FIOOOResearch F1000Research 2018, 7:281 Last updated: 26 JUN 2018

'.) Check for updates

SOFTWARE TOOL ARTICLE
Seqfam: A python package for analysis of Next Generation

Sequencing DNA data in families [version 1; referees: 1
approved with reservations, 1 not approved]
Matthew Frampton ““'1, Elena R. Schiff!, Nikolas Pontikos “*'2, Anthony W. Segal’,

Adam P. Levine'!

1Centre for Molecular Medicine, Division of Medicine, University College London, London, UK
2|nstitute of Ophthalmology, Moorfields Eye Hospital, University College London, London, UK

- First published: 06 Mar 2018, 7:281 (doi: 10.12688/(1000research.13930.1) Open Peer Review
Latest published: 06 Mar 2018, 7:281 (doi: 10.12688/f1000research.13930.1)

Referee Status: 7 X

Abstract
This article introduces seqfam, a python package which is primarily designed
for analysing next generation sequencing (NGS) DNA data from families with Invited Referees
known pedigree information in order to identify rare variants that are potentially 1 2
causal of a disease/trait of interest. It uses the popular and versatile Pandas
library, and can be straightforwardly integrated into existing analysis version 1 ? »
code/pipelines. Seqfam can be used to verify pedigree information, to perform published report report
Monte Carlo gene dropping, to undertake regression-based gene burden 06 Mar2018
testing, and to identify variants which segregate by affection status in families
via user-defined pattern of occurrence rules. Additionally, it can generate R

. . L N 1 Brent S. Pedersen , University of
scripts for running analyses in a “MapReduce pattern” on a computer cluster,
something which is usually desirable in NGS data analysis and indeed “big Utah, USA
daTa” ar'laIyS|s n ger.1eral. . . . 2 Alexandre Bureau , Université Laval,
This article summarises how seqfam’s main user functions work and motivates
their use. It also provides explanatory context for example scripts and data Canada
included in the package which demonstrate use cases. With respect to CERVO Brain Research Centre, Canada
verifying pedigree information, software exists for efficiently calculating kinship Ingo Ruczinski, Johns Hopkins
coefficients, so seqfam performs the necessary extra steps of mapping Bloomberg School of Public Health, USA

pedigrees and kinship coefficients to expected and observed degrees of
relationship respectively. Gene dropping and the application of variant pattern
of occurrence rules in families can provide evidence for a variant being causal.
The authors are unaware of other software which performs these tasks in
familial cohorts, so seqfam fulfils this need. Gene burden rather than single
marker tests are often used to detect rare causal variants due to greater power.
Segfam may be an attractive alternative to existing gene burden testing
software due to its flexibility, particularly in grouping and aggregating variants.

Discuss this article

Comments (0)

Keywords
python, bioinformatics, NGS, DNA, pedigree-information, gene-drop,
gene-burden, kinship, mapreduce

@ python This article is included in the Python Collection

collection.

Page 1 of 14

https://f1000research.com/articles/7-281/v1
https://f1000research.com/articles/7-281/v1
https://orcid.org/0000-0002-2345-0966
https://orcid.org/0000-0003-1782-4711
https://f1000research.com/collections/python
https://f1000research.com/collections/python
https://f1000research.com/articles/7-281/v1
https://orcid.org/0000-0003-1786-2216
https://orcid.org/0000-0001-8220-9999
http://dx.doi.org/10.12688/f1000research.13930.1
http://dx.doi.org/10.12688/f1000research.13930.1
http://crossmark.crossref.org/dialog/?doi=10.12688/f1000research.13930.1&domain=pdf&date_stamp=2018-03-06

FIOOOResearch F1000Research 2018, 7:281 Last updated: 26 JUN 2018

Corresponding author: Matthew Frampton (mjeframpton@gmail.com)

Author roles: Frampton M: Conceptualization, Formal Analysis, Methodology, Resources, Software, Writing — Original Draft Preparation, Writing
- Review & Editing; Schiff ER: Conceptualization, Data Curation, Resources, Writing — Original Draft Preparation, Writing — Review & Editing;
Pontikos N: Data Curation, Resources, Software, Writing — Review & Editing; Segal AW: Conceptualization, Funding Acquisition, Project
Administration, Resources, Supervision, Writing — Review & Editing; Levine AP: Conceptualization, Methodology, Supervision, Writing — Review &
Editing

Competing interests: No competing interests were disclosed.

How to cite this article: Frampton M, Schiff ER, Pontikos N et al. Seqfam: A python package for analysis of Next Generation Sequencing
DNA data in families [version 1; referees: 1 approved with reservations, 1 not approved] F1000Research 2018, 7:281 (doi:
10.12688/f1000research.13930.1)

Copyright: © 2018 Frampton M et al. This is an open access article distributed under the terms of the Creative Commons Attribution Licence,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Grant information: This work was funded by the Charles Wolfson Charitable Trust.
The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

First published: 06 Mar 2018, 7:281 (doi: 10.12688/f1000research.13930.1)

Page 2 of 14

http://dx.doi.org/10.12688/f1000research.13930.1
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.12688/f1000research.13930.1

Introduction

Seqfam is a python package which is most useful in ana-
lysing next generation sequencing (NGS) DNA data from
families with known pedigree information in order to identify
rare variants that are potentially causal of a disease/trait. It was
originally developed to analyse the whole exome sequencing
data of a cohort of 200 families affected by a particular complex
disease. Family-based study designs are often used to identify
rare causal variants because such variants may be substantially
more frequent in affected families than the general population
(Auer & Lettre, 2015). Segfam contains modules for Monte
Carlo gene dropping (gene_drop.py) (MacCluer et al., 1986),
flagging variants based on their pattern of occurrence within
families (pof.py), verification of ascertained pedigrees via kin-
ship coefficients (relatedness.py), regression-based gene burden
testing (gene_burden.py), and an additional module that facili-
tates the creation of job submission scripts on a computer
cluster (sge.py).

For a rare variant to be considered potentially causal of a
particular trait/disease based on in silico analysis, it must
satisfy various criteria, such as being biologically plausible and
predicted to be pathogenic. The user can run analyses with
the gene_drop.py and pof.py modules to acquire additional
evidence. Given the structure of the families, Monte Carlo gene
dropping can assess whether a variant is enriched in the cohort
relative to the general population, and assuming the trait/
disease is more prevalent in the cohort, such enrichment sup-
ports causality. The user can use the pof.py module to identify
variants which are carried by most or all affected members of
a family, or even which segregate between affected and unaf-
fected members. The authors are unaware of existing software
packages for performing these analyses in familial cohorts,
so gene_drop.py and pof.py fulfil this need. The gene_drop.py
module can be considered complementary to the RVsharing
R package (Bureau er al., 2014), which calculates the
probability of multiple affected relatives sharing a rare variant
under the assumption of no disease association or linkage.

The gene_burden.py module implements the Combined Mul-
tivariate and Collapsing (CMC) burden test (Li & Leal, 2008)
for detecting rare causal variants, where the multivariate test
is a log-likelihood ratio test. The user can supply covariates
to control for potential confounders such as divergent ances-
try. This burden test should be applied to unrelated samples,
and hence is of no use for cohorts containing few families.
However, for cohorts containing a relatively large number of
families, a sufficient number of unrelated cases can be extracted
and combined with a separate set of unrelated controls. Burden
tests aggregate rare variants in a gene or functional unit
into a single score (Li & Leal, 2008; Madsen & Browning,
2009; Morris & Zeggini, 2010; Price et al., 2010), and
are one broad class of statistical methods which combine
the effects of rare variants in order to increase power over
single marker approaches. Sequence kernel association testing
(SKAT) (Wu et al., 2011) is another widely-used sub-category
of such methods. In general, burden testing is more power-
ful than SKAT when a large proportion of variants are causal
and are all deleterious/protective.

F1000Research 2018, 7:281 Last updated: 26 JUN 2018

Stand-alone software exists for performing CMC testing with
covariates e.g. RVTESTS (Zhan er al, 2016) and PLINK/
SEQ, but gene_burden.py is an attractive alternative due to
its use of the versatile Pandas library. The CMC test function
takes malleable Pandas data frames as input/output, which
gives the user great flexibility in pre/post-processing the data,
and this in turn may reduce I/O overhead. For example, let
us consider variant grouping (e.g. by gene) and aggregation.
This is specified via columns in the data frame, so the user can
experiment widely by modifying them in python code e.g.
group variants by functional unit instead of gene, aggregate
within alternative sets of population allele frequency ranges,
include/exclude unaggregated variants, and even aggregate by
another factor such as consequence. As well as this flexibility,
the function also produces rich output, including information
about the independent variables.

The potential for genetic discovery in DNA sequencing data
is reduced when samples are mislabelled. Hence, necessary
quality control steps include identifying duplicates, and in the
case of familial samples, verifying the ascertained familial
relationships described in the pedigrees. The relatedness.py
module facilitates these quality control steps and is used in
conjunction with KING software (Manichaikul et al., 2010).
Given genotypes for relatively common variants, KING can
efficiently calculate a kinship coefficient for each sample pair.
The relatedness.py module can then map each kinship coef-
ficient to a degree of relationship and check it corresponds
with the pedigree. KING is often already part of NGS analysis
pipelines, so incorporating relatedness.py is straightforward.
Peddy (Pedersen & Quinlan, 2017) is an alternative which does
not require KING.

The final module, sge.py, has general utility in running
analyses of NGS data (and indeed any “big data”) on computer
clusters. Many NGS data analyses can be cast as “embarrass-
ingly parallel problems” and hence executed more efficiently
on a computer cluster using a “MapReduce pattern”: the overall
task is decomposed into independent sub-tasks (“map” tasks),
then the map tasks run in parallel and after their comple-
tion, a “reduce” action merges/filters/summarises the results.
For example, gene burden testing across the whole exome
can be decomposed into independent sub-tasks by splitting
the exome into sub-units e.g. chromosomes. Sun Grid Engine
(SGE) is a widely used batch-queueing system, and analyses
can be performed in a MapReduce pattern on SGE via so-called
array jobs. The sge.py module can be used to automatically
create the scripts required for submitting and running an
array job.

Methods

Implementation

This section describes the functionality and methods employed
by segfam’s 5 modules, which are:

1. gene_drop.py: Monte Carlo gene dropping;
2. pof.py: variant pattern of occurrence in families;

3. gene_burden.py: regression-based gene burden testing;

Page 3 of 14

https://atgu.mgh.harvard.edu/plinkseq/index.shtml
https://atgu.mgh.harvard.edu/plinkseq/index.shtml

F1000Research 2018, 7:281 Last updated: 26 JUN 2018

Gene dropping. By default, for each variant of interest, the
gene_drop.py module performs 10,000 iterations of gene drop-
ping in the familial cohort. In each iteration it gene drops in each
family once, seeding the founder genotypes based on the popula-
5. sge.py: Sun Grid Engine (SGE) array job creation. tion allele frequency. It then calculates the resulting simulated
cohort allele frequency from samples specified by the user i.e.
those which were sequenced. After completing all iterations

4. relatedness.py: identification of duplicates and veri-
fication of ascertained pedigree information via
kinship coefficients;

Figure 1 provides a visual representation of modules 1-4.

A B Cohort

O
[]

& apply Monte Carlo gene dropping

1 1 0 1

D—‘—. .—’—O 1 Variant genotypes
2

x 10,000
ﬁ Ij Family objects
1 0 1 0
" e CTe =0
O ue 0O e
POF rule POF rule
1 ule

Seed founder genotypes using population allele frequency - ‘
m OO
He

S

o
-

.

=)
o

Simulated cohort allele frequency (AF)
POF i

1
P-value: proportion of iterations where cohort AF < 1
. 1
simulated cohort AF v <

FAIL PASS FAIL

€t

Kinship coefficients from KING

Pedigree information

,,,,,,,,,,,,,,,,,,,,,,,,,,,, I Variant genotypes for 1 gene I KINSHIP
i Covariates e.g. ancestry PCA : ® O COEF
status . ? D
¥ °

I Aggregate variants by allele frequency I

Pedigree information mapped to expected
degree of relation.

p)=B" H1:logit(p) = Bx; Kinship
coefficient

m cotr w Prvtont
Log-likelihood ratio test Data f COEF observed
ata frrame: -

HO: logit(|

degree of
expected v relation
observed
degree of
relationship

Figure 1. Flow charts representing functionality of the 4 main seqfam modules. Panel A represents the Cohort.gene_drop method in
the gene_drop.py module which performs Monte Carlo gene dropping. On a single iteration, for each family the algorithm seeds founder
genotypes based on the variant population allele frequency and then gene drops via depth-first traversals. Having done this for all families, a
simulated cohort allele frequency (AF) is calculated and following many iterations (e.g. 10,000), a p-value, the proportion of iterations where
cohort AF < simulated cohort AF, is outputted. Panel B represents the Pof.get _family_pass_name_| method in the pof.py module. Prior to
calling the method, each family is assigned a variant pattern of occurrence in family (POF) rule. The method then takes a variant’s genotypes
and returns families whose POF rule is passed. Panel C represents the CMC.do_multivariate_tests method in the gene_burden.py module.
This method takes sample affection status and variant genotypes across multiple genes, plus optionally covariates such as ancestry PCA
coordinates. For each gene, the method aggregates the variants by allele frequency, constructs null and alternative hypothesis logit models
which may include the covariates, and then performs a log-likelihood ratio test. Panel D represents the Relatedness.get_exp_obs_df method
in the relatedness.py module. For input, this takes pedigree information and kinship coefficients from KING for each within-family sample pair.
It maps these data to expected and observed degrees of relationship respectively, returning a data frame.

Page 4 of 14

of gene dropping, gene_drop.py outputs the proportion of itera-
tions in which the true cohort allele frequency is less than
or equal to the simulated cohort allele frequency: a low
proportion, e.g. < 5%, is evidence of enrichment.

The module gene drops in a family in the following way.
First, it assigns a genotype (number of copies of the mutant
allele) to each founder using a Binomial distribution where
the number of trials is 2 and the probability of success in each
trial is the population allele frequency. Hence the founders
are assumed to be unrelated. It then performs a depth-first
traversal starting from each founder (1 per spousal pair), and
for heterozygotes, uses a random number generator to deter-
mine which parental allele to pass onto the child. Thus, every
individual in the family is assigned a genotype.

Variant pattern of occurrence in families. For each family,
the user can use the pof.py module to define a variant pattern of
occurrence rule and check whether any supplied variants pass.
The rule can specify a minimum value for the proportion of
affected members (As) who are carriers (A.carrierp), and/or a
minimum difference between the proportion of As and unaffected
members (Ns) who are carriers (AN.carrier.diff). Constraints for
the number of genotyped As and Ns can also be added.

As an illustrative example, consider a cohort in which families
can be categorised as follows based on their number of As
and Ns:

1. “A4ANI":>24Asand<1N

2. “A3N2”:>3 Asand >2 Ns

For the A4N1 families, the user may be interested in vari-
ants carried by all As and so require A.carrierp = 1, while
for the A3N2 families, they may be interested in variants
which are more prevalent in As than Ns and so require
AN.carrierdiff 2 0.5.

Gene burden. To use the gene_burden.py module, the user must
first read the various required data into Pandas data frames.
These data include variant annotations by which to group (e.g.
gene/functional unit) and aggregate (e.g. population allele
frequency), and the genotypes, affection status and covariates
for the unrelated samples. The user can specify multiple catego-
ries in which to aggregate variants (e.g. into population allele
frequency ranges of 0-1% and 1-5%), and variants outside
these categories (e.g. more common variants) remain unag-
gregated. An aggregated variant category takes the value O or 1.
For each variant group, having aggregated the variants, gene_bur-
den.py will perform a multivariate test, which is a log-likelihood
ratio test based on Wilk’s theorem:

x=2(11, = 11,)); df = df,, — df,,

where /I is log-likelihood, &/ is the alternative hypothesis, 40 is
the null hypothesis and df is degrees of freedom. Specifically,

F1000Research 2018, 7:281 Last updated: 26 JUN 2018

it is a log-likelihood ratio test on null and alternative hypoth-
esis logit models where the dependent variable is derived
from affection status, the variant variables (aggregated and/or
unaggregated) are independent variables in the alternative
model and the covariates are independent variables in both. The
logit models are fitted using the Broyden—Fletcher—Goldfarb—
Shanno (BFGS) algorithm.

Since aggregation by population allele frequency is common,
the module provides a function to assign variants to allele fre-
quency ranges based on multiple columns (derived from differ-
ent population databases such as gnomAD (Lek er al., 2016)).
The user specifies a preference order in case the variant
is absent from the most preferred database(s).

Relatedness. As input, the relatedness.py module requires pedi-
gree information and a file containing kinship coefficients out-
putted by KING. For each sample pair, the module will map the
pedigree information and kinship coefficient to an expected and
observed degree of relationship respectively. The mapping from
kinship coefficient to relationship is as specified in KING
documentation: > 0.354 for duplicate samples/monozygotic
twins, 0.177-0.354 for 1st degree relatives, 0.0884-0.177 for
2nd degree relatives, 0.0442-0.0884 for 3rd degree relatives,
and < 0.0442 for unrelated. The user can change this mapping
if they wish.

Computer cluster array job creation. To use the sge.py
module, the user must first create lists of map tasks, map tasks
requiring execution and reduce tasks. The map tasks requiring
execution are map tasks which have not previously completed
successfully and hence need to run. Given these lists, the sge.
py module can create all necessary scripts/files for submitting
and running an array job. This includes scripts for all map tasks,
a text file specifying that only the map tasks requiring execution
should run, and a master executable submit script for submitting
the array job to the job scheduler.

Operation

Segfam is compatible with Windows, Mac OS X and Linux
operating systems. It is coded using Python 3.6, but can
also be run by Python 2.7. It requires various data analysis
libraries/packages, almost all of which can be acquired by
downloading and installing the Anaconda python distribu-
tion. The StatsModels module, which is not in the Anaconda
distribution, is also required. Having cloned the repository, the
user should add the repository src directory to their environmental
python path.

Use cases

The repository contains additional scripts in src/examples
which demonstrate the functionality of the modules on exam-
ple data, including files in the data directory. The scripts are
1_test_gene_drop.py, 2_test_pof.py, 3_test_gene_burden.py,
4_test_relatedness.py, and 5_test_sge.py. The reader can also
refer to Table 1 for a summary of the main user functions of the

Page 5 of 14

F1000Research 2018, 7:281 Last updated: 26 JUN 2018

Table 1. Summary of main user functions in seqfam modules. tsv = tab-separated values; AF = allele frequency; POF =
pattern of occurrence in family.

Module Method (Class) Description

gene_drop gene_drop (Cohort) Monte Carlo gene
dropping

pof get_family_pass_name_| (Pof) Variant POF with

gene_burden

relatedness

sge

do_multivariate_tests (CMC)

find_duplicates (Relatedness)

get_exp_obs_df (Relatedness)

make_map_reduce_jobs (SGE)

respect to affected (&
unaffected) members

Regression-based
gene burden testing

|dentify duplicates from
kinship coefficient

Map pedigrees &
kinship coefficients to
expected & observed
degrees of relationship.

Make compute cluster
array job scripts

Input

Cohort tsv file (pedigree
info), variant population
AF, cohort AF, list of
samples genotyped,
number of iterations

Variant POF rule &
genotypes

Files containing samples,

genotypes & covariates
files; output path

King file

Cohort tsv, KING within-
family sample pair
kinship coefficient file

Filename prefix, lists of
map tasks, map tasks
to execute and reduce
tasks.

Output

p-value

List of families whose
POF rule is passed
by variant.

Data frame and csv
file containing burden
test results

List of duplicates

Data frame of
expected &
observed degrees of
relationship.

Scripts required
to run array job
including master
submit script.

5 seqfam modules, which includes their input/output. Data in the
example data files are derived from the whole exome sequenc-
ing of a large cohort of over 200 families with inflammatory
bowel disease (unpublished study').

Gene dropping

The only input file for [_test gene_drop.py is cohort.tsv,
which contains the pedigree information for an example famil-
ial cohort. This cohort has 3,608 samples from 251 families,
and the complexity of the families, calculated as 2n-f
where n and f are the number of non-founders and founders
respectively (Abecasis ef al., 2002), has median 9 and range
0-103. The cohort.csv file is in fam file format (Purcell er al.,
2007), meaning it has 1 row per individual and 6 columns
for family ID, person ID, father, mother, sex and affection.

The 1_test_gene_drop.py script first creates a Cohort object
from cohort.tsv, which stores each family tree, then calls the
gene_drop method with the following arguments: pop_af
and cohort_af are the allele frequency of a particular
variant in the general population and cohort respectively,
sample_genotyped_ | is the list of cohort samples with a geno-
type, and gene_drop_n is the number of iterations of gene
dropping to perform. Hence the samples in sample_geno-
typed_l are used by the user to calculate cohort_af, and by the
method to calculate the simulated cohort allele frequencies.
The method returns a p-value. The script calls the gene_
drop method with ascending values for cohort_af, and so
descending p-values are returned.

In benchmarking with the Unix time command on an Intel Xeon
CPU E7-4830 v2 processor (20M Cache, 2.20 GHz), creating
a cohort object and then executing a single call of the gene_
drop method (gene_drop_n=1,000) required approximately
25 seconds of Computer Processing Unit (CPU) time. CPU
time scales linearly with gene_drop_n and cohort size.

Variant pattern of occurrence in families

There are no input files for 2_test pof.py. The example script
first creates a Pof object which stores a couple of Family
objects, each representing an example family and its variant
pattern of occurrence rule. Next it calls the Pof object’s ger

family_pass_name_l method with the argument genotypes_s,

which is a Pandas Series containing sample genotypes for a particu-
lar variant. The method returns a list of families whose pattern of
occurrence rule is passed by this variant.

Gene burden

The 3_test_gene_burden.py script uses the gene_burden.py
module to perform CMC tests on example data: it performs 1
CMC test per gene where variants in the population allele fre-
quency ranges of 0-1% and 1-5% are aggregated, and any
variants = 5% remain unaggregated. The input files are in the
data/gene_burden directory: samples.csv, genotypes.csv and
optionally covariates.csv. The samples.csv file contains the
samples’ ID and affection status where 2 indicates a case and 1
a control, and genotypes.csv contains 1 row per variant with
columns for the sample genotypes, and for variant group-
ing and aggregation e.g. gene and population allele frequency.

Page 6 of 14

A sample’s genotype is the number of alternate alleles which
it carries (0-2). The covariates.csv file contains the covariates to
control for, which in this case are ancestry PCA coordinates.

The script first reads samples.csv into a Pandas Series, and
genotypes.csv and covariates.csv into Pandas DataFrames.
These data frames are indexed by variant ID and covariate
name respectively. Having created a CMC object, the script
calls its assign_vars_to_pop_frq_cats method in order to map
the variants to the desired population allele frequency ranges.
Multiple population allele frequency columns (databases) are
used here, ordered by descending preference. The mapping is
stored in a new column in the genotypes data frame. Finally,
the script calls the do_multivariate_tests method to perform the
CMC tests, specifying the gene column for grouping the variants,
and the new allele frequency range column for aggregation.
The results are written to a CSV (comma-separated values) file
and returned in a data frame. They include the number of
variants in each aggregation category, the number of unag-
gregated variants (“unagg” column), the log-likelihood ratio
test p-value with/without covariates (“llr_p” and “llr_cov_p”),
and the coefficient/p-value for each aggregated variant variable
(“_c¢” and “_p”).

Relatedness

The input files for 4_test relatedness.py are cohort.tsv (as
used in gene dropping), and data/relatedness/king.kinship.
ibs which was outputted by KING and contains kinship coef-
ficients for within-family sample pairs. The example script
first creates a Relatedness object which stores the paths to these
files, then calls the object’s find_duplicates and get_exp_obs_
df methods. The former returns any within-family sample
duplicates, and the latter returns a Pandas DataFrame con-
taining the expected and observed degree of relationship for
each within-family sample pair. Finally, the script prints the
sample pairs which have a different expected and observed
degree of relationship.

Computer cluster array job creation

There are no input files for 5_test sge.py. This script first
makes lists of map tasks (map_task_l), map tasks to execute
(map_task_exec_l), and reduce tasks (reduce_task_l). Here
map_tasks_exec_| contains every other map task. Next, the
script creates an SGE object which stores the directory where
job scripts will be written (here data/sge). Finally, it calls
the object’s make_map_reduce_jobs method with the follow-
ing arguments: a prefix for all job script names (here “test”)
and the above 3 lists. This writes the job scripts, and were they
for a real array job (they are not), the user could then submit it
to the job scheduler by running the master executable submit
script data/sge/submit_map_reduce.sh. The test.map_task_exec.
txt file specifies which map tasks to run i.e. the map tasks
in the map_tasks_exec_I list.

Conclusions
This article has introduced segfam, a python package, primarily
designed for analysing NGS DNA data from families with

F1000Research 2018, 7:281 Last updated: 26 JUN 2018

known pedigree information in order to identify rare vari-
ants that are potentially causal of a disease/trait of inter-
est. It currently includes modules for verification of pedigree
information, gene dropping, applying variant pattern of occur-
rence rules in families, gene burden testing and job script
generation on a computer cluster.

Data and software availability
Latest source code and example files are available at: https://github.
com/mframpton/seqfam

Archived source code as at time of publication: http://doi.
org/10.5281/zenodo.1173768 (Frampton, 2018)

License: GNU General Public License v3.0

Footnotes

'Authors involved in the unpublished study: E. R. Schiff?,
M. Frampton?, F. Semplici®, N. Pontikos®, S. Bloom¢, S. McCartney*,
R. Vega®, L. Lovat?, E. Wood¢, A. Hart’, D. Crespi¢, M. Furmang,
S. Mann", C. Murray', A. P. Levine® and A. W. Segal®

*Centre for Molecular Medicine, Division of Medicine, University
College London

“Institute of Ophthalmology, Moorfields Eye Hospital, University
College London

‘Department of Gastroenterology. University College London
Hospital

dResearch Department of Tissue and Energy, Division of Surgery
and Interventional Science, UCL, U.K.

*Gastroenterology Department, Homerton University Hospital,
London, U.K.

Gastroenterology Department, St Marks Hospital, U.K.

¢Centre for Paediatric Gastroenterology, Royal Free Hospital,
London, U.K.

"Gastroenterology Department, Barnet General Hospital, U.K.

iCentre for Gastroenterology, Royal Free Hospital, London, U.K.

Competing interests
The authors declare no competing interests.

Grant information
This work was funded by the Charles Wolfson Charitable Trust.

The funders had no role in study design, data collection and
analysis, decision to publish, or preparation of the manuscript.

Acknowledgements

We gratefully acknowledge all study participants whose sequenc-
ing data and pedigree information were used in developing
and testing segfam, plus their referring clinicians.

Page 7 of 14

https://github.com/mframpton/seqfam
https://github.com/mframpton/seqfam
http://doi.org/10.5281/zenodo.1173768
http://doi.org/10.5281/zenodo.1173768

References

F1000Research 2018, 7:281 Last updated: 26 JUN 2018

Abecasis GR, Cherny SS, Cookson WO, et al.: Merlin--rapid analysis of dense
genetic maps using sparse gene flow trees. Nat Genet. 2002; 30(1): 97-101.
PubMed Abstract | Publisher Full Text

Auer PL, Lettre G: Rare variant association studies: Considerations, challenges
and opportunities. Genome Med. 2015; 7(1): 16.
PubMed Abstract | Publisher Full Text | Free Full Text

Bureau A, Younkin SG, Parker MM, et al.: Inferring rare disease risk variants
based on exact probabilities of sharing by multiple affected relatives.
Bioinformatics. 2014; 30(15): 2189-2196.

PubMed Abstract | Publisher Full Text | Free Full Text

Frampton M: seqfam. Zenodo. 2018.
Data Source

Lek M, Karczewski KJ, Minikel EV, et al.: Analysis of protein-coding genetic
variation in 60,706 humans. Nature. 2016; 536(7616): 285-91.
PubMed Abstract | Publisher Full Text | Free Full Text

Li B, Leal SM: Methods for detecting associations with rare variants for
common diseases: application to analysis of sequence data. Am J Hum Genet.
2008; 83(3): 311-321.

PubMed Abstract | Publisher Full Text | Free Full Text

MacCluer JW, VandeBerg JL, Read B, et al.: Pedigree analysis by computer
simulation. Zoo Biol. 1986; 5(2): 147-160.

Publisher Full Text

Madsen BE, Browning SR: A groupwise association test for rare mutations
using a weighted sum statistic. PLoS Genet. 2009; 5(2).
PubMed Abstract | Publisher Full Text | Free Full Text

Manichaikul A, Mychaleckyj JC, Rich SS, et al.: Robust relationship inference
in genome-wide association studies. Bioinformatics. 2010; 26(22): 2867—-2873.
PubMed Abstract | Publisher Full Text | Free Full Text

Morris AP, Zeggini E: An evaluation of statistical approaches to rare variant
analysis in genetic association studies. Genet Epidemiol. 2010; 34(2): 188-193.
PubMed Abstract | Publisher Full Text | Free Full Text

Pedersen BS, Quinlan AR: Who’s Who? Detecting and Resolving Sample
Anomalies in Human DNA Sequencing Studies with Peddy. Am J Hum Genet.
2017;100(3): 406-413.

PubMed Abstract | Publisher Full Text | Free Full Text

Price AL, Kryukov GV, de Bakker PI, et al.: Pooled Association Tests for Rare
Variants in Exon-Resequencing Studies. Am J Hum Genet. 2010; 86(6):
832-838.

PubMed Abstract | Publisher Full Text | Free Full Text

Purcell S, Neale B, Todd-Brown K, et al.: PLINK: A Tool Set for Whole-Genome
Association and Population-Based Linkage Analyses. Am J Hum Genet. 2007,
81(3): 559-575.

PubMed Abstract | Publisher Full Text | Free Full Text

Wu MC, Lee S, Cai T, et al.: Rare-variant association testing for sequencing
data with the sequence kernel association test. Am J Hum Genet. 2011; 89(1):
82-93.

PubMed Abstract | Publisher Full Text | Free Full Text

Zhan X, Hu Y, Li B, et al.: RVTESTS: An efficient and comprehensive tool for
rare variant association analysis using sequence data. Bioinformatics. 2016;
32(9): 1423-1426.

PubMed Abstract | Publisher Full Text | Free Full Text

Page 8 of 14

http://www.ncbi.nlm.nih.gov/pubmed/11731797
http://dx.doi.org/10.1038/ng786
http://www.ncbi.nlm.nih.gov/pubmed/25709717
http://dx.doi.org/10.1186/s13073-015-0138-2
http://www.ncbi.nlm.nih.gov/pmc/articles/4337325
http://www.ncbi.nlm.nih.gov/pubmed/24740360
http://dx.doi.org/10.1093/bioinformatics/btu198
http://www.ncbi.nlm.nih.gov/pmc/articles/4103601
http://dx.doi.org/10.5281/zenodo.1173768
http://www.ncbi.nlm.nih.gov/pubmed/27535533
http://dx.doi.org/10.1038/nature19057
http://www.ncbi.nlm.nih.gov/pmc/articles/5018207
http://www.ncbi.nlm.nih.gov/pubmed/18691683
http://dx.doi.org/10.1016/j.ajhg.2008.06.024
http://www.ncbi.nlm.nih.gov/pmc/articles/2842185
http://dx.doi.org/10.1002/zoo.1430050209
http://www.ncbi.nlm.nih.gov/pubmed/19214210
http://dx.doi.org/10.1371/journal.pgen.1000384
http://www.ncbi.nlm.nih.gov/pmc/articles/2633048
http://www.ncbi.nlm.nih.gov/pubmed/20926424
http://dx.doi.org/10.1093/bioinformatics/btq559
http://www.ncbi.nlm.nih.gov/pmc/articles/3025716
http://www.ncbi.nlm.nih.gov/pubmed/19810025
http://dx.doi.org/10.1002/gepi.20450
http://www.ncbi.nlm.nih.gov/pmc/articles/2962811
http://www.ncbi.nlm.nih.gov/pubmed/28190455
http://dx.doi.org/10.1016/j.ajhg.2017.01.017
http://www.ncbi.nlm.nih.gov/pmc/articles/5339084
http://www.ncbi.nlm.nih.gov/pubmed/20471002
http://dx.doi.org/10.1016/j.ajhg.2010.04.005
http://www.ncbi.nlm.nih.gov/pmc/articles/3032073
http://www.ncbi.nlm.nih.gov/pubmed/17701901
http://dx.doi.org/10.1086/519795
http://www.ncbi.nlm.nih.gov/pmc/articles/1950838
http://www.ncbi.nlm.nih.gov/pubmed/21737059
http://dx.doi.org/10.1016/j.ajhg.2011.05.029
http://www.ncbi.nlm.nih.gov/pmc/articles/3135811
http://www.ncbi.nlm.nih.gov/pubmed/27153000
http://dx.doi.org/10.1093/bioinformatics/btw079
http://www.ncbi.nlm.nih.gov/pmc/articles/4848408

FIOOOResearch F1000Research 2018, 7:281 Last updated: 26 JUN 2018

Open Peer Review

Current Referee Status: ?7 X

Referee Report 22 March 2018

doi:10.5256/f1000research.15143.r31577

X

Alexandre Bureau 1.2 Ingo Ruczinski 3

1 Department of Social and Preventive Medicine, Université Laval, Quebec, QC, Canada

2 CERVO Brain Research Centre, Quebec, QC, Canada

3 Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA

The python package seqfam is a collection of genetic association analysis tools, some but not all tailored
for familial data. The instructions provided by the authors allow for a successful installation of the seqfam
package. Example scripts provided with the package perform the analyses described in the manuscript.

This manuscript, however, also raises concerns with these reviewers. Tools performing similar tasks
already exist in other computing languages (PLINK/R) and are widely used. The gene dropping and
filtering based on pattern of occurrence in families implemented in seqfam differ in some respects from
approaches implemented in other packages, which have been thoroughly assessed for their statistical
properties. As this is a software manuscript, an assessment of the statistical properties of the seqfam
approaches is not required, but we note that it will be very hard to convince a practitioner to use this
approach if no consideration of power for various settings is given. Moreover, we are also of the opinion
that some of the seqfam tools should not be used as currently proposed.

Major concerns:

1. Referring to gene dropping and the application of variant pattern of occurrence rules in families, the
authors state in the abstract that they are "unaware of other software which performs these tasks in
familial cohorts", but unfortunately missed a somewhat large body of literature. A reasonably
thorough review of the literature is imperative for any manuscript.

Most applicable in our opinion for testing rare variants are RarelBD (Sul et al. 2016 ') which uses
the number of affected relatives carrying a rare allele similar to the allele frequency used in seqfam,
and GESE (Qiao et al. 20177), based on the probability of multiple affected relatives sharing a rare
variant, which we proposed in a recent manuscript that the authors do cite (Bureau et al. 2014°). Of
note, we have since expanded our approach to gene-based analyses, refined the rare variant
definition based on haplotypes, and introduced a partial sharing test based on rare variant sharing
probabilities for subsets of affected family members (Bureau et al. 2018, posted online after the
seqfam manuscript was submitted, so the authors could not be aware of it). Another alternative is
testing of co-segregation of variants with disease under a parametric linkage analysis as in the
pedigree Variant Annotation, Analysis and Search Tool pVAAST (Hu et al. 2014°).

There are also other implementations of variant filtering based on proportions of affected and

Page 9 of 14

http://dx.doi.org/10.5256/f1000research.15143.r31577
http://orcid.org/0000-0001-8220-9999

FIOOOResearch F1000Research 2018, 7:281 Last updated: 26 JUN 2018

unaffected carriers, e.g. the R package Mendelian of Broeckx et al. (2015)°.

2. The inference of the seqfam gene dropping test depends on knowledge of the variant allele
frequencies in the study population. Methods that depend on such knowledge tend to be extremely
sensitive to deviations from the truth (see for example the above mentioned Qiao et al 2017 and
Bureau et al 2018 papers). In most instances we have only a very rough idea about exact allele
frequencies (especially for rare variants) when big population-based studies of said population
already have been carried out, or we have no knowledge at all if a new population is investigated.
Thus, methods that do not depend on knowledge of allele frequencies are to be preferred, but at a
minimum the authors must report the impact of allele frequency misspecification (as for example
done in Bureau et al 2018), and the size of the control group from the appropriate population which
is needed to obtain reliable allele frequencies for the proposed method (as for example done in the
Qiao et al paper) to guide the user.

3. There is no notion of error control due to multiple comparisons in the manuscript. And with the
number of variants present even in whole exome sequencing data, the recommended number of
iterations of gene dropping (10,000) most likely will be inadequate to estimate the p-values with
sufficient precision. For example, even if none of 10,000 iterations yields anything more extreme
than observed in the actual data, the upper bound for the 95% confidence interval for the true
p-value will be 0.00037 (for example type binom.test(0,10000)$conf in R). Thus, with a couple
hundred variants assessed, the upper bound for the confidence interval would not beat the
Bonferroni threshold to declare significance.

4. The inference based on so-called "patterns of occurrence in families” (POFs) does not quantify the
total evidence for linkage/association per se (see for example the RarelBD paper by Sul et al) but
investigates user-chosen patterns instead. This could be powerful if one knew exactly what
patterns to look for a priori, but we cannot imagine this ever being the case in practice, nor is any
guidance on this offered in the manuscript. The example script involves specifying the pattern of
occurrence rule with example families, but in practice family samples contain various family
structures, so it is not clear how it generalizes. Why not simply input values for A.carrier.p and
AN.carrier.diff? As it stands, it is left to the user to tinker with the vast number of possibilities. In that
sense, inference based on these specific patterns should at best be considered secondary
analysis.

5. No functionality is provided in seqfam to apply the gene burden test to familial samples. As the
authors rightly point out, the test is valid with unrelated subjects. As it stands, users must extract
unrelated subjects from familial cohorts outside of seqfam. This function should offer the option to
perform selection of unrelated cases from familial cohorts, or otherwise it should be removed from
seqfam.

6. The authors should also mention that in many family-based sequencing studies genotypes of
founders are unavailable (as for example DNA is not available from family members several
generations ago), and quite frequently only distantly related subjects are sequenced. That means
that for these studies only a single unrelated subject can be extracted from each family, limiting the
scope of the gene burden test substantially.

7. When executing the test program, the p-value of the LR test is identical with or without covariates,
so adjustment for covariates does not seem to do anything. The expressions “log-likelihood ratio
test p-value with/without covariates” for llr_p and /lr_cov_p are ambiguous. In the output, the /ir_p

Page 10 of 14

FIOOOResearch F1000Research 2018, 7:281 Last updated: 26 JUN 2018

test is missing when one of the variant classes is empty, while lir_cov_p is always reported. Is
llr_cov_p atest of the covariates?

There are also some more minor concerns and questions:

1.

For the gene dropping test it is not clear in the manuscript whether the variant frequency is
computed only for affected family members or all family members together.

. The gene_drop.py module would be more useful if it took genotype data as input like the

gene_burden.py and pof.py modules and computed the cohort allele frequency for every variant.
The authors state that the gene_drop.py module performs gene dropping “for each variant of
interest”, but this is misleading, as the gene_drop method takes as argument the frequency of a
single variant. Users must write a script to loop over variants in their genotype file (pre-filtered by
population allele frequency and possibly other annotations), compute variant frequency in their
cohort, and pass it to gene_drop. By contrast, competing packages GESE, RarelBD, pVAAST and
our new Bioconductor RVS package process genotype data. They also offer the option to perform
analyses at the gene level, while the gene_drop.py module is restricted to single variant analyses.

Filtering of variants (e.g. those predicted to be pathogenic) is critical and relies heavily on available
annotation. However, this information is largely available only for exomes. Filtering of variants by
annotation should be discussed. Is seqgfam foremost a package for targeted sequencing studies
(i.e. exome sequencing)? If yes, this should be stated. Otherwise, some guidance on application to
whole genome sequencing studies should be given.

. What exactly is the additional value of relatedness.py? For example, the GENESIS Bioconductor

package allows for the fast calculation of genetic relatedness matrices (GRMs), which can easily
be subsetted using the cut-offs suggested by the authors. It is unclear whether relatedness.py also
updates the pedigrees accordingly (which can be done using kinship2 in R). Also, what happens if
founders are found to be related? This should be part of the quality control and considered in the
inference.

. The relatedness.py module could be generalized by allowing input from other kinship computation

packages than King.

. The program for computer cluster job creation can be a useful utility program complementing the

seqfam analysis tools, but it has no specific connection to family sequencing studies. It does not
deserve to be featured as a main user function in the manuscript, and instead should be mentioned
as a utility program.

. There is no mention of dominant and recessive inheritance patterns, which are often encountered

with rare causal variants. The gene dropping statistics is likely better suited for dominant variants,
while different POF in families could be defined for dominant and recessive variants. This should
be discussed.

References

1. Sul JH, Cade BE, Cho MH, Qiao D, Silverman EK, Redline S, Sunyaev S: Increasing Generality and
Power of Rare-Variant Tests by Utilizing Extended Pedigrees.Am J Hum Genet. 2016; 99 (4): 846-859
PubMed Abstract | Publisher Full Text

2. Qiao D, Lange C, Laird NM, Won S, Hersh CP, Morrow J, Hobbs BD, Lutz SM, Ruczinski |, Beaty TH,

Page 11 of 14

http://www.ncbi.nlm.nih.gov/pubmed/27666371
http://dx.doi.org/10.1016/j.ajhg.2016.08.015

FIOOOResearch F1000Research 2018, 7:281 Last updated: 26 JUN 2018

Silverman EK, Cho MH: Gene-based segregation method for identifying rare variants in family-based
sequencing studies.Genet Epidemiol. 41 (4): 309-319 PubMed Abstract | Publisher Full Text

3. Bureau A, Younkin SG, Parker MM, Bailey-Wilson JE, Marazita ML, Murray JC, Mangold E,
Albacha-Hejazi H, Beaty TH, Ruczinski I: Inferring rare disease risk variants based on exact probabilities
of sharing by multiple affected relatives.Bioinformatics. 2014; 30 (15): 2189-96 PubMed Abstract |
Publisher Full Text

4. Bureau A, Begum F, Taub MA, Hetmanski J, Parker MM, Albacha-Hejakzi H, Scott AF, Murray JC,
Marazita ML, Bailey-Wilson JE, Beaty TH, Ruczinski I: Inferring Disease Risk Genes from Sequencing
Data in Multiplex Pedigrees Through Sharing of Rare Variants. bioRxiv. 2018.

5. Hu H, Roach JC, Coon H, Guthery SL, Voelkerding KV, Margraf RL, Durtschi JD, Tavtigian SV,
Shankaracharya, Wu W, Scheet P, Wang S, Xing J, Glusman G, Hubley R, Li H, Garg V, Moore B, Hood
L, Galas DJ, Srivastava D, Reese MG, Jorde LB, Yandell M, Huff CD: A unified test of linkage analysis
and rare-variant association for analysis of pedigree sequence data.Nat Biotechnol. 2014; 32 (7): 663-9
PubMed Abstract | Publisher Full Text

6. Broeckx BJ, Coopman F, Verhoeven G, Bosmans T, Gielen |, Dingemanse W, Saunders JH, Deforce
D, Van Nieuwerburgh F: An heuristic filtering tool to identify phenotype-associated genetic variants
applied to human intellectual disability and canine coat colors.BMC Bioinformatics. 2015; 16: 391
PubMed Abstract | Publisher Full Text

Is the rationale for developing the new software tool clearly explained?
No

Is the description of the software tool technically sound?
Partly

Are sufficient details of the code, methods and analysis (if applicable) provided to allow
replication of the software development and its use by others?
Partly

Is sufficient information provided to allow interpretation of the expected output datasets and
any results generated using the tool?
Partly

Are the conclusions about the tool and its performance adequately supported by the findings
presented in the article?
No

Competing Interests: No competing interests were disclosed.
Referee Expertise: Statistical genetics, genetic epidemiology

We have read this submission. We believe that we have an appropriate level of expertise to state
that we do not consider it to be of an acceptable scientific standard, for reasons outlined above.

Referee Report 09 March 2018

doi:10.5256/f1000research.15143.r31578

?

Page 12 of 14

http://www.ncbi.nlm.nih.gov/pubmed/28191685
http://dx.doi.org/10.1002/gepi.22037
http://www.ncbi.nlm.nih.gov/pubmed/24740360
http://dx.doi.org/10.1093/bioinformatics/btu198
http://www.ncbi.nlm.nih.gov/pubmed/24837662
http://dx.doi.org/10.1038/nbt.2895
http://www.ncbi.nlm.nih.gov/pubmed/26597515
http://dx.doi.org/10.1186/s12859-015-0822-7
http://dx.doi.org/10.5256/f1000research.15143.r31578

FIOOOResearch F1000Research 2018, 7:281 Last updated: 26 JUN 2018

Brent S. Pedersen
Department of Human Genetics, USTAR Center for Genetic Discovery, University of Utah, Salt Lake City,
UT, USA

Frampton et al describe segfam, a set of tools to perform family-based analysis on sequence data. It does
gene-dropping, burden-testing, relatedness evaluation, "pattern of occurrence”, and contains a script for
running cluster analysis.

My main critique is that this seems like a set of unrelated modules, some of which have (potentially) better
alternatives. For example, the SKAT family of burden tests have been widely used in place of CMC
implemented in this package and several implementations of CMC exist. Therefore, it's not clear from
reading why this package is needed. In addition, as the authors note, this is only useful if there are
sufficient unrelated controls. Another example is the relatedness module which relies on KING output.
The additional utility provided in seqgfam is a subset of the utility provided in peddy which does not rely on
plink or KING. Again, it's not clear when the use of segfam in this context would be preferable.

The parts that are more novel are the gene dropping and the "POF" scripts. Running the script currently
requires setting the PYTHONPATH. The package should have a requirements.txt and a proper setup.py
so it can be used in a more standard manner. | was able to run the example script for gene dropping and
see sensible outputs. Other than this, there are no tests in the repository and nothing in the manuscript
indicating any of the methods were evaluated for correctness or accuracy performance.

There is also very little documentation. For example,the gene_burden_test has:

cmc_result_df = cmc.do_multivariate_tests(sample_s, geno_df, group_col=gene_col,

agg_col="pop_frq_cat", agg_val_I=["rare","mod_rare"], covar_df=covar_df, results_path=results_path)

A user must read the code to see that agg_val_lis: “(list of strs): names of the aggregated categories.’
but it's still not clear what that means or how to use it. For each module intended for use, there should be
clear text and APl documentation. Figure 1 and some of the manuscript would be useful as
documentation as well.

Figure 1B could be made clearer by adding a rule and using PASS/FAIL for how/if families meet that rule.

This is certainly just a matter of preference, but | found the manuscript hard to digest due to the layout. To
get all the information on a particular tool, | have to keep 3 sections of the paper in my head, the intro, the
methods, and then the use-cases. This would have been more readable to me with a short intro
describing the use-case and more per-tool description in the methods.

Is the rationale for developing the new software tool clearly explained?
Partly

Is the description of the software tool technically sound?
Partly

Are sufficient details of the code, methods and analysis (if applicable) provided to allow
replication of the software development and its use by others?
Partly

Page 13 of 14

http://orcid.org/0000-0003-1786-2216

FIOOOResearch F1000Research 2018, 7:281 Last updated: 26 JUN 2018

Is sufficient information provided to allow interpretation of the expected output datasets and
any results generated using the tool?
Partly

Are the conclusions about the tool and its performance adequately supported by the findings
presented in the article?
Partly

Competing Interests: No competing interests were disclosed.
Referee Expertise: Genomics, bioinformatics, algorithms

I have read this submission. | believe that | have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard, however | have significant reservations, as outlined
above.

The benefits of publishing with F1000Research:

For pre-submission enquiries, contact research@f1000.com F]m Resea rCh

Your article is published within days, with no editorial bias

You can publish traditional articles, null/negative results, case reports, data notes and more
The peer review process is transparent and collaborative

Your article is indexed in PubMed after passing peer review

Dedicated customer support at every stage

Page 14 of 14

