)) is continuous. The proof is by contradiction.

PROOF OF LEMMA 3: In Lemma 2, we showed that in an optimal allocation
w(θ) must be a step function. Thus, two types of potential discontinuities in
the allocation (µ(θ)�w(θ)) must be ruled out. In the first type, µ(·) and, po-
tentially, w(·) jump at some point θ̃ and are both constant in some intervals
(θ1� θ̃) and (θ̃� θ2) on either side of the jump point θ̃. In the second type of
discontinuity, µ(·) and w(·) both jump at the point θ̃, and µ(·) is equal to the
static best response in some interval (θ1� θ̃) or (θ̃� θ2) on either side of the jump
point θ̃.

Consider now the first type of discontinuity, when µ(·) and w(·) are constant
on some intervals (θ1� θ̃) and (θ̃� θ2) on either side of the point of discontinu-
ity θ̃. Let (µ1�w1) denote the allocation on (θ1� θ̃) and let (µ2�w2) denote
the allocation on (θ̃� θ2). By the continuity of Rµ, we can choose the inter-
val (θ1� θ2) small enough so that if Rµ(x�µ1� θ̃) is strictly positive, then so is
Rµ(x�µ1� θ1), and if Rµ(x�µ2� θ̃) is strictly negative, then so is Rµ(x�µ2� θ2).

Under these assumptions, µ(·) is increasing on the interval (θ1� θ2). We next
show that if, for the chosen interval (θ1� θ2), the term ∆(a), defined in (36),
is negative for small a, then the up variation is feasible. That this variation
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is feasible outside the interval (θ1� θ2) is clear from the proof of Lemma 2.
What needs to be proved is that this variation is also feasible inside the in-
terval (θ1� θ2). Using essentially the same argument, we show that if ∆(a) is
positive for small a, then the down variation is feasible. Hence, by the same
logic as in the proof of Lemma 2, the optimal allocation cannot have this first
type of discontinuity.

Suppose that for the chosen interval (θ1� θ2), the term ∆(a) is negative for
small a. Since ∆(0) = 0, this implies that ∆′(0) < 0. Using the form of µ(θ) on
the interval (θ1� θ2), we have that

∆′(0) = (µ̃−µ1)

∫ θ̃

θ1

Rθµ(x�µ1� θ)dθ(48)

+ (µ̃−µ2)

∫ θ2

θ̃

Rθµ(x�µ2� θ)dθ < 0�

To show that the up variation is feasible inside the interval (θ1� θ2), we show
that w̃(θ;a) < w̄ on (θ1� θ2) for small a. We do so by showing that either
w1 < w̄ or ∂w̃(θ;0)/∂a < 0 for θ ∈ (θ1� θ̃) and, similarly, either w2 < w̄ or
∂w̃(θ;0)/∂a < 0 for θ ∈ (θ1� θ̃). To show that, we differentiate (27) to obtain
that ∂w̃(θ;0)/∂a is given by

(µ̃−µ1)

∫ θ

θ1

Rθµ(x�µ1� z)dz(49)

−Rµ(x�µ1� θ)(µ̃−µ1) for θ ∈ (θ1� θ̃) and

(µ̃−µ1)

∫ θ̃

θ1

Rθµ(x�µ1� z)dz + (µ̃−µ2)

∫ θ

θ̃

Rθµ(x�µ2� z)dz

−Rµ(x�µ2� θ)(µ̃−µ2) for θ ∈ (θ̃� θ2)�

Using
∫ b

a
Rθµ(x�µ�z)dz =Rµ(x�µ�b)−Rµ(x�µ�a), we can rewrite these ex-

pressions as

∂w̃(θ;0)
∂a

= −(µ̃−µ1)Rµ(x�µ1� θ1) for θ ∈ (θ1� θ̃)(50)

and

∂w̃(θ;0)
∂a

= [Rµ(x�µ1� θ̃)−Rµ(x�µ1� θ1)](µ̃−µ1)(51)

−Rµ(x�µ2� θ̃)(µ̃−µ2) for θ ∈ (θ̃� θ2)�

Consider first (50). By construction µ̃ − µ1 > 0, and so if Rµ(x�µ1� θ̃) > 0,
then so is Rµ(x�µ1� θ1) > 0, and we have that ∂w̃(θ;0)/∂a < 0 for θ ∈ (θ1� θ̃).
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Alternatively, if Rµ(x�µ1� θ̃) ≤ 0, since R is strictly concave, then it must be
true that R(x�µ1� θ̃) > R(x�µ2� θ̃) and, hence, w1 <w2 ≤ w̄.

Consider next (51). Note that we can rewrite (48) as

∆′(0) = [Rµ(x�µ1� θ̃)−Rµ(x�µ1� θ1)](µ̃−µ1)

+ [Rµ(x�µ2� θ2)−Rµ(x�µ2� θ̃)](µ̃−µ2) < 0�

Compare this expression for ∆′(0) to the right-hand side of (51) to see that
(51) is negative if Rµ(x�µ2� θ2) × (µ̃ − µ2) is positive. Since µ̃ − µ2 < 0 by
construction, (51) is less than zero if Rµ(x�µ2� θ̃) is, because then Rµ(x�µ2� θ2)

is also negative. Alternatively, if Rµ(x�µ2� θ̃) is nonnegative, since R is strictly
concave it must be true that R(x�µ1� θ̃) < R(x�µ2� θ̃). Hence, from (17), we
know that w2 <w1 ≤ w̄. These arguments establish that if ∆(a) is negative for
small a, then w̃(θ;a) < w̄ on (θ1� θ2) for small a� If the term ∆(a) is positive
for small a, we use the down variation and an analogous argument to the one
above to establish the same result that w̃(θ;a) < w̄ on (θ1� θ2) for small a.

Now consider the second type of discontinuity, when µ(·) is constant on one
side of θ̃ and equal to the static best response on the other side of θ̃. Sup-
pose, for example, that µ(·) equals the static best response for θ on some
interval (θ1� θ̃). Clearly, µ(·) is increasing on the interval (θ1� θ̃). Since µ(·)
jumps up at θ̃, it must be true that limθ↗θ̃ R(x�µ(θ)� θ̃) > limθ↘θ̃ R(x�µ(θ)� θ̃).
Hence, from condition (17) in local incentive-compatibility, we know that
limθ↗θ̃ w(θ) < limθ↘θ̃ w(θ). Thus, for θ ∈ (θ1� θ̃), w(θ) = w1 < w̄. Hence, ei-
ther the up variation or the down variation can be applied to this allocation
in the interval (θ1� θ̃) as in the proof of Lemma 2 and thus, such an allocation
cannot be optimal. With an analogous argument, we can rule out the case in
which µ(θ) equals the static best response for θ on the other side of the jump
point, on some interval (θ̃� θ2). Q.E.D.

APPENDIX B: OPTIMAL POLICY WITHOUT MONOTONE HAZARDS

Here we give three examples in which our monotone hazard condition (A2)
is violated and in which the optimal mechanism is dynamic. In the first two
examples, we assume that the hazard [1 − P(θ)]/p(θ) is decreasing in θ at all
points except the point θ1, where the hazard jumps up. We also assume that
P(θ)/p(θ) is increasing throughout. In the third example, we shed light on the
role of Rµθ in (A2) by assuming that the hazard [1 − P(θ)]/p(θ) is decreasing
throughout but that [1 − P(θ)]Rµθ/p(θ) is not.

For the first two examples, assume that at the point θ1,

∫ θ1

θ

1 − P(θ)

P(θ1)
dθ <

∫ θ̄

θ1

1 − P(θ)

1 − P(θ1)
dθ�(52)
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To interpret this inequality, note that the left-hand side is the conditional mean
of the function [1 − P(θ)]/p(θ) over the interval [θ�θ1], while the right-hand
side is the conditional mean of this function over the interval (θ1� θ̄]. Clearly,
for any distribution for which [1 − P(θ)]/p(θ) is decreasing throughout [θ� θ̄],
this inequality is reversed.

It is easy to show that a two-piece uniform distribution with p(θ) = ρ1 if
θ ≤ θ1 and p(θ) = ρ2 if θ > θ1 will satisfy (52) if ρ2 is chosen to be suffi-
ciently small relative to ρ1. In this case, illustrated in Figure 6, the function

FIGURE 6.—A distribution with a nonmonotone hazard.
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[1 − P(θ)]/p(θ) will jump up sufficiently at θ1 so that the conditional mean of
this function over the higher interval [θ1� θ̄] is larger than the conditional mean
over the lower interval [θ�θ1).

In the first example, the linear example, we make the calculations trivial by
assuming that R(x�µ�θ) = (θ − θ)µ + r(x) with r(x) = −x2/2. In the second
example, which is the benchmark example of (1), we assume that

R(x�µ�θ) = −1
2
[(U + x−µ)2 + (µ− αθ)2]�(53)

In the third example, the discrete example, R(x�µ�θ) = g(θ)µ+ r(x) with g an
increasing nonlinear function.

All three of these examples satisfy the single-crossing property (A1). In the
first two examples, Rθµ = 1, so that the condition (A2) reduces to the stan-
dard monotone hazard condition. Note that for the first two examples, any
distribution that satisfies (52) is inconsistent with the monotone hazard condi-
tion (A2a).

The Linear Example

Any solution to the mechanism design problem must have the two-piece
form

(µ(θ)�w(θ)) =
{
(µ1�w1)� for θ ∈ [θ�θ1),
(µ2�w2)� for θ ∈ [θ1� θ̄].(54)

This follows because the arguments used in Lemmas 1 and 2 can be applied
separately to the intervals [θ�θ1) and [θ1� θ̄], and because for any θ > θ, the
static best response to any x in the interval [µ� µ̄] is a constant, namely,
the upper limit µ̄. Since this policy must satisfy the incentive constraint
(θ1 − θ)µ1 +w1 = (θ1 − θ)µ2 +w2, the monotonicity condition µ1 ≤ µ2 im-
plies that w1 ≥ w2� Thus, we know that w1 = w̄ and that the constraint w2 ≤ w̄
will be automatically satisfied by any monotonic policy.

The mechanism design problem then reduces to the linear problem of choos-
ing µ1, µ2, and x to maximize

r(x)+ w̄ +µ1

∫ θ1

θ

1 − P(θ)

p(θ)
p(θ)dθ+µ2

∫ θ̄

θ2

1 − P(θ)

p(θ)
p(θ)dθ

subject to the constraints that µ ≤ µ1 ≤ µ2 ≤ µ̄ and x = P(θ1)µ1 + [1 −
P(θ1)]µ2� If (52) holds and if the lower and upper limits µ� µ̄ include the ex-
pected Ramsey policy, then the optimal policy will have either µ = µ1 < µ2

or µ1 < µ2 = µ̄. To see this, consider spreading out the policy by decreasing
µ1 by ∆1 and increasing µ2 by ∆2, so that the change in expected inflation
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[1 − P(θ1)]∆2 − P(θ1)∆1 is zero. The associated welfare change can be writ-
ten as

[
−

∫ θ1

θ

1 − P(θ)

P(θ1)
dθ+

∫ θ̄

θ2

1 − P(θ)

1 − P(θ1)
dθ

]
P(θ1)∆1 > 0�(55)

where the inequality follows from (52). Hence, the solution must have µ1 <µ2

and from the incentive constraint, we then know that w2 < w1 = w̄. Thus, the
solution to the mechanism design problem is necessarily dynamic.

The Benchmark Example

Now assume that the policy µ(·), which solves the static mechanism design
problem, has bounded discretion and that θ1 > θ∗� so that the jump point in the
hazard occurs on the flat portion of that policy. (We can construct a numerical
example in which this assumption holds.) We will show that there is a dynamic
mechanism that improves on the optimal static mechanism. The basic idea is
to use a variation that spreads out the inflation schedule as a function of type
instead of flattening it as did the variation in Lemmas 1 and 2.

This variation is similar to the one in the linear example. Consider an alter-
native policy that lowers inflation for types at or below θ1, raises it for types
above θ1, and keeps expected inflation constant,

µ̃(θ)=
{
µ(θ)−∆0� if θ ≤ θ1,
µ(θ)+∆1� if θ > θ1,

with ∆0�∆1 > 0 and [1 − P(θ1)]∆1 − P(θ1)∆0 = 0, so that expected inflation
is constant. Note that this alternative policy µ̃(·) is monotonically increasing,
since µ(·) must be. Our variation is a marginal shift from µ(·) toward µ̃(·)
defined as µ(θ;a) = aµ̃(θ)+ (1 − a)µ(θ) for each θ. Welfare is given by

V (a) = R(x�µ(θ;a)�θ)+ w̄

+
∫ θ̄

θ

1 − P(θ)

p(θ)
Rθ(x�µ(θ;a)�θ)p(θ)dθ�

The impact of this variation on welfare is given by

∂V (0)
∂a

= −∆0Rµ(x�µ(θ)�θ)(56)

−∆0

∫ θ1

θ

1 − P(z)

p(z)
Rθµ(x�µ(z)� z)p(z)dz

+∆1

∫ θ̄

θ1

1 − P(z)

p(z)
Rθµ(x�µ(z)� z)p(z)dz�
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Since µ(θ) has bounded discretion, Rµ(x�µ(θ)�θ)= 0. In our quadratic exam-
ple, Rθµ(x�µ(z)� z)= 1; hence, (56) reduces to (55), which we know from (52)
is positive.

It is straightforward, but somewhat tedious, to show that the associated con-
tinuation values w(θ;a) defined by

R(x�µ(θ;a)�θ)+ w̄ +
∫ θ

θ

Rθ(x�µ(z;a))dz −R(x�µ(θ;a)�θ)

have ∂w(θ;0)/∂a ≤ 0 for all θ and ∂w(θ;0)/∂a < 0 for θ > θ1. To show this,
we use the facts that Rµ(x�µ(θ)�θ) = 0 and θ1 > θ∗, so that µ(θ) = µ(θ1) for
θ ≥ θ1. These results imply that this variation both improves welfare and is
feasible. Thus, the optimal mechanism must be dynamic.

Note that if µ(·) has no discretion, then we need a different condition on the
distribution to show that the static mechanism is not optimal. This is because
when µ(·) has no discretion, we can have Rµ(x�µ(θ)�θ) > 0 and the above
argument that ∂w(θ;0)/∂a ≤ 0 for all θ does not go through. When µ(·) has
no discretion, the analog of the condition (52) is that at x = µ = µER, there
exists a θ1 such that

Rµ(µ
ER�µER� θ)+

∫ θ1

θ

1 − P(z)

P(θ1)
dz <

∫ θ̄

θ1

1 − P(z)

1 − P(θ1)
dz�

With this condition, the optimal mechanism is dynamic rather than static. Note
that, in our linear example, this distinction did not come up because our utility
function is such that Rµ(x�µ(θ)�θ)= 0 with no discretion.

The Discrete Example

Now let the types be θi for i = 1�2�3 with associated probabilities pi and let
Pi = ∑i

j=0 pi. Then it is easy to show that under the discrete analog of (A1),
the only relevant incentive constraints are

R(x�µi� θi)+wi ≥ (1 −β)R(x�µi+1� θi)+βwi+1(57)

for i = 1 and 2. The discrete analog of (A2) for types θ2 and θ3 is

1 − P1

p2
[Rµ(x�µ2� θ2)−Rµ(x�µ2� θ1)]

>
1 − P2

p3
[Rµ(x�µ3� θ3)−Rµ(x�µ3� θ2)]�

which here reduces to

1 − P1

p2
[g(θ2)− g(θ1)] > 1 − P2

p3
[g(θ3)− g(θ2)]�(58)
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We now give an example in which the hazard (1 − Pi)/pi+1 is monotone but
g is so convex that (58) is violated, and the optimal policy is dynamic. Sup-
pose that µ2 = µ3 is part of a candidate optimal policy. Consider the variation
of decreasing µ1 and µ2 by ∆ and increasing µ3 by (p1 + p2)∆/p3, so that ex-
pected inflation x is constant. We can maintain incentives by keeping w1 and w2

unchanged and lowering w3 by θ3∆/p3. This variation leads to a change in wel-
fare of

(p1 +p2)g(θ3)− (1 +p2)g(θ2)−p1g(θ1)�

With a uniform distribution, pi = 1/3, and with g(θ1) = 1, g(θ2) = 2, this vari-
ation is welfare-improving as long as g(θ3) > 9/2.

In Sum

In each of the three examples, we have shown that welfare could be im-
proved relative to a static policy by raising inflation for high types and lowering
inflation for low types so as to keep expected inflation constant. In the first two
examples, this improved welfare because there were sufficiently few high types
relative to low types; we could raise inflation a lot for the types who valued it
more and lower it only a little for the types who valued it less. In the third ex-
ample, even though the distribution of types is uniform, the high types valued
inflation so much more than the low types that raising inflation for the high
types and lowering it for the low types still improved welfare.

APPENDIX C: IMPLEMENTATION WITH AN INFLATION CAP

Here we prove that the equilibrium outcome in an economy with an inflation
cap is the optimal outcome of the mechanism design problem. We show this
result formally using a one-shot game in which we drop time subscripts.

With an inflation cap of π̄ in the current period, the problem of the monetary
authority at a given θ is, given aggregate wages x, to choose money growth µ(θ)
for the state θ to maximize R(x�µ�θ) subject to µ(θ) ≤ π̄. The private agents’
decisions on wages are summarized by x = ∫

µ(θ)p(θ)�
An equilibrium of this one-shot game consists of aggregate wages x and a

money growth policy µ(·) such that (i) with x given, µ(·) satisfies µ(θ)≤ π̄ and
(ii) x = ∫

µ(θ)p(θ). We denote the optimal choice of the monetary authority
as µ∗(·;x� π̄). This notation reflects the fact that the monetary authority is
choosing a static best response to x given that its choice set is restricted by π̄,
which we call the inflation cap.

To implement the best equilibrium in the dynamic game, we choose π̄ as fol-
lows. Whenever the expected Ramsey policy is optimal, we choose the inflation
cap to be

π̄ = µER�(59)
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Whenever bounded discretion is optimal, we choose the cap to be the money
growth rate chosen by the cutoff type θ∗,

π̄ = µ∗(θ∗�x∗)�(60)

where x∗ is the equilibrium inflation rate with this level of bounded discretion.

PROPOSITION 5: Assume (A1), (A2), and that the inflation cap π̄ is set accord-
ing to (59) and (60). Then the equilibrium outcome of the one-shot game with the
inflation cap for each period coincides with the optimal equilibrium outcome of
the dynamic game.

PROOF: We establish this result in two steps. We first show that the mone-
tary authority will choose the upper bound π̄ = µER when the expected Ram-
sey policy is optimal in the dynamic game. Note that Proposition 3 implies that
whenever the expected Ramsey policy is optimal, µER ≤ µ∗(θ;µER). Also, re-
call that the single-crossing assumption (A1) implies that the best response is
strictly increasing in θ. Thus, µ∗(θ;µER) ≤ µ∗(θ;µER) for all θ. Hence, at the
expected Ramsey policy and the associated inflation rate, all types want to de-
viate by increasing their inflation above µER; hence, the constraint π̄ = µER

binds, and all types choose the expected Ramsey level.
We next show that if bounded discretion is optimal in the dynamic game,

then in the associated static game with the inflation cap, all types choose the
bounded discretion policies. For all types θ ≤ θ∗, the policies under bounded
discretion are simply the static best responses, and these clearly coincide with
those in the static game. For all types θ above θ∗, the policies under bounded
discretion are the static best responses of the θ∗ type, namely, µ∗(θ;x∗), where
x∗ is the equilibrium expected inflation rate under bounded discretion. Under
assumption (A1), the static best responses are increasing in the type, so that
the best response of any type θ ≥ θ∗ is above µ∗(θ;x∗)� Thus, in the one-shot
game with the inflation cap, the constraint (60) binds for such types. Thus, the
equilibrium outcomes of the two games coincide. Q.E.D.

APPENDIX D: PROOF OF PROPOSITION 4

Here we prove Proposition 4, which links monetary policy discretion to both
time inconsistency and private information.

PROOF OF PROPOSITION 4: The optimal policy with bounded discretion is
found as the solution to the problem of choosing θ∗ and x to maximize

∫ θ∗

θ

R(x�µ∗(θ;x)�θ)p(θ)dθ+
∫ θ̄

θ∗
R(x�µ∗(θ∗;x)�θ)p(θ)dθ�
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where

x=
∫ θ∗

θ

µ∗(θ�x)p(θ)dθ+
∫ θ̄

θ∗
µ∗(θ∗;x)p(θ)dθ�(61)

Let λ be the Lagrange multiplier on (61). Then the first-order conditions for
θ∗ and x imply that the derivative of the objective function with respect to θ∗ is

∫ θ∗

θ

Rx(x�µ
∗(θ;x)�θ)p(θ)dθ+

∫ θ̄

θ∗
Rx(x�µ

∗(θ∗;x)�θ)p(θ)dθ

+
[∫ θ̄

θ∗
Rµ(x�µ

∗(θ∗;x)�θ) p(θ)

1 − P(θ∗)
dθ

]

×
[

1 −
∫ θ∗

θ

∂µ∗(θ∗�x)
∂x

p(θ)dθ

]
�

Using our functional forms and x = ∫
µ(θ)p(θ)dθ, we can simplify this deriv-

ative to
[∫ θ̄

θ∗
(θ− θ∗)

p(θ)

1 − P(θ∗)
dθ

][
1 − P(θ∗)

2

]
− U

α
�(62)

We can show that, under (A2a), this derivative is strictly decreasing in θ∗ as
follows. Integration by parts gives that

∫ θ̄

θ∗
(θ− θ∗)p(θ)dθ =

∫ θ̄

θ∗
1 − P(θ)dθ�

so that (62) is equivalent to
[∫ θ̄

θ∗

1 − P(θ)

p(θ)

p(θ)

1 − P(θ∗)
dθ

][
1 − P(θ∗)

2

]
− U

α
�

and this expression is clearly strictly decreasing in θ∗ under (A2a).
The fact that (62) is strictly decreasing in θ∗ implies that three possible cases

characterize the optimal policy with bounded discretion, all of which depend
on the value of U/α. In one case, the derivative (62) is positive for all θ∗ and
the solution is θ∗ = θ̄. Since the first term of (62) equals zero when θ∗ = θ̄, this
case occurs only when U/α = 0. As is clear, in this case, there is no time in-
consistency problem and the Ramsey policy is incentive-compatible. In a sec-
ond case, the derivative (62) is negative for all θ∗ and the solution is θ∗ = θ.
Since the derivative (62) evaluated at θ∗ = θ reduces to −θ − U/α, this case
occurs when U/α ≥ −θ > 0. Note that in this case, the optimal policy with
bounded discretion specifies a constant inflation rate and, hence, is dominated,
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at least weakly, by the expected Ramsey policy with no discretion. Hence, we
say that in this case, the optimal policy has no discretion. In the third case,
there is an interior θ∗ that sets the derivative (62) to zero. This case occurs
when 0 <U/α<−θ. Clearly, in this case, the value of θ∗ that characterizes the
optimal degree of discretion is decreasing in U/α.

Finally, to complete the proof of Proposition 4, we must show that when
0 <U/α<−θ, the optimal policy with bounded discretion dominates the ex-
pected Ramsey policy. To do so, we use part (ii) of Proposition 3. Note that
when U/α<−θ, we have that

µ∗(θ�µER)= U + αθ

2
<µER = 0�

The result then follows directly from Proposition 3. Q.E.D.

APPENDIX E: THE ROLE OF OUR FEASIBILITY CONSTRAINT w(θ)≤ w̄

Here we develop a highly stylized example (about traffic congestion) that
illustrates the importance of the feasibility constraint

w(θ)≤ w̄(63)

in generating our result that the optimal policy is static. In the example, we
replace this constraint with the constraint

∫
w(θ)p(θ)dθ ≤ w̄(64)

and show that the resulting optimal mechanism differs radically from ours.
To be concrete, consider a mechanism design problem of choosing µ(·) and

w(·) to solve

max
∫ θ̄

θ

[R(x�µ(θ)�θ)+w(θ)]p(θ)dθ�

where

R(x�µ(θ)�θ)+w(θ)≥R(x�µ(θ̂)� θ)+w(θ̂)�(65)

x≥
∫

µ(θ)p(θ)dθ�(66)

and (64). One interpretation of this problem is as follows. A large number of
people want to share a road. Each person differs from the others in their de-
sire to use the road, as indexed by the privately observed θ. Let µ(θ) denote
the time that type θ is allowed to drive. Let x denote the average traffic on
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the road, as denoted by (66). Because of congestion, people dislike higher av-
erage traffic (R is decreasing in x). Let w(θ) denote the toll to drive µ(θ)�
Constraint (64) is a budget constraint on tolls, where w̄ is the money needed
to operate the road, possibly zero.

It is easy to see that here the optimal w(θ) varies with θ. Specifically,
w(θ) can be chosen in such a way as to support the first best. (Here we are
assuming (A1), so that the first best schedule for µ(θ) is upward sloping.
To see this result, drop the incentive constraint (65) and solve for the first
best µ∗(θ). Then use the local incentive-compatibility condition to construct
the w∗(θ) function, up to the constant w∗(θ), that makes µ∗(θ) incentive-
compatible. Finally, choose the constant w∗(θ) to satisfy (64).) Clearly, the
answer to this problem is very different from the answer to our problem; here
the optimal w(θ) varies with θ, while in ours it does not and w(θ) = w̄.

Note that the result that the first best is incentive-compatible is special to
this functional form in which payoffs are linear in w. If instead we had

max
∫ θ̄

θ

[
R(x�µ(θ)�θ)+U(w(θ))

]
p(θ)dθ

with U concave, then we would have the standard trade-off between insurance
(or redistribution) and incentives.

How could we interpret our model and results in this road congestion con-
text? Suppose that using tolls is not feasible, and the only way to ration road use
is to make people wait to get on the road. Let t(θ) ≥ 0 be the amount of time
someone has to wait to drive µ(θ) and let w(θ) = w̄ − t(θ) be the associated
utility from waiting t(θ). Then t(θ) ≥ 0 is, of course, equivalent to w(θ) ≤ w̄.
In this context, we get a very different answer than when using tolls is feasible.
Under (A1) and (A2), the optimal scheme is to have no one wait (t(θ) = 0)
and let everyone drive as much as they like, subject to a cap, µ(θ) ≤ µ∗.
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