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Abstract Polarised mRNA transport is a prevalent mechanism for spatial control of protein

synthesis. However, the composition of transported ribonucleoprotein particles (RNPs) and the

regulation of their movement are poorly understood. We have reconstituted microtubule minus

end-directed transport of mRNAs using purified components. A Bicaudal-D (BicD) adaptor protein

and the RNA-binding protein Egalitarian (Egl) are sufficient for long-distance mRNA transport by

the dynein motor and its accessory complex dynactin, thus defining a minimal transport-competent

RNP. Unexpectedly, the RNA is required for robust activation of dynein motility. We show that a

cis-acting RNA localisation signal promotes the interaction of Egl with BicD, which licenses the

latter protein to recruit dynein and dynactin. Our data support a model for BicD activation based

on RNA-induced occupancy of two Egl-binding sites on the BicD dimer. Scaffolding of adaptor

protein assemblies by cargoes is an attractive mechanism for regulating intracellular transport.

DOI: https://doi.org/10.7554/eLife.36312.001

Introduction
Targeting of mRNAs to specific locations within the cytoplasm can confer precise spatial control

over protein synthesis and function (Buxbaum et al., 2015; Holt and Schuman, 2013; Martin and

Ephrussi, 2009). By compartmentalising protein function, mRNA localisation contributes to diverse

processes, including embryonic axis determination, epithelial polarity and neuronal plasticity. Traf-

ficking of mRNAs frequently depends on the action of cytoskeletal motors, in particular those that

move along the polarised microtubule network (Mofatteh and Bullock, 2017). However, the mecha-

nisms by which specific mRNAs are recruited to, and transported by, microtubule motors remain

unclear.

One of the most tractable systems for microtubule-based mRNA transport operates during early

development of Drosophila melanogaster and is responsible for localising spatial determinants of

embryonic patterning to microtubule minus ends. Transport of these mRNAs is dependent on the

Egalitarian (Egl) and Bicaudal-D (BicD) proteins (Bullock and Ish-Horowicz, 2001), as well as the

minus end-directed motor cytoplasmic dynein-1 (dynein) and its accessory complex dynactin

(Wilkie and Davis, 2001). Egl is a 1004-amino-acid protein that directly associates with the special-

ised RNA stem-loops that mediate polarised transport (so-called RNA localisation signals)

(Dienstbier et al., 2009). The basis of RNA recognition by Egl is not known, although an exonucle-

ase-like domain between residues 557 and 726 is partly responsible (Dienstbier et al., 2009). Egl

uses a short N-terminal region to bind BicD (Dienstbier et al., 2009), and C-terminal features to

bind the LC8 dynein light chain (Navarro et al., 2004). Mammalian BicD orthologues – BICD1 and

BICD2 – associate with dynein and dynactin (Hoogenraad et al., 2001). These observations have led

to a model for linkage of localising mRNAs to the dynein transport machinery (Figure 1A). It is not
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known, however, if other factors co-operate with Egl and BicD to bridge mRNAs to the motor

complex.

Another outstanding question is how the assembly of the transport complex, and the activity of

the dynein motor within it, is controlled. Several lines of evidence indicate that BicD is a key player

in these processes. By forming an extended coiled-coil homodimer, the isolated N-terminal region

of mammalian BICD2 (BICD2N: containing coiled-coil domain 1 (CC1) and part of CC2) can bridge

the interaction between dynein and dynactin, forming a mutually dependent triple complex

(Hoogenraad and Akhmanova, 2016; Splinter et al., 2012; Urnavicius et al., 2015; Zhang et al.,

2017). The binding of dynein to BICD2N and dynactin increases the incidence of processive move-

ment dramatically (McKenney et al., 2014; Schlager et al., 2014), which is associated with reposi-

tioning of the dynein motor domains with respect to the microtubule (Chowdhury et al., 2015;

Zhang et al., 2017). The motor also moves with higher velocity and has increased force output once

bound to BICD2N and dynactin (Belyy et al., 2016; McKenney et al., 2014). The equivalent N-ter-

minal region of Drosophila BicD stimulates dynein-based transport in vivo (Dienstbier et al., 2009),

indicating that this mechanism is evolutionarily conserved.

Full-length BicD proteins interact poorly with dynein and dynactin and are therefore only weak

activators of dynein motility (Dienstbier et al., 2009; Hoogenraad et al., 2001, 2003; Huynh and

Vale, 2017; Liu et al., 2013). While mechanistic details are still lacking, BicD appears to be autoin-

hibited by folding back of the third coiled-coil domain (CC3) onto the dynein-activating sequences in

CC1/2 (Dienstbier et al., 2009; Hoogenraad et al., 2001; Stuurman et al., 1999). It has been pro-

posed that the interaction of CC3 with cargo-binding proteins such as Egl or Rab6 (a G-protein that

binds Golgi-derived vesicles) frees CC1/2 to interact with dynein and dynactin (Dienstbier et al.,

2009; Hoogenraad and Akhmanova, 2016; Hoogenraad et al., 2001, 2003; Matanis et al., 2002).

Consistent with this model, mutating an essential residue in the shared Rab6- and Egl-binding site in

CC3 prevents Drosophila BicD from associating with dynein in vivo (Liu et al., 2013).

eLife digest In our cells, tiny molecular motors transport the components necessary for life’s

biological processes from one location to another. They do so by loading their cargo, and burning

up chemical fuel to carry it along pathways made of filaments. For example, one such motor, called

dynein, can move molecules of messenger RNA (mRNA) to specific locations within the cell. There,

the mRNA will be used as a template to create proteins, which will operate at exactly the right

place.

Transporting mRNA in this way is critical in processes such as embryonic development and the

formation of memories; yet, this mechanism is still poorly understood. Previous work suggested that

the mRNA is simply a passenger of the dynein motor, but McClintock et al. asked if this is really the

case. Instead, could mRNA regulate its own sorting by controlling the activity of dynein?

Studying mRNA trafficking within the complex molecular environment of a cell is challenging, so

mRNA transporting machinery was recreated in the laboratory. Only the proteins necessary to build

a working system were included in the experiments. In addition to the filaments, the components

included dynein and a complex of proteins known as dynactin, which allows the motor to move

together with a protein called BICD2. A protein named Egalitarian was used to link the mRNA to

BICD2.

By filming fluorescently labelled proteins and mRNAs, McClintock et al. discovered that mRNA

strongly promotes the movement of the dynein motor. A structured section in the mRNA acts as a

docking area for two copies of Egalitarian. This activates BICD2, which then binds to dynein and

dynactin, thereby completing the transport machinery. According to these results, the mRNA directs

the assembly of the system that will carry it within the cell.

Viruses such as HIV and herpesvirus hijack dynein motors to have their genetic information moved

around a cell in order to propagate infection. Understanding precisely how mRNA is transported

may help to develop new strategies to fight these viruses.

DOI: https://doi.org/10.7554/eLife.36312.002
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Figure 1. Reconstitution of dynein-based RNA transport with purified proteins. (A) Existing model for linkage of localising mRNAs to dynein. Note that

there is no structural information available for Egl. (B) Diagram of TIRF-based in vitro motility assay. RNAs and proteins were incubated together for at

least 1 hr on ice at the following molar concentrations: 100 nM dynein dimers, 200 nM dynactin, 100 nM Egl/BICD2 (with the operational assumption of

two Egl molecules per BICD2 dimer) and 1 mM RNA. RNA-protein mixtures were typically diluted 40-fold and injected into imaging chambers

Figure 1 continued on next page
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It has recently been shown in vitro that the presence of Rab6 allows full-length BICD2 to associate

with dynein and dynactin and thereby activate transport (Huynh and Vale, 2017). This observation

provides direct evidence that association of a cargo-binding protein with CC3 stimulates the assem-

bly of an active dynein-dynactin-BicD complex, although the stoichiometry of Rab6 and BICD2 in

transport complexes was not investigated. Rab6 only associates with mammalian and Drosophila

BicD proteins when it is GTP-bound (Rab6GTP) (Huynh and Vale, 2017; Liu et al., 2013;

Matanis et al., 2002; Short et al., 2002), a state induced by association with its target membranes

(Hutagalung and Novick, 2011). These data suggest a mechanism for linking long-distance move-

ment of dynein with the availability of a vesicular cargo. Egl, on the other hand, can associate with

BicD CC3 in vitro in the absence of an RNA cargo (Dienstbier et al., 2009; Liu et al., 2013). This

observation implies that the RNA is not involved in the relief of BicD autoinhibition by Egl, although

this hypothesis has not been tested directly.

We set out to elucidate molecular mechanisms of dynein-based mRNA transport by Egl and BicD

by reconstituting this process in vitro with purified components. Our results define a minimal set of

proteins for RNA translocation on microtubules and show that the RNA strongly activates dynein

motility. Stimulation of transport by RNA is not dependent on the Egl-LC8 interaction. Rather, our

data support a model in which the RNA localisation signal overcomes BicD autoinhibition by aug-

menting the interaction of Egl with BicD CC3. Our study reveals a pivotal role of an RNA localisation

signal in gating the activity of a microtubule motor, and give rise to a model in which cargoes stimu-

late dynein motility by scaffolding active adaptor protein assemblies.

Results

An in vitro assay for dynein-based mRNA transport
We set out to determine if purified dynein, dynactin, Egl and BicD are sufficient to induce mRNA

transport in vitro. As no method is available for the purification of Drosophila dynein and dynactin,

we established a system in which Drosophila Egl and an mRNA target are linked to mammalian

dynein and dynactin complexes. We took advantage of the strong evolutionary conservation of the

Egl/Rab6GTP-binding site of BicD (Figure 1—figure supplement 1; [Liu et al., 2013]) to produce a

complex of Drosophila Egl bound to mouse BICD2. This complex was purified from Sf9 insect cells

Figure 1 continued

containing microtubules that were pre-immobilised on passivated glass surfaces. (C) Examples of kymographs (time-distance plots) showing behaviour

of Cyanine5 (Cy5)-labelled hairy or I-factor RNAs in the presence of Egl/BICD2, dynein and dynactin. Diagonal lines are processive movements. In these

and other kymographs, the microtubule minus end is to the left. (D) Fraction of microtubule (MT)-associated hairy RNA complexes that are processive,

static or diffusive. (E) Kymograph illustrating behaviour of DY647-labelled ILS and a scrambled (Scram) version of the sequence labelled with DY547

following co-incubation with Egl/BICD2, dynein and dynactin. Arrowheads: examples of co-transport of the two RNA species. (F and G) Numbers of

RNA binding events on microtubules (F) and processive RNA movements (G) of ILS and Scram RNAs. (H) Fraction of processive RNA movements that

contain signals from the ILS only, Scram only, or both RNAs. In (D) and (F-H), circles are values for individual microtubules. Error bars: SD. Statistical

significance was evaluated with a Welch’s t-test (F and G). ****p<0.0001.

DOI: https://doi.org/10.7554/eLife.36312.003

The following source data and figure supplements are available for figure 1:

Source data 1. Numerical values for plots presented in Figure 1D,F–H.

DOI: https://doi.org/10.7554/eLife.36312.009

Figure supplement 1. Alignment of the binding site for Rab6GTPand Egl in Drosophila melanogaster BicD with the corresponding region of mouse and

human BICD2.

DOI: https://doi.org/10.7554/eLife.36312.004

Figure supplement 2. Supplemental data on the purification of Egl/BICD2.

DOI: https://doi.org/10.7554/eLife.36312.005

Figure supplement 2—source data 1. Numerical values for plots in Figure 1—figure supplement 2C.

DOI: https://doi.org/10.7554/eLife.36312.006

Figure supplement 3. Purity of protein preparations.

DOI: https://doi.org/10.7554/eLife.36312.007

Figure supplement 4. Kymographs illustrating additional behaviours of hairy RNA in the presence of Egl/BICD2, dynactin and dynein.

DOI: https://doi.org/10.7554/eLife.36312.008
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by co-expression of Egl with BICD2, as soluble Egl could not be recovered in the absence of its bind-

ing partner (Figure 1—figure supplement 2A,B). The Egl/BICD2 complex, which was captured

using an affinity tag on Egl, was not associated with significant amounts of RNA (Figure 1—figure

supplement 2C). This observation is consistent with previous evidence that RNA is not essential for

the interaction of Egl with Drosophila BicD (Dienstbier et al., 2009; Liu et al., 2013). The 1.4 MDa

human dynein complex and 1.1 MDa pig dynactin complex were purified from established recombi-

nant and native sources, respectively (Schlager et al., 2014). The purity of these and other protein

preparations used in the study is illustrated in Figure 1—figure supplement 3. RNAs were tran-

scribed in vitro, and body-labelled by stochastic incorporation of fluorescent UTP.

Interactions of fluorescent RNA molecules with surface-immobilised microtubules were monitored

by total internal reflection fluorescence (TIRF) microscopy in the presence of dynein, dynactin, and

Egl/BICD2 (Figure 1B). RNAs and proteins were incubated together for at least 1 hr to promote

complex assembly, followed by dilution to concentrations that allow discrimination of single mole-

cules on microtubules. We first used the 3’UTR of the hairy mRNA, which mediates transport by a

complex containing Egl, BicD, dynein and dynactin in the Drosophila embryo (Bullock et al., 2003;

Dix et al., 2013). We observed frequent association of hairy RNA with microtubules in the imaging

chamber (Video 1). Gratifyingly, 80% of microtubule-associated hairy RNA puncta underwent long-

distance transport (Figure 1C,D and Video 1). As observed previously with a Drosophila extract-

based system (Soundararajan and Bullock, 2014), hairy RNAs accumulated at microtubule minus

ends following transport (Figure 1—figure supplement 4A) and were also capable of diffusive

motion on the microtubule lattice (Figure 1D and Figure 1—figure supplement 4B). We also per-

formed experiments with the I-factor retrotransposon RNA, which is transported in association with

Egl, BicD, dynein and dynactin during Drosophila oogenesis (Dienstbier et al., 2009; Dix et al.,

2013; Van De Bor et al., 2005). Like hairy, this RNA exhibited robust minus end-directed transport

in our in vitro assay (Figure 1C). These experiments reveal that no additional proteins are required

for microtubule-based mRNA transport in vitro.

To test if RNA localisation signals are selectively recognised in our assay conditions, we mixed the

well-characterised 59-nucleotide (nt) Egl-binding element from the I-factor (I-factor localisation signal

(ILS)) (Dienstbier et al., 2009; Van De Bor et al., 2005), which was labelled with DY647, with an

equimolar amount of a scrambled version of the

same sequence labelled with DY547. In the pres-

ence of Egl, BICD2, dynein, and dynactin, the ILS

bound to microtubules ~five times more fre-

quently than the mutant RNA and exhibited a

similar relative increase in the number of proces-

sive movements (Figure 1E–G). These data

reveal that the transport machinery retains selec-

tivity for RNA localisation signals in our assay.

Further analysis revealed that ~75% of the proc-

essive complexes that contained the scrambled

RNA also had a signal from the ILS (Figure 1E,

H), raising the possibility that much of the trans-

port of the mutant RNA is an indirect conse-

quence of association with active ILS-bound

transport complexes.

Egl/BICD2 and dynactin are
required for mRNA transport by
dynein
We next investigated the involvement of each of

the protein complexes in the RNA transport pro-

cess. We first used SNAP tags to fluorescently

label dynein and either Egl or BICD2 in the Egl/

BICD2 complex. Egl and BICD2 were co-trans-

ported with dynein and hairy RNA in the pres-

ence of dynactin (Figure 2A and Figure 2—

Video 1. Movements of Cy5-hairy RNAs on surface-

immobilised microtubules in the presence of Egl/

BICD2, dynactin and dynein. The RNA signal is shown

in green. The position of the microtubules is indicated

by a projection of the RNA signal over the course of

the movie (magenta). Width of frame is 53.76 mm;

movie corresponds to 252 s of real time.

DOI: https://doi.org/10.7554/eLife.36312.010
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Figure 2. RNA transport by dynein requires the simultaneous presence of Egl/BICD2 and dynactin. (A) Kymographs showing co-transport of

tetramethyrhodamine (TMR)-labelled dynein, Alexa647 (A647)-labelled BICD2 (included in the assembly as a complex with unlabelled Egl) and Alexa488

(A488)-labelled hairy mRNA in the presence of unlabelled dynactin. See Figure 2—figure supplement 1 for equivalent experiment with Egl labelled in

the Egl/BICD2 complex. (B) Kymographs illustrating the results of omitting dynein, dynactin or Egl/BICD2 from the assay. Figure 2—figure

Figure 2 continued on next page
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figure supplement 1; note that dynactin could not be labelled as it is from a native source). Next,

we omitted individual protein complexes from the assembly mix. The association of hairy with micro-

tubules was barely detected when Egl/BICD2, dynactin, or dynein was excluded (Figure 2B,C and

Figure 2—figure supplement 2). Thus, the simultaneous presence of all three protein complexes is

required to link RNA to microtubules. In the absence of Egl/BICD2 or dynactin, dynein rarely exhib-

ited transport but could still associate with microtubules (Figure 2B and Figure 2—figure supple-

ment 2). However, there was an ~two-fold increase in microtubule binding events when both Egl/

BICD2 and dynactin were present (Figure 2D). Thus, the combination of Egl/BICD2 and dynactin

stimulates dynein’s ability to associate with microtubules and move processively in the presence of

RNA.

RNA-directed activation of dynein motility
As described in the Introduction, the prevailing model is that the association of Egl with BicD CC3 is

sufficient to free the N-terminal region of BicD to interact with dynein and dynactin. Unlike Rab6, Egl

can bind BicD in the absence of associated cargo, leading us to ask whether dynein and dynactin dif-

ferentiate between RNA-bound and RNA-free Egl/BICD2. To address this question, we performed

motility assays with Egl/BICD2, dynactin and fluorescent dynein in the presence and absence of

RNA. Strikingly, the number of processive movements of dynein was ~six-fold higher when the RNA

was present (Figure 3A,B). This reflected an increase in microtubule binding by dynein (Figure 3C),

as well as the propensity for processive movement of those complexes associated with the microtu-

bule (Figure 3D). The mean velocity and run length of dynein complexes bound to RNA were also

significantly higher than those assayed in the absence of RNA (Figure 3E,F). We conclude that the

RNA is required for robust stimulation of dynein motility and microtubule binding in the presence of

Egl/BICD2 and dynactin.

We next asked if the RNA-directed activation of dynein was a consequence of the combination of

Egl with a BicD protein from a different species by performing experiments with a preparation of

Drosophila Egl and Drosophila BicD (DmBicD). The Egl/DmBicD complex was also produced by co-

expression of both proteins in Sf9 insect cells and purification with an affinity tag on Egl. The hairy

RNA significantly increased the number of processive movements of dynein in the presence of

dynactin and Egl/DmBicD (Figure 3G,H). This effect was again associated with enhanced microtu-

bule binding of the motor, as well as increased probability of processive movement after engaging

with the microtubule (Figure 3I,J). As was observed in the experiments with Egl/BICD2, the RNA

also enhanced the mean velocity and length of dynein movements (Figure 3—figure supplement

1). Thus, RNA also gates the activation of dynein motility by a co-evolved Egl/BicD complex.

RNA promotes the assembly of the Egl/BicD/dynein/dynactin complex
We next considered two scenarios for how RNA stimulates dynein motility. First, the Egl/BicD/

dynein/dynactin complex could be efficiently formed in the absence of RNA, with binding of RNA to

Egl triggering a conformational change that activates processive dynein movement. Second, the

ability of the Egl/BicD complex to interact with dynein and dynactin could be stimulated by the

Figure 2 continued

supplement 2 shows images of separate channels. (C) Binding of Cy5-hairy RNA to microtubules in the presence of the indicated proteins. Signals

were corrected for background binding of RNA to the glass surface. (D) Binding of TMR-dynein to microtubules in the presence of the indicated

proteins. Background correction was not necessary due to negligible association of dynein with the glass. In this and other figures, black or white circles

indicate proteins that were present or absent from the experiment, respectively. In C and D, small circles are values for individual microtubules. Error

bars: SD. Statistical significance was evaluated with an ANOVA test with Dunnett’s multiple comparison correction. ****p<0.0001.

DOI: https://doi.org/10.7554/eLife.36312.011

The following source data and figure supplements are available for figure 2:

Source data 1. Numerical values for plots presented in Figure 2C,D.

DOI: https://doi.org/10.7554/eLife.36312.014

Figure supplement 1. Co-transport of Egl with dynein and RNA in the presence of BICD2 and dynactin.

DOI: https://doi.org/10.7554/eLife.36312.012

Figure supplement 2. Supplementary data on the requirement for Egl/BICD2 and dynactin for binding of RNA to microtubules and dynein motility.

DOI: https://doi.org/10.7554/eLife.36312.013
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Figure 3. Activation of dynein motility by RNA. (A) Kymographs illustrating that hairy RNA increases the frequency of processive dynein movements in

the presence of Egl/BICD2 and dynactin. (B–D) Numbers of processive dynein movements (B), microtubule-binding events of dynein (C) and fraction of

microtubule-binding events that result in processive dynein movements (D) in the presence and absence of hairy RNA. (E and F) Distribution of

segmental velocities (E) and run lengths (F) of dynein in the presence of Egl/BICD2 and dynactin ± hairy RNA (for experiments including hairy RNA, only

those complexes associated with an RNA signal were analysed). (G) Kymographs illustrating that hairy RNA increases the frequency of processive

dynein movements when dynactin and a complex of Egl bound to Drosophila BicD (DmBicD) is included in the assay. (H–J) Numbers of processive

dynein movements (H), microtubule-binding events of dynein (I) and fraction of microtubule binding events that result in processive dynein movements

Figure 3 continued on next page
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association of Egl with RNA, thus conferring different properties on the motor. To distinguish

between these possibilities, we fluorescently labelled Egl in the purified Egl/BICD2 complex and

monitored how hairy RNA affects its association with microtubule-bound dynein in the presence of

dynactin. Although there was some association of dynein with Egl in the absence of RNA, the fre-

quency of co-localisation increased by ~six-fold when the RNA was present (Figure 4A–C). We con-

firmed that the RNA also stimulates the association of BICD2 with microtubule-associated dynein by

labelling BICD2 within the purified Egl/BICD2 complex (Figure 4—figure supplement 1). Many of

the dynein complexes bound to Egl/BICD2 were motile (regardless of whether RNA was present of

absent) (Figure 4B, Figure 4—figure supplement 1 and Figure 4—figure supplement 2), indicat-

ing that they were also complexed with dynactin (McKenney et al., 2014; Schlager et al., 2014).

Thus, the ability of RNA to activate processive dynein motion is associated with enhanced assembly

of the Egl/BICD2/dynein/dynactin complex.

We next investigated if the assembly of the endogenous transport complex is stimulated by RNA.

We immunoprecipitated a transgenically expressed GFP-tagged Egl protein from Drosophila

embryo extracts in the presence and absence of exogenous hairy 3’UTR and assayed for co-precipi-

tation of the p150 (DCTN1/Glued) subunit of dynactin and the heavy chain of dynein (Dhc) by west-

ern blotting (Figure 4D,E). p150 and Dhc were not detected in the Egl::GFP immunoprecipitate in

the absence of exogenous RNA, indicating that the association of Egl with dynein and dynactin is of

low affinity or low abundance. In contrast, the addition of the hairy RNA led to detectable co-precip-

itation of the dynein and dynactin components with Egl::GFP. Thus, assembly of the transport com-

plex is promoted by the RNA in the context of both purified and endogenously-expressed proteins.

The interaction of Egl with LC8 is not required for RNA-directed
activation of dynein
The results described above raise the question of how RNA binding stimulates the association of Egl

and BicD proteins with dynein and dynactin. We first asked if this involves the binding of Egl to the

LC8 dynein light chain. Motility assays were performed with a purified Egl/BICD2 complex in which

Egl has two mutations in a consensus LC8-binding site that abolish association with LC8 in vivo and

in vitro (Egldlc2pt; S965K + S969R) (Navarro et al., 2004). The Egldlc2pt/BICD2 complex supported

robust transport of hairy RNA in the presence of dynein and dynactin (Figure 5A,B). Moreover, the

mutant Egl/BICD2 complex still supported the RNA-induced increase in processive movement and

microtubule binding of dynein in the presence of dynactin (Figure 5C–E), as well as higher mean

velocities and run lengths of the motor (Figure 5—figure supplement 1). Thus, the interaction of

Egl with LC8 does not play a significant role in activation of dynein by RNA.

The RNA localisation signal stabilises the Egl/BicD complex
These observations pointed to the other reported interaction of Egl/BICD2 with dynein and dynactin

– that is the one mediated by BICD2N – as central to the activation of transport. As described in the

Introduction, previous studies have indicated that occupancy of the Egl/Rab6GTP-binding site in

BICD2 relieves autoinhibition, licensing BICD2N to interact with dynein and dynactin (Huynh and

Vale, 2017; Liu et al., 2013). During handling of the purified Egl/BICD2 complex, we noticed that it

Figure 3 continued

(J) in the presence of dynactin and Egl/DmBicD ± hairy RNA. See Figure 3—figure supplement 1 for velocity and run length distributions for these

experiments. Errors: SD, except in E and F (SEM). In B-D, and H-J, circles are values for individual microtubules. In B, C, H, and J, statistical significance

was evaluated with a Welch’s t-test. In D and I, statistical significance was evaluated with a Student’s t-test. In E and F, statistical significance (compared

to the equivalent parameter in the absence of RNA) was evaluated with a Mann-Whitney test using raw, unfitted values. **p<0.01. ****p<0.0001.

DOI: https://doi.org/10.7554/eLife.36312.015

The following source data and figure supplements are available for figure 3:

Source data 1. Numerical values for plots in Figure 3B–F,H–J.

DOI: https://doi.org/10.7554/eLife.36312.018

Figure supplement 1. Supplementary data on dynein motility in the presence of dynactin and Egl/DmBicD ± hairy RNA.

DOI: https://doi.org/10.7554/eLife.36312.016

Figure supplement 1—source data 1. Numerical values for plots in Figure 3—figure supplement 1A,B.

DOI: https://doi.org/10.7554/eLife.36312.017
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Figure 4. RNA stimulates the assembly of the transport complex. (A and B) Kymographs illustrating the behaviour of fluorescent dynein and Egl

(included in the assembly in a complex with unlabelled BICD2) in the presence of dynactin ± hairy RNA. (C) Fraction of microtubule-bound dyneins that

associate with Egl in the presence of dynactin ± hairy RNA. Circles are values for individual microtubules. Error bars: SD. Statistical significance was

evaluated with a Welch’s t-test. ****p<0.0001. See Figure 4—figure supplement 1 for equivalent data when BICD2 was labelled in the Egl/BICD2

complex. (D and E) Immunoblots of GFP-binding protein pulldowns from Drosophila embryo extracts showing RNA-induced co-precipitation of

endogenous p150 (D) and Dhc (E) with Egl::GFP. This effect was observed in four independent experiments. For the blots shown, the amount of extract

from which the loaded immunoprecipate was derived was 20 times the amount of extract loaded into the input lane for a-GFP, 200 times the amount

of extract loaded into the input lane for a-Dhc and 1000 times the amount of extract loaded into the input lane for a-p150. Thus, only a small fraction

of total Egl was associated with p150 and Dhc in the presence of RNA. Embryos expressing free GFP were used as a control. In control experiments,

the presence of RNA did not cause co-precipitation of the dynein-dynactin complex with GFP.

DOI: https://doi.org/10.7554/eLife.36312.019

The following source data and figure supplements are available for figure 4:

Source data 1. Numerical values for plot in Figure 4C.

DOI: https://doi.org/10.7554/eLife.36312.024

Figure supplement 1. RNA promotes the association of BICD2 with dynein in the presence of Egl and dynactin.

DOI: https://doi.org/10.7554/eLife.36312.020

Figure supplement 1—source data 1. Numerical values for plot in Figure 4—figure supplement 1C.

DOI: https://doi.org/10.7554/eLife.36312.021

Figure supplement 2. RNA-induced association of Egl/BICD2 with dynein promotes transport.

Figure 4 continued on next page
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had a tendency to dissociate upon dilution. This observation suggests dynamic exchange of constitu-

ent species. We therefore wondered if the RNA relieves BICD2 autoinhibition by stabilising its inter-

action with Egl. To test this hypothesis, we first mixed the 59-nt ILS RNA with purified Egl/BICD2

and performed size exclusion chromatography. The RNA localisation signal caused a large change in

the elution profile of the protein complex compared to the RNA-free form (Figure 6—figure supple-

ment 1), indicating a substantial increase in molar mass or a conformational change.

We next used sedimentation equilibrium analytical ultracentrifugation (SE-AUC) to evaluate mean

molar masses of complexes in the presence and absence of RNA independently of protein confor-

mation. Over a range of protein concentrations, the presence of the ILS caused a large increase in

mean molar mass compared to RNA-free samples (Figure 6A and Figure 6—figure supplement 2).

An orthogonal method for determining molar masses – size-exclusion chromatography with multi-

angle light scattering (SEC-MALS) – confirmed that the ILS substantially increases the mean molar

mass of the Egl/BICD2 sample (Figure 6B and Figure 6—figure supplement 3). This effect was evi-

dent at all salt concentrations examined (Figure 6B and Figure 6—figure supplement 4). Despite

being present in a 10-fold molar access to Egl/BICD2, the scrambled ILS RNA elicited a relatively

small increase in mean molar mass (Figure 6C), confirming selectivity of the Egl/BICD2 complex for

an active RNA localisation signal. Our finding that there is some association of Egl/BICD2 with the

mutant RNA is compatible with earlier evidence that Egl is not a highly selective RNA-binding pro-

tein (Bullock et al., 2006; Dienstbier et al., 2009; Dix et al., 2013). The ILS induced a broad range

of molar masses in the peak fractions, indicating an equilibrating mixture of larger complexes and

smaller constituent components (Figure 6B,C). Consistent with such dynamics, the mean molar mass

of the peak fractions increased with increasing amounts of Egl/BICD2 and RNA (Figure 6D). Analysis

of peak SEC-MALS fractions by SDS-PAGE revealed that the ILS-induced increases in mass were

associated with enhanced interaction of BICD2 and Egl (Figure 6B and Figure 6—figure supple-

ment 4B). We also used SEC-MALS to determine the effect of the ILS on the purified complex of Egl

and DmBicD. The mean molar mass of the peak fractions increased substantially in the presence of

the ILS, and this was again associated with increased binding of Egl and the BicD protein (Figure 6—

figure supplement 5). Collectively, these experiments reveal that the Egl/BICD2 and Egl/DmBicD

complexes readily equilibrate with constituent species and that this is counteracted by the RNA

localisation signal.

The copy numbers of RNA, Egl and BicD in active transport complexes
In our SE-AUC and SEC-MALS experiments, mean molar masses of the mixtures of ILS, Egl and a

BicD protein could reach ~400 kDa. The predicted molar masses of the BICD2, DmBicD and Egl pol-

ypeptides are 93, 89 and 112 kDa, respectively, while the ILS has a molar mass of 19 kDa. It was pre-

viously shown that DmBicD is a dimer (Stuurman et al., 1999), and we confirmed that this is also the

case for BICD2 using SEC-MALS (Figure 6B; observed molar mass 186.7 ± 0.5 kDa). The mean molar

masses observed in our experiments with the ILS are therefore compatible with a fraction of BicD

dimers being occupied by more than one Egl molecule. To directly evaluate the stoichiometry of Egl

and BicD in mRNA transport complexes, we returned to our in vitro motility assay. This system allows

investigation of the copy number of these proteins in the fraction of complexes that are able to

recruit dynein and dynactin and thus support processive movement on microtubules.

We first produced Egl/BICD2 complexes with SNAP-tagged BICD2 and labelled them with a mix-

ture of SNAP-reactive dyes such that approximately half of BICD2 polypeptides in the preparation

were labelled with TMR, and approximately half were labelled with Alexa647. In an idealised situa-

tion, the exclusive presence of BICD2 dimers would result in 50% of complexes with one TMR dye

and one Alexa647 dye, 25% with two TMR dyes and 25% with two Alexa647 dyes (Figure 7A). How-

ever, incomplete labelling of SNAP::BICD2 meant that an obligate BICD2 dimer would result in 40%

of complexes labelled with both dyes (Supplementary file 1). When the labelled Egl/SNAP::BICD2

Figure 4 continued

DOI: https://doi.org/10.7554/eLife.36312.022

Figure supplement 2—source data 1. Numerical values for plots in Figure 4—figure supplement 2A,B.

DOI: https://doi.org/10.7554/eLife.36312.023
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sample was used in motility assays with dynein, dynactin and hairy RNA, 39% of the motile com-

plexes with a BICD2 signal were labelled with both dyes (Figure 7B,C). Our co-localisation analysis

therefore fits well with there being a single BICD2 dimer in transport complexes

(Supplementary file 2).
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Figure 5. The Egl-LC8 interaction is dispensable for RNA-directed activation of dynein motility. (A) Kymograph illustrating robust transport of hairy RNA

in the presence of dynein, dynactin and the Egldlc2pt/BICD2 complex. (B) Fraction of microtubule-associated hairy RNA complexes that are processive,

static or diffusive using the Egldlc2pt/BICD2 complex. (C–E) Numbers of processive dynein movements (C), microtubule-binding events of dynein (D) and

fraction of microtubule-binding events that result in processive dynein movements (E) in the presence and absence of hairy RNA. In C-E, circles are

values for individual microtubules. Error bars: SD. Statistical significance in C-E was evaluated with a Student’s t-test. ****p<0.0001. See Figure 5—

figure supplement 1 for velocity and run length distributions for these experiments.

DOI: https://doi.org/10.7554/eLife.36312.025

The following source data and figure supplements are available for figure 5:

Source data 1. Numerical values for plots in Figure 5B–E.

DOI: https://doi.org/10.7554/eLife.36312.028

Figure supplement 1. Supplementary data on dynein motility in the presence of dynactin, and Egldlc2pt/BICD2 ± hairy RNA.

DOI: https://doi.org/10.7554/eLife.36312.026

Figure supplement 1—source data 1. Numerical values for plots in Figure 5—figure supplement 1A,B.

DOI: https://doi.org/10.7554/eLife.36312.027
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Figure 6. The RNA localisation signal promotes the occupancy of BICD2 with Egl. (A) Mean molar masses of Egl/BICD2 complexes at different

concentrations in the presence and absence of the ILS determined by SE-AUC. For comparison, the concentration of Egl/BICD2 in the assembly mix for

in vitro motility assays is 0.04 mg ml�1. In this and other panels of this figure, the RNA was present in a 10-fold molar excess to the protein (based on an

operational assumption of a complex of two Egl molecules and a BICD2 dimer). Circles are values for individual samples. See Figure 6—figure

supplement 2 for examples of raw data and fitting. Experiments were performed in 150 mM salt at 4˚C. (B) SEC-MALS analysis of samples of Egl/BICD2

in the presence and absence of ILS RNA, and BICD2 alone for comparison. The MALS analysis provides the abundance-weighted mean mass of all of

the species present throughout the peak (darker lines). Gels of collected fractions stained with SYPRO Ruby reveal more Egl associated with BICD2 in

the presence of the ILS (maximum Egl:BICD2 ratio without ILS = 0.07; maximum Egl:BICD2 ratio with ILS = 0.48), which corresponds to species with

higher mean molar mass (gels are aligned with corresponding positions in the SEC-MALS trace). Consistent with the relatively modest increase in molar

mass compared to BICD2 alone, the SEC-MALS peak for the mixture of Egl/BICD2 without the ILS is dominated by free BICD2, with a relatively small

amount of Egl. The absence of a BICD2-like shoulder in the trace of this sample presumably reflects rapid binding and unbinding of Egl. Free

monomeric Egl elutes later from the column in a broad peak (Figure 6—figure supplement 3). The broad range of mean masses across the Egl/BICD2

peak in the presence of ILS indicates that our experimental conditions captured an equilibrating mixture of different Egl/BICD2 species. (C) SEC-MALS

analysis of Egl/BICD2 in the presence of the ILS, scrambled ILS (Scram), or no RNA. In B and C, the concentration of the Egl/BICD2 input was 0.5 mg

ml�1. (D) SEC-MALS analysis of different input concentrations of Egl/BICD2 in the presence of a 10-fold molar excess of the ILS (0.5 mg ml�1 data are

reproduced from B). Note that SEC dilutes proteins ~10 fold before they are subjected to MALS analysis. SEC-MALS experiments were performed in

150 mM salt at room temperature. See Figure 6—figure supplement 4 for results with Egl/BICD2 ± ILS using lower ionic strength buffers.

DOI: https://doi.org/10.7554/eLife.36312.029

Figure 6 continued on next page
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When the procedure was repeated with SNAP-tagged Egl co-expressed with BICD2, the propor-

tion of fluorescent complexes that was dual-labelled in the presence of RNA was 37% (Figure 7D,E).

Correcting for the small fraction of Egl::SNAP molecules that are unlabelled, this result indicates that

there are two Egl molecules in the vast majority of active RNA transport complexes

(Supplementary files 1 and 2). When this experiment was performed in the absence of RNA, the rel-

atively small number of motile Egl complexes observed also had signal from both dyes in 41% of

cases (Figure 7—figure supplement 1). These data indicate that even when the assembly of the

transport machinery is inefficient, motility is usually associated with the presence of two Egl mole-

cules in a complex. The capacity of BicD to bind two Egl molecules is compatible with the symmetri-

cal nature of the Egl-binding region of CC3 (Liu et al., 2013).

Finally, we investigated the copy number of RNA in transport complexes by performing motility

assays with equimolar amounts of hairy RNA preparations that were labelled by random incorpo-

ration of either Cyanine3 (Cy3) or Cy5. Of the labelled motile RNPs, 14% had signal from both dyes

(Figure 7F,G). Considering that the same proportion of complexes should have two Cy3 dyes or

two Cy5 dyes, and that the labelling efficiency means that a small fraction of RNA molecules will con-

tain neither dye, these data indicate that 30% of RNPs contained two RNAs and 70% contained one

RNA (Supplementary file 3). We previously found that transported hairy RNPs assembled in Dro-

sophila extracts exclusively contain a single RNA (Amrute-Nayak and Bullock, 2012;

Soundararajan and Bullock, 2014). The subset of complexes containing two hairy RNAs in our cur-

rent assay presumably reflects a degree of non-specific RNA-RNA interaction or RNA-protein inter-

action, which is normally blocked in extracts by the binding of other proteins. We observed very

little co-localisation of Cy3-hairy and Cy5-hairy on a glass surface in the absence of Egl, BICD2

dynein and dynactin (Figure 7—figure supplement 2), suggesting that the presence of two copies

of the RNA in a subset of transport complexes is predominantly due to an interaction of the second

RNA molecule with one of the proteins in the transport machinery. Motile complexes containing

both Cy3 and Cy5 exhibited similar velocity distributions and only a modest increase in run length

compared to those containing only a single dye (Figure 7—figure supplement 3). Thus, the pres-

ence of a second RNA does not have substantial functional consequences.

Figure 6 continued

The following source data and figure supplements are available for figure 6:

Source data 1. Numerical values for plots in Figure 6A–D.

DOI: https://doi.org/10.7554/eLife.36312.040

Figure supplement 1. The ILS RNA leads to a significant change in the SEC elution profile of the Egl/BICD2 complex.

DOI: https://doi.org/10.7554/eLife.36312.030

Figure supplement 1—source data 1. Numerical values for plot in Figure 6—figure supplement 1.

DOI: https://doi.org/10.7554/eLife.36312.031

Figure supplement 2. Supplementary data for SE-AUC analysis of Egl/BICD2 samples.

DOI: https://doi.org/10.7554/eLife.36312.032

Figure supplement 2—source data 1. Numerical values for plots in Figure 6—figure supplement 2.

DOI: https://doi.org/10.7554/eLife.36312.033

Figure supplement 3. Extended trace from SEC-MALS experiment in Figure 6B illustrating typical elution profiles for Egl/BICD2 samples.

DOI: https://doi.org/10.7554/eLife.36312.034

Figure supplement 3—source data 1. Numerical values for plot in Figure 6—figure supplement 3.

DOI: https://doi.org/10.7554/eLife.36312.035

Figure supplement 4. SEC-MALS data for the purified Egl/BICD2 complex in the presence and absence of the ILS using buffer with modified salt

concentrations.

DOI: https://doi.org/10.7554/eLife.36312.036

Figure supplement 4—source data 1. Numerical values for plots in Figure 6—figure supplement 4A,B.

DOI: https://doi.org/10.7554/eLife.36312.037

Figure supplement 5. SEC-MALS analysis of the purified Egl/DmBicD complex in the presence and absence of ILS RNA.

DOI: https://doi.org/10.7554/eLife.36312.038

Figure supplement 5—source data 1. Numerical values for plot in Figure 6—figure supplement 5.

DOI: https://doi.org/10.7554/eLife.36312.039

McClintock et al. eLife 2018;7:e36312. DOI: https://doi.org/10.7554/eLife.36312 14 of 29

Research article Cell Biology

https://doi.org/10.7554/eLife.36312.040
https://doi.org/10.7554/eLife.36312.030
https://doi.org/10.7554/eLife.36312.031
https://doi.org/10.7554/eLife.36312.032
https://doi.org/10.7554/eLife.36312.033
https://doi.org/10.7554/eLife.36312.034
https://doi.org/10.7554/eLife.36312.035
https://doi.org/10.7554/eLife.36312.036
https://doi.org/10.7554/eLife.36312.037
https://doi.org/10.7554/eLife.36312.038
https://doi.org/10.7554/eLife.36312.039
https://doi.org/10.7554/eLife.36312


B

5 µm

30 s

T
im

e

TMR-BICD2 A647-BICD2 Merged

D

TMR + A647

TMR

A647

0

0.1

0.2

0.3

0.4

0.5

F
ra

c
ti
o

n
 m

o
ti
le

 B
IC

D
2

 p
u

n
c
ta

E

0

0.1

0.2

0.3

0.4

0.5

0.6

F
ra

c
ti
o

n
 m

o
ti
le

 E
g

l 
p

u
n

c
ta

TMR + A647

TMR

A647

C

Dynein

Dynactin

Egl/

hairy RNA

Egl-TMR Egl-A647 Merged

T
im

e

5 µm

30 s

0

0.1

0.2

0.3

0.4

0.5

0.6

F
ra

c
ti
o

n
 o

f 
m

o
ti
le

 h
a

ir
y
 p

u
n

c
ta

Cy3 + Cy5

Cy3

Cy5

GF

Cy3-hairy RNA Cy5-hairy RNA Merged

T
im

e

5 µm

30 s

Dynein

Dynactin

Egl/BICD2

Cy3-hairy RNA

SNAP 

domains

BICD2

SNAP

reactive

dyes
+

0.25 0.250.50

A

TMR-BICD2
A647-BICD2

Dynein

Dynactin

/BICD2

hairy RNA

Egl-TMR
Egl-A647

Cy5-hairy RNA

Figure 7. The copy number of BICD2, Egl and RNA in active transport complexes. (A) Idealised outcome of incubating a SNAP-tagged protein that is

present in two copies per complex with equimolar amounts of two different SNAP-reactive dyes. The BICD2 dimer is used as an example, although the

same principle applies for experiments with labelled Egl. (B) Kymograph of fluorescent signals when a complex of Egl and SNAP::BICD2 is labelled with

a mixture of TMR and Alexa647 and assayed in the presence of RNA, dynactin and dynein. (C) Fraction of motile BICD2-containing complexes with

Figure 7 continued on next page
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In summary, the results of the dual-labelling experiments are consistent with the vast majority of

BicD dimers in active transport complexes associating with two Egl polypeptides, and most associat-

ing with a single RNA. Together with our earlier results, these data support a model in which the

RNA localisation signal licenses BicD to bind dynein and dynactin by facilitating the association of

BicD CC3 with two Egl molecules (see below).

Discussion
We have succeeded in reconstituting microtubule-based mRNA transport in vitro using purified pro-

teins and have used this system to define a minimal transport-competent RNP. Although genetic

experiments indicate that other proteins can modulate the mRNA transport process in vivo

(Dix et al., 2013; Hain et al., 2014), no other factors appear to be obligatory for linkage of the RNA

to dynein.

There has recently been considerable focus on the regulation of dynein motility, stemming from

the discovery that the isolated N-terminal region of BicD proteins can bridge the interaction of

dynein and dynactin and thereby activate transport (McKenney et al., 2014; Schlager et al., 2014;

Splinter et al., 2012). Subsequent structural studies have provided important insights into how

dynein activity is controlled in this system (Chowdhury et al., 2015; Grotjahn et al., 2018;

Urnavicius et al., 2018, 2015; Zhang et al., 2017). However, because full-length BicD proteins

interact with dynein and dynactin poorly (Hoogenraad et al., 2001, 2003; Huynh and Vale, 2017),

it is unclear how dynein activity is controlled within intact cargo-motor complexes.

Previous observations suggested that binding of a cargo-associated protein such as Egl to the

C-terminal region of BicD is sufficient to overcome the autoinhibited state of the full-length protein,

and thereby lead to recruitment of dynein and dynactin. Our study reveals that a purified Egl/BicD

complex does not efficiently associate with dynein and dynactin in the absence of an RNA localisa-

tion signal. Thus, the availability of the cargo gates robust activation of dynein motility. This mecha-

nism presumably limits unproductive long-range movement of the motor complex in the absence of

an RNA consignment.

We show that the previously reported interaction of Egl with LC8 (Navarro et al., 2004) is not

required for RNA-directed activation of dynein motility. Characterisation of the features of LC8 that

Figure 7 continued

signals from both fluorophores, only TMR, or only Alexa647. (D) Kymograph of fluorescent signals when a complex of Egl::SNAP and BICD2 is labelled

with a mixture of TMR and Alexa647 and assayed in the presence of RNA, dynactin and dynein. (E) Fraction of motile Egl-containing complexes labelled

with signals from both fluorophores, only TMR, or only Alexa647. (F) Kymograph of fluorescent signals when Cy3-hairy and Cy5-hairy are mixed and

assayed in the presence of Egl/BICD2, dynactin and dynein. (G) Fraction of motile hairy RNA puncta labelled with both fluorophores, only Cy3, or only

Cy5. In B, D and F, white arrowheads indicate complexes containing both dyes; green and magenta arrowheads indicate, respectively, complexes

containing only TMR or only Alexa647 (B and D) or only Cy3 or Cy5 (F). In C, E and G, circles are values for individual microtubules; error bars: SD. See

Supplementary files 1–3 for calculations of copy numbers based on corrections for the proportion of protein or RNA molecules that are unlabelled.

DOI: https://doi.org/10.7554/eLife.36312.041

The following source data and figure supplements are available for figure 7:

Source data 1. Numerical values for plots in Figure 7C,E,G.

DOI: https://doi.org/10.7554/eLife.36312.048

Figure supplement 1. The presence of two Egl proteins in active transport complexes assembled in the absence of RNA.

DOI: https://doi.org/10.7554/eLife.36312.042

Figure supplement 1—source data 1. Numerical values for plot in Figure 7—figure supplement 1B.

DOI: https://doi.org/10.7554/eLife.36312.043

Figure supplement 2. Analysis of RNA-RNA association in the absence of proteins.

DOI: https://doi.org/10.7554/eLife.36312.044

Figure supplement 2—source data 1. Numerical values for plot in Figure 7—figure supplement 2B.

DOI: https://doi.org/10.7554/eLife.36312.045

Figure supplement 3. Assessing the influence of RNA copy number on the motile properties of RNPs.

DOI: https://doi.org/10.7554/eLife.36312.046

Figure supplement 3—source data 1. Numerical values for plots in Figure 7—figure supplement 3A,B.

DOI: https://doi.org/10.7554/eLife.36312.047
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mediate interaction with its binding partners also argue against a role for LC8 as an adaptor

between Egl and dynein; the groove that LC8 uses to associate with the consensus binding motif

present in Egl is also used for incorporation into the dynein complex, suggesting mutually exclusive

interactions (Benison et al., 2007; Rapali et al., 2011). However, disrupting the Egl-LC8 interaction

in Drosophila does significantly compromise the function of Egl in the maintenance of oocyte fate

(Navarro et al., 2004). There are several examples of LC8 acting as a chaperone for binding part-

ners independently of its association with dynein (Rapali et al., 2011), and it may serve the same

function for Egl in vivo.

Our data indicate that a key consequence of RNA binding to Egl is stimulation of the interaction

of BicD with dynein and dynactin. Thus, RNA-bound Egl must overcome the autoinhibition of full-

length BicD that prevents CC1/2 from engaging with dynein and dynactin. Negative stain electron

microscopy in a contemporary study (Sladewski et al., 2018) lends further support to this notion; a

folded back conformation of full-length DmBicD (Stuurman et al., 1999), which is likely to represent

the autoinhibited state (Hoogenraad et al., 2001, 2003; Liu et al., 2013), was retained in the pres-

ence of Egl alone, but not detected in the presence of both RNA and Egl.

Our single-molecule analysis is also consistent with the activation of transport by RNA being

mediated by CC1/2. The recruitment of RNA to dynein by Egl/BICD2 is dependent on dynactin

(Figure 2B,C), as is also the case for the interaction of BICD2N with the motor complex

(McKenney et al., 2014). Furthermore, the ability of RNA-bound Egl/BICD2 to augment dynein’s

binding to microtubules (Figure 3C), as well as its velocity (Figure 3E) and run length (Figure 3F), is

also shared with BICD2N (McKenney et al., 2014). Very recently, it has been shown that a single

BICD2N dimer and a single dynactin can recruit one or two dynein complexes (Grotjahn et al.,

2018; Urnavicius et al., 2018), with the binding of the second motor increasing velocity and run

length (Urnavicius et al., 2018). The two-motor state is associated with a subtle difference in the

position of the N-terminal region of BICD2 CC1 (Urnavicius et al., 2018). Sladewski et al., 2018

provide evidence that two dynein motors are present in the majority of their transport RNPs, raising

the possibility that interaction of RNA-bound Egl with BICD2 modulates the velocity and run length

of transport complexes by favouring the two-motor-binding conformation of CC1.

An in vitro study of a yeast actin-based mRNA transport complex also reported stimulation of

processive movement by the RNA cargo (Sladewski et al., 2013) (although an independent investi-

gation of the same complex reported no influence of the RNA [Heym et al., 2013]). The mechanism

that we and Sladewski et al., 2018 propose for RNA-mediated activation of dynein – involving relief

of autoinhibition of an adaptor – is distinct from the one proposed for the yeast transport complex,

which is based on RNA-dependent dimerisation of monomers of the myosin motor

(Sladewski et al., 2013). Thus, multiple strategies may have evolved to co-ordinate the processivity

of cytoskeletal motors with the availability of an RNA cargo.

How could binding of RNA to Egl relieve BicD autoinhibition? Although a complex of Egl bound

to BicD can be purified in the absence of RNA following overexpression in insect cells, our data indi-

cate that it readily dissociates into constituent species. The interaction between Egl and BicD is

mediated by the first 79 amino acids of Egl and a 42-amino-acid region of BicD CC3

(Dienstbier et al., 2009; Liu et al., 2013). Although we cannot rule out additional mechanisms of

RNA-mediated activation of BicD, the most parsimonious explanation for our data is that the RNA

localisation signal promotes the occupancy of CC3 with Egl, thereby freeing CC1/2 to interact with

dynein and dynactin (Figure 8). It is not clear how binding of RNA-associated Egl (or Rab6GTP for

that matter) to BicD CC3 releases CC1/2. One possibility is that binding of Egl/Rab6GTP competes

directly with the interaction of CC3 with the N-terminal sequences. Alternatively, occupancy of the

Rab6GTP- and Egl-binding site in CC3 could induce changes in coiled-coil architecture that are prop-

agated along the molecule to release a discrete autoinhibitory interaction (Liu et al., 2013). The dis-

covery of crystal forms of CC3 with different coiled-coil registers (Liu et al., 2013; Terawaki et al.,

2015) lends support to the involvement of coiled-coil dynamics in the activation of BicD.

It is striking that the vast majority of active transport complexes contain two Egl polypeptides per

BicD dimer, even when the transport process is compromised by the omission of RNA. This finding

suggests that occupancy of both Egl-binding sites of BicD CC3 favours the relief of BicD autoinhibi-

tion and recruitment of dynein and dynactin. How could the RNA localisation signal stabilise the het-

erotetrameric Egl/BicD complex? Purified BicD was found not to interact directly with RNA

localisation signals (Dienstbier et al., 2009), suggesting that the RNA does not act as a bridge
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between Egl and BicD. Our single-molecule experiments are consistent with two Egl proteins being

able to associate with a single RNA molecule. A structure-function study of an Egl-binding RNA

localisation signal revealed two structurally-related helices that must be precisely registered with

each other in order to trigger mRNA transport (Bullock et al., 2010). Our SEC-MALS analysis indi-

cates that free Egl is monomeric (Figure 6—figure supplement 3). It is therefore tempting to specu-

late that the two helices of the RNA localisation signal are discrete binding sites for Egl monomers,

as this offers a simple explanation for how the RNA facilitates the association of two Egl molecules

with a BicD dimer. Alternatively, binding of the RNA localisation signal could induce a conforma-

tional change in Egl that stabilises the protein or increases its affinity for CC3, thereby favouring full

occupancy of BicD. High-resolution structures of RNA-protein complexes will be required to discrimi-

nate between these possibilities.

In addition to Rab6GTP-associated vesicles and Egl-associated mRNAs, BicD proteins are impli-

cated in transport of a diverse range of cellular cargoes and pathogens by dynein and dynactin

(Dharan et al., 2017; Hoogenraad and Akhmanova, 2016; Indran et al., 2010; Redwine et al.,

2017). It is conceivable that the cargo also promotes the activation of dynein in these systems by

scaffolding the association of two cargo-associated proteins with CC3. It is easy to envisage how this

could occur during membrane trafficking, when the diffusion of CC3-interacting proteins within the

membrane would greatly facilitate co-incident association. The finding that BicD CC3 can simulta-

neously bind two Rab6GTP proteins (Liu et al., 2013) is compatible with this scenario.

+ RNA: 

Occupancy of BicD with Egl favoured

BicD CC1/2 freed to bind dynein & dynactin

- RNA: 

Occupancy of BicD with Egl disfavoured

Autoinhibition of BicD

RNA Egl BicD Dynactin Dynein

Figure 8. Model for the mechanism of RNA-stimulated assembly of an active dynein-dynactin complex. The RNA

favours the interaction of Egl with CC3 of BicD, which promotes release of CC1/2 of BicD to interact with dynein

and dynactin. A single RNA molecule is shown in the transport complex as our data indicate that this scenario is

common.

DOI: https://doi.org/10.7554/eLife.36312.049
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Materials and methods

Key resources table

Reagent type (species)
or resource Designation Source or reference Identifiers Additional information

Recombinant DNA
reagent (Drosophila
melanogaster)

Egalitarian (Egl) cDNA Epoch Life Sciences Corresponding to
NCBI:NM_166623

Codon optimised for
Sf9 cell expression

Recombinant DNA
reagent (D. melanogaster)

Bicaudal-D (BicD) cDNA Epoch Life Sciences Corresponding to
NCBI:NM_165220

Codon optimised for
Sf9 cell expression

Recombinant DNA
reagent (Mus musculus)

Bicaudal-D2 (BICD2) cDNA Epoch Life Sciences Corresponding to
NCBI:NM_001039179

Codon optimised for
Sf9 cell expression

Recombinant DNA
reagent (Homo sapiens)

Dynein heavy chain (DHC)
cDNA

Epoch Life Sciences;
PMID:24986880

Corresponding to
NCBI:NM_001376.4

Codon optimised for
Sf9 cell expression

Recombinant DNA
reagent (H. sapiens)

Dynein intermediate chain 2
(DIC2) cDNA

Epoch Life Sciences;
PMID:24986880

Corresponding to
NCBI:AF134477

Codon optimised for
Sf9 cell expression

Recombinant DNA
reagent (H. sapiens)

Dynein light intermediate
chain 2 (DLIC2) cDNA

Epoch Life Sciences;
PMID:24986880

Corresponding to
NCBI:NM_006141.2

Codon optimised for
Sf9 cell expression

Recombinant DNA
reagent (H. sapiens)

Dynein light chain Tctex
(Tctex) cDNA

Epoch Life Sciences;
PMID:24986880

Corresponding to
NCBI:NM_006519.2

Codon optimised for
Sf9 cell expression

Recombinant DNA
reagent (H. sapiens)

Dynein light chain LC8
(LC8) cDNA

Epoch Life Sciences;
PMID:24986880

Corresponding to
NCBI:NM_003746.2

Codon optimised for
Sf9 cell expression

Recombinant DNA
reagent (H. sapiens)

Dynein light chain Roadblock
(Robl) cDNA

Epoch Life Sciences;
PMID:24986880

Corresponding to
NCBI:NM_141183.3

Codon optimised for
Sf9 cell expression

Recombinant DNA
reagent

pAceBac1 plasmid PMID:27165327

Recombinant DNA reagent pIDC plasmid PMID:27165327

Recombinant DNA
reagent (D. melanogaster)

hairy 3’UTR plasmid PMID:12743042

Recombinant DNA
reagent (D. melanogaster)

I-factor plasmid PMID:15992540

Sequence-based
reagent

ILS RNA
5’.AAUGCACACCUCCCUCGUCACU
CUUGAUUUUUCAAGAGCCUUCG
AUCGAGUAGGUGUGCA.3’

GE Dharmacon With or without 5’
Dy647 label

Sequence-based
reagent

ILS scram RNA
5’.AAAAUGUGGUGCACUAUCUU
CGUAUUCCAGUGCCACCGUGG
UCUAAUUCACUCGUCGCC.3’

GE Dharmacon With or without 5’
Dy547 label

Cell line
(Spodoptera frugiperda)

Sf9 ThermoFisher Scientific ThermoFisher Scientific:
11496015

Mycoplasma-free

Genetic reagent
(D. melanogaster)

P[tub-Egl::GFP] PMID:19515976 FLYB:FBal0230300

Genetic reagent
(D. melanogaster)

Sco/CyO P[actin5C-GFP] Bloomington Drosophila
Stock Center

FLYB: FBst0004533;
RRID:BDSC_4533

Antibody anti-GFP (mouse monoclonal) Sigma Aldrich Sigma-Aldrich:11814460001;
RRID:AB_390913

Mix of clones 7.1 and
13.1 (1:1000)

Antibody anti-D. melanogaster Dhc
(mouse monoclonal)

Developmental Studies
Hybridoma Bank;
PMID:10637305

DSHB:2C11-2;
RRID:AB_2091523

(1:1000)

Antibody anti-D. melanogaster p150-C-
term (rabbit polyclonal)

PMID:17325206 Raised against aa
1,073–1,280 (1:10,000)

Commercial assay, kit GFP-trap magnetic agarose
beads

Chromotek Chromotek:gtma-20

Commercial assay, kit Coomassie protein assay kit ThermoFisher Scientific ThermoFisher Scientific:
23200

Continued on next page
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Continued

Reagent type (species)
or resource Designation Source or reference Identifiers Additional information

Commercial assay, kit Full-Range Rainbow
prestained molecular
weight markers

GE Healthcare GE Healthcare:RPN800E

Commercial assay, kit Coomassie Instant Blue
protein stain

Expedeon Expedeon:ISB1L

Commercial assay, kit MEGAScript T7 transcription
kit

ThermoFisher Scientific ThermoFisher Scientific:
AM1333

Commercial assay, kit MEGAScript SP6 transcription
kit

ThermoFisher Scientific ThermoFisher Scientific:
AM1330

Chemical compound,
drug

Alexa488-UTP ThermoFisher Scientific ThermoFisherScientific:
C11403

Chemical compound,
drug

Cy3-UTP PerkinElmer PerkinElmer:NEL582001EA

Chemical compound,
drug

Cy5-UTP PerkinElmer PerkinElmer: NEL583001EA

Chemical compound,
drug

SNAP-Cell TMR-Star New England Biolabs NEB:S9105S

Chemical compound,
drug

SNAP-Surface Alexa Fluor
647

New England Biolabs NEB:S9136S

Chemical compound,
drug

PEG Rapp Polymere Rapp Polymere:103000–20

Chemical compound,
drug

Biotin-PEG Rapp Polymere Rapp Polymere: 133000-25-20

Chemical compound,
drug

PLL-g-PEG Susos AG Susos AG:PLL(20)-g[3.5]-
PEG(2)

Chemical compound,
drug

Pluronic-F127 Sigma-Aldrich Sigma-Aldrich:P2243

Chemical compound,
drug

Paclitaxel (taxol) Sigma-Aldrich Sigma-Aldrich:T1912

Chemical compound,
drug

GMPCPP Jena Bioscience Jena Bioscience:NU-405

Other, native protein Glucose oxidase Sigma-Aldrich Sigma-Aldrich:G2133

Other, native protein Catalase Sigma-Aldrich Sigma-Aldrich:C40

Other, native protein Streptavidin Sigma-Aldrich Sigma-Aldrich:S4762

Other, native protein a-casein Sigma-Aldrich Sigma-Aldrich:C6780

Other, native protein Porcine tubulin, unlabelled Cytoskeleton Inc. Cytoskeleton Inc:T240

Other, native protein Porcine tubulin,
biotin-conjugated

Cytoskeleton Inc. Cytoskeleton Inc:T333P

Other, native protein Porcine tubulin, HiLyte
488-conjugated

Cytoskeleton Inc. Cytoskeleton Inc:TL488M

Software, algorithm FIJI PMID:22743772 RRID:SCR_002285

Software, algorithm Prism Graphpad RRID:SCR_002798

Software, algorithm Sednterp T. Laue (University of
New Hampshire)

RRID:SCR_016253

Software, algorithm SEDPHAT 13b PMID:12895474 RRID:SCR_016254

Software, algorithm GUSSI PMID:26412649 RRID:SCR_014962

Software, algorithm ASTRA Wyatt RRID:SCR_016255
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Cell lines
Sf9 cells (ThermoFisher Scientific, Waltham, MA) have not been genetically profiled since purchase

but were grown in a tissue culture facility dedicated to insect cell expression. The cells were tested

for mycoplasma twice a year (MycoAlert Detection Kit, Lonza) and the results were always negative.

Cloning and recombinant protein expression
Sequences encoding Egalitarian and BicD proteins (Drosophila melanogaster Egl isoform B:

NM_166623, mouse BICD2:NM_001039179 and Drosophila melanogaster BicD:NM_165220) were

synthesised commercially (Epoch Life Sciences, Sugar Land, TX) with codons optimised for expres-

sion in Spodoptera frugiperda Sf9 cells, and cloned for use with the MultiBac expression system.

Where required, sequences encoding SNAPf tags for fluorescent labelling of protein complexes and

ZZ-LTLT tags for IgG-based affinity purification (Reck-Peterson et al., 2006) were added by Gibson

Assembly (NEB, Ipswich, MA) of PCR-amplified insert and backbone fragments. All constructs were

validated by sequencing of the entire open-reading frame. Genes encoding Egl::LTLT-ZZ or Egl::

SNAP-LTLT-ZZ were cloned downstream of the polh promoter of the pACEBac1 acceptor vector

(Sari et al., 2016), while genes encoding BICD2, SNAP::BICD2, or Drosophila melanogaster BicD

(DmBicD) were cloned downstream of the polh promoter of the pIDC donor vector (Sari et al.,

2016). The donor and acceptor vectors were recombined at defined Cre loci and incorporated into

the baculovirus genome for simultaneous co-expression of Egl and BicD proteins. The same strategy

was used for assembly of the gene encoding human DHC (tagged at the N-terminus with ZZ-LTLT-

SNAP) with those encoding other human dynein subunits, as described previously (Schlager et al.,

2014). The isoform composition of the assembled dynein complex is as follows: DHC:NM_001376.4;

DIC2:AF134477; DLIC2:NM_006141.2; Tctex:NM_006519.2; LC8:NM_003746.2 and Robl:

NM_014183.3. All recombinant proteins were expressed from the baculovirus genome in Sf9 cells as

described previously (Schlager et al., 2014). Following protein expression, cells were frozen in liquid

N2 and stored at �80˚C.

Site-directed mutagenesis
The Egldlc2pt mutations (S965K + S969R) (Navarro et al., 2004) were generated by whole-vector

PCR using a single pair of complementary mutagenic primers containing the desired sequence. Fol-

lowing amplification, the template DNA was digested with DpnI, and the amplicon ligated and prop-

agated by transformation into a-Select Silver Efficiency chemically competent E. coli (Bioline,

London, UK). The presence of the desired mutations, and no others, was confirmed by sequencing

of the entire open-reading frame.

Protein purification
All purification steps were performed at 4˚C. Native dynactin was purified from pig brain as

described previously (Schlager et al., 2014; Urnavicius et al., 2015). Dynein, BICD2, Egl/BICD2 and

Egl/DmBicD complexes were affinity purified via an N-terminal ZZ-LTLT on DHC (ZZ-LTLT-SNAP::

DHC) and BICD2 (ZZ-LTLT-BICD2), or a C-terminal LTLT-ZZ tag on Egl (Egl::LTLT-ZZ or Egl::SNAP-

LTLT-ZZ). Frozen Sf9 cells were thawed on ice. For dynein purification, cells were resuspended in

lysis buffer (50 mM HEPES pH 7.3, 100 mM NaCl, 10% glycerol, 1 mM DTT, 0.1 mM MgATP, 2 mM

PMSF, 1 x cOmplete EDTA-free protease inhibitor cocktail (Sigma-Aldrich, St Louis, MO)). For purifi-

cation of Egl/BICD2 and Egl/DmBicD complexes, lysis buffer was modified to include 500 mM NaCl

to disrupt any association of Egl with native RNA species. Lysates were generated by repeated pas-

sage of resuspended cells through a Wheaton dounce tissue grinder (Fisher Scientific, Hampton,

NH) and subsequently clarified by ultracentrifugation at 70,000 RPM (504,000 x g) using a Beckman

Coulter Type 70 Ti fixed-angle rotor in a Beckman Coulter Optima L-100 XP preparative

ultracentrifuge.

During centrifugation, IgG Sepharose 6 affinity resin (GE Healthcare Life Sciences, Little Chalfont,

UK) was applied to a gravity flow Econo-column (Bio-Rad, Hercules, CA) and washed twice with five

column volumes of lysis buffer (typically 5 ml of resin slurry was used). Clarified lysate was added

directly to the affinity matrix in the column, which was then sealed and agitated by gentle rolling for

3 hr. After incubation, the lysate was allowed to flow through the column by gravity and the retained

affinity matrix washed twice with five column volumes of lysis buffer and twice with five column
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volumes of TEV buffer (50 mM Tris-HCl pH 7.4, 150 mM KOAc, 2 mM MgOAc, 1 mM EGTA-KOH pH

7.3, 10% glycerol). If required, bound SNAP-tagged proteins were fluorescently labelled on-column

before proceeding to elution (see below). Bound proteins were eluted by overnight TEV cleavage of

the ZZ affinity tag using gentle rolling agitation and ~0.03 mg ml�1 TEV protease in a final volume of

15 ml TEV buffer. Eluted protein was recovered by gravity flow through a fresh Econo-column and

concentrated to ~1.5 mg ml�1 with a 100 kDa MWCO Amicon Ultra-4 centrifugal filter unit (Merck,

Darmstadt, Germany).

The affinity-purified protein complexes were further purified by FPLC-based gel-filtration chroma-

tography (AKTA Purifier and AKTA Micro, GE Healthcare Life Sciences) in GF150 buffer (25 mM

HEPES pH 7.3, 150 mM KCl, 1 mM MgCl2, 5 mM DTT, 0.1 mM MgATP, 10% glycerol) to remove

large aggregates, TEV protease, and other small contaminants. For SEC-MALS and SE-AUC experi-

ments, GF150 was modified to include 5 mM TCEP instead of DTT. For the dynein complex, a

TSKgel G4000SWxl with guard column (TOSOH Bioscience Ltd, Reading, UK) was used, while a

Superose 6 Increase 3.2/300 column (GE Healthcare Life Sciences) was used for BICD2, Egl/BICD2

and Egl/DmBicD complexes. Fractions containing the dynein complex were pooled and concen-

trated to ~1 mg ml�1. Fractions containing BICD2, Egl/BICD2 or Egl/DmBicD complexes were

pooled without an additional concentration step. All purified proteins were dispensed in aliquots for

single use, flash frozen in liquid N2, and stored at �80˚C. Protein concentrations were determined

using a Coomassie Protein Assay Kit (ThermoFisher Scientific). To assess purity, proteins were

resolved by SDS-PAGE using Novex 4–12% Bis-Tris precast gels (ThermoFisher Scientific) and MES-

SDS running buffer. Protein bands were visualised using Coomassie Instant Blue protein stain (Expe-

deon, Over, UK) and imaged with a ChemiDoc XRS + system (Bio-Rad). Protein sizes were evaluated

by comparison with Full-Range Rainbow prestained molecular weight markers (GE Healthcare Life

Sciences).

Fluorescent labelling of SNAP-tagged proteins
Fluorescent labelling of SNAP-tagged proteins with either SNAP-Cell TMR-Star (NEB) or SNAP-Sur-

face Alexa Fluor 647 (NEB) was performed on-column during affinity capture according to a previ-

ously described method that labels >95% of dynein dimers with at least one dye (Schlager et al.,

2014). For the mixed-labelling of SNAP::BICD2 and Egl::SNAP in Figure 7, an extended labelling

time of 4 hr and a further 10-fold excess of total SNAP-fluorophore reagent was used. This method

labelled 90% of SNAP-tagged polypeptides (81% of complexes containing two protein copies

labelled with two dyes) (Supplementary file 1). Labelling efficiency was determined with spectro-

photometry as previously described (Schlager et al., 2014). The ratio of SNAP-Surface Alexa Fluor

647 to SNAP-Cell TMR-Star that yielded approximately half of labelled polypeptides having one flu-

orophore and half the other fluorophore was determined empirically for different batches of the

dyes.

RNA synthesis and purification
Uncapped Cy5-hairy RNA or Cy3-hairy RNA was transcribed in vitro from a gel-purified PCR ampli-

con template using the MEGAscript T7 Transcription Kit (Ambion). The RNA is a 730-nt region of

the 3’UTR containing the RNA localisation signal (Bullock et al., 2003). Cy3-UTP or Cy5-UTP (Perki-

nElmer, Waltham, MA) was added to the transcription reaction together with a 4-fold excess of unla-

belled UTP in order to label the RNA at multiple internal sites. Alexa488-hairy RNA was synthesised

from the same template using a 1:9 ratio of Alexa488-UTP (ThermoFisher Scientific) to unlabelled

UTP. Cy5-I-factor RNA was synthesised from a linearised plasmid template using the MEGAscript

SP6 Transcription Kit (Ambion) and a 1:3 ratio of Cy5-UTP to unlabelled UTP. The RNA is 597-nt

long and contains the ILS localisation signal (Van De Bor et al., 2005). Following digestion of the

template DNA with DNase I, proteins were removed using phenol-chloroform-isoamyl alcohol (Ther-

moFisher Scientific). Synthesised RNA was separated from unincorporated nucleotides by two

rounds of purification with Sephadex G-50 size-exclusion RNA spin columns (Sigma-Aldrich), precipi-

tated with NH4OAc/ethanol and resuspended in nuclease-free dH2O. These procedures typically

yield RNA samples with an average of ~3 dyes per molecule. Where relevant, the mean number of

dyes per RNA molecule was determined by spectrophotometry (Supplementary file 3). ILS wild-

type (Van De Bor et al., 2005) and scrambled mutant RNAs (with and without a single 5’ DY547 or
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DY647 dye) were synthesised, decapped, deprotected, and HPLC purified by GE Dharmacon (Lafay-

ette, CO). An additional two A’s were included at the 5’ prime of synthetic RNAs to space the fluoro-

phore from the wild-type or mutant localisation signal. Sequences of the RNAs can be found in the

Key Resources Table. For SE-AUC and SEC-MALS experiments, RNAs were further purified by gel-fil-

tration chromatography in GF150 buffer (Superose 6 Increase 3.2/300, AKTA Micro (GE Healthcare)).

All RNA concentrations were determined by spectrophotometry.

Motility chamber preparation
Glass surfaces were prepared as described previously (Bieling et al., 2010). Motility chambers with

a volume of ~10 ml were assembled by adhering glass cover slips functionalised with PEG/Biotin-PEG

(Rapp Polymere, Tuebingen, Germany) to glass slides passivated with PLL-g-PEG (SuSos AG, Due-

bendorf, Switzerland) using three segments of double-sided tape distributed along the width of the

slide. The arrangement of tape yielded two parallel motility chambers per cover slip and allowed

side-by-side comparison of two different conditions on the same glass surface. For the experiment

presented in Figure 7—figure supplement 2, RNA samples were added to the imaging chambers

at this point. For all other assays, chamber surfaces were further passivated for 5 min with 1% (w/v)

Pluronic F-127 (Sigma-Aldrich) and washed twice with 20 ml chilled motility buffer (30 mM HEPES pH

7.3, 5 mM MgSO4, 1 mM EGTA pH 7.3, 1 mM DTT, 0.5 mg ml�1 BSA). Chambers were then incu-

bated with 2 mg ml�1 streptavidin (Sigma-Aldrich) for 5 min and again washed twice with 20 ml

motility buffer. To block any unpassivated surface, chambers were incubated with 20 mg ml�1
a-

casein (Sigma-Aldrich) for 5 min and washed twice with 20 ml motility buffer. The prepared chambers

were kept in a humidified container until the addition of microtubules and protein/RNA mixtures to

prevent desiccation of chamber surfaces.

Polymerisation and stabilisation of microtubules
Microtubules were polymerised from porcine tubulin (Cytoskeleton Inc., Denver, CO) and labelled

with fluorophores and biotin by stochastic incorporation of labelled dimers into the microtubule lat-

tice. Mixes of 1.66 mM unlabelled tubulin, 0.15 mM Hilyte488-tubulin, and 0.4 mM biotin-tubulin were

incubated in BRB80 (80 mM PIPES pH 6.85, 2 mM MgCl2, 0.5 mM EGTA, 1 mM DTT) with 0.5 mM

GMPCPP (Jena Bioscience, Jena, Germany) for 2–4 hr at 37˚C. Polymerised microtubules were pel-

leted in a room temperature table top centrifuge at 18,400 x g for 8.5 min, and washed once with

pre-warmed (37˚C) BRB80. After pelleting once more, the microtubules were gently resuspended in

pre-warmed (37˚C) BRB80 containing 40 mM paclitaxel (taxol; Sigma-Aldrich) and used on the same

day.

In vitro motility assay
Constituents of motility assays were incubated together on ice for 1–2 hr by dilution into motility

buffer to the following concentrations: 100 nM dynein, 200 nM dynactin, 100 nM Egl/BICD2 or Egl/

DmBicD (using the operational assumption of two Egl molecules and one dimer of the BicD protein

per complex), and 1 mM RNA. To ensure that all complexes assemble at the same ionic strengths,

KCl was supplemented to a final concentration of 50 mM during assembly. Just prior to imaging, sta-

bilised microtubules were immobilised in a prepared motility chamber for 5 min and subsequently

washed once with motility buffer that also contained 50 mM KCl, 1 mg ml�1
a-casein, and 20 mM

taxol. Assembly mixes were then diluted 40-fold (with the exception of the complexes in Figure 4A–

C, which were diluted 20-fold) in motility buffer that also contained 50 mM KCl, 1 mg ml�1
a-casein,

20 mM taxol, 2.5 mM MgATP, and an oxygen scavenging system (1.25 mM glucose oxidase, 140 nM

catalase, 71 mM 2-mercaptoethanol, 25 mM glucose) that greatly limits photobleaching

(Yildiz et al., 2003). Diluted assembly mixes were applied to immobilised microtubules in the motil-

ity chamber for imaging at room temperature (23 ± 1˚C). For the experiment documented in Fig-

ure 7—figure supplement 2, RNA only was added to the chamber and immediately washed with

motility buffer containing 50 mM KCl, 1 mg ml�1
a-casein, 20 mM taxol, 2.5 mM MgATP, and an oxy-

gen scavenging system.
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TIRF microscopy
For each chamber, a single multicolour acquisition of 500 frames was made at the maximum achiev-

able frame rate (~2 frames s�1) and 100 ms exposure per frame using a Nikon TIRF microscope sys-

tem controlled with Micro-Manager open-source acquisition software (Edelstein et al., 2010) and

equipped with a Nikon 100 � oil objective (APO TIRF, 1.49 NA oil). For the experiment documented

in Figure 7—figure supplement 2, single frames were captured with a 1 s exposure in each channel.

The following lasers were used: Coherent Sapphire 488 nm (150 mW), Coherent Sapphire 561 nm

(150 mW), Coherent CUBE 641 nm (100 mW). Images were captured with an iXonEM+ DU-897E

EMCCD camera (Andor, Belfast, UK), resulting in pixel dimensions of 105 x 105 nm. Multicolour

acquisitions used sequential image capture with switching of emission filters (GFP, Cy3, and Cy5

(Chroma Technology Corp., Bellows Falls, VT)).

Immunoprecipitation from Drosophila extracts
Extracts were generated from embryos of P[tub-Egl::GFP] (Dienstbier et al., 2009) or Sco/CyO P

[actin5C-GFP] flies (Bloomington Drosophila Stock Center: RRID:BDSC_4533), which contain genomi-

cally-integrated transgenes expressing Egl::GFP or GFP from the ubiquitous a-tubulin or b-actin pro-

moters, respectively. 0–12 hr embryos were dechorionated and flash frozen in liquid N2. 300 ml

chilled extraction buffer (25 mM HEPES pH 7.3, 50 mM KCl, 1 mM MgCl2, 2 mM DTT, 2x cOmplete

EDTA-free protease inhibitor) was added for each 100 mg of frozen embryos, followed by grinding

on ice with a motorised pellet pestle (ThermoFisher Scientific). The material was subjected to 25

passes in a Wheaton dounce tissue grinder (ThermoFisher Scientific) on ice before the addition of

200 ml chilled extraction buffer containing 0.5% Triton-X-100 per 100 mg of embryos. Following gen-

tle mixing, samples were incubated on ice for 5 min and passed through a 23G syringe five times

before clarification by two centrifugation steps (each 5 min at 3000 x g). 350 ml aliquots of clarified

extract were incubated with 20 units Recombinant RNase Inhibitor (Promega, Madison, WI) and

either 20 ml of a 6.7 mg/ml solution of unlabelled hairy RNA in dH2O or 20 ml dH2O for 30 min at 4˚C.
Magnetic beads coupled to GFP-binding protein (GFP-Trap MA (Chromotek, Martinsried, Germany))

were washed twice in PBS, followed by blocking of non-specific interaction sites with 1 mg ml�1

casein in PBS for 30 min at 4˚C. After two washes of the beads in extraction buffer, the equivalent of

30 ml of initial bead slurry was mixed with the embryo extracts with or without hairy RNA. Following

a 2 hr 30 min incubation at 4˚C, beads were washed fives times for 1 min in extraction buffer contain-

ing 0.05% Triton-X-100 (three washes in 400 ml of buffer and two washes in 1 ml buffer). Proteins

and RNA-protein complexes were eluted from the beads by the addition of 60 ml 1 x lithium dodecyl

sulphate (LDS) buffer (ThermoFisher Scientific)/50 mM DTT and incubation at 80˚C for 10 min.

Following electrophoresis and blotting onto PVDF membranes, proteins were detected using the

following primary antibodies: mouse a-GFP (mix of clones 7.1 and 13.1 (Sigma-Aldrich; RRID:AB_

390913); diluted 1:1000); mouse a-Dhc (clone 2C11-C [Sharp et al., 2000]; RRID:AB_2091523) (pro-

vided by the Developmental Studies Hybridoma Bank (University of Iowa, Iowa, IA) and diluted

1:1000) and rabbit a-p150-C-term ([Kim et al., 2007]; provided by V. Gelfand, Northwestern Univer-

sity; diluted 1:10,000). Secondary antibodies were conjugated to horseradish peroxidase, with signal

detected using the ECL Prime system (GE Healthcare) and Super RX-N medical X-ray film (FUJIFILM,

Bedford, UK).

Analytical ultracentrifugation
Duplicate independent preparations of 1 mg ml�1 Egl/BICD2 (2.4 mM assuming two Egl molecules

and a single BICD2 dimer per complex) in GF150 buffer (using 5 mM TCEP instead of 5 mM DTT) in

the presence or absence of a 10-fold molar excess of ILS RNA were pre-incubated on ice for at least

1 hr and subsequently diluted in GF150 (TCEP) to yield three samples with volumes of 110 ml and

protein concentrations of 1, 0.33, and 0.11 mg ml�1. These samples were loaded in 12 mm six-sector

cells and subjected to equilibrium sedimentation in an An50Ti rotor using an Optima XL-I analytical

ultracentrifuge (Beckmann) at 3200, 5600, and 10,000 rpm until equilibrium was reached at 4˚C. At

each speed, comparison of several scans was used to judge whether equilibrium had been reached.

Data were processed and analysed using SEDPHAT 13b ([Schuck, 2003]; RRID:SCR_016254) and

plotted with GUSSI ([Brautigam, 2015]; RRID:SCR_014962). The partial-specific volumes (v-bar),

McClintock et al. eLife 2018;7:e36312. DOI: https://doi.org/10.7554/eLife.36312 24 of 29

Research article Cell Biology

https://scicrunch.org/resolver/BDSC_4533
https://scicrunch.org/resolver/AB_390913
https://scicrunch.org/resolver/AB_390913
https://scicrunch.org/resolver/AB_2091523
https://scicrunch.org/resolver/SCR_016254
https://scicrunch.org/resolver/SCR_014962
https://doi.org/10.7554/eLife.36312


solvent density and viscosity were calculated using Sednterp (T. Laue, University of New Hampshire;

RRID:SCR_016253).

SEC-MALS
Samples of BICD2, Egl/BICD2 and Egl/DmBicD were resolved on a Superdex 200 HR10/300 analyti-

cal gel filtration column (GE Healthcare) at 0.5 ml min�1 in GF150 buffer (using 5 mM TCEP instead

of 5 mM DTT), GF75 buffer (contains 75 mM KCl with 5 mM DTT), or GF50 buffer (contains 50 mM

KCl with 5 mM TCEP). All measurements for BICD2 and Egl/BICD2 were made at room temperature,

whereas the relative instability of the Egl/DmBicD complex required measurements be made at 4˚C.
Where indicated, ILS RNA was added at a 10-fold molar excess over Egl/BICD2 or Egl/DmBicD

(based on an operational assumption of two Egl molecules and a dimer of the BicD protein per com-

plex) and incubated on ice for 1 hr prior to injection on the column. Samples lacking RNA were sub-

jected to the same incubation. Following SEC fractionation, eluted protein was detected on a Wyatt

Heleos II 18 angle light scattering instrument coupled to a Wyatt Optilab rEX online refractive index

detector in a standard SEC-MALS format. Heleos detector 12 at 99˚ was replaced with Wyatt’s QELS

detector for on-line dynamic light scattering measurements. Protein concentration was determined

from the excess differential refractive index based on 0.186 RI increment for 1 g ml�1 protein solu-

tion. Concentrations and observed scattered intensities at each point in the chromatograms were

used to calculate the absolute molecular mass from the intercept of the Debye plot, using Zimm’s

model as implemented in ASTRA software (Wyatt; RRID:SCR_016255). Fractions were analysed by

gel electrophoresis and staining with SYPRO Ruby (Lonza, Cambridge, UK) or Coomassie Instant

Blue according to the manufacturer’s instructions.

Image analysis and statistics
Kymographs were generated and analysed manually using FIJI ([Schindelin et al., 2012]; RRID:SCR_

002285). Typically, three independent chambers were imaged using protein complexes from at least

two independent assembly reactions for each experimental condition. The positions of microtubules

were determined by the fluorescent tubulin signal or a projection of RNA/protein signals over the

course of the movie. From each of these chambers, 5–10 microtubules were typically selected for

analysis with preference given to those that were longer and better isolated from adjacent microtu-

bules. No power analysis was used to determine sample size. Instead the sample size was chosen to

allow the identification of a range of effect sizes. To avoid the risk of subconscious bias, microtubules

were selected before visualising the motile properties of complexes on them.

Interactions of fluorescently labelled proteins and RNA with microtubules were scored as binding

events if they were �1.5 s (three frames) in duration and as processive events if they achieved pre-

dominantly minus end displacement >500 nm (five pixels) without significant diffusive behaviour.

These parameters were chosen in advance of image acquisition following discussion within the team

and all particles that fulfilled the criteria were analysed. As described previously (Schlager et al.,

2014), some motile complexes changed velocity during a run, leading us to calculate velocities of

individual constant-velocity segments. Run lengths were calculated from the total displacement of

individual particles regardless of changes in velocity or pauses. For both velocity and run length cal-

culations, only particles for which the entire run was observed or those with runs beginning >5 mm

from the microtubule minus end were considered. When velocities and run lengths were calculated

in the presence of RNA, only those complexes clearly associated with RNA were analysed. Although

plots of 1 - cumulative frequency for run lengths were fitted to a one-phase exponential decay for

visualisation purposes, statistical comparison of run lengths were performed on unfitted data. For

Figures 1D, 2C and 5B, ‘background’ RNA binding was quantified by generating kymographs from

random microtubule-free regions of the cover slip of lengths equal to the median microtubule length

of those used for analysis. For illustrative purposes, the movie and kymographs in the figures had

background subtracted in FIJI with a rolling ball radius of 50 pixels. All quantitative analysis was per-

formed on the raw data. The gel analysis tools of FIJI were used to quantify the SYPRO Ruby signal

in background-subtracted images (rolling ball radius of 50 pixels).

Statistical analyses, curve fitting, and data plotting were performed using Prism 7.0b (GraphPad;

RRID:SCR_002798). A two-tailed Student’s t-test or a two-tailed Welch’s t-test was used when com-

paring two groups where a Gaussian data distribution was expected, with the latter test employed
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in cases of unequal variance. A Mann-Whitney test was used to compare two groups with non-

Gaussian data distributions. An ANOVA test with Dunnett’s correction was used for multiple

comparisons.
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