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Abstract 

 

Parkinson’s disease (PD) is a neurodegenerative disorder caused by loss of 

dopaminergic neurons in the substantia nigra. Different pathogenic mechanisms have 

been implicated, including loss of mitochondrial complex I function and dysfunction of 

lysosomal glucocerebrosidase (GBA1) (Neumann et al., 2009; Schapira et al., 1990). Also, 

it has been hypothesised that serotonin metabolism could be affected in these patients 

due to the number of enzymes shared by both pathways (Albizu et al., 2011). This thesis 

considers the potential involvement of complex I and GBA1 in PD using HPLC analysis of 

changes in the extracellular levels of the metabolites of dopamine and serotonin, and the 

expression and activity of the enzymes of the dopamine pathway. Using SH-SY5Y cells, 

complex I deficiency was modelled using rotenone, and GBA1 deficiency was modelled 

using conduritol B epoxide (CBE). Inhibition of mitochondrial complex I or GBA1 

significantly increased extracellular concentrations of 3,4-dihydroxyphenylacetic acid 

(DOPAC) and 5-hydroxyindoleacetic acid (5-HIAA), direct products of the degradation by 

monoamine oxidase (MAO) of dopamine and serotonin respectively. These results suggest 

increased MAO activity, providing evidence for the involvement of impaired complex I or 

GBA1 activity in the dopamine deficiency seen in PD. As MAO produces hydrogen 

peroxide as a side-product, its increased activity could enhance the oxidative stress present 

in PD (Dias et al., 2013). Therefore, intracellular GSH levels were quantified to determine 

whether the antioxidant mechanisms were affected, but no changes were observed. In 

addition to the main project, I collaborated with a number of groups to study monoamine 

metabolism in parkinsonian models. Also, the glycoprofile of cerebrospinal fluid (CSF) of 

patients with and without impaired dopamine metabolism was studied to explore the 

possibility of using glycans as pathologic biomarkers.  
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Impact statement 

 

This thesis has improved understanding in Parkinson’s Disease (PD) pathogenic 

mechanisms. This has been achieved by demonstrating a common effect on dopamine 

metabolism when mitochondria or lysosomes are affected in a cellular model.  

Parkinson’s disease (PD) is the second most common neurodegenerative disorder 

and it is caused by loss of dopaminergic neurons in the substantia nigra. Although 

different mechanisms have been implicated in the pathogenesis of PD, e.g. loss of 

mitochondrial complex I function, dysfunction of lysosomal glucocerebrosidase (GBA1), 

the triggering cause is still unknown. 

At UCL, a project called Training in Neurodegeneration, Therapeutics Intervention 

and Neurorepair (TINTIN) funded by Marie Curie Actions and European Union Seventh 

Framework Programme, aimed to research the relationship between two known 

organelles that are affected in PD and the cause of the disease symptoms, the loss of 

dopamine in the substantia nigra. To do so, changes in the release of dopamine and its 

metabolites by a cellular model were studied by high-performance liquid chromatography 

coupled to an electrochemical detector (ECD-HPLC). With this approach, a common 

effect on dopamine metabolism has been observed. These findings lead to a whole new 

academic project in which the effect of the different mechanisms that have been involved 

in the pathogenesis of PD is studied in order to understand the disease. If the common 

effect is confirmed in other cellular and animal models, these findings could lead to the 

involvement of pharmaceutical companies to develop a new therapy for the PD patients. 
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1.3.6. Dopamine Homeostasis 

Dopamine acts as an extracellular signal in several tissues; for example, the brain 

and adrenal medulla, and is highly regulated both upstream and downstream. There are 

several diseases related to this pathway, either inherited or acquired, known collectively 

as parkinsonism. When first discovered at the beginning of the 20th century, dopamine 

was thought to be a precursor for noradrenaline (Iversen and Iversen, 2007). It was not 

until the 1960s that Dr Arvin Carlsson demonstrated that dopamine was not just a 

precursor but itself a neurotransmitter and won the Nobel Prize in Physiology and 

Medicine 2000 for this discovery. Today, it is known that dopamine is related to voluntary 

movement, reward-motivated behaviour and cognitive functions (Meiser et al., 2013). All 

these functions are deteriorated in PD patients due to degeneration of dopaminergic 

neurons. 

1.3.7. Dopamine synthesis 

Neuronal dopamine biosynthesis takes place in the substantia nigra pars compacta 

and ventral tegmental area. The classical biosynthesis pathway starts in the cytosol of 

dopaminergic neurons, where L-tyrosine is hydroxylated by tyrosine hydroxylase (TH) to 

produce L-3,4-dihydroxyphenylalanine (L-DOPA). TH has a requirement for 

tetrahydrobiopterin (BH4) as a cofactor. This first step is described as the rate-limiting 

reaction of dopamine synthesis. Subsequently, L-DOPA is decarboxylated by aromatic L-

amino acid decarboxylase (AADC) to produce dopamine. AADC uses pyridoxal phosphate 

(PLP) as a cofactor (Figure 1.1). An alternative route can metabolise L-DOPA by catechol-

O-methyl transferase (COMT), generating 3-O-methyldopa (3-OMD).  

Several publications have proposed an alternative route for dopamine synthesis 

involving cytochrome P450 (CYP) (reviewed by Meiser et al., 2013). CYP is a multi-gene 
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family of monooxygenases known for their role in detoxifying natural toxins and 

pharmacological drugs (reviewed by Gopisankar, 2017). Via this parallel pathway, 

dopamine is synthesised from tyramine in the presence of nicotinamide adenine 

dinucleotide phosphate (NADPH) (Hiroi et al., 1998). Tyramine can be either endogenous, 

via tyrosine decarboxylation by AADC, or exogenous, from fermented food such as cheese 

and wine (Hiroi et al., 1998). Although this route was first described in hepatic microsomes 

of rat, it became a topic of interest in neurodegenerative diseases once its expression in 

non-hepatic tissues was established (reviewed by Gopisankar, 2017). Among all the 

isoforms, CYP2D6 has been reported to be the predominant isoform in the brain and to 

show the highest ability to synthesise dopamine (Hiroi et al., 1998; Wang et al., 2014). 

CYP2D6 messenger ribonucleic acid (mRNA) and protein have been reported to be 

expressed in several brain regions, and this enzyme would be more abundant in the 

cerebellum than in the substantia nigra (Miksys et al., 2002; Siegle et al., 2001). However, 

Siegle et al. (2001) reported that while CYP2D6 mRNA is expressed in both glial and 

neuronal cells, its protein was only detected in neurons. Differences in the glia:neuron 

ratio of these regions (Azevedo et al., 2009) could explain why CYP2D6 expression seemed 

lower in the substantia nigra (ratio glia/neurons = 11.35) compared to the cerebellum (ratio 

glia/neurons = 0.23). Nonetheless, CYP2D6 activity in the substantia nigra was reported 

as significantly higher than in other brain regions (Bromek et al., 2011). Although this 

pathway should be taken into consideration for further work, this thesis focuses on the 

classical pathway. 

After its synthesis, dopamine is stored within pre-synaptic vesicles for release. 

Alternatively, noradrenergic neurons metabolise dopamine to noradrenaline by dopamine 

β-hydroxylase (DBH) (Figure 1.1). This enzyme requires the presence of ascorbate and O2 

to catalyse the hydroxylation. In adrenergic neurons, noradrenaline is methylated to 

produce adrenaline by phenylethanolamine N-methyltransferase (PNMT) (Figure 1.1), 
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which uses S-adenosylmethionine (SAM) as a methyl donor (reviewed by Meiser et al., 

2013). 

1.3.8. Dopamine neurotransmission 

Due to dopamine instability at physiological pH, this neurotransmitter is 

internalised into synaptic vesicles by the vesicular monoamine transporter 2 (VMAT2) 

(Chaudhry et al., 2008). VMAT2 uses a proton gradient generated by the proton pump 

vacuolar-type H+-ATPase (V-ATPase). Within these vesicles, the pH is two units lower 

than in the cytosol, so dopamine does not spontaneously oxidise (Guillot and Miller, 

2009). VMAT2 exchanges two H+ ions for one positively charged monoamine, reducing 

the neurotransmitter concentration and preventing oxidative stress in the cytosol (Alter 

et al., 2013). It has been reported that VMAT2 couples to AADC and TH, forming a 

complex (Cartier et al., 2010) that increases the efficiency of transport from the cytosol to 

the vesicles (Figure 1.2). 

Once loaded, full vesicles move within the cell towards the pre-synaptic membrane 

ready for the signal to release dopamine. The synaptic vesicles are attached to the 

membrane by the soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein 

receptor (SNARE) proteins, which are present in both vesicular and cellular membranes. 

These proteins form a complex that lead to a fast membrane fusion to efficiently release 

the neurotransmitter (reviewed by Chen and Scheller, 2001). Membrane depolarisation 

opens the voltage-gated Ca2+ channels and the resulting Ca2+ influx causes the membranes 

to approach one another, releasing dopamine. Once in the synaptic cleft, dopamine binds 

to receptors located on the post-synaptic membrane and triggers post-synaptic neuron 

depolarisation. It also binds to pre-synaptic receptors responsible for termination of the 

neurotransmitter signal, by both reuptake and degradation of dopamine. 
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Figure 1.1 Dopamine pathway.  
The classical pathway is shown in black and the alternative cytochrome-mediated pathway is 
shown in red. Pathway cofactors and the biosynthesis of those relevant for this project are 
shown in blue. Finally, the classical synthesis pathway of the other catecholaminergic 
neurotransmitters is shown in grey. 3-MT (3-methoxytyramine), 3-OMD (3-O-methyldopa), 
AADC (aromatic L-amino acid decarboxylase), ALDH (aldehyde dehydrogenase), BH4 
(tetrahydrobiopterin), COMT (catechol-O-methyl transferase), CYP2D6 (cytochrome P450 2D6), 
DBH (dopamine β-hydroxylase), DOPAC (3,4-dihydroxyphenylacetic acid), GCH1 (GTP 
cyclohydrolase 1), HVA (homovanillic acid), L-DOPA (L-3,4-dihydroxyphenylalanine) MAO 
(monoamine oxidase), PLP (pyridoxal phosphate), PNMT (phenylethanolamine N-
methyltransferase), qBH2 (7,8-dihydrobiopterin), SAH (S-adenosyl-L-homocysteine), SAM (S-
adenosylmethionine), TH (tyrosine hydroxylase).  
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1.3.9. Dopamine recycling and degradation 

Dopamine must be removed from the synaptic cleft before the arrival of the next 

nerve impulse. For that purpose, the pre-synaptic neuron captures the released dopamine 

(Figure 1.2). This reuptake is driven by the dopamine transporter (DAT) (Nishida et al., 

2008; reviewed by Eriksen et al., 2010). It has been described that DAT is not present 

within the synaptic cleft, so the dopamine must diffuse from the synapse to the transporter 

before being sequestered (Nirenberg et al., 1996). As in the synaptic vesicles, endocytosis 

of dopamine depends on an electrochemical gradient generated by the plasma membrane 

Na+/K+ ATPase (Torres et al., 2003). The transport of dopamine from the synaptic cleft to 

the cytosol co-transports two Na+ ions and one Cl- ion. A two-step process then takes place 

to recycle the dopamine: firstly, dopamine is stored in synaptic vesicles by VMAT2; and, 

secondly, the vesicles approach the neuron’s pre-synaptic end.  

Although in physiological conditions, dopamine reuptake is the mechanism by 

which the neurotransmitter is cleared from the synaptic cleft (Espinoza et al., 2012), the 

non-recycled neurotransmitter can be degraded by both neurons and glial cells (Figure 1.2). 

Dopamine is metabolised on two parallel pathways (reviewed by Meiser et al., 2013). On 

the first pathway, monoamine oxidase (MAO) and aldehyde dehydrogenase (ALDH) 

metabolise dopamine to 3,4-dihydroxyphenylacetic acid (DOPAC). Then, COMT 

metabolises DOPAC to homovanillic acid (HVA). On the second pathway, COMT 

metabolises dopamine to 3-methoxytyramine (3-MT), which is then metabolised to HVA 

by consecutive action of MAO and ALDH (Figure 1.1 and Figure 1.2).  
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Figure 1.2 Dopamine recycling and degradation.  
Dopamine is synthesised in the pre-synaptic terminal, where the enzymes TH and AADC are 
coupled to the vesicular transporter VMAT2. The full vesicles move towards the pre-synaptic 
membrane ready for the signal to release dopamine. After the signal, dopamine has to be 
removed from the synaptic cleft. It can either undergo reuptake by the DAT and be recycled, or 
it is degraded by the consecutive action of MAO and COMT by both neurons and glial cells. 

 

The degradation enzymes are essential for the regulation of dopamine 

neurotransmission. Two of the three enzymes involved in this degradation, MAO and 

COMT, are notable for their importance in regulation of neurotransmitter turnover. 

Initially, MAO oxidises dopamine and 3-MT to aldehydes. This reaction requires flavin 

adenine dinucleotide as a cofactor and produces hydrogen peroxide (H2O2). The 

corresponding aldehydes are rapidly oxidised to DOPAC and HVA respectively. MAO 

exists in two isoforms, MAO-A and MAO-B, which are encoded by two different genes. 

Although structurally diverse, both are mainly located in the outer mitochondrial 

membrane and catalyse the same reaction. While MAO-A principally catalyses 
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noradrenaline and serotonin, MAO-B principally has dopamine and 3-MT as substrates, 

producing DOPAC and HVA respectively (reviewed by Ng et al., 2014). COMT, with Mg2+ 

as a cofactor, catalyses the transfer of a methyl group from SAM to the hydroxyl groups of 

dopamine and DOPAC. This reaction generates 3-MT and HVA respectively. COMT can 

also be found in two isoforms but, in this case, both are encoded by the same gene. One 

isoform is soluble and can be found in the cytoplasm of glial and peripheral cells. The 

second isoform is membrane bound and is predominantly present in neurons, attached to 

the rough endoplasmic reticulum. This second isoform shows more affinity for 

catecholamines but lower capacity (Mannisto and Kaakkola, 1999).  

1.3.10. Toxicity derived from dopamine metabolism 

Despite dopamine being rapidly sequestered into vesicles after its synthesis or its 

reuptake, some leakage from vesicles can occur (Meiser et al., 2013). If dopamine 

accumulates in the cytosol, it can either be degraded or autooxidise (reviewed by Munoz 

et al., 2012). As described in section 1.3.9, dopamine degradation is an oxidative process as 

MAO produces H2O2 as a by-product. H2O2 is a reactive oxygen species (ROS) that is 

detoxified by antioxidant enzymes known as peroxidases to produce water. Although it is 

widely accepted that ROS have a signalling role, some of them; for example, hydroxyl 

radicals, are more likely to react with and oxidise other cellular components (Schieber and 

Chandel, 2014). While H2O2 is only a weak pro-oxidant, it can produce more reactive ROS 

by Fenton reactions (Figure 1.3). Therefore, dopamine metabolism is a natural source of 

ROS that could be enhanced in pathological conditions in which dopamine turnover is 

altered. 

 
Figure 1.3 Fenton reaction.  
H2O2 in the presence of a ferrous ion (Fe2+) results in a hydroxyl radical and a hydroxide ion (OH– 
and OH˙) in conjunction with a ferric ion (Fe3+). 

H2O2 + Fe2+ OH- + OH· + Fe3+
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Cytosolic dopamine and some of its metabolites can also produce highly oxidative 

molecules (reviewed by Munoz et al., 2012). Dopamine and DOPAC can be spontaneously 

oxidised at cytosolic pH to dopamine-quinones and semi-quinones by metal-catalysis. 

This pathway comprises three main steps (Figure 1.4): (I) dopamine is oxidised by metals, 

ROS and oxygen, producing semi-o-quinones and o-quinones; (II) physiological pH leads 

to the cyclisation of these dopamine o-quinones into aminochrome; and (III) two 

molecules of aminochrome combine to form neuromelanin (Graumann et al., 2002). The 

first step, i.e. dopamine-o-quinone formation, can be achieved in three ways. The first 

comprises two consecutive single e- oxidations (Figure 1.4, steps (1) and (3)), forming an 

intermediate molecule, the dopamine-o-semiquinone radical. The second involves this 

intermediate. The combination of two o-semiquinone radicals (Figure 1.4, step (2)) 

produces one molecule of dopamine and one of dopamine-o-quinone. The third is a two 

e- oxidation of dopamine, which produces dopamine-o-quinone in one step (Figure 1.4, 

step (4)).  

Dopamine-quinones are the precursors of aminochrome (Munoz et al., 2012), a 

potentially harmful molecule that can interact with several essential proteins and 

organelles altering correct cellular function (Figure 1.4). Some examples are mitochondrial 

complexes I and III of the electron transport chain (ETC), α-synuclein and α/β-tubulin 

(reviewed by Munoz et al., 2012). This suggests that aminochrome could induce 

mitochondrial dysfunction, oxidative stress and, consequently, neurotoxicity.  
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Figure 1.4 Dopamine oxidation.  
Dopamine at cytosolic pH can undergo oxidation via a three-step pathway: (I) formation of 
dopamine-o-quinone, (II) cyclization to aminochrome, and (III) formation of neuromelanin. 

Dopamine oxidation to quinone can be achieved in three ways: a two-step one e- oxidation (1 

and 3), a one-step two e- oxidation (4) and a two-dopamine-o-semiquinone association (2). 
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Aminochrome can form aggregates with different proteins or be phagocytised and 

stored in vacuoles as neuromelanin. The physiological role of neuromelanin is still unclear. 

However, some theories propose a neuroprotective physiological role that can become 

neurodegenerative in a pathological environment (Gerlach et al., 2003). The 

neuroprotective function could be via action as an iron chelator reducing the progress of 

Fenton reaction; but when there is an excessive accumulation, neuromelanin deposits 

would be degraded resulting in the sudden release of the stored iron (Gerlach et al., 2003). 

It has also been proposed that neuromelanin production could be a consequence of 

cytosolic dopamine accumulation, in order to sequester free dopamine and decrease its 

presence in the cytosol (Sulzer et al., 2000).  

1.3.11. Dopamine-related pathways 

Dopamine metabolism is closely related to serotonin synthesis and degradation, as 

the pathways share some enzymes (Figure 1.5). Serotonin synthesis starts with the 

hydroxylation of L-tryptophan by tryptophan hydroxylase (TPH) and the cofactor BH4. 

This reaction is the rate-limiting step in this pathway and produces 5-hydroxytryptophan 

(5-HTP), which is serotonin’s immediate precursor. 5-HTP is decarboxylated by AADC 

with PLP as cofactor, synthesising serotonin. As with dopamine, serotonin needs to be 

quickly degraded after its action. To accomplish this, MAO oxidises serotonin to 5-

hydroxyindoleacetic acid (5-HIAA), its final degradation metabolite. 
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Figure 1.5 Serotonin pathway. 
The serotonin synthesis pathway (black) shares most of the enzymes with the dopamine 
pathway. Pathway cofactors and the biosynthesis of those relevant for this project are shown 
in blue. 5-HIAA (5-hydroxyindoleacetic acid), 5-HTP (5-hydroxytryptophan), AADC (aromatic L-
amino acid decarboxylase), ALDH (aldehyde dehydrogenase), BH4 (tetrahydrobiopterin), MAO 
(monoamine oxidase), PLP (pyridoxal phosphate), qBH2 (7,8-dihydrobiopterin), TPH 
(tryptophan hydroxylase). 
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While most of the enzymes involved in this pathway are also present in the 

dopamine pathway, TPH is distinct from TH. TPH, TH and phenylalanine hydroxylase all 

belong to the biopterin-dependent aromatic amino acid hydroxylase family. The three 

enzymes are structurally and functionally related, as they drive the same reaction using 

the same cofactor, BH4. As TH and TPH are tetramers, Mockus et al. (1997) proposed a 

possible heterotetramerisation including TH and TPH subunits. However, later studies 

reported that these enzymes do not form heterotetramers (Mockus et al., 1998). More than 

a decade later, Albizu et al. (2011) proposed a possible crosstalk between dopamine and 

serotonin pathways through the heteromerisation of dopamine and serotonin receptors. 

Due to limited knowledge and potential new therapeutic approaches, this possible 

crosstalk has been attracting increasing attention in recent years. 

 

1.2. Enzymes and Cofactors of the Dopamine Pathway 

Dysregulation of the dopamine pathway enzymes could be a cause or a consequence 

of the events described in PD. Indeed, several studies have focused on studying the 

structure of these enzymes and the regulatory mechanisms that could affect their 

expression or activity (Hadjiconstantinou and Neff, 2008; Mannisto and Kaakkola, 1999; 

Daubner et al., 2011; Youdim and Bakhle, 2006). In addition, knowing how cells react to 

changes in L-DOPA and dopamine concentration in physiological and pathological 

conditions could be fundamental for a better understanding of PD and its treatment. A 

brief summary of what is known about the enzymes of the dopamine pathway relevant for 

this thesis is described below. 
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Tyrosine hydroxylase (TH) 

TH comprises four identical and catalytically active subunits coded by a single gene 

(reviewed by Daubner et al., 2011; Meiser et al., 2013). Each contains an N-terminal 

regulatory domain, a catalytic site and a C-terminal leucine zipper domain, and there are 

four isomers due to alternative splicing of the first domain. The leucine zipper domain is 

essential for tetramer assembling and it has been reported that the enzymatic activity 

decreases by 70% when it is not formed (Vrana et al., 1994). As described above, TH 

catalyses the first and rate-limiting step of dopamine synthesis (Figure 1.1). TH activity is 

highly regulated (reviewed by Daubner et al., 2011). Each subunit requires BH4, Fe2+ and 

O2 to convert L-tyrosine into L-DOPA. In addition, TH can be phosphorylated and 

dephosphorylated in various positions, changing its activity rates and affinity for the 

substrates and cofactors (Daubner et al., 2011). For instance, phosphorylation of its serine 

in position 40 increases TH enzymatic activity 20-fold. Some studies report that TH can 

be inactivated by dephosphorylation through the action of nitric oxide synthase (NOS) 

and S-thiolation (Daubner et al., 2011). This is of special interest, as in PD the levels of 

oxidative species are increased in the brain (Dias et al., 2013). It has been proposed that 

TH stability could also be controlled by protein–protein interactions: the TH N-terminal 

regulatory domain forming complexes such as the TH, AADC and VMAT2 association 

(Cartier et al., 2010). This increase in stability could be due to decreased degradation via 

the ubiquitin-proteasome system, as the lysine target might be in the N-terminus. 

Catecholamines compete with BH4 for the Fe2+ in the active site of TH, negatively 

regulating its enzymatic activity (Meiser et al., 2013); this negative feedback is functional 

even when TH forms complexes. 
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1.2.12. Aromatic L-amino acid decarboxylase (AADC) 

The regulation of catecholamine synthesis at the level of AADC is not completely 

understood (Berry et al., 1996). A number of theories have been proposed, but no 

consensus has been reached. It is thought that long-term regulation could occur via 

transcriptional changes, and that short term regulation occurs as a result of post-

translational changes in enzymatic activity (Meiser et al., 2013). The AADC gene can 

exhibit alternative promoter usage and splicing that is species- and tissue-specific (Zhu 

and Juorio, 1995). It has also been proposed that dopamine, its precursors and its receptors 

could have a regulatory function in AADC enzymatic activity (Hadjiconstantinou and Neff, 

2008; Lovenberg et al., 1962).  

1.2.13. Catechol O-methyl transferase (COMT) 

COMT transfers activated methyl groups from SAM to catechol-hydroxyl groups. 

There are two isoforms coded by the same gene: soluble (S-COMT) and membrane-bound 

(M-COMT). While S-COMT is found in the cytosol of glial cells and periphery, M-COMT 

is found in the rough endoplasmic reticulum and is prevalent in neurons (Espinoza et al., 

2012). Both isoenzymes are dependent on Mg2+, and although it has been reported that 

there is no COMT activity in the dopaminergic neurons of the substantia nigra, M-COMT 

shows a high affinity for catecholamines and is mainly responsible for their metabolism 

originated by dopaminergic and adrenergic neurotransmission (reviewed by Mannisto and 

Kaakkola, 1999). Conversely, it has been described that S-COMT is responsible for 

metabolism of exogenous catecholamines. While some studies have described single-

nucleotide polymorphisms related to a lower enzymatic activity in PD, others have linked 

these polymorphisms to the response to PD treatment (Chen et al. 2004; Hernan et al.; 

2002; Tunbridge, 2010). However, most groups conclude that there is no relationship 

between COMT polymorphisms and PD (reviewed by Jimenez-Jimenez et al., 2014). 
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1.2.14. Monoamine oxidase (MAO) 

MAO catalyses the oxidative deamination of catecholamines to aldehydes, 

generating H2O2. This enzyme is present in both the central nervous system (CNS) and 

peripheral tissues. Within the CNS, MAO can be found in neurons, microglia and 

astrocytes. MAO occurs in two isoforms: MAO-A and MAO-B, coded for by two different 

genes (Youdim and Bakhle, 2006). Both isoforms are located in the outer mitochondrial 

membrane. The different isoforms have different affinity to substrates, although both can 

catalyse dopamine (Youdim and Bakhle, 2006). Neurons in the substantia nigra show a 

decreased MAO presence compared to that in other neurons or glial cells. In PD, MAO-B 

inhibition has been reported to improve motor and non-motor symptoms. In fact, a wide 

range of MAO-B inhibitors is used clinically; for example, selegiline and rasagiline are both 

irreversible MAO-B inhibitors used to decrease motor fluctuations after L-DOPA 

treatment (Riederer and Laux, 2011). Conversely, MAO-A inhibitors were quickly excluded 

because of side effects, such as hypertensive interaction with dietary tyramine (Anderson 

et al., 1993).  

1.2.15. Tetrahydrobiopterin (BH4) 

BH4 is a cofactor for several enzymatic processes involving amino acids (Figure 1.1). 

This cofactor is synthesised both in the liver and in the brain by de novo and salvage 

pathways (Kapatos, 2013; Longo, 2009). BH4 de novo classical synthesis in the brain starts 

with the transformation of GTP to 7,8-dihydroneopterin triphosphate by GTP 

cyclohydrolase 1 (GTPCH), the rate-limiting enzyme of the pathway. Then, 7,8-

dihydroneopterin triphosphate is converted to 6-pyruvoyltetrahydropterin by 6-

pyruvoyltetrahydropterin synthase (PTPS). Lastly, 6-pyruvoyltetrahydropterin is reduced 

three consecutive times by the enzyme sepiapterin reductase (SR) to finally yield BH4. 

When BH4 acts as a cofactor, it loses electrons resulting in its oxidised derivative 7,8-
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dihydrobiopterin (BH2) (Longo, 2009). BH2 can revert to BH4 via two consecutive steps 

catalysed by pterin-4-carbinolamine dehydratase (PCD) and dihydropteridine reductase 

(DHPR) with the consumption of NADH. 

As BH4 synthesis is key to maintain monoamine neurotransmission, GTPCH activity 

could be essential for the activity of TH and the production of dopamine in nigrostriatal 

neurons (Kapatos, 2013; Kurian et al., 2011a). This enzyme is coded for by one gene, GCH1, 

with three splicing variants, although only one has been reported as catalytically active. 

GTPCH is expressed in a tissue-specific manner with increased mRNA expression in 

serotoninergic neurons (Kapatos, 2013; Kurian et al., 2011a). As for other enzymes, it is 

regulated by its own product: BH4 promotes the expression of GTPCH feedback regulatory 

protein (GFRP), which, in turn, inhibits GTPCH (Kapatos, 2013). This enzyme can also 

interact with other proteins as a regulatory mechanism; for example, it has been proposed 

that phosphorylated GTPCH can interact with activated TH, preventing BH4-mediated 

GTPCH inhibition (Kapatos, 2013). Previous studies have proposed that carriers of rare 

GCH1 variants show a higher risk of developing PD as a result of dopamine depletion and 

increased predisposition to cell loss (Mencacci et al., 2014). BH4 deficiency can also result 

from impairment of other enzymes on the biopterin pathway (Longo, 2009). While 

mutations affecting PTPS are the most frequent of the pterin metabolism disorders, 

mutations affecting DHPR cause the most severe phenotypes with lower success in 

treatment (Longo, 2009). In all cases, early diagnosis of mutations by analysis of 

neurotransmitters and/or biopterins in the urine and cerebrospinal fluid (CSF) of patients 

is key before starting treatment and to avoid phenotypical consequences of BH4 

deficiency; for example, mental retardation (Longo, 2009; Ormazabal et al., 2006). 
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1.2.16. Pyridoxal phosphate (PLP) 

PLP is the active form of vitamin B6 and acts as a cofactor in several cytosolic 

processes; for example, AADC activity (Percudani and Peracchi, 2003). As a vitamin, B6 

levels in humans are dependent upon dietary absorption. Two B6 transport systems have 

been described, requiring absorption of unphosphorylated B6 vitamers or directly as PLP 

(Whittaker, 2016). Therefore, another event key in the utilisation of exogenous B6 vitamers 

is cellular ability to convert the vitamin into PLP. Vitamers must first be phosphorylated 

by pyridoxine kinase (PNK) to pyridoxine phosphate (PNP). PNP is membrane-

impermeable and is therefore trapped in the cytosol. PNP is then oxidised by pyridoxine 

oxidase (PNO) to form PLP.  

Vitamin B6 deficiency can be caused by poor dietary absorption, limited cellular 

internalisation, impaired conversion to PLP and/or limited intracellular PLP trafficking 

(Percudani and Peracchi, 2003). A wide range of enzymes require PLP as a cofactor; for 

example, AADC in cytosol and in heme biosynthesis in mitochondria. Consequently, 

deficiency in vitamin B6 or PLP has been associated with several disorders, including 

epilepsy and neurodegenerative diseases (Whittaker, 2016). 

 

1.3. Parkinson’s Disease 

PD is the second most common neurodegenerative disease and mainly affects the 

motor system. This disease is a chronic and progressive disorder characterised by the 

following four symptoms: tremor, rigidity, bradykinesia and postural instability. Despite 

the great amount of research in the field, the initial cause is unknown. Currently, PD 

therapies provide temporary relief of motor symptoms, but none stops the progression of 

neurodegeneration. Therapies comprise administration of dopamine precursors; for 
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example, L-DOPA, or inhibitors of dopamine-degradation enzymes; for example, MAO 

inhibitors. It is widely accepted that PD patients present loss of dopaminergic neurons in 

the substantia nigra (Dauer and Przedborski, 2003), loss of mitochondrial complex I 

activity (Betarbet et al., 2000), autophagy dysfunction (Lynch-Day et al., 2012) and 

impaired protein degradation and abnormal protein deposits (Beyer, 2007). Altogether, 

these result in dopamine deficiency, increased oxidative stress and α-synuclein 

accumulation forming Lewy bodies (Beyer, 2007). These events have been extensively 

studied in both cellular and animal models, including analysis of their role in 

neurodegeneration (Hauser and Hastings, 2013; Fujita et al., 2014). Several gene mutations 

have been identified in familial PD patients, some have also been found in spontaneous 

PD patients with no familial history of parkinsonism; for example, mutation in the parkin 

gene (Dauer and Przedborski, 2003). It is of note that historically, in the search for the 

initial cause of PD, most of these events have been studied individually. Recently, a multi-

causal theory has been proposed to explain the triggering of PD (Fujita et al., 2014). Prior 

to this, very little has been reported that relates these episodes to dopamine or its 

metabolism (Burbulla et al., 2017). This is surprising given that absence of dopamine is the 

cause of PD symptoms and is the deficiency being treated. None of the studies published 

have answered the question that always arises: what do dopaminergic neurons have that 

makes them vulnerable to the development of selective neurodegeneration characteristics 

of PD?  

1.2.1. PD and dopamine 

Increasing the dopamine levels in the brains of PD patients can ameliorate the 

symptoms. Because dopamine is unable to cross the blood–brain barrier, L-DOPA is used 

as symptomatic treatment in PD and L-DOPA-responsive dystonia. L-DOPA is the 

immediate dopamine precursor and can cross the blood–brain barrier. To avoid peripheral 
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metabolism of L-DOPA decreasing the concentration that reaches the brain, and to 

prevent the peripheral action of dopamine, treatment with L-DOPA is combined with 

AADC inhibitors such as carbidopa. Rasagiline (N-propargyl-1 R-aminoindan), an 

irreversible MAO-B inhibitor, is used as a monotherapy in early stages of PD to increase 

the half-life of dopamine; and in combined therapy along with L-DOPA in more advanced 

cases (Mandel et al., 2005). In addition, and as a side effect, it has been reported that 

rasagiline has a neuroprotective role in both cellular and animal PD models (Youdim et 

al., 2004), suppressing the mitochondrial apoptosis cascade (Youdim and Weinstock, 

2001) and increasing the expression of anti-apoptotic genes (Akao et al., 2002).  

The use of MAO inhibitors was first thought to increase the half-life of dopamine in 

the brains of those PD patients with a decreased number of dopaminergic neurons. 

However, this treatment could have more relevance than initially anticipated as 

subsequent studies have reported increased enzymatic activity of this enzyme in the 

substantia nigra of post-mortem PD brains (Birkmayer et al., 1975; Sai et al., 2008). 

Inhibiting the activity of this enzyme would also result in lower H2O2 production and 

decreased dopamine-metabolism-derived oxidative stress. The inhibition of COMT has 

been used to increase L-DOPA and dopamine half-life (Ruottinen and Rinne, 1998). 

COMT inhibitors are specific and reversible and can target the enzyme both peripherally 

and/or centrally, depending on their ability to cross the blood–brain barrier. 

Paradoxically, increasing dopamine availability could be detrimental for the 

neurons. Either dopamine degradation or accumulation could increase the stress levels of 

the cells: dopamine degradation produces H2O2 and its accumulation in cytosol could lead 

to dopamine oxidation as described in section 1.3.10. Indeed, one possible explanation for 

the high levels of oxidative stress in dopaminergic neurons could be dopamine itself as it 

is potentially oxidant in several ways. Also, neurons are post-mitotic cells with an 
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increased oxidative environment and limited antioxidant availability, which make them 

more vulnerable to oxidative stress (Heales and Bolanos, 2001; Sian et al.; 1994; Heales et 

al., 1997). Recent publications on the use of dopaminergic neurons derived from induced 

pluripotent stem (iPS) cells of PD patients report that dopamine oxidation could be an 

early event in disease development leading to the dysfunction of mitochondrial complex I 

and lysosomal glucocerebrosidase (GBA1) (Burbulla et al., 2017). Oxidised dopamine could 

directly inhibit mitochondrial complex I activity as proposed by Aguirre et al. (2012). This 

study also reported changes in the expression of iron transporters after exposure to 

aminochrome, leading to increased iron uptake. Altogether, this would enhance ROS 

production and hydroxyl radical synthesis by Fenton reaction, both events characteristic 

of PD. Although it is thought that neuromelanin might be initially protective (see section 

1.3.10), it can interact with lipids, proteins and Fe2+ (Double et al., 2002), which could be 

detrimental if the aggregate accumulates.  

Lastly, monoamine neurotransmitter disorders are rare inherited neurometabolic 

syndromes characterised by dysfunction or absence of any of the proteins involved in 

dopamine synthesis and homeostasis. Deficiency of either the enzymes TH or AADC, or 

the cofactors BH4 or PLP, results in dopamine deficiency. Transporter deficiency produces 

changes in dopamine homeostasis. VMAT2 deficiency affects dopamine packaging for 

synaptic transmission, while DAT deficiency depletes dopamine recycling (Kurian et al., 

2011b). The diagnosis of most of these disorders takes place during childhood, as these 

syndromes lead to neurological, developmental and motor disorders (reviewed by Ng et 

al., 2014).  

1.2.2. PD and mitochondria  

Mitochondria are both the source and target of ROS. The ETC transfers electrons to 

create a proton gradient, which is used to synthesise ATP. A small percentage of those 
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electrons are captured by O2 to produce superoxide ions. Of the ETC complexes, complex 

I has been the most extensively studied since identification of the link between 

mitochondria and PD (Schapira et al., 1990). This relationship was first described after 

some drug users presented with parkinsonian symptoms after 1-methyl-4-phenyl-1,2,3,6-

tetrahydropyridine (MPTP) exposure (Davis et al., 1979). MPTP is a side-product in the 

synthesis of 1-methyl-4-phenyl-4-propionoxypiperidine (MPPP), a synthetic opioid drug 

with similar effects to those of morphine. MPTP can cross the brain–blood barrier and it 

is transformed to 1-methyl-4-phenylpyridinium (MPP+) via MAO-B within the glial cells. 

MPP+ is then released and specifically internalised in the dopaminergic neurons by DAT, 

where it inhibits mitochondrial complex I activity and initiates a degeneration cascade.  

As a result of this discovery, it has been shown that exogenous and endogenous 

toxins, such as rotenone and nitric oxide (NO) respectively, can produce mitochondrial 

dysfunction leading to early onset PD (Heales et al., 1999). For instance, several 

publications have reported that NO can inhibit the ETC complexes; and the degree of that 

inhibition, i.e. reversible or irreversible, is dependent upon the efficiency of the 

antioxidant system (reviewed by Heales et al., 1999). Various processes have been 

proposed to explain the consequences of the loss of complex I activity. The most 

characterised are higher ROS production, increased oxidative stress and impairment of 

ATP synthesis (Abou-Sleiman et al., 2006). Some studies have proposed that ETC 

dysfunction first increases ROS levels and then leads to impairment of the energy 

metabolism (Jacobson et al., 2005). Indeed, (Davey et al., 1998) proved that the reduction 

in activity of complex I needed to decrease ATP synthesis was lower in the presence of 

oxidative stress. Nonetheless, the impairment of mitochondrial complex I activity has been 

described as a contributing factor in dopaminergic neuron death in PD (Abou-Sleiman et 

al., 2006; Choi et al., 2011).  
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Rotenone, a naturally occurring pesticide, has often been used to study the 

relationship between mitochondrial impairment and PD. This compound impairs electron 

transfer from the iron–sulphur clusters of complex I to ubiquinone, boosting the transport 

of electrons from the intermembrane space to the mitochondrial matrix and increasing 

the production of reactive oxygen species (Hirst and Roessler, 2016). It has been proposed 

that rotenone-induced cell death is caused by ROS production, which triggers apoptosis 

and cytoskeleton destabilisation (Choi et al., 2011). Furthermore, it has been shown that 

rotenone also inhibits the dopamine transporter VMAT2 (Chaudhry et al., 2008; Choi et 

al., 2015; Watabe and Nakaki, 2008). Some authors have suggested that this inhibition 

could be due to reduced ATP production after rotenone treatment, as ATP is necessary to 

create the H+ gradient that VMAT2 uses to endocytose dopamine into vesicles (Chaudhry 

et al., 2008). In addition, it has been proposed that rotenone could directly inhibit VMAT2 

function (Choi et al., 2015; Watabe and Nakaki, 2008). All these factors would result in 

dopamine accumulation in cytosol, possibly preceding its oxidation to form aminochrome 

and neuromelanin (see section 1.3.10). It has been described that aminochrome can 

directly inhibit complex I, leading to an energy-deficiency state in dopaminergic-like SH-

SY5Y cells (Aguirre et al., 2012), although this effect could be partially prevented by 

reduced glutathione (GSH) (Munoz et al., 2012). In summary, all mechanisms support the 

theory that if cytosolic dopamine accumulates, it would increase neurotoxicity, leading to 

apoptosis of dopaminergic neurons (Choi et al., 2015; Chaudhry et al., 2008; Watabe and 

Nakaki, 2008). 

The role of mitochondria in producing energy and the consequences of a 

dysfunctional ETC is one of the most studied events in PD. Although oxidative damage 

and mitochondrial dysfunction have been proposed to be key to the triggering of 

neurodegeneration, as both events are present in several neurodegenerative diseases (Dias 

et al., 2013), it is accepted that the mechanisms that cause dopaminergic 
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neurodegeneration are complex and not completely understood. Other mitochondrial 

functions should also be taken into consideration, as this organelle has other roles as 

relevant for PD as the ETC and ATP synthesis, such as calcium homeostasis (see section 

1.2.3) or maintenance of mitochondrial dynamics. In fact, several of the genes causing 

familial PD are related to some of these mitochondrial functions; for example, phosphatase 

and tensin homologue (PTEN)-induced putative kinase 1 (PINK1). More about the role of 

mitochondrial-related proteins affected in PD is described below in section 1.2.6. 

1.2.3. PD and oxidative stress 

Oxidative stress is the result of the interruption of the balance between the oxidant 

molecules produced by biological processes and the antioxidant molecules, such as alpha-

tocopherol, ascorbate and GSH, that detoxify them (Bolanos et al., 1995; Barker et al., 1996; 

Riederer et al., 1989). This balance is known as redox potential and, in physiological 

conditions, acts as a regulator of several biological processes. There are different sources 

for ROS production but dopaminergic neurons of the substantia nigra are the ones affected 

in PD. In these dopaminergic neurons, some of the biological processes that contribute to 

the formation of ROS are dopamine metabolism (section 1.3.10), mitochondrial 

dysfunction, iron and/or calcium dyshomeostasis, and lipid peroxidation (reviewed by 

Dias et al., 2013). 

In addition to ROS, there are also reactive nitrogen species (RNS) producing 

nitrosative stress (Heales and Bolanos, 2001). RNS are formed by the combination of NO 

with the superoxide anion (O2
·-). This extremely favourable reaction produces 

peroxynitrite (ONOO-), which is highly cytotoxic due to its capacity to oxidise different 

cellular components. NO is a soluble gas, which acts as a messenger molecule, and has a 

short half-life due to its high reactivity with oxidative molecules. Indeed, NO competes 

with the antioxidant enzyme superoxide dismutase for O2
·- (Heales et al., 1999). NO is 
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synthesised by NO synthases (NOS). There are three types of NOS; inducible (iNOS), 

endothelial (eNOS) and neural (nNOS). While iNOS is expressed transiently and is very 

important in the immune response, eNOS and nNOS are constitutively expressed and 

calcium-dependent. It has also been reported that nNOS can be induced after neural 

damage (Heales et al., 1995), suggesting a possible link with microglial activation. While 

neurons express only nNOS, astrocytes also express iNOS, converting them to a major 

source of NO (Heales et al., 1999; Bolanos et al., 1994), however, this observation could be 

due to microglia being present in the primary cell culture. This contrasts with their high 

resistance to RNS and the higher sensitivity of neurons (Bolanos et al., 1995). This 

difference can be explained by the fact that both NO and ONOO- can diffuse through 

membranes, raising the possibility of trans-toxicity between different cell types (Heales et 

al., 1997). 

Hydroxyl radicals (OH·) and ONOO- are the most potent oxidising agents amongst 

ROS and RNS, respectively (Dias et al., 2013). Amongst their main targets are complexes I 

and IV of the mitochondrial ETC. The inhibition of the ETC by ROS and RNS might lead 

to an energy-deficiency state resulting in increased cell death (Bolanos and Heales, 2010). 

However, it has been observed that, while neurons die after this toxic exposure, astrocytes 

are resistant (Heales et al., 1997). This increased resistance could be due to a compensatory 

increase in glycolysis and anaerobic metabolism in the latter (Bolanos et al., 1997). 

Therefore, the higher vulnerability of neurons to oxidant molecules could be due to the 

inability of neurons to maintain the cellular energy demands and an inferior capacity to 

handle oxidising species, as it has been reported that astrocytes contain double the 

concentration of GSH found in neurons (Heales et al., 1997).  

Glutathione is a potent antioxidant in its reduced form (GSH). This tripeptide can 

be synthesised de novo in an ATP-dependent pathway starting with the conjugation of 
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cysteine and glutamate by the γ-glutamyl cysteine ligase. This reaction forms γ-glutamyl 

cysteine, which becomes GSH when a glycine is added by glutathione synthetase (Figure 

1.6). GSH can also be formed by recycling its oxidised form (GSSG) through the action of 

the glutathione reductase and the oxidation of NADPH (Figure 1.6). GSH can detoxify ROS 

and RNS (Smeyne and Smeyne, 2013). For instance, to detoxify one molecule of H2O2, the 

enzyme glutathione peroxidase oxidises two molecules of GSH and produces two 

molecules of water (Figure 1.6). However, under conditions of intense stress, the use of 

GSH through GSH peroxidase means an irreversible loss of intracellular antioxidant power 

(Sian et al., 1994). Indeed, a 40% decrease in GSH levels has been reported in the 

substantia nigra of PD patients and not in other brain regions (Smeyne and Smeyne, 2013), 

probably due to the oxidative environment within dopaminergic neurons. This was also 

observed in pre-symptomatic patients (Smeyne and Smeyne, 2013). Nonetheless, whilst 

GSH levels are decreased in both groups, complex I activity was reported to be decreased 

only in the symptomatic group (Sian et al., 1994). This therefore raises the possibility that 

GSH loss precedes and contributes to the loss of complex I, a hypothesis that is supported 

by a number of observations in cellular and animal models (Heales and Bolanos, 2001; 

Bolanos et al., 1994; Heales et al., 1994). In turn, mitochondrial damage could affect GSH 

synthesis, as it is an energy-dependent pathway (Heales et al., 1994; Heales et al., 1999). 

Additionally, in vivo and in vitro studies concluded that chemical GSH depletion could 

increase NOS activity, further enhancing cytotoxicity (Heales and Bolanos, 2001; Heales 

et al., 1995).  

Regarding iron dysregulation, post-mortem tissue studies have revealed higher 

levels of iron in the substantia nigra of PD patients than in controls (Riederer et al., 1989). 

In physiological conditions, iron is a cofactor for several enzymes, for example TH, and 

Fe2+ and Fe3+ ion levels are similar in the substantia nigra (Smeyne and Smeyne, 2013). 

However, under stress conditions, accumulation of Fe2+ and dopamine oxidation have 
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been proposed as key events in increasing neurotoxicity (Dias et al., 2013). It is not known 

whether Fe2+ accumulation is a cause or a consequence of neuronal death (Dias et al., 

2013). While pre-symptomatic PD patients show no changes in iron levels (Sian et al., 

1994), in symptomatic patients increased iron levels could lead to increased neuronal 

degeneration through oxidative stress. This could form a vicious cycle since superoxide 

anions could cause release of iron from ferritin (Dias et al., 2013). In addition, dopamine 

oxidation could increase iron levels by modifying expression of transporters regulating the 

uptake of iron (Aguirre et al., 2012). 

 

Figure 1.6 GSH synthesis pathway.  
Reduced glutathione (GSH) can be synthesised de novo by a two-step pathway or recycled from 
oxidized glutathione (GSSG).  
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Calcium homeostasis is highly energy-dependent (Gleichmann and Mattson, 2011). 

Even under physiological conditions, regulation of calcium intracellular levels would 

increase mitochondrial activity with a consequent increase in ROS formation. In addition, 

nNOS is calcium-dependent; therefore, increased levels of calcium in the cytosol could 

also increase oxidative stress by enhancing nNOS activity and result in higher RNS 

formation (Gleichmann and Mattson, 2011). Burbulla et al. (2017) also proposed that 

calcium could regulate mitochondrial oxidative stress and dopamine synthesis and 

oxidation in PD patients and carriers of mutant DJ-1 (see section 1.2.6). 

1.2.4. PD and lysosomes 

Lysosomal impairment has also been related to PD since a proportion of Gaucher 

disease (GD) patients also show parkinsonian features (Migdalska-Richards and Schapira, 

2016; Lynch-Day et al., 2012). GD is a rare lysosomal storage disorder caused by GBA1 

deficiency. GBA1 hydrolyses glucosylceramide into glucose and ceramide. When GBA1 is 

absent, glucosylceramide accumulates in the spleen, liver, bone marrow and other tissues. 

Two of the three types of GD exhibit a neuropathic phenotype. The difference between 

these types is that GD type 2 is acute and type 3 is chronic. Current pharmacological 

therapies are not effective with these GD types, as the drugs cannot cross the blood–brain 

barrier (reviewed by Migdalska-Richards and Schapira, 2016). Patients with all three types 

of GD, and carriers of the GBA1 mutation, show a 5-fold greater risk of developing PD, 

hence GBA1 mutations are the most common risk factor for PD (Neumann et al., 2009). 

Indeed, PD patients who have the GBA1 mutation and those who have the idiopathic form 

cannot be distinguished clinically (Migdalska-Richards and Schapira, 2016). Moreover, 

Gegg et al. (2012) found that PD patients with no modifications in the GBA1 gene showed 

a decreased GBA1 activity. Several theories have been considered to explain the association 

of a higher risk of developing PD and lysosomal dysfunction seen in GD. Some studies 
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have proposed a bidirectional feedback between α-synuclein and GBA1, as the absence of 

GBA1 could enhance α-synuclein accumulation and, α-synuclein in turn could directly 

bind GBA1, decreasing its activity (Sidransky and Lopez, 2012; Mazzulli et al., 2011; Gegg 

et al., 2012; Bae et al., 2015). Other theories involve autophagy dysfunction, oxidative 

stress, mitochondrial impairment and lower ETC activity (reviewed by Migdalska-

Richards and Schapira, 2016), all of which have been associated with the pathology of PD. 

Although the possible link between lysosomal GBA1 mutation and PD pathogenesis 

has been extensively studied, there are other mutations of lysosomal enzymes that can 

lead to parkinsonism. For instance, the mutation of the transmembrane lysosomal P-type 

ATPase called ATP13A2 (PARK9) causes a recessive autosomal form of early-onset PD 

(Dehay et al., 2012). Although its physiological role has not been yet elucidated, it appears 

to involve impairment of autophagy processes, possibly as a consequence of increased 

lysosomal pH (Dehay et al., 2012). Another example is mutations in the sphingomyelin 

phosphodiesterase 1 gene, which cause Niemann–Pick disease. This enzyme produces 

ceramide from sphingomyelin, and its mutation has also been reported to increase the risk 

of developing PD (Moors et al., 2016). One common feature of these mutations is that a 

substrate accumulates and the lysosomal degradation mechanisms are impaired, leading 

to cellular death.  

1.2.5. PD, protein degradation and dysfunction in autophagy  

Another key mechanism implicated in PD pathogenesis is failure of autophagy, 

which leads to impaired protein degradation and abnormal protein deposits forming Lewy 

bodies (Lynch-Day et al., 2012; Beyer, 2007). The main degradation pathway for oxidised 

and misfolded proteins is the ubiquitin-proteasome system. Proteins to be degraded are 

tagged with poly-ubiquitin chains on an ATP-dependent three-step pathway. Enzyme 1 

(E1) activates the ubiquitin and transfers it to E2, which binds to E3. E3 then recognises 
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the target and mediates the transfer of ubiquitin from E2 to the damaged protein. It has 

been hypothesised that enzymes 2 and 3 form a complex to increase the target specificity. 

This pathway is considered neuroprotective during oxidative stress conditions, as it 

prevents aggregation of oxidised proteins. Therefore, a loss of function would result in 

increased oxidative stress within the cells (Dias et al., 2013). Betarbet et al. (2005) reported 

that oxidative stress inhibits the proteasome pathway, suggesting that these events form 

a vicious cycle sentencing the cell to apoptosis. 

Additionally, degradation by autophagosomes could be affected. Autophagy is 

important for degrading and recycling several cytoplasmic proteins and organelles that 

cannot be degraded by the proteasome (reviewed by Glick et al., 2010). Three types of 

autophagy have been described in the literature based on the size and the mechanisms of 

transportation of the cargo: macro-, micro- and chaperone-mediated autophagy (Glick et 

al., 2010). In all three, molecules and organelles are accumulated in vacuoles before the 

subsequent transport into lysosomes for degradation (Munoz et al., 2012). Consequently, 

in post-mitotic neurons, autophagy dysfunction results in the accumulation of aberrant 

proteins and organelles, such as defective mitochondria (Lynch-Day et al., 2012; Beyer, 

2007).  

In both sporadic and familial PD, misfolded proteins aggregate forming Lewy bodies. 

The main component of these Lewy bodies is insoluble α-synuclein (Beyer, 2007). This 

protein is conserved and abundant in the CNS but, despite its redundancy and the high 

number of groups working on this model, the function of α-synuclein is still unclear. It has 

been proposed that α-synuclein is related to synaptic vesicles in the pre-synaptic terminals 

and regulates the cycle of the vesicles ready to be released (Bendor et al., 2013). It has also 

been suggested that this protein might play an important role in cellular membrane 

dynamics and the correct localisation of membrane proteins such as DAT (Butler et al., 



Introduction 

60 
 

2015). Beyer (2007) proposed that α-synuclein can be both neurotoxic and 

neuroprotective depending on its secondary structure. Nonetheless, the cause of this 

accumulation is not clear, as some PD patients show a point mutation in the α-synuclein 

(SNCA) gene (see section 1.2.6). The accumulation of α-synuclein could also be partially 

enhanced by the loss of dopamine as Mazzulli et al. (2006) reported that the 

neurotransmitter inhibited α-synuclein aggregation and promoted the production of 

soluble intermediates. However, the interaction between α-synuclein and dopamine is not 

clear. Conway et al. (2001) found that in vitro aminochrome, the toxic product of 

dopamine metabolism, could stabilise α-synuclein protofibrils.  

1.2.6. Inherited mutations in PD 

Several inherited mutations have been related to PD and other parkinsonisms. Most 

are due to mutations in proteins that have been related to the pathogenesis of PD 

described above or are monoamine disorders that are directly related to dopamine 

synthesis and homeostasis. 

The α-synuclein depositions found in PD brains result from repetitions of the SNCA 

gene. The most common SNCA mutation in PD is A53T, a missense mutation that results 

in an autosomal dominant form of PD (Stefanis, 2012). The conformation of α-synuclein 

fibrils is most commonly present in Lewy bodies, causing oxidative and nitrosative stress 

(see section 1.2.5). 

Parkin is a cytoplasmic and nuclear protein that belongs to the ubiquitin-

proteasome system, acting as an E3 ubiquitin ligase (reviewed by Dawson and Dawson, 

2010). This protein has been described as crucial for survival of dopaminergic neurons as 

it plays a neuroprotective role against α-synuclein toxicity and oxidative stress (Dias et al., 

2013). Parkin gene (PARK2) mutation leads to autosomal recessive early-onset PD. PARK2 
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mutation decreases the expression of Parkin, leading to a dysfunctional proteasome 

protein degradation pathway. Mutation of PTEN-induced putative kinase 1 (PINK1) also 

causes an autosomal recessive form of PD (Dawson and Dawson, 2010). It is a 

mitochondrial targeted kinase, deficiency of which results in abnormal mitochondria and 

loss of complex I activity. A PINK1/Parkin pathway has been hypothesised to be 

responsible for the clearance of damaged mitochondria (Abou-Sleiman et al., 2006). 

PINK1 is thought to be involved in recruiting Parkin into damaged mitochondria, where it 

ubiquitinates proteins involved in mitochondrial fusion to start ubiquitin-proteasome 

system degradation and mitophagy. 

Another mutation leading to autosomal recessive early-onset PD is the mutation of 

the DJ-1 gene (PARK7) (Dawson and Dawson, 2010). DJ-1 is a highly conserved 

neuroprotective protein that is involved in the regulation of anti-oxidant, anti-apoptotic 

and anti-inflammatory mechanisms (Dias et al., 2013). For instance, it has been reported 

that DJ-1 acts as a transcriptional cofactor of glutamate cysteine ligase and VMAT2, 

involved in GSH synthesis and dopamine storage respectively (Dias et al., 2013). Burbulla 

et al. (2017) reported that induced pluripotent stem (iPS) cells from PARK7 mutation 

homozygotes and heterozygotes showed increased mitochondrial oxidative stress and loss 

of GBA1 function due to oxidised dopamine compared to healthy controls. 

Mutation in the leucine-rich repeat kinase (LRRK2) gene (PARK8) results in an 

enzymatic gain of function that is responsible for an autosomal dominant form of PD 

(Dawson and Dawson, 2010). LRRK2 is located in autophagic vesicles and its malfunction 

leads to autophagy impairment and accumulation of autophagy vesicles.  

A summary of the processes relevant for this project are presented in Figure 1.7. 
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Figure 1.7 Dopamine metabolism, mitochondrial and lysosomal function in physiological cell 
conditions.  
The electron transport chain (ETC) creates a proton gradient that is used by complex V (ATP 
synthase) to join ADP and inorganic phosphate (Pi) to produce ATP. The vacuolar type H+ ATPase 
(V-ATPase) uses the energy released from the hydrolysis of ATP to internalise H+ ions into 
vesicles against gradient. These H+ ions are then used by the vesicular monoamine transporter 2 
(VMAT2) to antiport dopamine (DA) into those vesicles, where it is stored. In parallel, dopamine 
transporter (DAT) is responsible for reuptake of dopamine from the synaptic cleft to cytosol for 
recycling. If dopamine is not stored – or recycled – in the vesicles, it is catabolised by the 
degradation enzymes COMT and MAO, preventing oxidative stress. However, MAO generates 
H2O2 as a side-product that, along with other ROS, is detoxified by antioxidant molecules like 
reduced glutathione (GSH). Lysosomes are essential to maintain correct cellular function and 
eliminate damaged organelles. They contain several important degradation enzymes; for 
example GBA1, which hydrolyses glucosylceramide to glucose and ceramide. 
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1.4. Aims 

In this work, it is hypothesised that changes in dopamine metabolism could be a key 

factor triggering neurodegeneration in PD and other neurometabolic disorders. Under 

stress conditions or age-related deterioration, the turnover would be compromised, 

causing cytosolic dopamine accumulation and generating neurotoxicity. The aim of this 

project was to investigate dopamine metabolism in cellular PD models using the 

neuroblastoma cell line SH-SY5Y, using inhibitors to impair mitochondrial and lysosomal 

function. The overall purpose of this study was to examine links between mitochondrial 

and/or lysosomal impairment and dopamine metabolism in PD. This could be useful to 

provide a better understanding of PD and eventually propose a new therapeutic target for 

PD. To assess this, the objectives planned were to: 

- Evaluate dopamine and serotonin metabolism in a cell model by measuring 

the extracellular levels of neurotransmitters and/or their metabolites in 

control and L-DOPA treated cells, as well as the effect of the inhibition of 

mitochondrial complex I or lysosomal GBA1. In order to do so, a high-

performance liquid chromatography (HPLC) method was developed to 

measure and quantify these monoamines by electrochemical detection 

(ECD).   

- Study the expression and activity of the enzymes involved in the dopamine 

pathway by quantitative reverse transcription polymerase chain reaction 

(qRT-PCR), western blot and enzymatic activity assays in all the cell models 

before and after L-DOPA treatment. In addition, intracellular levels of GSH 

were also quantified in these cell models by HPLC.  



Introduction 

64 
 

- Measure monamines in several models of PD and related disorders by the 

ECD-HPLC method developed to assess their dopamine and serotonin 

metabolism. Some of the models included iPS cells, mice or zebrafish with 

mutations in GCH1, DAT or GBA1 among others. 

- Analyse the glycoprofile in the CSF of patients with low HVA levels and 

compare it to the profile of non-parkinsonian patients (control). This 

analysis took place during my secondment in the National Institute for 

Bioprocessing Research & Training (NIBRT, Dublin, Ireland). 
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2.1. Materials 

The following were purchased from Sigma Aldrich (Poole, UK): 3,4-

dihydroxyphenylacetic acid (DOPAC); 5-hydroxyindole acetic acid (5-HIAA); 

homovanillic acid (HVA); dopamine hydrochloride; L-3,4-dihydroxyphenylalanine 

methoxy-L-tyrosine monohydrate (3-OMD); L-3,4-dihydroxyphenylalanine (L-DOPA); 

reduced glutathione (GSH); 3-hydroxybenzylhydrazine (NSD-1015); 1-octanesulfonic acid 

sodium salt; ethylenediaminetetraacetic acid (EDTA) disodium; trizma base; rotenone; 

conduritol B epoxide (CBE); monoamine oxidase activity assay kit (MAK136); L-glutamine 

solution; Dulbecco’s phosphate buffered saline (PBS) modified without calcium chloride 

and magnesium chloride; Bradford reagent. 

The following were purchased from Thermo Fisher Scientific UK Ltd 

(Loughborough, UK): Dulbecco’s modified Eagle’s medium/Ham’s F-12 nutrient mixture 

(DMEM/F-12); DMEM/F-12 phenol red free; foetal bovine serum (FBS), heat inactivated; 

0.25% trypsin-EDTA; methanol HiPerSolv for HPLC; 85% orthophosphoric acid for HPLC; 

oligo (dT) primer; superscript III reverse transcriptase; DNAse I; nuclease-free H2O; 

restore Western Blot stripping buffer. 

The following were purchased from Bio Rad Laboratories Ltd (Hemel Hempstead, 

UK): TC10 counting kit and trypan blue; mini-protean TGX stain-free gels 4%-20% 

polyacrylamide; trans-blot turbo transfer pack (PVDF, 7 x 8.5 cm); clarity Western ECL 

substrate. 

Sodium acetate trihydrate and citric acid monohydrate were purchased from VWR 

International Ltd (Lutterworth, UK). C18HS column, 250 mm × 4.6 mm with a pore size 

of 100 Å and a particle size of 5 µm, was purchased from Kromatek (Dunmow, UK). 0.3 

ml clear vials with screw caps were purchased from Chromacol (Welwyn Garden City, UK). 
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RNeasy Mini Kit was purchased from Quiagen (Manchester, UK). Mesa blue qPCR 

MasterMix for SYBR® was purchased from Eurogentec (Seraing, Belgium). 

The human neuroblastoma cell line SH-SY5Y was purchased from the European 

Collection of Cell Cultures (Public Health England, Salisbury, UK). Antibodies were 

purchased from Abcam (Cambridge, UK) and from New England Biolabs (Hitchin, UK): 

rabbit monoclonal to monoamine oxidase A (HRP conjugate, EPR7101); rabbit monoclonal 

to monoamine oxidase B (EPR7102); rabbit monoclonal to catechol O-methyltransferase 

(EPR6490); rabbit monoclonal to glyceraldehyde 3-phosphate dehydrogenase (GAPDH) 

(HRP conjugate, 14C10); anti-rabbit IgG (HRP conjugate). 

 

2.2. Tissue Culture: SH-SY5Y Cell Line 

2.2.1. Passaging and seeding 

SH-SY5Y cells were seeded in a 75 cm2 tissue culture flask with DMEM/F-12 

supplemented with 10% FBS and 1% L-glutamine. Cells were grown at 37 °C in a 5% CO2 

incubator. The medium was changed once every other day. When 80–90% confluent, cells 

were washed with PBS and lifted from the flask with 1 ml/flask 0.25% trypsin at 37 °C for 

3 min. Then 4 ml of complete medium were added to inactivate the trypsin, before cells 

were recovered by centrifugation at 500 ×g for 5 min at room temperature. After that, the 

supernatant was removed, and the cells were washed by re-suspension in PBS. Cells were 

collected by centrifugation at 500 ×g for 5 min at room temperature. Finally, the 

supernatant was removed, and the cells re-suspended in supplemented DMEM/F-12. An 

aliquot of the cell suspension was mixed 1:1 with trypan blue and counted using a Bio-Rad 

TC20TM automated cell counter before seeding at a density of 6 × 104 cells/cm2 in 25 cm2 

flasks for the experiments. The medium was changed on even days, taking as day 0 the 
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day the cells were seeded. All cells used for the experiments were between passages 21 and 

24. 

2.2.2. Treatments 

2.2.2.1. L-DOPA 

To study the release of dopamine and its metabolites from cells to the medium, SH-

SY5Y cells were treated with 100 μM L-DOPA (Woodard et al., 2014). On day 7 after 

seeding, 100 μM L-DOPA solution was freshly made in DMEM/F-12 phenol-red-free 

medium supplemented with 10% of FBS. For each experiment, cells were seeded in four 

25 cm2 flasks as described in section 2.2.1. 5 ml of the 100 μM L-DOPA solution were added 

to three flasks, and 5 ml of supplemented DMEM/F-12 phenol-red-free medium were 

added to the remaining flask, used as a control. The media samples were collected as 

described in section 2.2.3.1 at different time points: 30 min, 1 and 3 h. Samples from the 

control flask were collected together with the 3 h treatment to quantify the basal release 

of the neurotransmitters. 

2.2.2.2. NSD-1015 

To confirm L-DOPA was being metabolised through the dopamine pathway, 

proliferative SH-SY5Y cells were pre-treated with the AADC inhibitor, NSD-1015. Stock 

aliquots of 2 mM NSD-1015 were made in ultrapure H2O, filtered and stored at –20 °C. 

Cells were seeded in two 25 cm2 flasks per experiment as previously described in section 

2.2.1. On day 6 after seeding, one flask was treated with 10 μM NSD-1015 and the other one 

was not treated and used as a control (Allen et al., 2013). 24 h later, the medium was 

removed and cells were treated with 100 μM L-DOPA for 1 h as described in section 2.2.2.1. 

Finally, the media samples were collected as described in section 2.2.3.1. 
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2.2.2.3. Rotenone 

1 mM rotenone stock was made in ethanol, warmed to dissolve, filtered and 

aliquoted in a diluted concentration of 100 μM for further use. SH-SY5Y cells were seeded 

in three flasks for the rotenone treatment: one for the cell line control, another for the 

vehicle control and another for the rotenone treatment. On day 6 after seeding, cells were 

treated with 100 nM rotenone (Aylett et al., 2013). Simultaneously, the same amount of 

ethanol (0.01 v/v %) was added to the ethanol control. 24 h later, the flasks were removed 

treated with 100 μM L-DOPA for 1 h or 3 h as described in section 2.2.2.1. Media samples 

were collected as described in section 2.2.3.1 at the required time points: 1 or 3 h.  

2.2.2.4. Conduritol B epoxide 

Stock aliquots of 20 mM conduritol B epoxide (CBE) were made in DMEM/F-12 

supplemented with 10% FBS, filtered and stored at –20 °C. SH-SY5Y cells were seeded in 

two 25 cm2 flasks per experiment, as described in section 2.2.1, with the only difference 

that, in this case, the supplemented DMEM/F-12 medium in one of the flasks contained 

100 μM CBE. The medium with CBE was changed on even days, taking day 0 as the day 

when the cells were seeded. On day 7, the cells were treated with 100 μM L-DOPA for 1 or 

3 h as described in section 2.2.2.1. Media samples were collected as described in section 

2.2.3.1 at the appropriate time: 1 or 3 h. This concentration of CBE has been proved to 

inhibit GBA1 but not beta-glucosidase 2 (GBA2). Treatment concentration and times were 

optimised by Dr Derek Burke (personal communication, UCL, London). 
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2.2.3. Sample collection 

At least three flasks were seeded for each treatment and replicate. At the same time, 

each treatment was incubated with L-DOPA 100 µM for 1 and 3 h. The remaining flask of 

each treatment was kept as a control, i.e. was not treated with L-DOPA. From each flask 

the media and the cells were used in different experiments (Figure 2.1). Samples were 

always collected for the catecholamine measurement by HPLC and cells could be 

processed in two ways depending on the experiment. First, cells could be lysed (see 2.8) 

to measure protein content, expression and enzymatic activity. Alternatively, cells could 

be stored as a pellet to analyse mRNA expression by qRT-PCR or for GSH quantification 

by HPLC. A summary of the treatments and objective of the samples is shown in Figure 2.1.  

2.2.3.1. Culture medium: measurement of catecholamine release by HPLC 

Samples were collected from the flask at the specified times and quickly mixed 1:1 

with 0.8 M perchloric acid. Samples were placed in dry ice until all had been collected. 

After thawing, samples were incubated for 10 min at 4 °C in the dark and centrifuged at 

12000 ×g for 5 min at 4 °C. The supernatant was collected and analysed by HPLC. 

2.2.3.2. Cell pellets: quantification of intracellular GSH and RNA 

Cells were lifted following the protocol described in section 2.2.1. Then, cells were 

washed with PBS and centrifuged at 500 ×g for 5 min at room temperature. Finally, PBS 

supernatant was removed, and the cell pellet stored at –80 °C until analysis. 

2.2.3.3. Protein extraction: protein quantification, enzymatic activity and 

western blot 

After sample collection, cells were lifted following the protocol described in the 

section 2.2.1. This was followed by washing the cells with PBS, centrifugation and 



Materials and Methods 

72 
 

removing the supernatant. Then cells were re-suspended in 1 ml of cold isolation buffer: 

10 mM trizma base (pH 7.4), 1 mM EDTA and 320 mM sucrose in ultrapure H2O. To lyse 

the cells, samples were thawed at 37 °C and frozen in a dry ice/methanol bath three times. 

Samples were maintained at –80 °C.  

 

Figure 2.1 Summary of the SH-SY5Y treatments.  
Each flask was used for two or more experiments: catecholamine measurement, protein and 
mRNA expression, enzymatic activity and GSH quantification.  

 
 

2.3. Immunofluorescence 

SH-SY5Y cells were seeded on a 24-well plate at a density of 6 × 103 cells/cm2 and 

grown until 80% confluence. Then cells were washed with PBS, fixed with 4% 

paraformaldehyde for 10 min and washed four times with PBS. To eliminate unspecific 

binding, a blocking solution (PBS, 0.1% Triton X-100 and foetal calf serum) was added to 

the cells followed by incubation for 30 min at room temperature. After that, the solution 
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was removed, and cells incubated overnight at 4 °C with anti-TH chicken antibody diluted 

1:500 in blocking solution. The next day, cells were washed three times with PBS before 

being incubated with fluorescence-conjugated secondary antibodies. Anti-chicken 

antibody Alexa Fluoro 594 was diluted 1:400 in blocking solution and incubated for 45 

min in the dark at room temperature. The solution was removed, and cells were washed 

once with PBS. Finally, cells were incubated with 4',6-diamidino-2-phenylindole 1:1000 

solution for 5 min at room temperature. Cells were washed and maintained in PBS at 4 °C 

in dark conditions until further analysis by fluorescence microscopy. Images were taken 

on an Olympus IX71 inverted scope with Hamamatsu Orca R2 monochrome camera. This 

method was fulfilled following a protocol optimised by Dr Kurian’s lab. 

 

2.4. MAO Enzymatic Activity Assay 

2.4.1.Principle 

The activity of MAO was determined by H2O2 production in the presence of excess 

substrate, p-tyramine. H2O2 is used by horseradish peroxidase (HRP) to oxidise the dye 

reagent, which is determined by a fluorimetric method at λex = 530/λem = 585 nm. Then, 

each sample is measured under three conditions: basal conditions and then following 

incubation with clorgyline or pargyline to a final concentration of 1 µM, inhibitors of the 

two isoenzymes MAO-A and –B, respectively. The difference between H2O2 production by 

control and inhibited samples was considered MAO-A or –B activity. Under the assay 

conditions, one unit of MAO produced 1 µmole of H2O2 per minute. 
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2.4.2. Protocol 

The MAO activity assay kit was purchased from Sigma, and the experiments were 

carried out in a black 96-well plate with flat-transparent bottom following manufacturer’s 

instructions. Cell lysates were diluted in the assay buffer in order to add a final 

concentration of 50 µg of total protein to each well (see 2.8). Then, a final concentration 

of 1 µM of clorgyline or pargyline was added to MAO-A or MAO-B inhibited wells, 

respectively. Ultrapure H2O was added to the control wells. Subsequently, samples were 

incubated for 10 min at room temperature. While incubating, the master mix and 

calibration curve were prepared. The master mix for each well comprised 50 µl of assay 

buffer, 1 µl of p-tyramine, 1 µl of HRP and 1 µl of dye reagent. A 7-point calibration curve 

was then made from 0 to 20 µM H2O2. Finally, the master mix was added to every well 

and fluorescence measured with an Infinite f200 plate reader (Tecan, Reading, UK) at 

37 °C every minute for 20 min at λex = 530/λem = 585 nm. Standards and samples were all 

measured in triplicate. Activity was calculated from linear regression of sample 

fluorescence units against the H2O2 calibration curve applying the equation below 

(Equation 2.1). 

pmols H2O2/min/mg of protein  = 
𝑋𝑟𝑒𝑝(𝐹𝑙𝑢𝑡20 − 𝐹𝑙𝑢𝑡0)𝑇 − 𝑋𝑟𝑒𝑝(𝐹𝑙𝑢𝑡20 − 𝐹𝑙𝑢𝑡0)𝐼

𝑆𝑙𝑜𝑝𝑒𝐶𝐶  ×  𝑡 ×  [𝑝𝑟𝑜𝑡𝑠]
 

Equation 2.1 Formula used to calculate MAO-A and –B activity.  

Xrep: average of the triplicates (repetitions); Flut20: fluorescence measured after 20 min; Flut0: 

fluorescence measured at time 0; T: total H2O2 production; I: H2O2 production after MAO-A or –

B inhibition; SlopeCC: slope of the calibration curve; t: time = 20 min; [prots]: concentration of 

proteins per well = 50 µg. 
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2.4.3. Validation 

Some experiments were carried out to determine the optimum parameters for the 

cell type used in this study, as the MAO kit is intended for use with purified proteins. The 

linearity of the calibration curve over time was first assessed. The calibration curve was 

prepared and measured for 20 min as described in section 2.4.2. All the points remained 

stable for the length of the experiment and its linearity was confirmed (r2 = 0.995, Figure 

2.2). Next, two concentrations of proteins were studied. Control SH-SY5Y cells not treated 

with L-DOPA were diluted to 25 and 50 µg of protein per well. Both dilutions were above 

the detection limit, but 50 µg was chosen as the best concentration for further MAO 

activity experiments due to the higher signal (Figure 2.3).  

 
Figure 2.2 MAO kit H2O2 calibration curve.  
The relationship between H2O2 concentration and fluorescence at λex = 530/λem = 585 nm was 
linear between 0 and 20 µM. Time: 20 min. 
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Figure 2.3 Optimisation of the protein concentration per well for the MAO activity assay. 
Changes in the fluorescence of A: total; B: MAO-A-inhibited; and C: MAO-B-inhibited wells were 
compared at two protein concentrations (25 and 50 µg). 
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The manufacturer’s protocol specified a single measurement of the fluorescence 20 

min after adding the master mix. However, the experiment time was increased to 30 min 

in all the assays. Rates obtained at 20 and 30 min were compared and no statistical 

differences were found, confirming the linearity of the assay (Figure 2.4). Finally, the 

specificity of the substrate and inhibitors was evaluated. Changes in H2O2 production were 

studied in four different scenarios: the absence of the substrate (p-tyramine), in the 

presence of just one MAO inhibitor (clorgyline or pargyline) and in the presence of both 

inhibitors. As shown in Figure 2.5, H2O2 production was similar when the substrate was 

absent to that seen when the two isoenzymes were individually inhibited. Also, the 

specificity of the inhibitors was confirmed, as combining the results for H2O2 production 

in the presence of individual inhibitors totalled that seen for concurrent dual inhibition 

(Figure 2.5). 

 
Figure 2.4 Comparison of H2O2 production after 20 and 30 min.  
No statistical differences were detected in the rate of H2O2 production between 20 and 30 min 
groups. Paired Student’s t-test was used to compare the H2O2 production of both groups (n = 3 
experimental replicates). Data are presented as mean ± SEM. 
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Figure 2.5 Validation of H2O2 production dependent on MAO activity.  
The production of H2O2 by 50 µg of protein was first studied in basal conditions (total). The same 
sample was analysed in parallel with a master mix without substrate, p-tyramine (No p-Tyr). 
Finally, the sample was incubated in the presence of 1 µM clorgyline (MAO-A inhibitor), 1 µM 
pargyline (MAO-B inhibitor) or a 1 µM mix of both (Dual). H2O2 production in the presence of 
MAO isoforms is about 66% of the total as deduced from the measurements without the 
substrate p-tyramine or with dual inhibition (n = 1 experimental replicate).    

 

2.5. Western Blot 

After quantifying the total protein amount (see 2.8), the expression of dopamine 

catabolic enzymes was assessed. Each sample contained 25 µg of protein, 2.5 µl of Leammli 

4x buffer, 2 µl of 0.1 M dithiothreitol (DTT) in ultrapure H2O up to 10 µl. The samples were 

denatured by heating at 100 °C for 5 min. The 4–20% polyacrylamide gels were placed in 

the Bio Rad Mini-PROTEAN® tetra system along with TGS 1x running buffer. 5 µl of dual-

colour ladder and 10 µl of the samples were loaded in the gel and the Bio Rad PowerPac 

basic electrodes were set at 300 V for 17 min. For the transfer, a Bio Rad Trans-Blot turbo 

transfer pack was prepared as shown in Figure 2.6. The Bio Rad Trans-Blot TURBOTM 

transfer system was used and set at 21 V for 7 min.  
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Figure 2.6 Assembly of the transfer sandwich for western blot.  
The blotting was prepared as described by the manufacturer. The bottom stack was placed on 
top of the positive electrode. This stack contained the membrane onto which the proteins 
would be transferred. The gel was placed above the membrane and the top stack positioned 
beneath the negative electrode.  

 

To prevent the unspecific binding of antibodies, membranes were incubated with a 

blocking solution: 5% milk with 0.5% Tween detergent for COMT and MAO-A and 5% 

milk with 0.1% Tween for MAO-B. Afterwards, membranes were incubated overnight at 

4 °C in 1% milk as follows: 

- Rabbit monoclonal anti-MAO-A, HRP conjugate (EPR7101, Abcam): dilution 

1:5000 in 1% milk 0.5% Tween. 

- Rabbit monoclonal anti-MAO-B (EPR7102, Abcam): dilution 1:1000 in 1% milk 

0.1% Tween. 

- Rabbit monoclonal anti-COMT (EPR6490, Abcam): dilution 1:2000 in 1% milk 

0.5% Tween. 
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Membranes were washed three times with PBS Tween in the rotor at room 

temperature for 10 min. MAO-B and COMT were incubated with the secondary antibody. 

The anti-rabbit IgG antibody was diluted 1:3000 in 1% milk and the membranes incubated 

for 1 h at room temperature in the rotor. The membrane with anti-MAO-A primary 

antibody was not incubated with the secondary antibody as the primary was already 

conjugated to HRP. The membranes were then washed three times with PBS Tween in the 

rotor at room temperature for 10 min. Bio Rad Clarity Western ECL substrate solution was 

used to resolve the bands. Then, a Bio Rad ChemiDOCTM MP imaging system was utilised 

in automatic exposure mode to detect the bands’ intensity.  

The membranes were washed with PBS Tween and stripped with the restore western 

blot stripping buffer at 37 °C for 15 min. 5% milk 0.5% Tween was used to block the 

membranes before incubating with rabbit monoclonal anti-GAPDH, HRP-conjugated 

(14C10, New England Biolabs), for 1 h at room temperature (dilution 1:3000). Resolution 

was carried out in the same way for all antibodies. Ultimately, Image J was used to quantify 

band intensity. Molecular weights were always confirmed by comparison with the ladder 

(Figure 2.7). Protein expression was normalised against the housekeeper protein, GAPDH. 

2.5.1. Optimisation of antibody dilution 

Anti-MAO-A, MAO-B and COMT antibodies were optimised for the SH-SY5Y cell 

line. In order to do so, control untreated and 3 h L-DOPA treated cells were used and 

processed as described in section 2.2.3.3. Two membranes were incubated with anti-MAO-

A at two different concentrations: 1:5000 and 1:1000 in 1% milk 0.5% Tween (Figure 2.8 A).  

A further two membranes were incubated with anti-MAO-B also at 1:5000 and 

1:1000 dilutions in 1% milk 0.5% Tween (Figure 2.8 B, left and centre). One membrane was 

incubated with 1:2000 anti-COMT in 1% milk 0.5% Tween, the concentration optimised 

for SH-SY5Y cell line as stated by the manufacturer (Figure 2.8 C, left).  
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Finally, one membrane was incubated with 1:3000 dilution of the anti-rabbit only to 

exclude any unspecific interaction (Figure 2.8 C, right). Due to the long exposure time 

required to develop the MAO-B band, 1:1000 dilution in 1% milk 0.1% Tween was tested 

(Figure 2.8 B, right). After these experiments, membranes were stripped and incubated with 

anti-GAPDH 1:3000 as described in section 2.5. Finally, the dilutions specified in section 

2.5 were chosen. 

 

 

Figure 2.7 Molecular weights of the proteins analysed by western blot.  
Monoclonal rabbit antibodies were used to detect MAO-A (60 kDa), MAO-B (59 kDa), COMT (30 
kDa) and, as a housekeeper, GAPDH (36 kDa). A secondary anti-rabbit IgG HRP-linked was used 
to detect MAO-B and COMT. MAO-A and GAPDH primary antibodies were HRP conjugated. 
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Figure 2.8 Optimisation of antibody dilution.  
All the antibodies were tested to confirm their specificity and to optimise the dilution for the 
SH-SY5Y cell line under the current conditions. The samples tested were SH-SY5Y cells in basal 
conditions (first lane) and treated for 3 h with 100 µM L-DOPA (second lane). Both anti-MAO-A 
(A) and anti-MAO-B (B) were diluted 1:5000 and 1:1000 in 1% milk with 0.5% Tween. As anti-MAO-
B dilutions needed long exposure times to detect the band, the antibody was diluted 1:1000 in 
1% milk with 0.1% Tween. Anti-COMT (C) was only diluted 1:2000 in 1% milk with 0.5% Tween as the 
manufacturer stated that this was the optimum dilution for the SH-SY5Y cell line. Lastly, 
membranes were incubated with a dilution of 1:3000 of the anti-rabbit only (C) to confirm its 
specificity. 
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2.6. qRT-PCR 

2.6.1. Total RNA extraction 

Total RNA was extracted using the RNeasy Mini Kit following the manufacturer’s 

instructions. Frozen pellets were lysed by adding 350 μl RLT lysis buffer containing 0.01% 

of β-mercaptoethanol. The mix was vortexed for 1 min and 350 µl of 70% ethanol were 

added. It was mixed thoroughly and transferred to an RNeasy spin column placed in a 2 

ml collection tube, before centrifuging for 15 sec at 8000 ×g. Flow through was discarded 

and 700 µl of RW1 buffer were added to the column. It was centrifuged again for 15 sec at 

8000 ×g. Flow through was again discarded and 500 µl of RPE buffer were added to the 

column. It was centrifuged once more for 15 sec at 8000 ×g. The flow through was 

discarded and this centrifugation step was repeated, but time for 2 min. After discarding 

the flow through, the column was placed empty in a collection tube and centrifuged once 

more for 1 min at 8000 ×g to eliminate any possible carry over. The column was then 

placed in a new 1.5 ml collection tube. 30 µl of nuclease-free H2O were added to elute the 

RNA before centrifuging for 1 min at 8000 ×g. Finally, the total RNA concentration in the 

samples was determined with a NanoDrop 2000 spectrophotometer (Thermo Fisher 

Scientific) by measuring absorbance at 260 nm. The sample quality was confirmed by 

260/280 and 260/230 ratios. Lastly, the RNA concentration of the sample was calculated 

using a modified Beer-Lambert equation. Both ratios and sample concertation were 

calculated using Thermo Scientific NanoDrop 2000 software. 

2.6.2. RNA purification 

To avoid DNA contamination, a DNase I kit was used following the manufacturer’s 

protocol. The following mix was prepared for each sample: 1 µg of RNA, 1 µl of 10x DNase 

I reaction buffer, 1 µl of DNase I and 7 µl of nuclease-free H2O. Samples were incubated 
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with this mix at room temperature for 15 min. Finally, DNase I was inactivated by the 

addition of 1 µl of EDTA and incubation at 65 °C for 10 min. 

2.6.3. mRNA reverse transcription 

For the reverse transcription of the mRNA, superscript III reverse transcriptase kit 

and oligo (dT) were used as specified by the manufacturer. Oligo (dT) selects mRNA over 

tRNA and rRNA to enable retro-transcription. This process comprised two reactions 

carried out in a PCR plate, using a Verity 96 well thermal cycler (Applied Biosystems). For 

the first reaction, 3 µl of master mix I were prepared per sample. This consisted of 1 µl of a 

mix 1:1 of forward and reverse oligo (dT), 1 µl of dNTP mix and 1 µl of nuclease-free H2O. 

The master mix I was added to the PCR plate along with the purified RNA sample. The 

plate was then sealed and heated at 65 °C for 5 min. Once finished, the plate was placed 

on ice for 1 min before adding 7 µl of the master mix II. This second mix comprised 4 µl of 

5x first strand buffer, 1 µl of 0.1 M DTT, 1 µl of SuperScript™ III RT and 1 µl of nuclease-free 

H2O. The plate was sealed and placed in the thermal cycler again. The reaction was carried 

out for 1 h at 50 °C and inactivated at 70 °C for 15 min. Samples were then stored at 4 °C. 

Finally, samples were diluted 1:25 in nuclease-free H2O before being stored at –20 °C until 

required for the qPCR. 

2.6.4. qPCR: cDNA amplification and quantification 

Lastly, cDNA of dopamine pathway enzymes was assessed with Mesa Blue qPCR 

MasterMix plus (Eurogentec, Seraing, Belgium) as described by the manufacturer. To do 

so, samples were further diluted 1:2 in nuclease-free H2O and loaded in a qPCR plate. Then, 

10 µl of 2x Mesa Blue qPCR MasterMix plus (Eurogentec) and 1 µl of the primer stock were 

prepared per well. The primer stock comprised a mix 1:1 of forward and reverse primers 

(see Table 2.1). The qPCR plate was sealed and centrifuged at 2,000 rpm for 2 min, before 
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being placed in the StepOne Plus Real-time PCR system (Applied Biosystems). The run 

comprised MeteorTaq activation at 95°C for 5 min followed by 40 cycles of 15 sec at 95 °C 

of denaturation and 1 min at 60 °C of annealing and elongation. Data acquisition was 

registered and analysed with StepOneTM software v2.3. 

Table 2.1 Primers used in the qPCR.  
The primer codes were obtained from the literature as reported. 

 

TH 

Forward CGGGCTTCTCGGACCAGGTGTA   

 Reverse CTCCTCGGCGGTGTACTCCACA  

 (Kirkeby et al., 2012) 

 

 

 

AADC 

Forward TGCGAGCAGAGAGGGAGTAG  

 Reverse TGAGTTCCATGAAGGCAGGATG  

 (Reinhardt et al., 2013) 

 

 

 

MAO-A 

Forward CTGATCGACTTGCTAAGCTAC  

 Reverse ATGCACTGGATGTAAAGCTTC  

 (Jiang et al., 2012) 

 

 

 

MAO-B 

Forward GCTCTCTGGTTCCTGTGGTATGTG  

 Reverse TCCGCTCACTCACTTGACCAGATC  

 (Jiang et al., 2012) 

 

 

 

COMT 

Forward TGAACGTGGGCGACAAGAAAGGCAAGAT  

 Reverse TGACCTTGTCCTTCACGCCAGCGAAAT  

 (Nackley et al., 2009)  



Materials and Methods 

86 
 

 

 

GAPDH 

Forward TTGAGGTCAATGAAGGGGTC  

 Reverse GAAGGTGAAGGTCGGAGTCA  

 (Kirkeby et al., 2012)  

 

2.6.5. Analysis 

The expression of dopamine pathway enzymes was calculated using the ΔΔCT 

method (Schmittgen and Livak, 2008). A control sample was routinely analysed in every 

qPCR to compare different plates. This control sample was obtained from untreated no-L-

DOPA SH-SY5Y cells. Data are shown as fold change in the expression of the target 

compared to GAPDH and to the control sample, as described in Equation 2.2. 

∆∆CT  =  ∆𝐶𝑇 𝑠𝑎𝑚𝑝𝑙𝑒 (𝐶𝑇 𝑡𝑎𝑟𝑔𝑒𝑡 − 𝐶𝑇 𝐺𝐴𝑃𝐷𝐻) − ∆𝐶𝑇 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 (𝐶𝑇 𝑡𝑎𝑟𝑔𝑒𝑡 − 𝐶𝑇 𝐺𝐴𝑃𝐷𝐻) 

Fold change =   2−𝛥𝛥𝐶𝑇  

Equation 2.2 Formulas used to calculate the mRNA expression of dopamine pathway enzymes.  
The expression of the enzymes studied was normalised against the housekeeper gene GAPDH 
and the control sample to obtain ΔΔCT.  

 

2.7. Reduced Glutathione Quantification by HPLC 

2.7.1. Equipment 

PU-980 Intelligent HPLC pump (JASCO UK Ltd., Great Dunmow, UK); Degasys 

Populaire HPLC degasser DP2010 (Kromatek, Dunmow, UK); AS-2055 Plus Intelligent 

sampler (JASCO); TS-130 column oven (Phenomenex, Torrance, CA, USA); Coulochem III 

electrochemical detector (ESA Analytical Ltd., Aylesbury, UK); 5010A standard analytical 

cell (Thermo Fisher); and C18HS column, 250 mm × 4.6 mm with a pore size of 100 Å and 

a particle size of 5 µm (Kromatek). The electrochemical detector was coupled to a 
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computer and data acquisition was registered and analysed using AZUR software 

(Kromatek). 

2.7.2. Sample preparation 

To assess the intracellular concentration of GSH by HPLC, cells were stored as a 

pellet at –80 °C and processed immediately before the analysis. In order to do so, the cell 

pellet was homogenised with the protein isolation buffer as described in section 2.2.3.3. 

One aliquot of this homogenate was kept to measure protein content as described in 

section 2.8. Then, the homogenate was quickly diluted 1:10 in 15 mM orthophosphoric 

acid. Cells were lysed by 3 repetitions of the freeze–thaw cycle described in section 2.2.3.3. 

Afterwards, samples were incubated at 4 °C for 10 min, and centrifuged at 13,000 ×g for 5 

min at 4 °C. Finally, the supernatant was collected and injected into the HPLC system. 

2.7.3. Procedure 

Reverse-phase HPLC attached to an electrochemical detector was used to measure 

GSH following the Riederer et al. (1989) method with minor modifications. The mobile 

phase comprised 15 mM orthophosphoric acid in ultrapure H2O and the flow rate was set 

at 0.5 ml/min. The steady phase was a C18HS 250 mm × 4.6 mm column (Kromatek, 

Dunmow, UK) was maintained at 35 °C. Prior to analysis, samples were prepared as 

described in section 2.7.2 and placed in vials in the autosampler at room temperature. 

50 µl of each sample were injected into the HPLC system. The screening electrode (SE) 

was set to 50 mV to oxidise molecules of low oxidation potential. A voltammogram from 

100 to 650 mV was performed to select the detector electrode’s (DE) potential (Figure 2.9 

A). Despite obtaining the highest response at 650 mV, the background current was very 

high and the signal unstable. Therefore, DE was maintained at 550 mV to measure GSH.  
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Samples’ GSH concentration was determined by comparison of the peak area against 

an external standard of 5 µM GSH in 15 mM orthophosphoric acid. A calibration curve 

from 0.01 to 25 µM GSH was completed in order to confirm the linearity between the peak 

area and the standard concentration (r2 = 0.997, Figure 2.9 B). Finally, the recovery of the 

sample was assessed by spiking. To do this, a known amount of each individual standard 

was added to the sample and the peaks quantified as described in section 2.7.4. The 

expected concentration is then divided by the resulting spiked concentration to obtain the 

recovery of the sample. The percentage of recovery of the sample in the current study was 

97.22 ± 0.02. 

2.7.4. Analysis 

The identification of GSH was performed by comparison of the retention time 

between the standard and the sample. The intracellular GSH content was expressed as 

nmol GSH per mg of protein and was calculated following Equation 2.3. 

GSH concentration (pmol/mg protein)  =   
[𝐺𝑆𝐻]𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑  × 𝑃𝑒𝑎𝑘 𝑎𝑟𝑒𝑎𝑠𝑎𝑚𝑝𝑙𝑒 

𝑃𝑒𝑎𝑘 𝑎𝑟𝑒𝑎𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑  × [𝑝𝑟𝑜𝑡]
 

Equation 2.3 Formula used to calculate GSH concentration.  
[GSH]standard: GSH concentration standard = 5 µM; Peak areasample: area of the GSH peak in the 
chromatogram; [prots]: concentration of proteins. 
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Figure 2.9 Voltammogram and calibration curve of GSH measurement.  
(A) 5 µM GSH was injected into the system and quantified at different voltages of the detector 
electrode (E2) to select the optimum conditions. (B) A range of GSH concentrations were 
measured at 550 mV to confirm the linearity between GSH concentration and peak area. 

 

2.8. Total Protein Quantification 

2.8.1. Principle 

Total protein concentration was determined using the Bradford assay (Bradford, 

1976). When mixed, proteins bind to Coomassie blue dye turning the latter into a stable 

unprotonated blue mixture. Some studies have concluded that the dye binds to basic and 
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aromatic amino acid residues, such as arginine and tyrosine respectively (Compton and 

Jones, 1985). The absorbance of the samples is measured at λ = 595 nm and the protein 

concentration is calculated by linear regression against an external standard.  

2.8.2. Method 

The Bradford reagent was purchased from Sigma and assay run in a 96-well plate 

following manufacturer’s instructions. SH-SY5Y cells were collected and processed as 

described in section 2.2.3.3. Then, samples were diluted 1:20 with ultrapure H2O and 20 µl 

were added per well. Then, a 7-point calibration curve was prepared; dilutions from 0 to 

200 µg/ml of bovine serum albumin were used as an external standard (Figure 2.10). Next, 

180 µl of the Bradford reagent were added to each well. The plate was then placed in the 

Infinite f200 plate reader (Tecan, Männedorf, Switzerland), mixed by orbital shaking for 

30 sec and incubated for 10 min at room temperature. Finally, absorbance was measured 

at 595 nm. All samples and standards were done in triplicate. Total protein concentration 

was calculated by linear regression comparing the sample’s absorbance to the calibration 

curve. 

 
Figure 2.10 Bradford calibration curve. 
A 7-point calibration curve (dilutions from 0 to 200 µg/ml) of bovine serum albumin was 

prepared and used as an external standard in every assay. This is a representative example 

where each point represents a n = 3 of technical replicates (R2 = 0.9974). The blue line represents 

the average total protein concentration (60 µg/ml). 
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2.9. Statistical Analysis 

Each experiment was repeated independently at least three times (n ≥ 3 

experimental replicates). Results are expressed as mean ± standard error of the mean 

(SEM). In all models used in the present study, individual comparison of means was made 

using the Student’s t-test by GraphPad Prism software (GraphPad Software INC. San 

Diego, CA, USA). For multiple comparisons, the one-way ANOVA test followed by the post 

hoc Tukey’s test was performed. All ratios were transformed prior to statistical analysis by 

calculating the square root of the ratio. This calculation transforms the data to a normal 

distribution so that statistical analysis can be carried out (Gegg et al., 2004). 
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3.1. History 

In the 19th century, the botanist Mikhail Tsvet invented a technique to separate 

chlorophylls and carotenes in solution (Weil and Williams, 1951). He called this technique 

chromatography, as the coloured molecules travelled through an inert phase of cellulose. 

Initially, it was proposed that the components moved along the inert phase due to 

capillarity. It was later that terms such as affinity and adsorption were associated with this 

technique.  

In the 1940s, Archer Martin and Richard Synge modified and applied this technique 

to biochemistry, winning the Nobel Prize in chemistry in 1952 (Martin and Synge, 1941). 

The new technique was called partition chromatography and consisted of the separation 

of compounds by two immiscible phases: one stationary and polar, and another liquid 

which would be non-polar. The revolutionary idea was using silica to retain water in the 

columns while the organic mobile phase circulates through, carrying the sample. This 

innovation led to the development of new chromatographic techniques, i.e. adsorption 

chromatography by Martin and others (Howard and Martin, 1950). However, the 

techniques used in the 1960s and the beginning of the 1970s for chemical separation were 

inadequate to quantify and separate similar molecules (chromatographic techniques 

summarised by Coskun, 2016).  

Compound resolution by column chromatography was very slow as it depended on 

gravity. This, coupled with irregular flow rates, meant that it was not routinely used. 

However, during the 1970s, pressure to decrease the length of the process led to the 

development of high pressure liquid chromatography (HPLC) along with improved 

analytical equipment (Majors, 1994). Modification of the stationary phase led to new 

chromatographic properties; for example, chains of 18 carbons were attached to the silica 

matrix, changing the stationary phase from polar to non-polar. This is known as reverse-
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phase HPLC, in contrast to the traditional normal-phase HPLC (naked silica). As these 

changes increased the reproducibility of the technique, the name was changed to high 

performance liquid chromatography, maintaining HPLC as the abbreviation (Horváth, 

1988). 

 

3.2. Principles 

3.2.1. Separation 

Compound separation by HPLC is highly dependent upon the conditions applied. 

Amongst these variables are pressure, composition and temperature of the mobile and 

stationary phase. The composition and temperature of the mobile phase are essential for 

the resolution of the compounds, as this determines the interactions between the 

compounds and the stationary phase. When the composition of the mobile phase remains 

constant throughout the experiment, the method is known as isocratic HPLC. On the 

contrary, if the composition of the mobile phase varies during the separation, it is called 

gradient elution HPLC. This method usually includes two mobile phases, one organic and 

one aqueous, that are pumped simultaneously at unequal proportions. The percentage of 

each mobile phase changes during the experiment, modifying the affinity between the 

stationary phase and the compounds. In isocratic HPLC, the pressure remains constant at 

a fixed solvent composition and directly depends on the flow rate.  

In the present study, dopamine and its metabolites were quantified using reverse-

phase isocratic HPLC. Using this technique, an analyte mixture in an aqueous solvent is 

pumped through the system. The compounds interact with the stationary phase inside the 

column, which comprises silica and chains of 18 carbons (Figure 3.1). The strength of this 

interaction can be modified by ion pairing, as these ionic molecules can modify the 
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retention and selectivity of ionic compounds like monoamines (Dolan, 2008). Thus, under 

these conditions hydrophobic molecules interact with the stationary phase for longer than 

hydrophilic molecules, which elute before.  

 

Figure 3.1 Chemical structure of the stationary phase.  
While the silica interacts with the walls of the column, the chains of 18 carbons (C18) interact 
with the analytes. The affinity of that interaction depends on the composition of the mobile 
phase.  

 

3.2.2. Detection 

This selective detection method uses specific characteristics of the compounds to be 

measured, such as their fluorescence or their chemical properties. The method used in this 

study is electrochemical detection, which uses the inherent electrochemical properties of 

monoamine. An essential parameter for this detection is the applied voltage, which 

determines the number of electrons transferred from the electrode to the molecule or vice 

versa, directly influencing the electric current measured by the software (Kilpatrick et al., 

1986). After being separated in the column, the compounds pass through the 

electrochemical detector, two electrodes that create an electrical potential to oxidise or 

reduce the molecules passing between them. The first electrode, the screening electrode 

(SE), is maintained at lower voltages to oxidise low-oxidation potential molecules. The 

second is the detector electrode (DE). The voltage applied by this second electrode 

oxidises or reduces the target analytes. To increase the selectivity, this voltage needs to be 
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the minimum possible to oxidise the target molecules only and not molecules with higher 

oxidation potential.  

A positive voltage was used here; therefore, the oxidation of the molecules was 

quantified. Oxidation is proportional to the concentration of the molecule injected into 

the system, leading to changes in the input current. These changes were quantified with 

the EZChrom EliteTM chromatography data system, version 3.1.7 (JASCO UK Ltd., Great 

Dunmow, UK). Finally, the values analysed from the chromatograms were retention time 

and peak area. The retention time is the time that a certain compound takes to elute. The 

peak area is proportional to the concentration of the compound, although this needs to 

be validated with known standards. Both values depend on the technical properties of the 

HPLC  and are exclusive for each compound.  

 

3.3. Equipment 

PU-1580 Intelligent HPLC pump (JASCO UK Ltd., Great Dunmow, UK); DG-980-50 

3-Line Degasser (JASCO); AS-1555 Intelligent sampler (JASCO) with an injection loop of 

100µl; CO1560 Intelligent Column Thermostat (JASCO); Coulochem II electrochemical 

detector and 5010 analytical cell (ESA Analytical Ltd., Aylesbury, UK) were arranged as in 

the Figure 3.2. The electrochemical detector was coupled to a computer and data 

acquisition was registered using EZChrom EliteTM. 
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Figure 3.2 HPLC equipment.  
Degassed mobile phase is pumped through the autosampler, in which samples are injected. It 
then crosses the column, which retains the molecules depending on its affinity with the 
molecule and the mobile phase characteristics. Finally, the electrochemical detector oxidises or 
reduces the compounds. The oxidation/reduction quantification is performed with EZChrom 
EliteTM software. SE: screening electrode; DE: detector electrode.  

 

3.4. Development of the Method 

The method is based on that of Allen et al. (2013), modified for the simultaneous 

detection of DOPAC, 3-OMD, 5-HIAA, HVA and dopamine, as previous studies used two 

different methods to measure dopamine and serotonin metabolites. The modifications 

included acidification of the pH; increased concentration of the ion pairing molecule, i.e. 

1-octanesulfonic acid; and a decrease in the temperature at which the stationary phase was 

maintained. With these changes, all five compounds eluted in experiments under 40 min 

with an optimum resolution.  

After optimisation, the mobile phase comprised 20 mM sodium acetate trihydrate 

(pH 3.45), 12.5 mM citric acid monohydrate, 0.1 mM EDTA sodium, 3.35 mM 1-

octanesulfonic acid and 16% methanol in ultrapure water. Samples were prepared as 

described in section 2.2.3.1 and kept at –80 °C. Before the experiment, samples were 
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Pump
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thawed at room temperature and transferred to vials before placing them in the 

autosampler, set up at 4 °C. The column used was a C18HS column, 250 mm × 4.6 mm 

with a pore size of 100Å and a particle size of 5 µm (Kromatek). The flow rate was set at 

1.5 ml/min and the oven was maintained at 27 °C. Within the electrochemical detector, a 

voltage of 450 mV was selected for the detector electrode (DE), while the screening 

electrode (SE) was maintained at 20mV. Finally, 50 µl of each sample were injected into 

the system (Figure 3.3, blue line). Sample quantification was calculated against an external 

standard mixture of 500 nM 3-OMD, dopamine, DOPAC, HVA and 5-HIAA, made in 

ultrapure water with few drops of 12 M hydrochloric acid (Figure 3.3, black line). Equation 

3.1 was used for the quantification of each molecule. 

 
Figure 3.3 Sample and standard chromatograms.  
Chromatogram of an SH-SY5Y sample after L-DOPA treatment is represented in blue and 
compared to a 500 nM standard mix (1, DOPAC; 2, 3-OMD; 3, 5-HIAA; 4, HVA; 5, dopamine). 
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[Sample]  =   
𝑃𝑒𝑎𝑘 𝑎𝑟𝑒𝑎 (𝑠𝑎𝑚𝑝𝑙𝑒) ×  [𝐸𝑥𝑡𝑒𝑟𝑛𝑎𝑙 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑]

𝑃𝑒𝑎𝑘 𝑎𝑟𝑒𝑎 (𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑)
 

Equation 3.1 Calculation of the catecholamine concentration.  
[Sample]: concentration of the molecule 𝒙 in the sample; [External standard]: concentration of 
the molecule 𝒙 in the external standard. 

 

3.4.1. Peak resolution and identification 

Each compound was analysed separately to determine the individual retention 

times. A sample of 500 nM of each molecule was injected. The molecules always appeared 

in the following order: DOPAC, 3-OMD, 5-HIAA, HVA and dopamine (Figure 3.4, thin 

lines). To check that the mixture of all five compounds did not alter the retention time, a 

mixture of all five was also run (Figure 3.4, bold line). This confirmed that retention time is 

a good parameter for peak identification as it remains constant. 

 
Figure 3.4 The retention time for peak identification.  
The bold line shows a mixture of 500 nM of all five compounds, whereas the thin lines represent 
500 nM of DOPAC, 3-OMD, 5-HIAA, HVA and dopamine, respectively from bottom to top. The 
retention time is a good parameter for peak identification as it remains constant and is specific 
for each compound. 
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3.4.2. Voltammograms 

The standard mixture was analysed at different DE voltages to select the optimum 

value at which all the compounds were fully oxidised. These curves show a sigmoid shape 

due to the redox potential of the compounds, which is different for each one. The voltage 

needs to be higher than the redox potential of the compounds measured on the same 

sample. However, it needs to be the minimum value possible to obtain the maximum 

selectivity. This is because at higher voltages other compounds with higher redox potential 

could appear in the chromatogram, interfering with measurement of the molecules being 

studied. A 500 nM mixture of DOPAC, 3-OMD, 5-HIAA, HVA and dopamine was 

measured at DE voltages ranging from 30 mV to 500 mV. SE was maintained at 20 mV in 

all cases. Three separate measurements were taken for each voltage point. Finally, a 

voltage of 450 mV was selected to achieve the plateau phase when oxidation of all the 

molecules is at maximum level (Figure 3.5).   

3.4.3. Calibration curves 

Calibration curves were produced to determine the linear correlation between 

standard concentration and peak integration. A 2.5 mM DOPAC, 3-OMD, 5-HIAA, HVA 

and dopamine standard mixture was serially diluted and analysed by HPLC (Figure 3.6). 

The lower detection limit was found to be 12.5 nM; values under that concentration were 

classified as undetectable or zero. A linear correlation was confirmed for all five 

compounds between 12.5 nM and 2.5 mM (r2 > 0.99).  
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Figure 3.5 Voltammograms.  
A 500 nM mixture of all five compounds (A, 3-OMD; B, dopamine; C, DOPAC; D, HVA; E, 5-HIAA) 
was run in a range of voltages from 30 mV to 550 mV. The area under the peak was integrated 
and plotted for each voltage. Finally, a voltage of 450 mV was selected as optimum (blue line), 
as all five compounds were on the plateau phase (n = 3 experimental replicates). 
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Figure 3.6 Calibration curves.  
Serial dilutions from 2.5 mM to 7 nM of the standard mixture were run at 450 mV. The area under 
the peaks was integrated and plotted. Linear correlation was confirmed for 3-OMD (A, r2 = 
0.9937), dopamine (B, r2 = 0.9944), DOPAC (C, r2 = 0.9927), HVA (D, r2 = 0.9944), and 5-HIAA (E, r2 
= 0.9962) between 12.5 nM and 2.5 mM (n = 3 experimental replicates). 
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3.4.4. Reproducibility 

To study the variability of the technique, a fresh 500 nM standard mix was made every 

day for 5 days. The standards were kept at –80 °C and thawed prior to analysis. The results 

obtained with the fresh standard mix showed a variation of 5%. This variability is the 

average of all the compounds, some being more sensitive than others (Table 3.1). The signal 

to noise ratio was also analysed in the 500 nM standard mix and at 450 mV. The average 

of all the compounds was 3477 (Table 3.1). A decreased signal to noise ratio could explain 

the decline in the peak area at high voltages, see Figure 3.5, as the input current increased 

markedly above 450 mV. Finally, the recovery of the samples was calculated. The 

remaining sample in the vial was combined with a known quantity of the standard mix 

and measured again. The expected and measured concentrations of the different 

molecules were then compared. The average recovery was 96% (Table 3.1), confirming that 

the peak specifically corresponded to one of the compounds.  

 

Table 3.1 Reproducibility of the HPLC method.  
The individual and average percentage of the coefficient of variation, recovery and signal to 
noise ratio are shown. % CV: percentage of the coefficient of variation. 

 % CV Signal to noise % recovery 

3-OMD 7% 3015 90% 

Dopamine 4% 4570 97% 

DOPAC 5% 2978 99% 

HVA 7% 3518 96% 

5-HIAA 4% 3306 97% 

Average 5% 3477 96% 
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As all the compounds measured can oxidise, vials were kept at 4 °C in the 

autosampler to prevent/delay the oxidation of the molecules. A 500 nM standard mix was 

placed in the autosampler and measured every 2 h for 30 h. At the end of the experiment, 

the area under the peaks was integrated and plotted as percentage change in mV (Figure 

3.7). It was noted that the concentration of DOPAC, HVA and 5-HIAA decreased over time, 

suggesting they were spontaneously oxidising despite being maintained at 4 °C.  

Considering all the data, it was noted that 3-OMD had the highest coefficient of 

variation and the lowest recovery. However, when looking at its stability over time, 

integration at time 16 h is very similar to that at time 0. 3-OMD was also the most sensitive 

to change in pH and the composition of the mobile phase after several injections. Because 

of this variability, the 3-OMD peak could interfere with tailing of the neighbouring 

analytes. Therefore, 3-OMD identification was confirmed by recovery in every assay. 

DOPAC and HVA had the next-highest coefficients of variation. Although these molecules 

showed a better recovery, they also exhibited poorer performance over time, as did 5-

HIAA. Although the increase in HVA levels over time could have been due to the 

enzymatic transformation from DOPAC, this is highly unlikely as pure compounds were 

used in these experiments. 

In summary, external standards were run periodically in every experiment to control 

the oxidation of the molecules and to monitor possible changes in retention time due to 

changes in the pH of the mobile phase after several injections. Finally, to limit oxidation 

and avoid inaccurate quantification, each experiment had a maximum length of 16 h. 
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Figure 3.7 Stability of the standards over time.  
A 500 nM standard mix was measured every two hours for 30 h. The area under the peaks was 
integrated and plotted as % change compared to time 0. DOPAC (C, p<0.05), HVA (D, p<0.0001) 
and 5-HIAA (E, p<0.001) signal significantly decreased after 30 h (n = 3 experimental replicates). 
The blue line represents the maximum length of time per experiment. 
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4.1. Introduction 

Despite the considerable amount of research that has been carried out in PD, the 

primary cause is still unknown. Consequently, current therapies only provide temporary 

symptomatic relief by aiming to increase dopamine availability and/or signalling. This lack 

of knowledge is partially due to the nature of the disease and the difficulty of finding an 

accurate model. Historically, research into the pathogenesis of PD has been carried out in 

post-mortem brain tissue of PD patients or pharmacological animal models (summarised 

in Blesa and Przedborski, 2014). However, nowadays genetic animal models are quite often 

used (Blesa and Przedborski, 2014). More recently, iPS cells from affected patients are 

becoming a growing focus. iPS cells derive from fully mature cells, usually fibroblasts, 

which are reprogrammed to the pluripotent stage by treatment with transcription factors 

(Takahashi and Yamanaka, 2006). These iPS cells can then be differentiated to any cell 

type; for example, neurons. However, this is very arduous, time-consuming and not 

accurately reproducible.  

Regarding basic research and generation of initial data that may provide insight into 

disease mechanisms, cell lines such as SH-SY5Y have been widely used in PD research. 

These cells are arrested in the G1 phase and show an adrenergic phenotype, expressing 

dopaminergic neuron-specific enzymes such as AADC, TH and transporters such as DAT 

(Khwanraj et al., 2015; Korecka et al., 2013). Initially, the SK-N-SH cell line was isolated 

from a bone-marrow biopsy of a four-year-old patient with neuroblastoma. This cell line 

was sub-cloned three times to generate the SH-SY5Y cell line. Like the original SK-N-SH 

cells, the SH-SY5Y cell line is composed of two different cell types: neuroblast- and 

epithelial-like cells. When treated with retinoic acid and brain-derived neurotrophic 

factor, SH-SY5Y neuroblast-like cells are selected and differentiate into a fully mature 

dopaminergic neuronal cell line (Nishida et al., 2008). 
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A number of putative pathogenic mechanisms have been considered in PD. These 

include oxidative stress, loss of mitochondrial function, particularly at the level of complex 

I, and reduced activity of GBA1 (Betarbet et al., 2000; Lynch-Day et al., 2012). Whilst such 

alterations in cellular metabolism can provide the basis for attractive hypotheses to 

explain dopaminergic neurodegeneration, little work has been done to study their effect 

on monoamine neurotransmitter metabolism. Furthermore, alterations in serotonin 

metabolism have been reported in PD (Stansley and Yamamoto, 2015). Consequently, the 

aims of this chapter are to: 

− Characterise dopamine metabolism in SH-SY5Y cells. Additionally, due to a degree 

of overlap, serotonin metabolism was also documented.  

− Document the effects of loss of mitochondrial complex I and/or lysosomal GBA1 

activity on dopamine and serotonin metabolism. 

 

4.2. Methods 

4.2.1. Cell culture and sample preparation 

SH-SY5Y cell line was grown as described in section 2.2.1. Cells were then pre-treated 

with AADC inhibitor (NSD-1015), rotenone and GBA1 inhibitor (CBE) as described in the 

sections 2.2.2.2–Error! Reference source not found.. Following the pre-treatment, SH-

SY5Y cells were incubated with L-DOPA as described in section 2.2.2.1. Finally, samples 

were harvested and processed as detailed in section 2.2.3.1. 
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4.2.2. Monoamine measurement by HPLC 

Monoamine concentration was quantified in the medium of pre-treated non-

differentiated SH-SY5Y cells following the protocol described in Chapter 3. 

4.2.3. Immunostaining 

Proliferative SH-SY5Y cells were prepared for the immunostaining experiments as 

described in section 2.3. The cells used in these experiments were maintained in basal 

conditions, i.e. non-pre-treated and no L-DOPA incubation. 

 

4.3. Results 

4.3.1. SH-SY5Y cell line: dopamine metabolism in basal conditions 

Dopamine and its metabolites were quantified in the culture medium of the SH-

SY5Y cell line. After 3 h of incubation in the absence of L-DOPA no 3-OMD, dopamine, 

DOPAC or HVA were detectable in the medium collected (Figure 4.1 A). However, the 

serotonin metabolite (5-HIAA) was present. In view of these findings and the ongoing 

discussion as to whether SH-SY5Y cells consistently express TH (Lopes et al., 2010; Cui et 

al., 2015; McMillan et al., 2007), the expression of this enzyme was determined by 

immunostaining with previously validated antibodies by Kurian’s lab. As shown in Figure 

4.1 B, TH immunostaining was negative, suggesting that the cells used here expressed little 

or no TH. 
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Figure 4.1 Dopamine secretion in undifferentiated SH-SY5Y cells. 
(A) The identification of the peaks by the retention time showed SH-SY5Y cells did not secrete 
dopamine or dopamine metabolites to the medium in basal conditions (1, DOPAC; 2, 3-OMD; 3, 
5-HIAA; 4, HVA; 5, dopamine). Blue line: chromatogram resulting from running a control medium 
sample. Black line: chromatogram of a 500 nM standard mixture. (B) Immunostaining of 
proliferative SH-SY5Y cells did not show any TH expression. Scale bar = 30 μm. 
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4.3.2. Dopamine metabolism after L-DOPA incubation 

To study whether other enzymes of dopamine pathway beyond TH could synthesise 

dopamine, SH-SY5Y cells were incubated with 100 µM L-DOPA for 30 min, 1 and 3 h. After 

the L-DOPA incubation, cells were able to produce and release 3-OMD, dopamine, 

DOPAC and HVA into the medium (Figure 4.2). Additionally, the extracellular 

concentration of these compounds increased with longer treatment times. 

To confirm whether L-DOPA was being metabolised via the dopamine pathway, 

AADC was inhibited before L-DOPA incubation. SH-SY5Y cells were treated with 10 µM 

NSD-1015 for 24 h (Allen et al., 2013), followed by 100 µM L-DOPA incubation for 1 h. 

While no effect was observed on 3-OMD release, NSD-1015 decreased the concentration 

of the molecules downstream in the pathway compared to the control (Figure 4.3). The 

release of dopamine, the direct AADC-metabolite, decreased by 80% after NSD-1015 

treatment. However, the greatest decrease was in HVA, which decreased by 90%. 

 
Figure 4.2 Time-dependent changes in the concentration of dopamine and its metabolites 
during incubation with L-DOPA. 
A higher extracellular concentration of 3-OMD (3-O-methyldopa), dopamine, DOPAC and HVA 
was observed after 3 h of L-DOPA incubation (n = 12 experimental replicates) when compared to 
all other three groups: no L-DOPA (ø, n = 14 experimental replicates), 30 min (n = 12 experimental 
replicates) and 1 h L-DOPA (n = 16 experimental replicates). Statistical analysis carried out by 
one-way ANOVA, followed by Tukey’s post-test (***p < 0.0001). Data are presented as mean ± 
SEM. 
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Figure 4.3 L-DOPA transformation via the dopamine pathway.  
Cells were treated with NSD-1015 for 24 h before L-DOPA incubation. NSD-1015 treatment (n = 12 
experimental replicates) decreased the release of dopamine and its metabolites (L-DOPA, n = 16 
experimental replicates). Statistical analysis carried out by unpaired Student’s t-test (**p < 0.01; 
***p < 0.0001). Data are presented as mean ± SEM. 

 

4.3.3. Extracellular 5-HIAA concentration after L-DOPA incubation 

Serotonin turnover was also studied by quantifying 5-HIAA, its direct metabolite. 

These cells released 5-HIAA to the medium in basal conditions and that level of release 

remained constant and unaffected by L-DOPA incubation (Figure 4.4). 

 

Figure 4.4 The effect of L-DOPA incubation on extracellular serotonin concentration.  
Statistical analysis was carried out by one-way ANOVA, followed by Tukey’s post-test. Data are 
presented as mean ± SEM. ø: no L-DOPA incubation. 
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4.3.4. Effect of L-DOPA incubation on overall dopamine metabolism 

The relationship between neurotransmitters and their metabolites is a diagnostic 

tool. For example, the HVA to 5-HIAA ratio is calculated after measuring both molecules 

in the CSF of patients with neurotransmitter disorders (Burlina et al., 2017). With these 

ratios, not only can the absolute concentrations of dopamine and its metabolites be 

analysed, but also the turnover and homeostasis of the pathway.  

In the current study, HVA to 5-HIAA and HVA to dopamine ratios were calculated. 

The HVA:5-HIAA ratio increased 6-fold after 3 h of L-DOPA incubation when compared 

to 30 min treatment (Figure 4.5). However, the HVA:dopamine ratio decreased 1.6 fold 

when the L-DOPA incubation was prolonged to 3 h (Figure 4.5). Equation 4.1 was then 

applied to the data to calculate the turnover ratio. This third ratio allows a full comparison 

of dopamine with its degradation metabolites. It was observed that SH-SY5Y cells tended 

to degrade more dopamine during longer L-DOPA incubation times (Figure 4.5), but this 

increase was not significant (p > 0.05). 

 

Figure 4.5 Changes in metabolite relationship after L-DOPA incubation.  
While the HVA:5-HIAA ratio increased after 3 h L-DOPA incubation, the HVA:DA ratio decreased 
with longer treatment times. Statistical analysis was carried out after square root 
transformation of the ratios and completed by one-way ANOVA, followed by Tukey’s post-test 
(*p ≤ 0.05; ***p < 0.0001). Data are presented as mean ± SEM. ø: no L-DOPA incubation. 
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Turnover ratio =  
[𝐷𝑂𝑃𝐴𝐶] + [𝐻𝑉𝐴]

[𝐷𝑜𝑝𝑎𝑚𝑖𝑛𝑒]
 

Equation 4.1 Formula used to calculate the turnover ratio.  
[DOPAC]: DOPAC concentration; [HVA]: HVA concentration; [Dopamine]: dopamine 
concentration. 

 

4.3.5. Effect of rotenone and CBE treatments on monoamine levels 

Rotenone is a mitochondrial complex I inhibitor that derives from a vegetable and 

acts as a natural insecticide, pesticide and piscicide. It impairs electron transfer from the 

iron–sulphur clusters of complex I to ubiquinone. SH-SY5Y cells were incubated with 100 

nM rotenone for 24 h, which has been  previously published to decrease complex I activity 

by 50% (Aylett et al., 2013), or with the vehicle (ethanol) before incubation with 100 µM 

L-DOPA for 1 h. No statistical differences were observed between control (untreated) and 

ethanol-treated cells (Table 4.1). Rotenone treatment had no effect on 3-OMD or dopamine 

release (Figure 4.6). However, cells incubated with rotenone released 2.2 times more 

DOPAC than control cells (Figure 4.6). Conversely, the release of HVA was 97% lower than 

in the control cells (Figure 4.6).  

CBE is a selective and irreversible GBA1 inhibitor that has been used to model GD 

both in vitro and in vivo (Manning-Bog et al., 2009). In this study, the cells were treated 

with 100 µM CBE for one week. This treatment was followed by 1 h of 100 µM L-DOPA 

incubation before collecting the culture medium. CBE did not affect the release of 3-OMD 

or dopamine (Figure 4.6). However, the release of dopamine metabolites changed when 

GBA1 was inhibited. CBE increased the release of DOPAC 5.2 fold and decreased the 

release of HVA by 90% compared to the control (Figure 4.6). 
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Table 4.1 The effect of ethanol on monoamine release to the medium.  
Ethanol pre-treatment was followed by 1 h of L-DOPA incubation (n = 3 experimental replicates), 
and no differences were observed compared to the cells incubated with L-DOPA only (control, n 
= 16 experimental replicates). Statistical analysis was carried out by unpaired Student t-test and 
data are presented as mean ± SEM. Units: nM. 

 

 Control Ethanol 

3-OMD 1571 ± 168.4 1392 ± 444.9 

Dopamine 1020 ± 148.3 968 ± 342.4 

DOPAC 301 ± 41.2 257 ± 91.2 

HVA 87 ± 7.7 58 ± 20.5 

5-HIAA 313 ± 31.6 393 ± 9.1 

 

Furthermore, cells pre-treated with rotenone and CBE were compared. It was noted 

that both treatments had the same effect on dopamine and HVA (Figure 4.6). That was not 

the case in the release of 3-OMD and DOPAC. SH-SY5Y cells treated with CBE showed 

decreased 3-OMD release compared to those treated with rotenone (Figure 4.6). 

Conversely, DOPAC release was significantly higher after CBE treatment compared to 

release after rotenone treatment (Figure 4.6).  

4.3.6. 5-HIAA release after treatment with rotenone or CBE 

Along with dopamine and its metabolites, 5-HIAA was also quantified after 1 h of L-

DOPA incubation. Although incubation with L-DOPA had no effect on 5-HIAA release 

(Figure 4.4), incubation with rotenone or CBE together with L-DOPA significantly 

increased extracellular 5-HIAA concentration (Figure 4.6). 5-HIAA concentration was 

around 50% higher in the pre-treated cells than in the control. 
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Figure 4.6 Release of dopamine and its metabolites after pre-treatment with rotenone or CBE.  
Rotenone (n = 14 experimental replicates) or CBE (n = 9 experimental replicates) pre-treatments 
were followed by 1 h of L-DOPA. DOPAC and HVA release respectively increased and decreased 
in the pre-treated cells compared to those treated with L-DOPA only (n = 16 experimental 
replicates). 5-HIAA release also increased after both pre-treatments. Statistical analysis was 
carried out by one-way ANOVA, followed by Tukey’s post-test (*p < 0.05; **p < 0.01: ***p < 
0.0001). Data are presented as mean ± SEM. 

 

4.3.7. Monoamine turnover was altered after rotenone and CBE treatments 

The results show that the relationship between metabolites changed after rotenone 

and CBE treatments. The HVA:5-HIAA ratio significantly decreased after rotenone or CBE 

treatment (Figure 4.7). This was a result of the decreased HVA and increased 5-HIAA 

release. The HVA:dopamine ratio also significantly decreased after both pre-treatments 

(Figure 4.7). In this case, the decrease was due to the lower release of HVA only, as 

dopamine release remained unaffected. Finally, while the turnover ratio tended to increase 

after both treatments, the increase was significant only after CBE (Figure 4.7). 
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Figure 4.7 Changes in dopamine and serotonin homeostasis after pre-treatment with rotenone 
and CBE.  
Both HVA:5-HIAA and HVA:dopamine ratios decreased after both pre-treatments. The turnover 
ratio was higher in CBE cells only. Statistical analysis was carried out after square root 
transformation of the ratios. Then statistics were completed by one-way ANOVA, followed by 
Tukey’s post-test (***p < 0.0001). Data are presented as mean ± SEM. 

 

4.3.8. Extracellular monoamine concentration after 3 h L-DOPA incubation 

When both control and pre-treated cells were exposed to 100 µM L-DOPA for 3 h, 

the results observed differed from those described in the previous sections. The release of 

3-OMD and dopamine were still unaffected by treatment with rotenone or CBE (Figure 

4.8). Also, DOPAC and 5-HIAA concentration was higher after both pre-treatments (Figure 

4.8). However, HVA release was comparable to control levels after the incubation with 

rotenone or CBE (Figure 4.8). While the HVA:5-HIAA ratio still decreased after both pre-

treatments, the HVA:dopamine ratio remained unaffected due to the changes in HVA 

concentration (Figure 4.9). Finally, the turnover ratio was significantly higher after 

rotenone or CBE (Figure 4.9).  
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Figure 4.8 Changes in levels of MAO-dependent metabolites in rotenone or CBE cells after 3 h 
L-DOPA incubation.  
DOPAC and 5-HIAA release was still higher in cells treated with rotenone (n = 4 experimental 
replicates) or CBE (n = 9 experimental replicates) than in non-pre-treated cells (L-DOPA, n = 12 
experimental replicates). Statistical analysis was carried out by one-way ANOVA, followed by 
Tukey’s post-test (**p < 0.01; ***p < 0.005). Data are presented as mean ± SEM. 

 
Figure 4.9 Changes in overall dopamine turnover in the pre-treated cells after 3 h L-DOPA 
incubation.  
The HVA:5-HIAA ratio was significantly lower after rotenone or CBE when L-DOPA incubation 
was extended up to 3 h. In contrast, the turnover ratio was significantly higher in pre-treated 
cells. Statistical analysis was carried out after square root transformation of the ratios and 
completed by one-way ANOVA, followed by Tukey’s post-test (*p < 0.05; **p < 0.01). Data are 
presented as mean ± SEM. 
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4.4. Discussion 

4.4.1. Proliferative SH-SY5Y cells release dopamine but only after L-DOPA 

incubation 

Although the SH-SY5Y cell line has been widely used in the study of PD, there is 

controversy about its phenotype. Due to the lack of consensus in the literature about this 

cell line as a PD cellular model (Xicoy et al., 2017), dopamine metabolism was assessed in 

the medium of proliferative SH-SY5Y cells in basal conditions. In the present study, 

extracellular medium was used as a relatively easy way to assess dopamine and serotonin 

metabolism in the current cell model without the need to harvest the cells. This is 

analogous to the use of CSF for assessing patient’s monoamine metabolism (Burlina et al., 

2017). Neither dopamine nor its metabolites were detectable in the extracellular medium 

under basal conditions, in agreement with what was described by Balasooriya and 

Wimalasena (2007). There could be at least two reasons for this: dopamine was 

synthesised but not released to the medium or, the cells did not express some of the 

enzymes of the dopaminergic biosynthesis pathway (Lopes et al., 2010).  

Concerning the latter, TH expression was studied by immunofluorescence. It was 

found that the cells used here did not express TH protein (Figure 4.1 B), supporting the 

reports that these cells do not have an innate capacity to synthesise dopamine (Lopes et 

al., 2010; Cui et al., 2015; McMillan et al., 2007). To overcome this deficiency, the cells 

were incubated with 100 µM L-DOPA (Woodard et al., 2014). L-DOPA is a well-stablished 

treatment in PD, as this molecule is the direct precursor of dopamine and able to cross the 

blood–brain barrier. With this addition, the lack of cellular TH was bypassed, and the 

release of dopamine and its metabolites was quantified in the culture medium. As shown 

in Figure 4.2, 3-OMD, dopamine and its metabolites were present in the culture medium 

after L-DOPA incubation, suggesting that the downstream enzymes are present. In 
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addition, the decreased release of the molecules after inhibiting AADC confirmed that the 

increase observed in the release of dopamine and its metabolites was due to L-DOPA 

metabolism catalysed by AADC.  

4.4.2. Dopamine turnover could be altered by chronic L-DOPA incubation 

Accumulation of dopamine in the cytosol may increase cellular oxidative stress as 

its spontaneous oxidation can produce molecules such as aminochrome and 

neuromelanin (Meiser et al., 2013). Therefore, dopamine turnover was studied in order to 

determine whether the changes observed in metabolite release could lead to accumulation 

of metabolites that possibly increase oxidative stress in the cells. Two ratios were 

calculated for that purpose: HVA:dopamine and turnover (Figure 4.5). The first ratio, that 

of dopamine to the final product of the pathway, HVA, decreased significantly after 3 h of 

L-DOPA incubation. This suggests that more dopamine was being synthesised than 

degraded after sustained L-DOPA incubation. The second ratio, that of both dopamine 

metabolites, DOPAC+HVA, to dopamine, tended to increase after sustained L-DOPA 

incubation. However, this increase was not significant. In this case, the results suggest 

higher dopamine degradation than synthesis. Looking at both ratios, data presented here 

raise the possibility that L-DOPA incubation could potentially lead to changes in 

dopamine metabolism, which could affect PD treatment as discussed later. The 

maintenance of the overall dopamine degradation would rely on a higher production of 

DOPAC by MAO, due to the diminution of further DOPAC catalysis to HVA by COMT in 

prolonged L-DOPA incubations.   
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4.4.3. Inhibition of mitochondrial complex I or lysosomal GBA1 is associated 

with increased dopamine turnover 

Both mitochondrial and lysosomal integrity are essential for cellular viability. It is 

not surprising that those organelles are affected in several human diseases, including PD. 

Indeed, mitochondrial impairment has been proposed as one of the possible causes of cell 

death in PD (Hauser and Hastings, 2013). Additionally, GBA1 mutation is the most 

common genetic risk factor for PD, and idiopathic PD patients show a lower activity of 

this enzyme (Gegg et al., 2012). Furthermore, familial PD cases show mutations affecting 

mitochondrial proteins such as parkin, PINK1 and DJ1 (reviewed by Abou-Sleiman et al., 

2006). While parkin and PINK1 are related to mitophagy and their mutation results in 

accumulation of damaged mitochondria, it has been proposed that DJ1 is a redox-

responsive molecular chaperone that detects misfolded proteins. Loss of function of any 

of them contributes to an increase in cellular oxidative stress in PD (Hauser and Hastings, 

2013). In the current study, the aim was examine the links between mitochondria, 

lysosomes and dopamine metabolism by analysing dopamine release to the culture 

medium. To model the impairment of these organelles, two well-established 

pharmacological treatments were used: rotenone and CBE.  

The rotenone concentration used in this study was selected as Aylett et al. (2013) 

previously reported that it decreased complex I activity by 50%. The CBE concentration 

used in this study decreased GBA1 activity by 99.3% (Dr Derek Burke, oral communication, 

UCL, London); although it is known that CBE at higher doses can also inhibit the non-

lysosomal GBA2 (Ridley et al., 2013). No differences were observed in 3-OMD or dopamine 

release when comparing rotenone or CBE pre-treated to non-pre-treated SH-SY5Y cells 

(Figure 4.6). These results were taken as a representation of cellular viability, i.e. the pre-

treatments are not decreasing the cell density as the values are similar to those of the 
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control cells. Nonetheless, dopamine degradation was altered after the treatment with 

rotenone and CBE, as judged by the increased levels of DOPAC and decreased levels of 

HVA. This could be a result of decreased ETC activity that would lead to lower ATP 

production, followed by loss of vacuolar ATPase and, consequently, VMAT2 dysfunction 

(Chaudhry et al., 2008; Davey et al., 1998). If that is the case, dopamine would accumulate 

in the cytosol, increasing oxidative stress. However, if dopamine degradation were to 

increase, it would possibly maintain cytosolic dopamine levels within a physiologic and 

non-cytotoxic range. Intracellular monoamine concentration needs to be studied in order 

to explore this possibility. 

4.4.4. Serotonin metabolism increased after complex I or lysosomal GBA1 

impairment, but not after L-DOPA incubation 

Because of parallels between the dopamine and serotonin pathways, serotonin 

metabolite 5-HIAA was also analysed along with dopamine and its metabolites. 5-HIAA 

was present in the samples, even in basal conditions (Figure 4.1). This indicates that SH-

SY5Y cells were able to synthesise and degrade serotonin, suggesting they express all the 

enzymes of the serotonin pathway and all the substrates are available (Kollalpitiya and 

Wimalasena, 2008). When cells were incubated with L-DOPA for up to 3 h, 5-HIAA 

release remained unaffected (Figure 4.4). This result could indicate that the presence of 

dopamine precursor does not increase or restrain AADC activity, and serotonin synthesis 

would remain unaffected by L-DOPA incubation.  

Studies in post-mortem brains of idiopathic PD patients show a depletion of 

serotoninergic terminals in the raphe nuclei and its target regions; for example, the 

hippocampus (Halliday et al., 1990). Although not as substantial as the dopaminergic loss, 

a correlation has been proposed between serotonin loss and motor and non-motor PD 

symptoms (Grosch et al., 2016). In the current study, the release of the serotonin 
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metabolite 5-HIAA increased after both rotenone and CBE treatments (Figure 4.6 and 

Figure 4.8). Although further work is needed, this result could be a side effect of increased 

dopamine degradation to maintain the cytosolic levels of the neurotransmitter. 

4.4.5. Mitochondrial complex I and lysosomal GBA1 impairment reveal a 

common pattern in the effect on dopamine metabolism 

Changes in the release of dopamine and serotonin metabolites by the cells with 

dysfunctional complex I or GBA1 followed the same pattern (Table 4.2), suggesting that 

mitochondrial and lysosomal impairment are affecting activity of degradation enzymes in 

the same way. This could explain how dysfunction of two independent organelles would 

result eventually in the same event: the dopaminergic loss characteristic of PD.  

Table 4.2 Summary of how rotenone and CBE treatments affected monoamine release.  
In this table, both pre-treatments are compared to control cells after 1 h of L-DOPA incubation. 
The statistically significant increased (↑) or decreased (↓) values are shown in red.  

 

 3-OMD Dopamine DOPAC HVA 5-HIAA 

Inhibited complex I ↑ = ↑ ↓ ↑ 

Inhibited GBA1 ↓ ↑ ↑ ↓ ↑ 

 

The enzymes responsible for dopamine degradation are COMT, MAO and ALDH. 

The latter is fairly promiscuous and, to date, nineteen genes have been described in the 

human genome (Vasiliou and Nebert, 2005). The activity of ALDH2, one of the isoforms 

present in the human brain, has recently been reported as increased in the putamen of 

sporadic PD patients (Michel et al., 2014). However, the role of this group of enzymes in 

the development and treatment of PD is not well characterised.  
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Due to their accepted involvement and inhibition during treatment of PD, this 

project focuses on MAO and COMT. COMT is responsible for transforming DOPAC into 

HVA. A decrease in its activity would explain the accumulation of its substrate DOPAC 

and the reduced release of its product HVA. COMT also metabolises L-DOPA to 3-OMD 

upstream in the dopamine pathway. Although SH-SY5Y cells with mitochondrial or 

lysosomal dysfunction showed a decrease in the release of HVA, the release of 3-OMD was 

not affected, suggesting that COMT activity would be unaffected. MAO metabolises 

dopamine into DOPAC and serotonin into 5-HIAA. The release of both molecules was 

significantly increased after mitochondrial and lysosomal dysfunction, indicating that 

both events could lead to increased MAO activity. Previous studies have described 

increased MAO activity in cellular models and post-mortem brains of PD patients 

(Birkmayer et al., 1975; Sai et al., 2008), suggesting that the activity of this enzyme could 

be another key factor in the development of dopamine deficiency. 

 

4.5. Conclusion 

In conclusion, it is hypothesised that MAO activity could be enhanced after 

mitochondrial and lysosomal dysfunction. Increased enzymatic activity would result in 

decreased dopamine availability, leading to a dopamine deficiency. At the same time, 

when MAO metabolises dopamine into DOPAC, H2O2 is produced as a side product of the 

catalysis. Also, COMT activity could be affected in these patients, as shown by the lower 

HVA production after mitochondrial and lysosomal impairment. To ascertain their role in 

PD pathogenesis, these enzymes were studied at functional, translational and 

transcriptional level in Chapter 5. 
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CHAPTER 5

 

Dopaminergic and Serotoninergic Enzymes and 

Glutathione Status in Cellular Models of  

Mitochondrial and Lysosomal Impairment  
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5.1. Introduction  

In the Chapter 4, it was hypothesised that mitochondrial or lysosomal impairment 

would undermine dopamine homeostasis by enhancing MAO activity. COMT activity 

could also be compromised, as a loss of function of this enzyme could also be involved in 

the observed changes in DOPAC and HVA. In parallel, the serotonin pathway would also 

be affected by increased MAO activity. Additionally, it has been proposed that MAO would 

be mainly responsible for intraneuronal metabolism of dopamine and COMT for the 

extraneuronal (Espinoza et al., 2012). Therefore, changes in the expression or activity of 

these enzymes could result in altered dopamine concentration both inside and outside 

neurons.   

It is not clear whether the reported increase in MAO-B activity in the substantia 

nigra of PD patients (Birkmayer et al., 1975) is due to transcriptional, translational or post-

translational mechanisms. For example, some studies describe epigenetic regulation of 

MAO genes by smoking (Launay et al., 2009). Others describe a polymorphism in the 

intron 13 of the MAO-B gene (MAOB), which increases predisposition to develop PD in 

heterozygotes (Kurth et al., 1993). However, there is no consensus about which allele is 

responsible for that predisposition, whether there is a gender susceptibility or whether the 

carriers show a higher risk of developing the disease (Finch et al., 1995; Ho et al., 1995; 

Costa et al., 1997; Kang et al., 2006; Bialecka et al., 2007). Historically, the role of COMT 

in PD has been researched less than the role of MAO. However, the role and effect of 

COMT genetic variants have been studied in more detail recently (Klebe et al., 2013; Chen 

et al., 2004; Wu et al., 2001; Tunbridge et al., 2007; Schendzielorz et al., 2013; Espinoza 

et al., 2012). Several studies have focused on Val158Met polymorphism (Lotta et al., 1995), 

which causes a trimodal distribution, resulting in high, intermediate and low COMT 

activity (Hernan et al., 2002). Klebe et al. (2013) reported that Val/Val individuals showed 
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an earlier PD onset in a gender-dependent manner. Contrarily, other studies have 

concluded that there is no correlation between Val158Met polymorphism and PD (Wu et 

al., 2001; Bialecka et al., 2007). Despite the potential role of MAO and COMT in the 

development and evolution of PD, the function and consequences of these polymorphisms 

are still unclear. However, it is of interest that inhibitors of both enzymes have been used 

in the treatment of the disease for years with successful results, reducing motor 

fluctuations (Connolly and Lang, 2014).  

Concerning dopamine biosynthesis, several studies have focused on the post-

translational regulation of TH, GCH1 and AADC by phosphorylation, nitrosylation and S-

thiolation, amongst others (Meiser et al., 2013). One of the most accepted theories is that 

phosphorylation in TH would facilitate interaction with other proteins, such as GCH1, 

AADC and VMAT2, and increase its activity (Daubner et al., 2011). Nowadays, gene 

therapies are being developed with the aim of increasing the efficacy of L-DOPA 

treatment. For this purpose, AADC is expressed in the putamen after adeno-associated 

virus (AAV) transduction. Other therapies aim for ectopic full dopamine synthesis by 

delivering TH, GCH1 and AADC genes via lentiviruses (reviewed by Muramatsu, 2010; 

Coune et al., 2012). However, this approach is still in the clinical trial phase. 

Dopaminergic neurons are especially liable to increased oxidative stress. These cells 

are post-mitotic with great demand for energy and O2, increased iron concentration, 

neuromelanin presence and high levels of dopamine, which make their environment 

highly oxidative and antioxidant mechanisms essential (Fujita et al., 2014; Munoz et al., 

2012; Dauer and Przedborski, 2003). In physiological conditions, antioxidant molecules, 

enzymes and chaperones are able to control this oxidative stress. However, this frail 

balance between antioxidant and oxidant molecules is broken in PD (reviewed by Smeyne 

and Smeyne, 2013) probably as a result of increased H2O2 production due to higher MAO 
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activity and decreased GSH levels (Birkmayer et al., 1975; Sian et al., 1994). Additionally, 

it has been proposed that increased ROS production and iron accumulation in conjunction 

with decreased antioxidant response are some of the key events that can lead to neuronal 

death (Dauer and Przedborski, 2003).  

In view of the data presented in Chapter 4 and the potential for oxidative stress to 

occur as a result of changes in MAO activity, the aims in this chapter are to examine: 

− The effect of L-DOPA treatment, in the absence and presence of 

compromised mitochondrial complex I or lysosomal GBA, on the activity, 

transcription and translation of MAO isoenzymes (MAO-A and –B). 

− The effect of L-DOPA treatment, mitochondrial and lysosomal impairment 

on the protein and mRNA expression of COMT. 

− Whether L-DOPA or mitochondrial and lysosomal impairment have any 

effect on dopamine biosynthesis via AADC.  

− Whether mitochondrial or lysosomal impaired cells display any evidence of 

oxidative stress, as reflected by changes in GSH availability.  

 

5.2. Methods 

5.2.1. Cell culture and treatment 

SH-SY5Y cells were cultured and treated as described in sections 2.2.1 and 2.2.2 

respectively. 
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5.2.2. MAO activity assay 

MAO activity was studied as described in section 2.4 Samples were collected as 

explained in section 2.2.3.3. 

5.2.3. Expression of dopaminergic enzymes 

Protein expression was assessed by western blot as described in section 2.5. In 

parallel, mRNA expression was also quantified by qRT-PCR as described in section 2.6. For 

these assays, samples were collected as described in sections 2.2.3.2 and 2.2.3.3. 

5.2.4. GSH quantification by HPLC 

Intracellular GSH levels were quantified as described in section 2.7. Samples were 

collected as described in section 2.2.3.2, and prepared as described in section 2.7.2. 

 

5.3. Results 

5.3.1. Effects of L-DOPA treatment on MAO activity, protein, mRNA and GSH 

levels 

Both MAO-A and MAO-B activities tended to increase after L-DOPA treatment 

(Table 5.1). While the effect on MAO-A activity was maintained after 3 h of treatment, 

MAO-B activity decreased by 50% at that time point compared to activity at shorter L-

DOPA treatment times (Table 5.1). Surprisingly, after the incubation with L-DOPA no 

statistical differences were observed in protein and mRNA expression of any of the 

enzymes studied. 
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Table 5.1 L-DOPA effect on the enzymes of the dopamine pathway and GSH levels.  
L-DOPA treatment had no significant effect on protein or mRNA of any of the enzymes or GSH 
levels. However, there were changes in MAO-B activity. Statistical analysis was carried out by 
one-way ANOVA, followed by Tukey’s post-test. Statistics presented are untreated (ø) and 3 h 
L-DOPA against 1 h of treatment (ø vs 3 h not significant for any of the conditions). Data are 
presented as mean ± SEM (n = 3 experimental replicates). Units: mRNA, fold change to control 
(2^ΔΔCT), relative expression to GAPDH; activity, pmol H2O2/min/mg of protein; and protein, 
relative expression to GAPDH; GSH levels, nmol/mg of prot. 

 

 
 L-DOPA p-value  
 ø 1 h 3 h 

1 h vs 
ø 

1 h vs 
3 h 

TH mRNA 0.43 ± 0.22 0.32 ± 0.14 0.31 ± 0.03 n.s. n.s. 

AADC mRNA 0.79 ± 0.22 0.56 ± 0.14 0.75 ± 0.18 n.s. n.s. 

MAO-A 

Activity 1.84 ± 0.51 4.39 ± 0.77 4.27 ± 0.89 n.s. n.s. 

Protein 1.25 ± 0.05 2.02 ± 0.91 1.41 ± 0.22 n.s. n.s. 

mRNA 1.04 ± 0.25 1.37 ± 0.20 1.52 ± 0.66 n.s. n.s. 

MAO-B 

Activity 3.98 ± 0.45 6.39 ± 0.63 3.34 ± 0.70 0.0663 0.0269 

Protein 0.38 ± 0.09 0.47 ± 0.21 0.38 ± 0.19 n.s. n.s. 

mRNA 0.43 ± 0.12 0.78 ± 0.31 0.68 ± 0.11 n.s. n.s. 

COMT 
Protein 0.63 ± 0.18 0.64 ± 0.25 0.63 ± 0.17 n.s. n.s. 

mRNA 1.03 ± 0.31 1.30 ± 0.46 0.97 ± 0.15 n.s. n.s. 

GSH levels   4.29 ± 0.49 4.89 ± 0.47 4.83 ± 0.60 n.s. n.s. 

 

 

5.3.2. Outcomes of ethanol treatment on enzymatic expression and activity 

Ethanol was used as a vehicle for the rotenone treatment, in both cases at a 

concentration of 0.1% (v/v). Although the treatment with this vehicle had no effect on the 

release of dopamine metabolites, ethanol treatment increased MAO-B activity when 

compared with that in control cells (Table 5.2). No statistical differences were observed in 

the activity or protein/mRNA expression of any of the other enzymes studied or in the 

GSH levels when control and ethanol groups were compared (Table 5.2).  
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Table 5.2 The effect of ethanol on the enzymes of the dopamine pathway and GSH levels. 
Ethanol had no effect on protein, mRNA or GSH levels of any of the enzymes compared to that 
in control cells. However, it is notable that the increase in MAO-B activity approached 
significance. Statistical analysis was carried out by unpaired Student t-test and data are 
presented as mean ± SEM (n = 3 experimental replicates). Units: mRNA, fold change to control 
(2^ΔΔCT) relative expression to GAPDH; activity, pmol H2O2/min/mg of protein; and protein 
expression relative to GAPDH; GSH levels, nmol/mg of prot. 

 
  Control Ethanol p-value 

TH mRNA 0.43 ± 0.22 0.38 ± 0.20 n.s. 

AADC mRNA 0.79 ± 0.22 0.71 ± 0.01 n.s. 

MAO-A 

Activity 1.84 ± 0.51 2.25 ± 0.82 n.s. 

Protein 1.25 ± 0.05 1.15 ± 0.06 n.s. 

mRNA 1.04 ± 0.25 1.10 ± 0.28 n.s. 

MAO-B 

Activity 3.98 ± 0.45 5.49 ± 0.35 0.0574 

Protein 0.38 ± 0.09 0.44 ± 0.15 n.s. 

mRNA 0.43 ± 0.12 0.40 ± 0.13 n.s. 

COMT 
Protein 0.63 ± 0.18 0.78 ± 0.28 n.s. 

mRNA 1.03 ± 0.31 0.97 ± 0.35 n.s. 

GSH levels  4.29 ± 0.49 4.88 ± 0.82 n.s. 

 

5.3.3. Rotenone decreased MAO-B activity and protein level 

The effect of rotenone was studied over and above the effect of the vehicle, ethanol. 

After treatment with rotenone, no significant changes were observed in TH or AADC 

mRNA expression (Figure 5.1). Neither MAO-A activity nor its expression were affected by 

rotenone treatment (Figure 5.2). However, MAO-B activity decreased by 55% after 

rotenone treatment (Figure 5.3 A) and MAO-B protein expression was also lower in the 

rotenone-treated cells. This decrease was only significant after 3 h of L-DOPA, when 

MAO-B protein levels were 45% lower than those in the control (Figure 5.3 B). As for MAO-

A, neither COMT protein nor mRNA expression varied after rotenone treatment (Figure 

5.4).  



Chapter 5 

137 
 

 
Figure 5.1 The effect of rotenone treatment on dopamine synthesis mRNA levels.   
No changes were observed in TH (A) or AADC (B) mRNA levels after rotenone. Statistical analysis 
was carried out by unpaired Student t-test (n.s.). Data are presented as mean ± SEM (n = 3 
experimental replicates). 

 
Figure 5.2 The effect of rotenone on MAO-A activity and expression.  
No changes were observed in MAO-A activity (A), protein (B) or mRNA (C) levels in cells pre-
treated with rotenone compared to levels in control (ethanol) cells. Statistical analysis was 
carried out by unpaired Student t-test (n.s.). Data are presented as mean ± SEM (n = 3 
experimental replicates). 
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Figure 5.3 The effect of rotenone treatment on MAO-B activity and protein expression.   
MAO-B activity (A) and protein levels (B) were lower in the rotenone than in control (ethanol) 
cells. Decreased protein levels were observed when rotenone was followed by L-DOPA. No 
statistical differences were observed in its mRNA levels (C). Statistical analysis was carried out 
by unpaired Student t-test (*p≤0.05). Data are presented as mean ± SEM (n = 3 experimental 
replicates).  

 
Figure 5.4 The effect of rotenone treatment on COMT expression.   
Neither COMT protein (A) nor mRNA (B) levels differed from those in control (ethanol) cells. 
Statistical analysis was carried out by unpaired Student t-test (n.s.). Data are presented as mean 
± SEM (n = 3 experimental replicates). 
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5.3.4. CBE treatment also decreased MAO-B activity 

CBE did not alter the mRNA expression of the enzymes responsible for dopamine 

synthesis (Figure 5.5). Regarding its degradation, neither MAO-A activity, protein nor 

mRNA levels were affected by GBA1 inhibition (Figure 5.6). In contrast to MAO-A, MAO-

B activity decreased by 40% when cells were treated with CBE followed by L-DOPA (Figure 

5.7 A). This decrease in the enzymatic activity was not accompanied by changes in protein 

or mRNA levels (Figure 5.7 B-C). Also, no statistical differences were observed in COMT 

expression (Figure 5.8), although its mRNA levels tended to decrease after CBE treatment.  

 

 
Figure 5.5 The effect of CBE on mRNA expression of the dopamine synthesis enzymes. 
 No changes were observed in TH (A) or AADC (B) mRNA levels after CBE compared to levels in 
control (untreated) cells. Statistical analysis was carried out by unpaired Student t-test (n.s.). 
Data are presented as mean ± SEM (n = 3 experimental replicates). 
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Figure 5.6 The effect of CBE on MAO-A activity and expression.  
No differences were observed between control (untreated) and CBE cells in MAO-A activity (A), 
protein (B) or mRNA (C) levels. Statistical analysis was carried out by unpaired Student t-test 
(n.s.). Data are presented as mean ± SEM (n = 3 experimental replicates). 
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Figure 5.7 The effect of CBE treatment on MAO-B activity.  
The activity of MAO-B (A) decreased after consecutive treatment with CBE and L-DOPA. No 
statistical differences were observed in protein (B) or mRNA (C) levels after CBE treatment. 
Statistical analysis was carried out by unpaired Student t-test (*p≤0.05). Data are presented as 
mean ± SEM (n = 3 experimental replicates). 

 
Figure 5.8 The effect of CBE treatment on COMT expression.  
Protein (A) and mRNA (B) levels of COMT in CBE pre-treated cells did not show any statistical 
differences compared to levels in control (untreated) cells. Statistical analysis was carried out 
by unpaired Student t-test (n.s.). Data are presented as mean ± SEM (n = 3 experimental 
replicates). 
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5.3.5. Effect of NSD-1015 treatment on the dopamine degradation enzymes 

The effect of inhibiting AADC was also studied. No differences were observed in the 

expression of TH or AADC after inhibiting the latter with NSD-1015 (Figure 5.9). This 

treatment did not have a statistically significant effect on MAO-A activity (Figure 5.10 A), 

although a decreased activity was noted when the pre-treatment was followed by L-DOPA. 

No changes were observed in MAO-A expression after NSD-1015 (Figure 5.10 B-C). MAO-B 

activity also decreased after NSD-1015 treatment (Figure 5.11 A), being significant after 1 h 

of L-DOPA treatment. As for MAO-A, this decreased activity was not preceded by any 

change in MAO-B protein or mRNA levels (Figure 5.11 B-C). Separately, COMT expression 

was affected by NSD-1015 treatment. Inhibition of AADC doubled COMT protein levels 

(Figure 5.12 A), while its mRNA levels decreased by 50% (Figure 5.12 B). In both cases, the 

effect was maintained after L-DOPA treatment.  

 
Figure 5.9 The effect of NSD-1015 on dopamine synthesis enzyme mRNA expression.  
No changes were observed in TH (A) or AADC (B) mRNA levels after NSD-1015 treatment. 
Statistical analysis was carried out by unpaired Student t-test (n.s.). Data are presented as mean 
± SEM (n = 3 experimental replicates). 
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Figure 5.10 The effect of NSD-1015 on MAO-A activity and expression.  
No differences were observed between control (untreated) and NSD-1015 cells in MAO-A activity 
(A), protein (B) or mRNA (C) levels. Statistical analysis was carried out by unpaired Student t-
test (n.s.). Data are presented as mean ± SEM (n = 3 experimental replicates). 
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Figure 5.11 The effect of NSD-1015 on MAO-B activity.  
MAO-B activity (A) decreased after treatment with NSD-1015 followed by L-DOPA. No statistical 
differences were observed in protein (B) or mRNA (C) levels after NSD-1015 treatment. Statistical 
analysis was carried out by unpaired Student t-test (**p ≤ 0.01). Data are presented as mean ± 
SEM (n = 3 experimental replicates). 

 
Figure 5.12 The effect of NSD-1015 treatment on COMT expression.  
NSD-1015 increased protein levels (A) and decreased mRNA levels (B). Statistical analysis was 
carried out by unpaired Student t-test (*p ≤ 0.05). Data are presented as mean ± SEM (n = 3 
experimental replicates). 
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5.3.6. Neither rotenone nor CBE treatment affected GSH levels 

Intracellular GSH was quantified in the mitochondrial impairment and lysosomal 

dysfunction SH-SY5Y models. Rotenone treatment was compared to its vehicle control 

(ethanol) and CBE to untreated cells. In either case, no significant differences were 

observed in GSH levels due to rotenone (Figure 5.13) or CBE treatment (Figure 5.14). 

 
Figure 5.13 The effect of rotenone treatment on GSH levels.  
No statistical differences were observed between control (ethanol) and rotenone-treated cells. 
Statistical analysis was carried out by unpaired Student t-test (n.s.). Data are presented as mean 
± SEM (n = 3 experimental replicates). 

 

 
Figure 5.14 The effect of CBE treatment on GSH levels.  
No statistical differences were observed between GBA1 inhibition and control cells. Statistical 
analysis was carried out by unpaired Student t-test (n.s.). Data are presented as mean ± SEM 
(n = 3 experimental replicates). 

 

 



Dopaminergic Enzymes and GSH Status  

146 
 

5.4. Discussion  

5.4.1. Dopamine but not L-DOPA might induce its own degradation 

Increasing dopamine availability by the treatment with L-DOPA and MAO-

B/COMT inhibitors has been the gold-standard treatment for the dopamine deficiency 

characteristic of PD. However, the molecular consequences of increasing L-DOPA and 

dopamine on the enzymes involved in the dopamine pathway are not fully understood. 

Some theories suggest that chronic L-DOPA treatment increases toxicity and 

inflammation markers in idiopathic PD patients and impairs the metabolism of the 

biothiols; for example, GSH (reviewed by Dorszewska et al., 2014). Therefore, if the 

expression of dopamine pathway enzymes varies as consequence of L-DOPA 

administration, PD treatment could be more detrimental than beneficial.  

In the present study, L-DOPA treatment did not modify mRNA or protein 

expression of any dopamine pathway enzymes. However, both MAO isoforms increased 

their activity because of L-DOPA treatment (Table 5.1). To analyse whether this increase 

was due to L-DOPA treatment or to dopamine synthesis, cells were treated with the 

AADC-inhibitor, NSD-1015. While MAO-A activity in the AADC-inhibited cells was 

comparable to that in control cells, MAO-B activity decreased (Figure 5.11 A). These results 

suggest that dopamine could be regulating its own degradation through MAO via a 

positive feedback. This is not the first time MAO and AADC have been related: Cumming 

et al. (1995) previously reported that inhibition of MAO could decrease AADC activity via 

the dopamine receptor in rat brain. In this case, decreased AADC activity resulted in 

decreased MAO-B activity. Further enzymatic studies in the presence of dopamine and/or 

L-DOPA are needed to confirm these observations, as a balance between AADC and MAO 

activities could be fundamental to maintain dopamine levels within a certain range, 

especially in PD.  
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While COMT protein and mRNA expression were unaffected by L-DOPA treatment 

(Table 5.1), its expression changed when AADC was inhibited (Figure 5.12). COMT mRNA 

concentration decreased after sequential NSD-1015 and L-DOPA treatments. Surprisingly, 

its protein expression increased when AADC was inhibited. Several factors could account 

for this; for example, dopamine or L-DOPA concentration, the L-DOPA:dopamine ratio or 

a direct interaction between AADC and COMT. Further work is needed to determine 

whether these changes in the expression of COMT are translated to differences in the 

enzymatic activity. This is of special importance as COMT is not only implicated in 

dopamine degradation, but also catalyses L-DOPA conversion to 3-OMD by an alternative 

route to dopamine (Hiroi et al., 1998).  

Finally, it is known that TH activity is strongly regulated post-translationally by 

enzymes such as kinases and phosphatases, and molecules such as dopamine and its 

quinone derivate (Dorszewska et al., 2014). AADC can be regulated pre- and post-

translationally, being long- and short-term solutions respectively. The first solution is 

slower and involves different gene expression while the latter is faster and includes 

phosphorylation and DA receptor signalling (Berry et al., 1996; Zhu and Juorio, 1995). 

Because of its broad substrate specificity, AADC is also regulated in a species- and tissue-

dependent manner (Berry et al., 1996; Zhu and Juorio, 1995). Consequently, as both 

enzymes could potentially be regulated by dopamine, L-DOPA treatment could directly 

affect the expression of TH and/or AADC.  

No changes were observed in the expression of these enzymes in the current L-

DOPA treatment cell models. However, it is of note that the melting temperature, or 

threshold, of TH cDNA was reached on average around cycle 31 (Figure 5.15). This suggests 

a low yield of mRNA expression, in agreement with the absence of immunofluorescent 

TH-positive cells described in the Chapter 4 and with previous publications that 
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concluded that proliferative SH-SY5Y cells do not express TH (Lopes et al., 2010; Cui et 

al., 2015; McMillan et al., 2007). Additionally, inhibition of AADC activity did not affect 

TH or AADC mRNA expression (Figure 5.9 B). These findings differ from previously 

published data, which concludes that translation of these enzymes is affected by L-DOPA 

and/or dopamine levels (Daubner et al., 2011; Cumming et al., 1995). However, is not clear 

how dopamine and other catecholamines regulate their own synthesis (Flatmark, 2000). 

It should be noted that sample size in the current study is small and that further work is 

needed to confirm this observation. 

 

 
Figure 5.15 Profile of the qRT-PCR curve.  
TH (blue) melting temperature (threshold) was reached on average around cycle 31, while other 
targets reached it much earlier; for example, GAPDH (black). Each line represents the average 
of sample triplicates (n = 24 experimental replicates). ΔRn: reporter signal normalised to the 
fluorescence signal of Applied Biosystems™ minus the baseline. 

 

5.4.2. TH and AADC expression appeared not to be affected by mitochondrial 

or lysosomal impairment 

Dopamine dyshomeostasis has been described as an early event in PD (Alberio et 

al., 2014), and the effect of dopamine on the molecular events of the disease has been 

studied in the last decades (for example, Aguirre et al., 2012; Alberio et al., 2014). In the 



Chapter 5 

149 
 

current study, TH and AADC mRNA levels in mitochondrial and lysosomal impairment 

were comparable to levels in control cells, even after treatment with L-DOPA. This is in 

accordance with the results obtained in chapter 4, as dopamine release was comparable to 

that in controls after rotenone and CBE treatment. However, these observations should be 

confirmed, especially those involving TH, due to the late melting point, where primer 

redesign should be considered.  

5.4.3. Mitochondrial impairment could compromise the role of MAO-B 

Neurons are highly dependent on correct mitochondrial function, and dopaminergic 

neurons are no exception (Abou-Sleiman et al., 2006). Nevertheless, the maintenance of 

mitochondria-dependent mechanisms could be more challenging in these neurons due to 

their complex morphology and to dopamine directly affecting the mitochondrial 

proteome and increasing mitochondrial-mediated apoptosis (Alberio et al., 2014). Some 

of the consequences of mitochondrial dysfunction are lower ATP synthesis with increased 

ROS production, as well as increased calcium release into the cytosol and dyshomeostasis 

of the apoptosis processes, all of which are described as molecular events in PD (Aguirre 

et al., 2012; Abou-Sleiman et al., 2006; Saffari et al., 2017). Additionally, it has been 

reported that mitophagy and mitochondrial turnover decrease with ageing (Mammucari 

and Rizzuto, 2010), making these changes more permanent. Despite all the work carried 

out in models with impaired mitochondria, it is not clear whether complex I dysfunction 

is contributing to dopamine dyshomeostasis. In the current study, cells with impaired 

mitochondria showed decreased MAO-B activity (Figure 5.3 A). MAO-B protein expression 

also decreased after L-DOPA treatment; however, this could be an indirect consequence 

of mitochondrial stress, as this enzyme is located in the outer mitochondrial membrane.  
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5.4.4. Lysosomal impairment and MAO-B activity 

The relationship between GBA1 deficiency and other mechanisms altered in PD has 

also been studied (reviewed by Migdalska-Richards and Schapira, 2016). For example, 

animal and cellular models of GBA1 loss of function showed mitochondrial dysfunction 

and oxidative stress (Cleeter et al., 2013; Osellame et al., 2013). However, the effect of 

impairment GBA1 on dopamine metabolism has not yet been described. In the current 

study, lysosomal impairment alone did not modify the expression or activity of either 

MAO. However, when CBE treatment was followed by L-DOPA, MAO-B activity 

significantly decreased compared to that in control cells (Figure 5.7 A). This could lead to 

dopamine accumulation in the cytosol, increasing its oxidation and enhancing further 

GBA1 dysfunction, as proposed by Burbulla et al. (2017).  

5.4.5. Decreased MAO-B activity as a possible common outcome of 

mitochondrial and lysosomal impairment  

In contrast to the increased release of DOPAC described in Chapter 4, MAO-B 

activity significantly decreased after rotenone or CBE treatment. This could be a protective 

mechanism: cells try to compensate for increased oxidative stress caused by failure of the 

organelles by decreasing MAO activity, and consequently H2O2 production. However, this 

decreased activity would result in a higher concentration of dopamine in the cytosol, 

facilitating its oxidation and increasing oxidative stress (Munoz et al., 2012). Regarding 

COMT, no statistical differences were observed. However, a more thorough analysis of its 

activity and expression in these models is needed, as COMT expression tended to decrease 

after lysosomal impairment. Further work is necessary to confirm these findings. To 

summarise the conditions and the results obtained, a schematic review is presented in 

Table 5.3.  
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Table 5.3 Summary of the effects of the different treatments on the catabolic enzymes. 
Changes in mRNA, protein and activity levels are shown for MAO-A, MAO-B and COMT before (ø) 
and after L-DOPA treatment in all the models. Arrows in red are the significant changes between 
the treatment and its control (ethanol vs rotenone; control vs CBE; control vs NSD-1015); all other 
changes are not significant. 

 

  
MAO-A MAO-B COMT 

L-DOPA Ø  1 h 3 h Ø  1 h 3 h Ø  1 h 3 h 

Inhibited 

Complex I 

mRNA = = = = ↓ = = = = 

Protein ↓ = ↓ ↓ = ↓ = ↑ ↑ 

Activity ↑ ↓ = ↓ = =    

Inhibited 

GBA1 

mRNA = = = ↓ ↓ = ↓ ↓ ↓ 

Protein ↓ ↓ ↓ ↑ ↓ ↑ ↑ ↓ ↓ 

Activity ↑ ↓ ↑ = ↓ =    

Inhibited 

AADC 

mRNA = = ↑ = = = ↓ ↓ ↓ 

Protein = ↓ ↓ ↑ ↑ ↑ ↑ ↑ ↑ 

Activity ↑ ↓ ↓ ↓ ↓ ↓    

 

5.4.6. Neither L-DOPA nor mitochondrial/lysosomal dysfunction affected 

GSH levels 

Oxidative stress has been described as a key molecular factor in the pathophysiology 

of PD (Blesa et al., 2015). Increased ROS production, iron accumulation and microglial 

activation are some of the events reported as contributors to oxidative stress in PD (Blesa 

et al., 2015; Aguirre et al., 2012; Munoz et al., 2012). GSH has been described as essential 
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to prevent mitochondrial damage by peroxynitrite and to carry out aminochrome 

excretion (Munoz et al., 2012; Heales et al., 1995). In the current study, GSH was detected 

in SH-SY5Y cells, although the values obtained were lower than the ones previously 

published in the literature (Allen et al., 2013). This could be due to the differences in the 

cell culture length or cell passage. L-DOPA treatment or mitochondrial/lysosomal 

impairment did not affect GSH concentration in the current study. Further work is needed 

to ascertain whether this is due to the absence of links between these events or to the 

nature of the model. 

 

5.5. Conclusion 

Although it is hard to conclude anything with certainty with this sample size, the 

results presented here suggest that dopamine could be regulating its own MAO-

dependent degradation at post-translational level. However, COMT expression seems to 

be regulated by L-DOPA or AADC itself. Mitochondrial or lysosomal impairment 

decreased MAO-B activity in the SH-SY5Y cell line, in contrast to the increased DOPAC 

release described in Chapter 4. Undoubtedly, further work needs to be carried out to 

confirm these observations. However, these results support the hypothesis that defend 

there are mechanisms that have been not yet discovered in the already complex dopamine 

metabolism (Meiser et al., 2013). 
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Monoamine Metabolism in Animal and Cellular 
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6.1. Introduction 

Several models of parkinsonism are available and have been used to study the 

possible causal relationship between the molecular and biochemical events related to PD. 

These models are also used to test the effects of potential drugs. While some systems 

provide faithful insights into the diseases, some animal models lead to mortality in a 

relatively short time, so may not give as good an insight into the disease. Creation of 

models require functional assays to assess their usefulness. HPLC coupled to an 

electrochemical detector is a suitable method for validating a dopamine/serotonin-related 

model at the functional level. In addition, dopamine and serotonin metabolism are directly 

or indirectly affected by the mutations causing some of these parkinsonism models; for 

example, GTPCH or DAT deficiency. In the present chapter, diverse parkinsonian model 

systems were studied, with the aim of gaining further mechanistic understanding of the 

diseases and to ascertain a possible commonality regarding monoamine metabolism. The 

following models were created by the collaborators as acknowledged: 

A. GTP cyclohydrolase 1 (GTPCH) deficiency in embryonic and adult zebrafish. These 

animals expressed a loss-of-function mutation in the GTPCH gene (GCH1) 

suggested to lead to decreased synthesis of BH4. It has been reported before that 

mutations in this gene in the mouse model reduced GTPCH activity by 90% and 

BH4 concentration by 50% (Brand et al., 1996), although the effect on dopamine 

or serotonin pathways was not studied. It has been proposed that this decrease 

could lead to lower dopamine synthesis by the nigrostriatal cells in humans, 

resulting in L-DOPA responsive dystonia and parkinsonism (Mencacci et al., 2014).  
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B. Deficiency of dopamine transporter. This deficiency causes a parkinsonian 

syndrome known as DAT deficiency syndrome (DTDS) (Kurian et al., 2011b). DTDS 

patients show a characteristic increase in the concentration of dopamine 

metabolites in the CSF as a result of diminished dopamine recycling from the 

synaptic cleft. Due to lack of success in finding a treatment, gene replacement 

therapy is being explored to try to restore DAT. DTDS models studied here 

included cultured dopaminergic iPS-derived neurons, mice and zebrafish. In all 

cases, mutated DAT gene and decreased expression were confirmed. In addition, 

the effect of a novel gene replacement therapy on dopamine and serotonin 

homeostasis was studied in the murine model.  

C. Glucosylsphingosine (GlcSph) effect on dopamine reuptake by DAT. Recent findings 

by Dr Michel Riese (TINTIN fellow, personal communication, University of 

Manchester, Manchester, UK) suggested a direct interaction between DAT and 

GlcSph (Figure 6.1). This is of special interest as glucosyl lipids accumulate in 

Gaucher disease due to dysfunctional GBA1. GlcSph has been proposed as an 

intracellular DAT antagonist that acts to regulate dopamine uptake (Dr Michel 

Riese, data not published). The non-dopaminergic cell line HEK-293 expressing 

human DAT (Hummerich et al., 2004) was used to explore this hypothesis. 

 

Figure 6.1 Glucosylsphingosine.  
This molecule has been proposed as a competitive inhibitor of dopamine transport via DAT. 
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D. Genetic models of Gaucher disease, in contrast to the pharmacological 

cellular model used in chapters 4 and 5. One model consisted of GBA1 

silencing in the SH-SY5Y cell line, the second was a mouse model of GD. The 

cell model was produced by transduction with lentiviruses containing 

interference RNA (iRNA) binding the mRNA of exon 4 from the human 

GBA1, resulting in a loss of function of the enzyme. The murine model was 

developed with a loxP-neo-loxP cassette in the intron 8, creating a splicing 

defect in one of the alleles of GBA1 (Enquist et al., 2007). This cassette was 

present in all tissue except the skin, where the Cre gene was expressed, 

eliminating the cassette, producing normal GBA1 enzyme and allowing the 

mice to live longer than the day after birth.  

Finally, the effect of differentiating the SH-SY5Y cell line to a more dopaminergic-

like cell type was assessed. Even though it is the most commonly used cell model for this 

disease, several publications criticise this undifferentiated cell line as a PD model (Lopes 

et al., 2010; Biedler et al., 1978). Therefore, the extracellular levels of catecholamine and 

serotonin metabolite were studied before and after one week of differentiation by 

treatment with retinoic acid (RA) and brain-derived neurotrophic factor (BDNF) in order 

to investigate whether monoamine metabolism changes after differentiation. A summary 

of the models studied in this chapter can be found in Figure 6.2.  
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Figure 6.2 Summary of the cellular and animal models studied in Chapter 6.  
The models were grouped by disease and phenotype. Each phenotype could be caused by more 
than one condition (model). Finally, several organisms, tissues or cell types were studied. 

 

6.2. Methods 

6.2.1. Pre-treatments 

In the present chapter, models were produced and maintained by the collaborators. 

Most of the models were analysed in basal conditions, although in some cases, cellular 

models needed to be incubated or pre-treated before the samples were processed for HPLC 

measurement. The models pre-treated were the following. 

 iPS cells media incubation 

iPS cells derived from two patients and a healthy individual (Kurian et al., 2011b). 

These cells were maintained with phenol-red-free medium for 48 h before collecting the 

samples on day 65 of the differentiation to dopaminergic neurons. 

 hDAT-HEK-293 treatments 

HEK-293 cells expressing recombinant human DAT were incubated with 10 µM 

GlcSph for 10 min at 37 °C and 5% CO2. Cells were then incubated with dopamine at 1 µM, 

10 µM or 100 µM for 10 min at 37 °C and 5% CO2. Before harvesting, cells were treated 
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with MAO inhibitors for 15 min to prevent any dopamine degradation. This protocol was 

carried out by Dr Yasmina Marti (Universität Mannheim, Mannheim, Germany). 

 L-DOPA incubation of GBA1-silenced SH-SY5Y cells 

Cells were incubated for 24 h with the lentivirus at a multiplicity of infection of 3, 

i.e. 3 infective viral particles per cell. A scramble vector was used as a control. Scramble 

was not an empty vector, but a sequence bound to a non-relevant sequence in the human 

genome. Transduced cells were selected with puromycin and seeded at a density of 104 

cells/cm2 for the experiment. After 7 days, cells were incubated with 100 µM L-DOPA for 

1 h in accordance with the method described in section 2.2.2.1. After silencing, these cells 

showed a 70% decrease in GBA1 mRNA expression and enzymatic activity. This protocol 

was carried out by Dr Maria Garcia-Gomez (UCL GOS Institute of Child Health, London, 

UK), who optimised the silencing and measured the enzymatic activity. 

6.2.2. SH-SY5Y cell differentiation  

Undifferentiated and differentiated SH-SY5Y cells followed the same path until and 

including puromycin selection. Cells were seeded in a collagen-A-coated plate at a 

confluence of 6 × 103 cells per cm2 and allowed to attach overnight. The next day, the 

medium was changed to RA differentiating medium: DMEM/F-12-Glutamax medium 

supplemented with 2% FBS and 10 µM RA. The medium was changed every other day. Five 

days after the beginning of RA treatment, the medium was changed to BDNF 

differentiating medium: DMEM/F-12-Glutamax medium supplemented with 2% FBS and 

50 ng/ml BDNF. The medium was changed every other day. Three days after the beginning 

of BDNF treatment, the cells were incubated with 100 µM L-DOPA for 1 h as described in 

section 2.2.2.1. This success of this differentiation protocol was evaluated by visual 



Monoamine Metabolism in Parkinsonism Models 
 

160 

identification. This protocol was carried out by Dr Maria Garcia-Gomez (UCL GOS 

Institute of Child Health, London, UK). 

6.2.3. Intracellular and media sample preparation 

Media samples were harvested and prepared by the collaborators as described in 

section 2.2.3.1. Intracellular monoamines were measured in the cell pellet of 105 HEK-293 

cells. 400 µl of the isolation buffer used in section 2.2.3.3 was added to the pellet. The cells 

were re-suspended and immediately 400 µl of 0.8 M perchloric added before processing 

as described in section 2.2.3.1. 

6.2.4. GCH1 zebrafish sample preparation 

Whilst zebrafish tails were used for genotyping, whole heads or brains were used for 

monoamine quantification in embryos and adults, respectively, as follows: 

 Zebrafish larvae 

20 larvae were weighed and diluted 1:20 (weight to volume) in homogenisation 

buffer (0.2 M perchloric acid and 0.5 µM EDTA in ultrapure H2O). This buffer was freshly 

made on the day of the experiment and kept on ice. The tissue was mechanically 

homogenised with glass homogeniser on ice and transferred to a centrifuge tube. It was 

incubated at 4 °C for 10 min and centrifuged at 13000 ×g for 5 min. The supernatant was 

collected and stored at –80 °C until HPLC analysis.  

 Adult zebrafish brain 

In this model, three brains were mixed together taking into consideration genotype, 

gender and parents. The tissue was weighed and diluted 1:9 in homogenisation buffer 

following the protocol described in section 6.2.4.1. Supernatant was stored at  

–80 °C until HPLC analysis. 
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6.2.5. DAT KO mouse brain sample preparation 

These animals were produced by Cre-lox homologous recombination (Giros et al., 

1996), and genotyped after birth. DAT KO mice had a disrupted DAT gene, so they could 

not express the functional transporter and no dopamine reuptake could be accomplished. 

Gene therapy of KO animals started the day after genotyping and consisted of a bilateral 

injection in the brain ventricles with AAV9.hDAT. In both cases, mice were sacrificed 1 

year after birth and the brain removed. Then, half a brain was weighed and diluted 1:9 in 

homogenisation buffer as described in section 6.2.4.2. The supernatant was collected and 

stored at –80 °C until HPLC analysis. This protocol was carried out by Dr Joanne Ng (UCL 

GOS Institute of Child Health, London, UK). 

6.2.6. DAT KO embryo zebrafish brain sample preparation 

To quantify dopamine metabolites within zebrafish brains, 10 brains were pooled 

together before the tissue was weighed and diluted 1:25 in homogenisation buffer. The 

protocol described in section 6.2.4.1 was then followed. The supernatant was collected and 

stored at –80 °C until HPLC analysis.  

6.2.7. GD mouse brain sample preparation 

As with DAT KO mice (section 6.2.5), half a brain was weighed and diluted 1:9 in 

homogenisation buffer. Then, the protocol described in section 6.2.4.1 was followed. 

6.2.8. Monoamine measurement 

In all cases, monoamines were quantified following the protocol described in 

Chapter 3.  
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6.3. Results 

6.3.1. Monoamine status in GTPCH-mutated and wild-type zebrafish  

Only 3-OMD, DOPAC and 5-HIAA were detected in zebrafish embryos (Figure 6.3). 

No statistical differences were observed in 3-OMD and DOPAC levels between the three 

groups: WT, heterozygote (GCH1 +/-) and homozygote (GCH1 -/-) embryos (Figure 6.3). 

Unexpectedly, serotonin catabolism was severely compromised in the KO animals, as 5-

HIAA was only detected in WT and heterozygote embryos (Figure 6.3).  

 
Figure 6.3 3-OMD, DOPAC and 5-HIAA levels in zebrafish embryos.  
No statistical differences were found in the levels of 3-OMD, DOPAC and 5-HIAA between WT, 
GCH1 +/- or GCH1 -/-. Statistical analysis was carried out by one-way ANOVA with Tukey’s post hoc 
test. Data are presented as individual values and mean (n = 5 experimental replicates). 

 

In contrast to the embryos, dopamine was detected in adult zebrafish, along with 

HVA and 5-HIAA. Only WT and heterozygotes could be studied as KO embryos died 10 

days post-fertilisation. It was not known whether zebrafish gender or progenitors had an 
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effect on monoamine metabolism, so samples were prepared taking those parameters into 

consideration. No differences were observed based on gender or tank (Table 6.1). 

Therefore, samples were grouped based on the genotype, and no differences were noted 

between WT and heterozygote animals (Figure 6.4). 

Table 6.1 Monoamine levels in adult zebrafish brain based on tank origin and gender.  
In addition to the separation by genotype, monoamine levels were studied grouping samples by 
tank (same progenitors) and by gender, and non-significant differences were obtained. 
Statistical analysis was carried out by unpaired Student t-test and data are presented as mean 
(nmol/mg of tissue) ± SEM. 

  Tank A Tank B Male Female 

Dopamine 
WT 1874 ± 582.5 1894 ± 222.7 2249 ± 207.5 1744 ± 247.2 

GCH1 +/- 1770 ± 176.2 1942 ± 328.1 1517 ± 320.6 2094 ± 240.1 

HVA 
WT 64 ± 35.5 69 ± 32.1 84 ± 15.5 61 ± 33.1 

GCH1 +/- 41 ± 18.6 60 ± 24.3 41 ± 18.1 60 ± 24.5 

5-HIAA 
WT 475 ± 193 526 ± 82.9 650 ± 18.5 457 ± 90 

GCH1 +/- 447 ± 48.8 405 ± 69.1 399 ± 94 434 ± 53.8 

 

 

Figure 6.4 Levels of dopamine, HVA and 5-HIAA in WT and GCH1 heterozygote adults. 
Only dopamine, HVA and 5-HIAA were detected in adult zebrafish brain. No differences were 
observed in the quantity of analytes between WT (n = 7 experimental replicates) and GCH1 
heterozygote (GCH1 +/-, n = 8 experimental replicates) adults. Statistical analysis was carried out 
by unpaired Student t-test. Data are presented as individual values and mean. 
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6.3.2. iPS-derived neurons from DTDS patients and dopamine metabolism 

Dopamine, DOPAC and HVA were detected in the culture media (Figure 6.5). No 

statistical differences were observed between cells derived from the control (n = 9 

experimental replicates) and the two DTDS patients (n = 4 experimental replicates for 

each patient) in dopamine or DOPAC levels. However, HVA levels were significantly 

increased in the extracellular media of the iPS cells derived from DTDS patients compared 

to levels in the control cells (Figure 6.5).  

 
Figure 6.5 Extracellular dopamine and its metabolites in DTDS iPS cells on day 65 of 
differentiation.  
Dopamine and DOPAC levels remained constant in control (n = 9 experimental replicates) and 
the two DTDS (patient 1 and 2, n = 4 experimental replicates each) samples. On the contrary, 
HVA levels were higher in the DTDS samples. Statistical analysis was carried out by unpaired 
Student t-test compared with the control (*p<0.05). Data are presented as mean ± SEM. 

 

6.3.3. Brain monoamine metabolism in DTDS mice 

Dopamine levels in KO mice (n = 4 experimental replicates) were markedly lower 

than levels in the brains of WT animals (n = 8 experimental replicates) (Table 6.2 and Figure 

6.6). The levels of dopamine and serotonin metabolites HVA and 5-HIAA were 

significantly higher in KO mice than in WT (Table 6.2 and Figure 6.6). This increase of the 
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metabolites resulted in a significant increase in all three ratios (Table 6.2). After gene 

therapy (n = 4 experimental replicates), dopamine levels decreased compared to those of 

untreated KO animals (Figure 6.6). The decreases in both MAO-dependent metabolites 

DOPAC and 5-HIAA were such that the levels were below those of WT. Finally, HVA levels 

also decreased after gene therapy yet remained significantly higher than WT (Figure 6.6). 

Whilst not significant, the values of dopamine and serotonin metabolites decreased after 

the treatment with gene therapy; hence, the values of those metabolites were closer to WT 

than those of the untreated KO. However, the genotypes could be distinguished when the 

ratios were calculated (Figure 6.7). Untreated and treated KO mice showed similar values 

for all the ratios calculated here, suggesting that the DAT derived from the gene therapy 

might not be functional as DAT in WT animals. HVA:5-HIAA, HVA:dopamine and 

turnover ratios were 2, 19 and 13 times higher respectively in both KO animals compared 

to WT.  

 
Figure 6.6 Brain dopamine and serotonin metabolism in DAT KO mice with and without gene 
therapy.  
DAT KO mice (DAT -/-, n = 4 experimental replicates) displayed lower levels of dopamine and 
higher HVA than WT (n = 8 experimental replicates). Animals treated with gene therapy (DAT -
/- Gene Therapy, n = 4 experimental replicates) showed values closer to the WT, except for 
dopamine. Statistical analysis was carried out by one-way ANOVA with Tukey’s post hoc test 
(**p < 0.01; ***p < 0.0001). Data are presented as individual values and mean. 
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Table 6.2 Comparison of WT versus DAT KO mouse brain tissue.  
Statistical analysis was carried out by unpaired Student t-test. Turnover = 
(DOPAC+HVA)/dopamine. Data are presented as mean (nmol/mg of tissue) ± SEM.  

 WT DAT KO p-value 

3-OMD 712 ± 113.7 731 ± 29.1 n.s. 

Dopamine 7572 ± 375.5 1687 ± 92.2 <0.001 

DOPAC 957 ± 87.0 1147 ± 55.1 n.s. 

HVA 1423 ± 166.8 6024 ± 222.2 <0.001 

5-HIAA 1672 ± 215 2525 ± 127.7 <0.05 

HVA:5-HIAA 1.03 ± 0.240 2.37 ± 0.064 <0.001 

HVA:Dopamine 0.19 ± 0.017 3.59 ± 0.058 <0.001 

Turnover 0.31 ± 0.020 4.30 ± 0.092 <0.001 

 

 

 
Figure 6.7 Catecholamine ratios showed differences between WT and DAT KO mice.  
The two genotypes could be separated into two groups after calculating the ratios, including 
those with gene therapy (DAT -/- Gene Therapy). Statistical analysis was carried out after square 
root transformation of the ratios followed by one-way ANOVA with Tukey’s post hoc test (***p 
< 0.0001). Turnover = (DOPAC+HVA)/dopamine. Data are presented as individual values and 
mean.  
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6.3.4. Monoamine metabolism in heterozygote and DTDS zebrafish 

Genotyping was carried out in the tail, while the brain was used to measure 

monoamine levels. Only 3-OMD, DOPAC and 5-HIAA were detected in this model (Figure 

6.8). None of the molecules showed any differences between the three genotypes.   

 
Figure 6.8 Differences in metabolite levels between DTDS zebrafish model and WT.  
Zebrafish embryos of WT (n = 4 experimental replicates), DAT heterozygote (DAT +/-, n = 10 
experimental replicates) and DAT homozygote (DAT -/-, n = 5 experimental replicates) were 
studied and no differences were observed between groups. Statistical analysis was carried out 
by one-way ANOVA with Tukey’s post hoc test. Data are presented as individual values and 
mean. 

 

6.3.5. Dopamine reuptake in HEK-293 cells expressing human DAT 

Intracellular dopamine could only be detected in HEK-293 cells that were incubated 

at a concentration of 10 µM or higher (Figure 6.9), and no differences were observed in 

dopamine reuptake between control and GlcSph groups. 
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Figure 6.9 The effect of treatment of hDAT HEK-293 with GlcSph on dopamine reuptake. 
GlcSph treatment did not disrupt dopamine reuptake through DAT. Statistical analysis was 
carried out by unpaired Student t-test to compare control to GlcSph treatment (n.s.). Data are 
presented as mean ± SEM (n = 3 experimental replicates). 

 

6.3.6. GBA1 silencing and monoamine metabolism 

SH-SY5Y cells with silenced GBA1 (iGBA1) exhibited decreased extracellular levels of 

dopamine compared to those in control cells (Figure 6.10). Although not significant, it was 

noted that iGBA1 cells showed decreased levels of all the other measured metabolites. 

When looking at the ratios, the HVA:5-HIAA ratio was increased in the iGBA1 cells (Figure 

6.11) and the HVA:dopamine ratio tended to be higher in iGBA1 cells, although neither 

increase was statistically significant. Dopamine turnover was comparable in both groups.  
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Figure 6.10 The effect of silencing GBA1 on extracellular dopamine levels.  
SH-SY5Y cells transduced with iGBA1 showed significantly lower dopamine levels. Although not 
significant, the levels of dopamine metabolites were lower in iGBA1 cells. Statistical analysis was 
carried out by unpaired Student t-test (*p < 0.05). Data are presented as mean ± SEM (n = 5 
experimental replicates). 

 

 
Figure 6.11 The effect of silencing GBA1 on catecholamine turnover.  
Statistical analysis was carried out, after the transformation of the ratios, by unpaired Student 
t-test. Turnover = (DOPAC+HVA)/dopamine. Data are presented as mean ± SEM (n = 5 
experimental replicates).  
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6.3.7. Brain monoamine levels in heterozygote GD murine model 

After studying the neurotransmitters in two GD cell models, a murine model was 

studied. In this case, the animals were heterozygote for a GBA1 mutation and showed 

decreased GBA1 enzymatic activity within the brain (Enquist et al., 2007). Heterozygote 

animals were studied, as carriers of GBA1 mutations have also shown higher probability of 

developing PD (Neumann et al., 2009). No differences were observed between WT (n = 3 

experimental replicates) and heterozygotes (GBA1 +/-, n = 7 experimental replicates) in the 

levels of either dopamine and its metabolites, or serotonin metabolites (Figure 6.12). Ratios 

also had similar values in both groups (Figure 6.13). 

 

Figure 6.12 Changes in monoamine levels in the brains of heterozygote GBA1 mutant mouse 
model compared to WT.  
Dopamine, DOPAC, HVA and 5-HIAA showed similar values in the brains of WT and GBA1 +/- mice. 
Statistical analysis was carried out by unpaired Student t-test. Data are presented as individual 
values and mean. 
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Figure 6.13 Differences in ratios between heterozygote GBA1 mutant mouse and WT.  
None of the ratios showed statistical differences between WT and GBA1 +/- mice. Statistics 
were performed after transforming the ratio values to a normal distribution and completed 
using unpaired Student’s t-test. Turnover = (DOPAC+HVA)/dopamine. Data are presented as 
individual values and mean.  

 

6.3.8. Monoamine metabolism after SH-SY5Y differentiation 

SH-SY5Y differentiation to a dopaminergic neuron-like cell type, i.e. expressing TH, 

is described in the literature (for example, Kovalevich and Langford, 2013). After L-DOPA 

treatment, differentiated SH-SY5Y cells showed decreased extracellular dopamine levels 

compared to non-differentiated cells, in contrast to the significant increase in 3-OMD 

(Figure 6.14). Although not statistically significant, the levels of dopamine metabolites 

were higher after differentiation. The serotonin metabolite 5-HIAA was significantly 

increased in medium from the differentiated cells. All these changes resulted in a 

decreased ratio HVA:5-HIAA and increased dopamine turnover (Figure 6.15). 
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Figure 6.14 Changes in extracellular dopamine levels after SH-SY5Y differentiation. 
Undifferentiated (n = 5 experimental replicates) and differentiated (n = 4 experimental 
replicates) SH-SY5Y cells were compared. Dopamine significantly decreased after 
differentiation. On the contrary, differentiated cells significantly increased the levels of 3-OMD 
and 5-HIAA. Statistical analysis was carried out by unpaired Student t-test (*p < 0.05; **p < 0.01). 
Data are presented as mean ± SEM. 

 

 
Figure 6.15 The effect of differentiation on dopamine turnover.  
While differentiated cells showed a decreased HVA:5-HIAA ratio, overall dopamine turnover 
increased 43-fold compared to undifferentiated cells. Statistical analysis was carried out, after 
transformation of the ratios, by unpaired Student t-test (*p < 0.05; ***p < 0.001). Turnover = 
(DOPAC+HVA)/dopamine. Data are presented as mean ± SEM.  
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6.4. Discussion 

6.4.1. BH4 deficiency effects on dopamine and serotonin metabolism 

Zebrafish have been used as a model in several diseases, mostly in the developmental 

stages due to the characteristics of the egg, allowing observation of embryo development 

as it is “external and visually accessible” (Veldman and Lin, 2008). This is also very 

convenient for the study of diseases with a low or null survival rate after birth, such as 

homozygous GCH1 mutation where zebrafish die 10 days post-fertilisation (Dr Marcus 

Keatinge, personal communication, University of Sheffield, Sheffield, UK). In the current 

study, both embryo and adult zebrafish were studied as a model of BH4 deficiency by 

GTPCH mutation. 

While dopamine and serotonin metabolites were measurable in embryos, no 

dopamine was detected. This suggested that the zebrafish embryos might have been able 

to synthesise dopamine but were not mature enough to accumulate it. The high levels of 

DOPAC support this theory, as dopamine may be degraded to this metabolite. However, 

no differences in monoamine levels between WT and GTPCH deficient embryos were 

found. Surprisingly, 5-HIAA could not be detected in GCH1 -/- embryos although it was 

detectable in WT embryos, suggesting that serotonin metabolism is severely 

compromised. This observation may be independent of MAO expression and activity 

because DOPAC, the dopamine product produced by MAO, was not affected in the same 

way.  

As the total absence of GTPCH was lethal shortly after fertilisation, only WT and 

heterozygote adults were studied. In humans, mutations in GTPCH are inherited in an 

autosomal dominant way, with a proposed female predominance (Steinberger et al., 1998; 

Furukawa et al., 1998) although this has been disputed, as some authors have reported no 
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gender imbalance (Wider et al., 2009). The animals studied here showed no differences 

in dopamine and serotonin metabolites between genders. Although dopamine could be 

detected in adult zebrafish, no differences between WT and heterozygotes were observed 

in its synthesis or degradation. Similarly, no differences in serotonin degradation were 

detected between the two groups. These results suggest that one allele might be sufficient 

for dopamine synthesis in zebrafish. Indeed, Brand et al. (1995) reported that the mutation 

of one GCH1 allele in a murine model would result in half of the BH4 concentration of a 

WT. Therefore, it was hypothesised that a system with GTPCH deficiency might need to 

be stressed to show any changes in dopamine synthesis due to decreased BH4 levels. For 

instance, L-DOPA-responsive dystonia is caused by an autosomal dominant mutation of 

the gene GCH1, and the BH4 system needs to be stressed for the diagnosis (Saunders-

Pullman et al., 2004). Phenylalanine loading is the established and most reliable 

diagnostic tool to distinguish L-DOPA-responsive dystonia of early onset PD (Hyland et 

al., 1997). In this test, patients with mutant GTPCH show an increased 

phenylalanine/tyrosine ratio, as BH4 is required to transform phenylalanine to tyrosine by 

phenylalanine hydroxylase. Further experimentation needs to be carried out to explore 

this theory in the zebrafish model. 

6.4.2. Mammalian DTDS models mimic human patients 

DTDS patients show high levels of dopamine metabolites in the CSF due to loss of 

function of DAT (Kurian et al., 2011b). This is a characteristic and possibly critical 

phenotype for the development and evolution of the symptoms in these patients. In order 

to validate the models, it is therefore important to assess whether the disease models also 

reflect this feature. 

For the study of iPS cells, monoamine concentration in the medium was normalised 

against cell protein content, as the number of patient-derived cells was decreased by 
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almost half (Dr Serena Barral, personal communication, UCL GOS Institute of Child 

Health, London, UK). Both control and patient cells were able to release dopamine to the 

medium, confirming their dopaminergic phenotype. However, although the iPS 

differentiation protocol was designed to produce dopaminergic neurons (Dr Serena Barral, 

personal communication, UCL GOS Institute of Child Health, London, UK), some of the 

samples were serotoninergic, suggesting incomplete differentiation. Patient cells showed 

increased levels of HVA, as observed in the CSF of the DTDS patients (Kurian et al., 2011b). 

Dopamine levels were also higher in the media of patients’ cells, although this difference 

was not significant, supporting the view that the absence of DAT can cause accumulation 

of dopamine in the synaptic cleft of DTDS patients due to impaired reuptake of the 

neurotransmitter. 

DTDS mice were dwarf and showed hyperlocomotor behaviour, as well as reduced 

survival (by 10 weeks) compared to DAT heterozygotes (Giros et al., 1996). As in the iPS 

cell model and in the CSF of patients, high HVA levels were observed in the brains of KO 

mice, suggesting that this murine model is a suitable organism for the study of this disease. 

These animals also displayed significantly higher levels of 5-HIAA. This observation could 

be a result of enhanced MAO activity, as DOPAC levels in KO animals were also higher, 

although this difference not significant. The differences in the levels of these two MAO-

dependent molecules could be due to the fact that, in the dopamine pathway, DOPAC is 

further metabolised by COMT to produce HVA, while 5-HIAA is the end product of the 

serotonin pathway. In addition, dopamine levels in the brain of the KO animals were 

decreased, possibly due to the emptied intracellular dopamine storage vesicles. Therefore, 

the maintenance of dopamine levels in these animals is presumably dependent exclusively 

on de novo dopamine synthesis. This appears to be the first time a decrease in dopamine 

levels has been reported in the brains of DTDS mice. This depletion also agrees with the 

increased prolactin levels reported in DTDS patients (Kurian et al., 2011b), as dopamine 
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negatively regulates the exocytosis of this hormone (reviewed by Fitzgerald and Dinan, 

2008). 

Modification of DAT expression in the murine model by gene therapy was followed 

by decreased degradation of dopamine and serotonin. Surprisingly, this decrease in 

dopamine degradation did not result in increased levels of dopamine, as the 

neurotransmitter levels were lower than those of untreated KO. Examining the ratios of 

the metabolites, it is noticeable that animals after one year of treatment showed similar 

values to those without treatment, and different values to WT mice, despite the changes 

in HVA levels after therapy. The results observed here suggest that the compensation by 

gene therapy has not been sufficient yet, as dopamine levels are still significantly 

decreased. This could be due to the fact that dopamine connections are made before birth 

(Stott and Ang, 2013) and these animals were treated after birth. Therefore, treatment 

could be increasing the expression of DAT, but the dopaminergic network could possibly 

be too weak to respond accordingly. However, it is of note that the values obtained from 

the murine model were a result of experiments in half brain formed by a mix of cell types. 

It would be of interest to examine different regions within the brain to determine whether 

gene therapy results in any localised improvements in dopamine levels. 

Finally, no dopamine was detected in the zebrafish embryo model. However, 

dopamine metabolites were present, suggesting that the system is able to synthesise 

dopamine but that it is degraded. The serotonin metabolite 5-HIAA was also detected in 

this developmental stage, as in the other embryonic zebrafish model used here, the 

GTPCH model. In the DTDS zebrafish model, no differences were observed between 

control and heterozygote or homozygote animals in the metabolites that were detected. 

Therefore, although this model expresses the same mutation as the iPS cells and mice, 

zebrafish was not mimicking the phenotype of the patients, suggesting that dopamine 



Chapter 6 

 
177 

synthesis in zebrafish embryos is either very slow so that residual enzyme activity on the 

DTDS in zebrafish is sufficient, or that there are differences in the dopamine synthesis 

pathway in zebrafish embryos. 

In conclusion, only mammalian models of DTDS displayed quantifiable dopamine 

levels. In addition, and despite the fact that monoamine levels were measured 

extracellularly in the iPS cell model and intracellularly in the murine model, they both 

showed increased HVA levels, as described in the CSF of patients, suggesting these models 

are more suitable than zebrafish for study of the disease. To my knowledge, this is the first 

time that DTDS has been shown to be a deficiency state of dopamine, possibly leading to 

the dysregulation of other cellular functions, such as the release of prolactin. 

6.4.3. Dopamine reuptake in HEK-293 cells after GlcSph treatment  

HEK-239 is a human embryonic kidney cell line, therefore its phenotype is neither 

neuronal nor dopaminergic (Thomas and Smart, 2005). Therefore, these cells were 

modified to artificially express human DAT in order to study transporter functionality by 

analysing dopamine reuptake before and after incubation with GlcSph. This molecule is of 

special interest as increased levels of GlcSph and low GBA1 activity have been related to 

lower neuronal viability (de la Mata et al., 2016). Cells were also treated with MAO 

inhibitors to prevent dopamine degradation and allow intracellular dopamine 

accumulation. Under the current conditions, no differences were observed between 

control and GlcSph-treated cells. This could be due to the extracellular application of the 

DAT regulator that might act intracellularly. Another possible explanation is that there 

are small changes in dopamine, but more data would be necessary to detect these changes.  
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6.4.4. Genetic GBA1 loss of function and monoamine metabolism 

Since GD is related to PD, several pharmacological and genetic models of GD have 

been established (Farfel-Becker et al., 2011; Santos and Tiscornia, 2017). An example of a 

pharmacological model is the cellular model described in Chapter 4. GBA1 silenced cells 

showed decreased levels of dopamine in the media. In fact, all the metabolites were lower 

(albeit non-significantly) in the GD genetic model, including serotonin-derived 5-HIAA. 

This contrasts with the results obtained in the CBE cell model, where only dopamine and 

serotonin metabolites were affected by the treatment. However, it is of note that 

pharmacological GBA1 inhibition possibly affects other enzymes, in contrast to more-

focused genetic methods, as CBE could be interacting with other cell targets (Rempel and 

Withers, 2008).  

In the genetic murine model of GD, heterozygote GBA1 mice showed very similar 

values to WT. This would agree with the observation that not all the carriers of a mutated 

GBA1 develop parkinsonian symptoms (Migdalska-Richards and Schapira, 2016). Also, age 

is a key predisposing factor in the development of neurodegeneration, and these animals 

were young at the time of measurement; it would have been interesting to determine 

dopamine metabolism in aged mice. However, a slight non-significant increase in 

dopamine levels and a decrease in its metabolites were observed, leading to decreased 

HVA:5-HIAA and HVA:dopamine ratios. Further work needs to be done with GBA1 KO 

mice to better characterise dopamine metabolism in this model, as changes in dopamine 

degradation could be a possible early event in the development of the disease.  
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6.4.5. Effect of SH-SY5Y cell differentiation on dopamine and serotonin 

metabolism 

The suitability of the SH-SY5Y cell line as a dopaminergic model has been widely 

discussed (Xicoy et al., 2017). The expression and functionality of some of the 

dopaminergic cell-type features are absent in the proliferative or undifferentiated SH-

SY5Y cells, as indicated by the absence of TH reported in this study and by others (Lopes 

et al., 2010; Cui et al., 2015; McMillan et al., 2007). Some publications have concluded that 

differentiating the SH-SY5Y cell line to a more neuron-like cell type would be a more 

appropriate model of PD (Nishida et al., 2008). SH-SY5Y differentiation decreased 

extracellular levels of dopamine. In contrast, the levels of dopamine and serotonin 

metabolites increased, that of MAO-dependent metabolites being the most noticeable. 

This could be due to changes in the expression of the enzymes, for instance increased 

expression and/or activity of MAO. The ratios confirmed that overall dopamine turnover 

increased in the differentiated cells, suggesting that this differentiation could be 

regulating dopamine release and/or its extracellular concentration more carefully. 

However, it remains to be confirmed whether this controlled release is more similar to 

physiological events in the human brain.   

 

6.5. Conclusion 

The aim of this chapter was to identify the biochemical characteristics and to 

ascertain whether different parkinsonian models present common features regarding 

monoamine metabolism. While dopamine was detected in several models, confirming 

their dopaminergic nature; for example, iPS cell media and mouse brain, in others the 

neurotransmitter was undetectable; for example, zebrafish embryo (summarised in Table 
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6.3). It is also reported here that the DTDS mouse model showed a deficiency in 

intracellular dopamine, opening new possibilities for the development of new therapies. 

It is hypothesised that the zebrafish embryo models studied here, GCH1 and DAT mutants, 

could have an immature storage system as dopamine was not detected but dopamine 

metabolites were. Examination of this pathway could be enhanced by studying adult 

animals, but mammalian models remain the most suitable. Regarding SH-SY5Y 

differentiation, changes in monoamine turnover prove the need for extended 

investigation, as these cells can give more accurate insights into monoamine metabolism 

in dopaminergic neurons.  
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Table 6.3 Is there commonality in dopamine and serotonin metabolism?  
Data summarised here show the statistically significant observations reported in Chapter 6. All 
models are compared to its control/WT, except for the DTDS mice treated with gene therapy, 
which are compared to untreated KO animals. GlcSph: glucosylsphingosine; mut.: mutant; NA: 
not applicable; ND: not detected; T: treated; UT: untreated; ZF: zebrafish. 

Model Organism 3-OMD DA DOPAC HVA 5-HIAA Turnover 

GTPCH mut. 

ZF het 

embryo 
= ND = ND = NA 

ZF KO 

embryo = ND = ND ND NA 

ZF het 

adult 
ND = ND = = NA 

DTDS 

iPS cells ND = = ↑ ND NA 

KO mice  = ↓ = ↑ ↑ ↑ 

T KO mice 

(vs UT) = = = ↓ ↓ = 

ZF embryo = ND = ND = NA 

GlcSph HEK-293 NA = NA NA NA NA 

GD 

iGBA1 SH-

SY5Y = ↓ = = = = 

Mice ND = = = = = 

Differentiation SH-SY5Y ↑ ↓ = = ↑ ↑ 
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7.1. Introduction 

Protein post-translational modifications and their role in different pathologies have 

received more and more attention in recent years (Santos and Lindner, 2017). 

Glycosylation, the addition of carbohydrates (glycans) to form glycoproteins, is a major 

post-translational modification of proteins. The physiological roles of glycosylation 

include correct protein folding, stability and location; for example, mannose-6-phosphate 

acts as a lysosomal location tag (reviewed by Hwang et al., 2010). Glycans are divided in 

two groups, N- and O-linked, based on how the glycan is linked to the protein (Figure 7.1). 

While in the former, glycans are attached to an asparagine residue by a nitrogen atom, in 

the latter they are linked to a serine or threonine by an oxygen atom. Another difference 

is that N-linked glycans are usually more complex and branched. Although both types are 

found on the membrane proteins and on the glycoproteins secreted to biological fluids, 

N-linked glycans are more widely studied due to the lack of enzymes able to release O-

linked glycans.  

 

Figure 7.1 Types of glycan based on their linkage.  
Asn: asparagine; Ser/Thr: serine/threonine; GlcNAc: N-acetylglucosamine; Man: mannose; Gal: 
galactose; Fus: fucose; NeuNAc: sialic acid. 
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Glycoprotein synthesis is an intricate process that involves several organelles, 

including the endoplasmic reticulum and Golgi apparatus, and sequential addition of 

monosaccharaides (Ohtsubo and Marth, 2006). Glycoprotein degradation occurs mainly 

in lysosomes (Winchester, 2005; Freeze et al., 2015). Lysosomal glycosidases are a large 

group of soluble hydrolases with a low optimum pH that, despite accomplishing similar 

reactions, have a structural similarity of less than 20%. These enzymes are classified into 

two groups, exo- and endoglycosidases, based on the position of the glycosidic link that 

they cleave. While exoglycosidases are specific to monosaccharides in a terminal position, 

endoglycosidases cleave internal glycosidic bonds of longer chains of glycans.  

In the search for early diagnostic markers for neurodegenerative diseases, protein 

glycosylation has been proposed as a possible biomarker. Changes in glycan degradation 

might yield a suitable biomarker, as lysosomes are involved in both glycan degradation 

and parkinsonism (Ohtsubo and Marth, 2006; Lynch-Day et al., 2012). Changes in the CSF 

glycoprofile are already used as a diagnostic tool in some neurological diseases, including 

schizophrenia and leukodystrophies (Stanta et al., 2010; Fogli et al., 2012). Comprehensive 

glycosylation analysis might therefore offer new insights into biomarker discovery, as 

changes in the glycoprofile could be an indicator of the actual state of the underlying 

biochemical mechanisms. Therefore, the aim of this study was to explore whether there 

were any differences in the glycan profile of CSF from patients with parkinsonism, defined 

as low CSF HVA levels, compared with disease control samples, i.e. non-parkinsonian, 

defined as normal CSF HVA levels.  
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7.2. Methods 

7.2.1. Secondment 

This study took place at the National Institute for Bioprocessing Research & Training 

(NIBRT, Dublin, Ireland) in early May 2016. NIBRT was founded in 2011 as a collaboration 

between University College Dublin, Trinity College Dublin, Dublin City University and the 

Institute of Technology. This centre is notable for its training courses and research in 

bioprocessing, specialising in the analytical study of biological processes such as post-

translational modifications; for example glycosylation. This industrial placement was part 

of the TINTIN project. The protocol used during the secondment was established at NIBRT 

by Prof Jonathan Bones and supervised by TINTIN fellow Dr Csaba Varadi. 

7.2.2. Sample selection criteria 

Residual anonymised CSF samples were evaluated in accordance with Royal College 

of Pathologists guidelines (2012). Three samples of CSF with evidence of low HVA, i.e. 

parkinsonism, and ten CSF samples with normal HVA, i.e. disease control, were selected 

for study of the glycan profile. These were provided by the Neurometabolic unit of the 

National Hospital (London, UK).  

7.2.3. Glycan purification 

CSF samples were reduced and alkylated with DTT and iodoacetamide respectively, 

both prepared at a 10x concentration in 8 M urea. 50 µl CSF were placed on a 10 kDa filter 

and mixed with DTT at a final concentration of 2 mM and incubated at room temperature 

in the dark for 30 min. Then, a final concentration of 10 mM iodoacetamide was added to 

the previous mixture, and incubated at room temperature in the dark for 30 min. The 

reduced and alkylated sample was washed with water and centrifuged at 12000 rpm for 
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25 min at room temperature. The flow-through was discarded and 400 µl of 50 mM 

ammonium hydrogen carbonate added before centrifuging at 12000 rpm for 25 min at 

room temperature. Ammonium hydrogen carbonate was used as a volatile exchange buffer 

to eliminate the remaining urea and DTT. At this stage, glycans are still attached to the 

proteins and retained in the filter. To isolate the N-linked glucans from the proteins, 

samples were digested with 2 U of recombinant Peptide-N-Glycosidase F (PNGase F) and 

incubated overnight at 37 °C. 400 µl of the sample mix were added to each filter before 

samples were centrifuged at 12000 rpm for 10 min at room temperature. The flow-through 

was then dried in a centrifugal vacuum evaporator for around 2 h to prepare the glycans 

for labelling. 

7.2.4. Glycan labelling 

The dried glycans were derivatised in order to provide them with adequate charge 

and fluorescent properties. In this case, sugars were labelled via reductive amination by 

incubation overnight at 37 °C with 6 µl of 20 mM 9-aminopyrene-1,4,6-trisulfonic acid 

(APTS) in 15% v/v acetic acid and 2 µl of 1 M sodium cyanoborohydride. The following day, 

22 µl of water were added before eliminating the excess dye from labelled glycans by ultra-

HPLC. The mobile phase consisted of 50 mM ammonium formate (pH 4.4) and was kept 

at 40 °C. The flow rate was set at 0.5 ml/min. 30 µl sample mixed with 70 µl of acetonitrile 

were injected into the system, and only the labelled peak was collected. Samples were then 

dried in the vacuum centrifuge to prepare samples for analysis of the glycoprofile. 

7.2.5. Glycoprofile measurement by capillary electrophoresis 

Once the sample is dry, derivatised sugars were suspended in 15 µl of water before 

being analysed by capillary electrophoresis. The equipment used was a PA800 Plus 
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automated capillary electrophoresis instrument (SCIEX) coupled to a solid-state laser 

based fluorescent detector (excitation: 488 nm; emission: 520 nm).  

Samples were injected at a pressure of 1 psi for 5 sec in a N-CHO coated 50 µm 

capillary, 50 cm effective length, maintained at 25 °C. The electric field applied was 500 

V/cm with the anode at the detection side (reversed polarity). For electropherogram 

alignment and relative quantification purposes, APTS-labelled maltose was co-injected 

with each sample as an internal standard. Karat 32 version 7.0 (SCIEX) software was used 

for data acquisition and analysis.  

 

7.3. Results 

The glycoprofile of anonymised CSF was analysed and the resulting 

electropherograms are shown in Figure 7.2. The samples analysed were divided into two 

groups: disease control and parkinsonian patients with clear impairment of dopamine 

metabolism, i.e. low HVA levels. CSF from control patients showed peaks of variable sizes 

at constant retention times. Samples from parkinsonian patients showed much lower 

glycan content.  
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Figure 7.2 Glycoprofiles of CSF from control and low HVA patients. 
 CSF of patients with low HVA levels (n = 3 experimental replicates) showed a smoother 
glycoprofile compared to control samples (n = 10 experimental replicates). Time = 20 min. 

 

7.4. Discussion and Further Work 

The use of differences in the glycan profile as biomarkers for the diagnosis and 

progression of neurodegenerative diseases is an expanding field. The heterogeneity of 

glycans is thought to be due to the expression level and activity of glycosidases and 

glycosyl-transferases, which can be altered in pathological conditions (Ohtsubo and 
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Marth, 2006). Although there are currently no reliable early-stage biomarkers for the 

diagnosis of parkinsonism, two recent publications have reported changes in glycosylation 

in PD patients. One reported decreased levels of the glycan-isoform of the brain-derived 

transferrin in the CSF of PD patients (Hoshi et al., 2017), and the other proposed changes 

on the N-glycans of the fragment crystallisable region of the IgG as a biomarker of PD 

(Russell et al., 2017). Changes in the glycan levels could also be a consequence of altered 

degradation due to lysosomal dysfunction. In PD, studies have shown that lysosomal 

enzymes fail to degrade other molecules such as glucosylceramide (Gegg et al., 2012; 

Migdalska-Richards and Schapira, 2016). As lysosomal dysfunction in the cell model 

reported in Chapter 4 resulted in low HVA levels, it was hypothesised here that the low 

HVA levels seen in the CSF could be accompanied by lysosomal dysfunction and changes 

in glycan degradation. To investigate this, CSF samples from patients with reported low 

HVA levels were compared to control samples from patients with no evidence of dopamine 

metabolism impairment. As a precursor, commercial CSF was measured following the 

protocol described in section 6.2 in order to validate the application of the previously 

established method to CSF samples (data not shown). Once the suitability of the protocol 

was confirmed for this sample type, patient samples were measured. Samples of CSF from 

control patients showed diverse peaks with different heights, probably due to their 

primary non-parkinsonian pathology. However, the CSF glycoprofile of patients with 

impaired dopamine metabolism was missing numerous peaks, suggesting that glycan 

metabolism could be also impaired. Further work needs to be carried out to identify the 

missing peaks in the low HVA patients. Although, it was not anticipated that the 

differences in the glycoprofile would be so dramatic when comparing parkinsonian and 

non-parkinsonian patients, the results obtained in this preliminary study support the 

reports that proposed glycans as PD biomarkers (Russell et al., 2017; Hoshi et al., 2017).  
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8.1. Discussion 

PD is a neurodegenerative disorder caused by a substantial loss of dopaminergic 

neurons in the substantia nigra. Despite being the second most common 

neurodegenerative disease, the causes underlying this degeneration are unknown. A 

multifactorial pathogenesis has been proposed as the cause of PD (Fujita et al., 2014), 

complicating the development of a cure. Dopamine deficiency in PD is asymptomatic until 

dopamine levels decrease by 60–80% and dopaminergic denervation occurs (Klebe et al., 

2013). At diagnosis, patients usually start treatment with L-DOPA and dopamine 

catabolism inhibitors. However, the efficacy of this PD gold-standard treatment decreases 

over time for reasons unknown. It is possible that this loss of efficacy could be due to 

changes in the dopamine pathway caused by the treatment itself.  

Before studying the effect of L-DOPA on dopamine metabolism, dopamine 

metabolism was characterised in the cell model used, as its suitability as a PD model 

system has been widely discussed. As shown by immunofluorescence and qRT-PCR (4.3.1), 

SH-SY5Y cells do not express TH, the first enzyme of the dopamine pathway under the 

conditions employed. My findings are in agreement with previous publications (Lopes et 

al., 2010; Cui et al., 2015; McMillan et al., 2007). However, SH-SY5Y cells do express the 

other enzymes of the classical pathway as shown by monoamine extracellular detection, 

western blotting and qRT-PCR. Dopamine production is highly regulated, as its 

accumulation can lead to the formation of oxidative molecules (reviewed by Munoz et al., 

2012). The intermediate product of dopamine oxidation, aminochrome, is highly reactive 

and can oxidise different proteins; for example, complex I, and modifies the expression of 

others, such as iron transporters (Aguirre et al., 2012), further enhancing the optimum 

conditions for dopamine oxidation.  
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Previous studies have reported that dopamine regulates the activity of enzymes 

upstream; for example, TH is regulated by the neurotransmitter via negative feedback 

(reviewed by Daubner et al., 2011). In this study, incubation with L-DOPA and consequent 

dopamine production had no effect on mRNA expression of dopamine synthesis enzymes. 

However, incubation with L-DOPA altered dopamine degradation by increasing the 

activity of MAO-B. Indeed, when considering the HVA:DA and turnover ratios, 

maintenance of overall dopamine degradation after acute L-DOPA incubation would rely 

on a higher production of DOPAC by MAO (Figure 8.1). These results suggest that L-DOPA 

and/or dopamine could play a role in the regulation of dopamine degradation. In addition, 

it is hypothesised here that changes in AADC expression and/or activity could also affect 

the expression of other enzymes downstream in the dopamine pathway. Lovenberg et al. 

(1962) suggested that an excess of substrate could inhibit AADC activity. In PD, L-DOPA 

is administered externally, so the treatment itself could reduce the activity of AADC. The 

effect of loss of AADC activity was examined in the current study by chemical inhibition 

of AADC activity. This inhibition did not affect MAO-B activity, but did lead to an increase 

in COMT protein (Figure 8.1). Although increased COMT expression might result in higher 

production of 3-OMD, preventing L-DOPA oxidation and its cytosolic accumulation 

(Munoz et al., 2012), this seems unlikely because of the absence of changes in any of the 

COMT-dependent metabolites in the current study. Nonetheless, the changes observed in 

COMT protein expression could be due to an AADC-mediated regulation, as it is known 

that AADC regulates other proteins of the dopamine pathway (Cartier et al., 2010). In 

addition, it is possible that the AADC inhibitor used in this study blocked the interaction 

of AADC with one or more transcription factors, thereby affecting COMT expression.  
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Figure 8.1 Effect of L-DOPA incubation on the dopamine pathway in the proliferative SH-SY5Y 
cell model.  
(A) Treatment with L-DOPA could be modifying dopamine metabolism, as MAO-B activity 
increased after L-DOPA incubation. (B) Inhibition of AADC by NSD-1015 changed COMT 
expression, suggesting it might be regulated by AADC. Dashed lines: possibly affected 
activity/production. Bold lines/molecules: increased production. Thin lines: decreased 
activity/production. Blue lines: hypothesised regulation of activity/expression. 
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In summary, considering that L-DOPA incubation and consequent dopamine 

synthesis increased MAO-B activity, and that MAO-B activity did not increase when AADC 

was chemically blocked, I hypothesise that dopamine could play a role in up-regulation of 

MAO-B activity, and therefore its own degradation. In addition, AADC could act as a 

regulator of COMT activity and/or expression, as inhibition of AADC greatly affected 

COMT mRNA and protein expression. This interaction would be of great interest in PD 

treatment, as both AADC and COMT use L-DOPA as a substrate in the synthesis of 

dopamine and 3-OMD, respectively. 

Mitochondria have frequently been associated with neurodegenerative and 

oxidative diseases. Since complex I deficiency was reported to be present in the brains of 

PD patients (Schapira et al., 1990), the mitochondrion became the focus of studies aiming 

to find the trigger for dopaminergic degeneration (reviewed by Abou-Sleiman et al., 

2006). In fact, several genes reported to be involved in both idiopathic and familial PD are 

related to mitochondrial function (see section 1.2.6). In the current study, rotenone was 

used to inhibit mitochondrial complex I and model the mitochondrial impairment 

described in PD patients. While mitochondrial impairment alone or in combination with 

L-DOPA incubation did not affect dopamine synthesis, it did alter neurotransmitter 

degradation. It is of note that ethanol was used as vehicle for rotenone. The possible side-

effects of this carrier have been studied before and, although there is no agreement, several 

studies have concluded that there is a positive relationship between alcohol intake and 

increased dopamine release (reviewed by Ma and Zhu, 2014). Here, incubation with 

ethanol had no effect on MAO-B activity or on the extracellular monoamine 

concentration. Therefore, it was concluded that any changes observed after rotenone 

treatment were due to the effect of rotenone itself and not the vehicle.  
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As GD and mutations in GBA1 are the most common genetic risk factors for PD 

development, the effect of GBA1 inhibition on dopamine metabolism was also studied. It 

has been proposed in the literature that lysosomal dysfunction can cause a secondary 

mitochondrial impairment (de la Mata et al., 2016; Plotegher and Duchen, 2017). In 

parallel, it has been reported that mitochondrial damage can impair lysosomal function 

(Demers-Lamarche et al., 2016). Although the mechanisms by which this occurs are not 

known, impairment of mitophagy has been proposed as a possible mechanism, since 

glucocerebroside, the substrate for GBA1, is present in the inner and outer mitochondrial 

membrane (Vielhaber et al., 2001). This would result in accumulation of damaged 

mitochondria in GD as lysosomes are not capable of maintaining mitochondrial quality 

control. Here, changes in extracellular levels of dopamine and its metabolites in SH-SY5Y 

cells with inhibited GBA1 were similar to the changes seen in cells with mitochondrial 

complex I inhibition. However, it was noted that the overall turnover was significantly 

higher in the cells with lysosomal impairment compared to the other groups, suggesting 

that lysosomal dysfunction could indeed cause secondary mitochondrial impairment.  

The similar changes in DOPAC and HVA levels in complex I and GBA1 impairment 

are thought to be due to changes in dopamine degradation. The observed results could be 

due to increased MAO and/or decreased COMT expression/activity; although this seems 

unlikely as no changes were observed in levels of 3-OMD, the other COMT-dependent 

metabolite, when rotenone or CBE treatments were compared to control cells. However, 

3-OMD levels were significantly lower after CBE treatment than after rotenone treatment, 

suggesting further COMT impairment in those cells. Therefore, the increased extracellular 

concentration of DOPAC in both models lead to the hypothesis of increased MAO 

expression and/or activity. This was in accordance with increased MAO-B activity in the 

substantia nigra of PD patients previously reported by Birkmayer et al. (1975). However, 

that increased activity would be a result of transcriptional or post-translational 
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modifications as (Molochnikov et al., 2012) concluded that MAO expression does not vary 

in the substantia nigra of PD patients. Additionally, it is known that MAO-B activity can 

be affected by environmental factors. For instance, Launay et al. (2009) found that 

smoking inhibits MAO-B activity and to compensate for this activity loss, synthesis is 

increased, and the effect maintained even after smoking cessation. The increased MAO-B 

activity observed in PD patients is possibly an early event in the disease pathology, as it 

has also been reported as increased in several post-mortem brain regions of elderly and 

senile humans with no nervous system involvement (Volchegorskii et al., 2001). In 

addition, MAO-B involvement could be a common event in the development of 

neurodegenerative diseases as increased activity has been reported in the platelets of AD 

patients (Bortolato and Shih, 2011). In this study, involvement of increased MAO-B activity 

was supported by an increased extracellular concentration of DOPAC. However, both 

MAO-B expression and activity significantly decreased, rather than increased as 

hypothesised. Although a possible compensatory role for MAO-A has been proposed 

(Bortolato and Shih, 2011), this isoform did not show an increase in activity or expression. 

Therefore, it is hypothesised that lysosomal dysfunction could lead to secondary 

impairment of mitochondrial complex I (de la Mata et al., 2016; Plotegher and Duchen, 

2017) possibly resulting in accumulation of damaged mitochondria and consequently 

affecting other ATP-dependent processes. Vacuolar adenosine triphosphatase (V-ATPase) 

activity could be diminished due to impaired ATP production, potentially leading to lower 

VMAT2 activity and increased dopamine concentration in the cytosol. The decreased 

activity of complex I could further damage mitochondria because of ROS production and 

affect other enzymes in mitochondria, such as MAO (Binda et al., 2004), also affecting 

dopamine metabolism. This is not the first time complex I and dopamine metabolism have 

been related, as previous publications have reported that incubation of SH-SY5Y cells with 

extracellular dopamine increased complex I activity (Allen et al., 2013). This is of interest 
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as antioxidant mechanisms can be also compromised in PD. Indeed, lower GSH levels and 

decreased SOD activity have been reported in the substantia nigra of PD brains (Sian et 

al., 1994; Volchegorskii et al., 2001). Whether that decrease is due to lower cell number is 

unclear. In addition, iron, necessary for the Fenton reaction, and ROS have been described 

as increased in the substantia nigra of PD patients (Riederer et al., 1989; Dias et al., 2013). 

Sai et al. (2013) reported an increase in cytosolic calcium after treatment with rotenone, 

leading to a further increase in oxidative stress. In the current study, no alterations in GSH 

levels were observed following L-DOPA incubation and/or rotenone or CBE treatment.   

Crosstalk between dopamine and serotonin pathways has been previously proposed. 

Studies in rats with a chemically impaired dopaminergic system reported that these 

animals could maintain dopamine homeostasis after L-DOPA treatment via the 

serotoninergic network (reviewed by Stansley and Yamamoto, 2015). Other studies have 

proposed that these pathways are related by the heteromerisation of enzymes of both 

pathways, such as TH and TPH (Mockus et al., 1997), and their post-synaptic receptors 

(Albizu et al., 2011). In this study, SH-SY5Y cells were not only capable of tryptophan 

uptake (Kollalpitiya and Wimalasena, 2008), but also able to metabolise it through the 

whole serotonin pathway, as 5-HIAA could be detected in the extracellular media of these 

cells. It has been reported that chronic L-DOPA treatment can lead to a deficiency in 

serotonin metabolism and transmission (Stansley and Yamamoto, 2015). However, in this 

study, incubation with L-DOPA did not affect serotonin homeostasis in the SH-SY5Y cell 

line as judged by the release of its metabolite. This could be because of the model system 

used or because the SH-SY5Y cells were incubated with L-DOPA for a relatively short time 

compared to the incubation time in previous studies (Stansley and Yamamoto, 2015). In 

this study, extracellular 5-HIAA levels increased when mitochondrial or lysosomal 

function was disrupted. This increase could be a consequence of changes to MAO activity 

and/or expression, as suggested for dopamine metabolites. However, the activity and 
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expression of these isoenzymes did not vary after the treatments, as described in this 

study. Nevertheless, the increased extracellular levels of 5-HIAA support MAO 

involvement in PD pathogenesis as, unlike DOPAC, this metabolite is not influenced by 

COMT. The absence of changes in MAO isozyme suggests that there may be another link 

between dopamine and serotonin pathways. 

Finally, further research into pathological biomarkers in the CSF of patients with 

impaired dopamine metabolism was carried out at NIBRT (Dublin, Ireland). When glycan 

content in the CSF of these patients was assessed by capillary electrophoresis, numerous 

peaks in the electropherogram of patients with low levels of HVA, i.e. parkinsonian, were 

absent in comparison to controls, i.e. non-parkinsonian. Although this was a preliminary 

study, these differences could be a result of lysosomal dysfunction, as this organelle, which 

is responsible for glycan catabolism, has been implicated in PD (Lynch-Day et al., 2012). 

Although further work is needed to identify and validate the specific glycan changes 

observed, these results are promising as glycans could potentially be used as pathologic 

biomarkers. 

 

8.2. Conclusion 

The suitability of the SH-SY5Y cell line as an in vitro model for the study of PD has 

been widely discussed. Although no TH was detected, meaning that the cells cannot 

normally synthesise dopamine (Lopes et al., 2010; Cui et al., 2015; McMillan et al., 2007), 

these cells can synthesise and metabolise dopamine when L-DOPA is administered 

exogenously. Dopamine and its metabolites were detected in the media of SH-SY5Y cells 

along with the serotonin metabolite 5-HIAA. The current treatment of PD is symptomatic 

and works for a limited time. However, the consequences of this treatment and the reason 
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for its loss of efficacy are not known. The acute effects of L-DOPA treatment on a 

parkinsonism cell model were considered here. It is hypothesised that while L-DOPA 

accumulation decreases MAO-B activity, the activity of this enzyme would increase when 

dopamine is present, with consequent higher H2O2 production (Figure 8.2). Also, a possible 

regulatory role is proposed here for AADC, as the expression of COMT appeared to depend 

on AADC. 

Cells with either mitochondrial or lysosomal impairment were shown to be affected 

in a similar way, i.e. they exhibited altered dopamine degradation. It was hypothesised 

that the increased levels of DOPAC and 5-HIAA were due to an increased role for MAO in 

the pathway. However, no changes in MAO activity or expression were observed, raising 

the possibility of an unknown step common to both pathways. When PD patients are 

treated, MAO inhibitors are given to increase the half-life of dopamine, and decrease H2O2 

production simultaneously. However, if mitochondria are impaired, this will result in 

further accumulation of dopamine in the cytosol, further increasing oxidative stress 

(Figure 8.2). In addition, cells with dysfunctional lysosomes could present decreased 

COMT expression/activity, enhancing the observed DOPAC accumulation and HVA 

decrease. To determine whether the hypothesised increased oxidative stress decreased 

antioxidant mechanisms, intracellular GSH levels were quantified but no changes were 

noted due to L-DOPA incubation or mitochondrial/lysosomal dysfunction. This could be 

due to the acute treatment times, as oxidative stress may require chronic accumulation of 

dopamine-derived molecules such as neuromelanin. If these molecules accumulate 

excessively due to deficient degradation or excessive synthesis, eventually release of bound 

pro-oxidant species, such as Fe2+, could leave the cell in a critical oxidative state.  

In summary, data presented here suggest there is a potential common effect on 

dopamine and serotonin metabolism caused by two of the events described as key in the 
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pathogenesis of PD: mitochondrial complex I impairment and lysosomal GBA1 

dysfunction. These findings shed some light on dopamine metabolism in a parkinsonian 

context. However, the question is: does the therapy administered to control symptoms in 

PD also have detrimental effects on disease progression? 

 

 

Figure 8.2 Dopamine metabolism in PD.  
PD gold-standard treatment consists of L-DOPA administration along with systemic AADC 
inhibitors and MAO-B and/or COMT inhibitors, to increase the reservoir and half-life of dopamine 
in the substantia nigra of the patients. Dashed lines: hypothesised affected activity/production. 
Bold lines/molecules: increased production. Thin lines: hypothesised decreased activity. 

 

8.3. Further Work 

To confirm the data and the hypotheses presented in this thesis, and continue the 

study of dopamine and serotonin metabolisms in PD, the following experiments may be 

considered: 

- To further explore the interplay between dopamine and serotonin by further 

developing the HPLC method to analyse concomitantly other molecules of the 

serotonin pathway, such as 5-hydroxytryptophan and serotonin itself. 
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Additionally, it would be interesting to analyse the intracellular monoamine 

levels to study whether the extracellular changes reflect intracellular changes. 

- To further study the effect of L-DOPA and dopamine on the catabolic enzymes 

of the pathway, as well as the relationship between enzymes, in order to 

ascertain whether there are other unknown regulatory mechanisms. For 

instance, whether COMT is regulated via AADC and whether decreased COMT 

protein level results in decreased enzymatic activity. 

- To differentiate the SH-SY5Y cells to study the release of dopamine and 

serotonin metabolites, and expression and activity of the enzymes involved in 

the pathway, as differentiated cells showed different levels of monoamine release 

to that seen in proliferative SH-SY5Y cells. To avoid controversy regarding the 

phenotype of the cell model used, dopaminergic neurons derived from iPS cells 

should be eventually considered. 

- In addition to the analysis of the individual effect of either mitochondrial 

impairment or lysosomal dysfunction on monoamine metabolism, the 

interaction between these organelles at a functional level should be assessed as 

both are involved in PD neurodegeneration and affected by dopamine oxidation, 

so there may be cumulative effects (Burbulla et al., 2017). 

- Identify the glycans that are deficient in the CSF of patients with low HVA, as 

they could be used as pathological biomarkers. Additionally, exploring the 

interplay between glycan degradation and lysosomal dysfunction in a 

parkinsonian context would be interesting, as the involvement of lysosomes 

could be key to the differences observed between the glycoprofiles of the CSF of 

disease control individuals and patients with parkinsonism.  





 

207 

Annex  

 

I. Published journal articles related to this thesis 

de la Fuente, C; Burke, D. G; Eaton, S; & Heales, S. J. (2017). Inhibition of neuronal 

mitochondrial complex I or lysosomal glucocerebrosidase is associated with increased 

dopamine and serotonin turnover. Neurochem Int. doi:10.1016 j.neuint.2017.02.013 

Barral, S; Erdem, F; Wallings, R; de la Fuente Barrigon, C; Lignani, G; Privolizzi, R; 

Alrashidi, H; Heasman, S; Ngoh, A; Ng, J; Meyer, E; Waddington, S; Schorge, S; Cowley, S. 

A; Sucic, S; Freissmuth, M; Heales, S. J; Wade-Martins, R; Bencze, M; & Kurian, M. A. An 

iPSC-Derived Dopaminergic Model of Genetic Parkinsonism Reveals Key Mediators of 

Neurodegeneration and Precision Therapies. Submitted to Nature Medicine. 

 

II. Oral communications at international conferences 

Inhibition of Lysosomal Glucocerebrosidase is Associated with Altered Dopamine 

Turnover. A Mechanistic Insight into the Link between Gaucher and Parkinson’s disease, de 

la Fuente Barrigon, C; Eaton, S; Burke, D; Heales, S. Presented at the Lysosomal Diseases 

Research & Conference, WORLDSymposium 2018, San Diego, USA, by Prof Heales. 

Dopamine metabolism analysis in different cellular models of Parkinson’s disease, de 

la Fuente Barrigon, C; Eaton, S; Heales, S. Presented at Mediterranean Neuroscience 

Society (MNS), St Julian’s, Malta 2017. 
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Gaucher and Parkinson’s Disease. Cell models and disease modifying factors. Burke, 

D; de la Fuente Barrigon, C; Garcia-Gomez, M; Heales, S. Presented at the European 

Working Group on Gaucher disease (EWGGD) 2016, Zaragoza, Spain, by Dr Burke. 

III. Posters presented at international conferences 

Modelling Childhood Parkinsonism with Patient-Derived Induced Pluripotent Stem 

Cells. Barral, S; Erdem, F; Lignani, G; de la Fuente Barrigon, C; Bencze, M; Heasman, S; 

Ng, J; Meyer, E; Cowley, S.A; Wade-Martins, R; Heales, S; Kurian, M. Presented at the 

International Society for Stem Cell Research (ISSCR) 2017, Boston, USA, by Dr Barral. 

Dopamine and serotonin turnover in neuronal cell models of mitochondrial complex I 

deficiency and Gaucher disease. de la Fuente Barrigon, C; Garcia-Gomez, M; Burke, D; 

Eaton, S; Heales, S. Presented at the Society for the Study of Inborn Errors of Metabolism 

(SSIEM) 2016, Rome, Italy. 

The measurement of dopamine metabolites in model systems. de la Fuente 

Barrigon, C; Eaton, S; Heales, S. Presented at the Federation of European Neuroscience 

Societies (FENS) 2016, Copenhagen, Denmark.  

Gaucher and Parkinson’s Disease. Cell models and disease modifying factors. Burke, 

D; de la Fuente Barrigon, C; Garcia-Gomez, M; Heales, S. Presented at the European 

Working Group on Gaucher disease (EWGGD) 2016, Zaragoza, Spain, by Dr Burke. 

Studying the link between Gaucher and Parkinson’s Disease. Cell models and disease-

modifying factors. Garcia-Gomez, M; Burke, D; de la Fuente Barrigon, C; Heales, S. 

Presented at the Chemical and Biological Therapeutics Approaches to Neurological 

Disorders III (2016) hosted by the Royal Society of Chemistry, London, UK. 
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