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Abstract. The UK molecular R-matrix codes are used to study electron collisions

with the He+

2 molecular ion. Full configuration interaction calculations are performed

to obtain the potential energy curves of the ground X 2Σ+
u and the first excited A 2Σ+

g

electronic states of He+

2 . Resonances, effective quantum numbers and resonance widths

as a function of the internuclear separation are determined for the lowest singlet 1Σ+
g ,

1Σ+
u , 1Πg and 1Πu and triplet 3Σ+

g , 3Σ+
u , 3Πg,

3Πu and 3∆u states which are relevant

for the study of reactive collision of He+

2 with low energy electron. In addition bound

states are also calculated for each symmetry of He2 at several geometries.



Electron-He+
2 scattering calculations 2

1. Introduction

The helium molecular ion, He+
2 , was the first molecule to form in the Universe (Lepp et

al. 2002); albeit its appearance is thought to be short-lived. Since then it is thought to

have been formed in the remnant of supernovae (Lepp et al. 1990) and in the atmospheres

of cool white dwarfs (Stancil 1994). On earth He+
2 can form in cool helium-containing

plasmas, including fusion plasmas, and its curves can play a role in Penning ionisation

of metastable helium atoms (Garrison et al. 1973).

In most environments where He+
2 forms the major destruction mechanism is

dissociative recombination (DR):

He+

2 + e− → He + He∗ (1)

This process relies on the formation of doubly-excited, metastable states of He2 which

provide the route to dissociation. DR rates for He+
2 have been measured in storage

rings (Urbain et al. 2005). Storage rings have also been used to study inelastic collisions

between electrons and He+
2 ions (Buhr et al. 2008).

There has been a number of theoretical studies of electron collisions with He+
2 .

These include the dissociative recombination studies of Carata et al. (1999), Royal and

Orel (2005) and Royal and Orel (2007) who used He2 curves and lifetimes computed

using the Kohn variational method. These calculations are discussed further below.

R-matrix calculations have also been used to study the He∗2 system. McLaughlin et

al. (1993) computed bound and continuum curves, but only of 3Σ+
u total symmetry.

Recently, Celiberto et al. (2016) used an R-matrix calculation to compute cross sections

for electron-impact dissociation of He+
2 .

He+
2 and He2 are, respectively, three and four electron systems; they should therefore

be amenable to highly accurate electronic structure calculations. In this work we aim to

compute a comprehensive and accurate set of bound and continuum curves for excited

states of the helium dimer. These curves will form the input for future studies of key

processes involving electron collisions of He+
2 , such as dissociative recombination.

2. Calculations

2.1. Method

In this work we use the R-matrix method (Tennyson 2010) as implemented in the

UKRMol codes of (Carr et al. 2012). This method is based on dividing the configuration

space into two distinct regions (Burke 2011) by a sphere, here of radius 12a0, centred

at the centre-of-mass of the molecule. This encloses the wave function of the 3-electron

target He+
2 ion. In the inner region, the wave functions for the target + scattering

electron system (He+
2 + electron) is given by:

ΨN+1

k (x1, . . . , xN+1) = A
∑

ij

aijkφ
N
i (x1, . . . , xN)uij(xN+1)
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+
∑

i

bikχ
N+1

i (x1, . . . , xN+1), (2)

where A is the anti-symmetrization operator, uij are known as continuum orbitals, xi is

the spatial and spin coordinates of electron i, φN
i is the wave functions of the ith target

state and χi are two-center L2 functions constructed as products of target occupied and

virtual molecular orbitals. The variational coefficients aijk and bik are determined by

diagonalizing the hamiltonian matrix.

2.2. Target calculations

It is known that the basis sets play an important role in the quality of the calculation.

We use for the present work, the cc-pVTZ Gaussian basis set for He+
2 , which include

polarization functions. An initial set of molecular orbitals was obtained by performing

self-consistent field (SCF) calculations for the X 2Σ+
u state of He+

2 , although in

practice the choice of orbitals is not important in a full configuration interaction (FCI)

calculation. The two lowest He+
2 states, X 2Σ+

u and A 2Σ+
g , were included in the close

coupling expansion of the trial wave function of the scattering system; the other target

states lie too high in energy to contribute significantly at the collision energies considered

here. Each target state was represented by an FCI wave function. Our FCI calculations

performed at selected bond lengths around the equilibrium position for the ground state

X 2Σ+
u and the first excited state A 2Σ+

g of the He+
2 molecular ion (see Table 1) were

in very close agreement with the high accuracy calculations of Cencek and Rychlewski

(1995), Tung et al. (2012), Gadea and Paidarova (1996) and McLaughlin et al. (1993).

2.3. Scattering calculations

Scattering calculations used a two-term close-coupling expansion based on the FCI

representation of the He+
2 X 2Σ+

u and A 2Σ+
g target states. Continuum functions

considered partial waves up to l = 4 (g functions) and were taken from Faure et al.

(2002). The FCI L2 functions were generated by allowing all 4 electrons to occupy any

target orbital subject only to the constraints of total symmetry.

Calculations were performed for singlet and triple spin symmetries and using C2v

point group symmetry. Below results have been recast using standard linear molecule

symmetry notation. Calculations were repeated at 25 geometries in the range R = 1.8

to 6.0 a0.

2.4. Resonance detection and fitting

For the resonant states, the R-matrix is propagated (Morgan 1984) to the distance for

results to stabilise, and then matched with a Gailitis espansion(Noble and Nesbet 1984).

Here a distance of 200.1 a0 was used. Resonances were detected and fitted to a

Breit-Wigner profile to obtain their energy (E) and width (Γ) using program RESON

(Tennyson & Noble 1984). The calculations used an initial energy grid of 0.73 × 10−3
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Ryd; upon detection of a resonance, RESON then lays down an appropriate grid based

on the estimated resonance width. Complex quantum defects were obtained from the

resonances using the relations

Er = Et −
1

ν2
, Γ =

4β

ν3
(3)

where Et is the energy of the threshold to which the resonance state is associated.

The effective quantum number ν is related to the real part of the quantum defect by

ν = n − α where n is an integer. For resonances, the complex quantum defect µ is

given by µ= α+iβ, where estimates of α and β which are asummed to vary smoothly

and usually with n, can be obtained by performing scattering calculations above the

threshold (Seaton 1983, Tennyson 1988).

The recent study of Little and Tennyson (2014) on resonance states of N2 found

it necessary to develop an enhanced method based on time-delays to characterise N∗

2

resonances (Little et al. 2016). Here, however, the resonances are generally well spaced

and the absence of extra, nearby excited target states means that it is not necessary to

consider intruder states. As a result the single, isolated resonance model assumed in

the Breit-Wigner fits gives good results.

2.5. Bound states

After solving the inner region problem, the solutions were used to built the R-matrix

on the boundary. Outer region wave functions were then integrated to a distance of

30.1 a0 from where an asymptotic expansion due to Gailitis (Noble and Nesbet 1984)

is used. For this work, an improved Runge-Kutta-Nystrom integration procedure, as

implemented by Zhang et al. (2011) was used. Bound states were then found using

the searching algorithm of Rabadán and Tennyson (1996) with the improved nonlinear,

quantum defect-based grid of Sarpal et al. (1991).

3. Results and Discussion

We present here our calculations of resonances and bound states of He2, effective

quantum numbers and widths of singlet and triplet symmetries. Results are shown

graphically but a complete set of data is provided in a spreadsheet as supplementary

material to this article. These results are compared with the quasidiabatic potentials of

Royal and Orel (2005).

The resonance curves of singlet total symmetries 1Σ+
g , 1Σ+

u , 1Πg and 1Πu are shown

in Figure 1. Those corresponding to triplet total symmetries 3Σ+
g , 3Σ+

u , 3Πg,
3Πu and

3∆g are represented in Figure 2 where they are compared with those of Royal and Orel

(2005). These resonance curves are Rydberg states of the first excited state A 2Σ+
g

of He+
2 which correspond in the diabatic picture to neutral dissociative states of He2.

Below the crossing point between the resonances and the ion ground state potential
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electronic curve, they are extended using the program BOUND. These curves are shown

in Figures 1 and 2 with the same colour convention as the corresponding resonances. It

is to be noted that there are infinite number of bound Rydberg states which converge on

the He+
2 X 2Σ+

u ground state ion curve. This means that dissociating resonance undergo

a series of interactions close to the crossing zone. These can be seen in the adiabatic

potential energy curves of He2 calculated by Cohen (1976). The states calculated in this

zone are highly perturbed. This accounts for the lack of smoothness observed in some

of our curves. In any case, the smoothness of potential curves after the crossing point

has little influence on the DR cross section.

Figure 2 shows that there is some similarity but not complete agreement between

our curves and those of Royal and Orel (2005). However, the complex Kohn variational

calculations of Royal and Orel were only performed at three internuclear distances:

R = 2.0, 2.5 and 2.7 a0; full curves were obtained by use of smooth functions which

matched with the appropriate asymptote. This means that direct comparison of the

results of these two calculations is difficult. There are slight differences that can be

accounted for by the difference in approaches and choices of model. Figure 2 also shows

that the crossing points of our resonances and those of Royal and Orel (2005) with the

X 2Σ+
u ground state of the He+

2 molecular ion are not at the same position. Our lowest
3Σ+

g and 3Πg resonance curves in Figure 2 cross the ion curve at a lower energy than the

correspondings one of Royal and Orel (2005). Since it is well known that the magnitude

of the DR cross sections are very sensitive to the crossing point between the dissociative

state and the ion curve, for both the direct or the indirect mechanism, the shift between

our curves and those of Royal and Orel (2005) should result in differences in the DR

cross section in terms of magnitude and structure.

Effective quantum numbers and resonance widths corresponding to the resonances

given in Fig. 1 are presented in Figs. 3 and 4 respectively. In the same way effective

quantum numbers and resonance widths that correspond to the resonances given in Fig.

2 are shown in Fig. 5 and 6 where they are compared with the results of Royal and Orel

(2005). The approximate s, p, d, f character of the quantum defect shown in Figs. 3 and

5 are labeled according to the separated atom limit of the resonance state to which they

belong. Our widths presented in Figs 4 and 6 show significant structure. This structure

is a result of the avoided crossings between the curves of the same symmetry and the

interaction of many molecular states in the crossing zone as mentioned above. The

significant amount of structure in the widths could be an artifact of the Breit-Wigner

fitting process used. However, our fitting program, RESON (Tennyson & Noble 1984),

computes a goodness factor which is defined as the sum of the absolute residues for the

25 points used in the eigenphase fit. This allows a ready assessment of the quality of

the fit. For the lowest two resonances of each symmetry the goodness factor for our fits

is excellent, typically 10−7 radians when the eigenphases change by π radians over the

range of the fit. For some of the higher resonances this goodness factor increases; in the

worst case it is 0.05 radians in which case the widths may not be well-determined This

means, however, that the structure detected in the widths of the lower-lying resonances
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is a genuine feature of our calculations which can be attributed to the interaction and

crossing of resonances state as the Rydberg series converging on each threshold. These

interactions are clearly visible in plots of the effective quantum numbers, Figs. 3 and

5. Such interactions can cause the widths to change dramatically as a function of

internuclear separation. This behaviour was also found in detailed R-matrix studies

performed by Little and Tennyson (2013) and Chakrabarti and Tennyson (2015) on

electron collision with N+
2 and BeH+, respectivily.

The comparison of our triplet resonance widths as a function of internuclear

separation, R, with those of Royal and Orel (2005) given in Figure 6 is interesting. Royal

and Orel, who do not present detailed results for their singlet calculations, assumed that

the widths have a Gaussian dependence on internuclear separation. Only in one case,

the second resonance of 3Πu symmetry is this behaviour even approximately followed

by our calculated results. A previous study on electron impact vibration excitation

and dissociation of N2 (Laporta et al. 2014) has already showed that use of idealised,

Gaussian widths can lead to significant differences compared to calculations based on

use of the true Γ(R). The difference in the crossing points of the ion ground state

and the resonance widths will probably lead to differences between the dissociative

recombination and excitation cross sections obtained from our data, and those of Royal

and Orel (2005).

Given the relatively simple electronic structure of the four electron He2 system

it is worth considering the residual sources of uncertainty in the present calculation.

Guidelines for uncertainty quantification in collision problems have recently been given

by Chung et al. (2016). Starting first with the target electronic structure: this has been

treated using a full CI so, unusually, there are no issues with the convergence of the CI

model beyond those of the choice of the original 1-electron basis set. Analysis of the

results of Table 1 show very good agreement between our model and calculations with

more extended basis sets. In particular, our excitations energies differ by only about

0.01 eV from the most accurate predictions which are due to Gadea and Paidarova

(1996). This is the crucial parameter for the scattering calculation since the resonances

are associated with Rydberg series converging on the excited A 2Σ+
u state. Considering

the scattering calculation, again the use of a full CI model both removes issues of

balance between the target and scattering calculation (Tennyson 1996) and is likely

to lead to good treatment of target polarisation effects. The unusual nature of the

electronic structure of He+
2 means that there is a very large gap between the first and

second electronic excited states meaning that for low-energy calculations the truncation

of the calculation at two states is unlikely to introduce any significant approximation.

This is not generally true and inclusion of higher states is usually important (Jones and

Tennyson 2010, Brigg et al. 2014). The resonance parameters presented in this work

involve fitting the eigenphases to a Breit-Wigner form which in itself can be a cause

uncertainty, particularly in the case of the resonance widths. However, as discussed

above, our fits for the lowest resonances proved to be very accurate and stable. Finally

our curves show some structure as a function of bondlength. Such structures can be



Electron-He+
2 scattering calculations 7

Table 1. Comparison of energies (in Hartree) for the ground state X 2Σ+
u and the

first excited state A 2Σ+
g of the He+

2 molecular ion at selected bond length.

McLaughlin et al.d

State R(a.u) This work Cencek et al.a Tung et al.b Gadea & Paidarovac Truncated CI Full CI

2.0 -4.988 475 2 -4.994 402 35 -4.990 317 -4.982 802 5 -4.990 725 8

X 2Σ+
u 2.042 -4.988 673 -4.994 644 2 -4.994 643 -4.990 579

2.5 -4.974 214 6 -4.980 371 96 -4.976 980 -4.968 760 5 -4.976 836 1

3.0 -4.949 241 1 -4.955 776 65 -4.952 694 -4.943 661 9 -4.951 917 3

2.0 -4.603 143 0 -4.605 518 -4.594 455 0 -4.604 711 1

A2Σ+
g 2.042 -4.622 843 4

2.5 -4.765 283 4 -4.767 643 -4.757 254 5 -4.766 982 9

3.0 -4.835 105 2 -4.837 597 -4.827 267 8 -4.836 745 1

a Extrapolated value of Cencek and Rychlewski (1995).
b Explicitly correlated Gaussian calculation of Tung et al. (2012).
c Full CI calculation of Gadea and Paidarova (1996).
d R-matrix calculation of McLaughlin et al. (1993) which used a (4s, 2p, 2d) Slater type orbital (STO)

basis.

resolved by performing calculations on a very fine grid (Little and Tennyson 2014),

although in practice DR calculations have thus far chosen to ignored this structure

(Little et al. 2014). All the curves presented in this paper are adiabatic and ignore any

effects due to the breakdown of the Born-Oppenheimer approximation. In particular, no

attempt has been made to produce so-called energy-dependent resonance widths which

result from non-adiabatic effects (Nestmann 1998). Given the reliability of other stages

of the calculation, it is likely that effect of these non-adiabatic couplings is the most

significant approximation in our calculations.

4. Conclusion

Using the UK R-matrix molecular codes, we have studied electron collisions with the

He+
2 molecular ion. Electronic energy curves of resonances, widths and effective quantum

numbers were generated as a function of the geometry for the singlet 1Σ+
g , 1Σ+

u , 1Πg and
1Πu and triplet 3Σ+

g , 3Σ+
u , 3Πg,

3Πu and 3∆g symmetries of the He2 molecule. Below

the ion ground state, bound states were also calculated. Some differences are found

between our resonance curves and widths and the former computations as well as their

crossing positions. For example, at some internuclear distances, our resonance widths

are larger than those of Royal and Orel (2005). Moreover, resonance curves and widths

are calculated for many more bond lengths, making them suitable for appropriate use in

DR computations, as the fit of the autoionization widths in this case would lead to more

realistic electronic couplings. As a consequence, use of the present data set is likely to

result in differences in the cross sections and rate coefficients predicted for some DR and
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Figure 1. Electronic energy curves of He2 resonance states of singlet symmetry, with

calculated points indicated by stars. The symmetry of each set of the resonances is

indicated in the panel, colour is used to match the molecular state corresponding to

each curve with the resonance widths given in figure 4. The two black thick full curves

are the ground X 2Σ+
u and the first excited A 2Σ+

g states of He+

2 .

related processes compared to the ones already available. The present data will be used

to produce new dissociative recombination and dissociative excitation cross sections in

the near future.
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Figure 2. Electronic energy curves of He2 resonance states of triplet symmetry

with calculated points indicated by stars. The symmetry of each set of resonances

is indicated in the panel; colour is used to match the molecular state corresponding to

each curve with the resonance widths given in figure 6. The two black thick full curves

are the ground X 2Σ+
u and the first excited A 2Σ+

g states of He+

2 . Dashed curves are

the quasidiabatic potentials of Royal and Orel (2005)
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Figure 5. Effective quantum numbers corresponding to the resonances shown in

Figure 2 as a function of internuclear distance R, for the 3Σ+
g , 3Σ+

u , 3Πg,
3Πu and 3∆u

symmetries. The nature of the states is indicated with the symbols o : s-state, ⋄ :

p-state, ¤ : d-state, △: f-state
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Figure 6. Resonance widths corresponding to the resonances shown in Figure 2

as a function of the internuclear distance R, for the 3Σ+
g , 3Σ+

u , 3Πg,
3Πu and 3∆u

symmetries. Line with star: present work. Dashed curves: Royal and Orel (2005)


