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PURPOSE. We evaluate how deep learning can be applied to extract novel information such as
refractive error from retinal fundus imaging.

METHODS. Retinal fundus images used in this study were 45- and 30-degree field of view images
from the UK Biobank and Age-Related Eye Disease Study (AREDS) clinical trials, respectively.
Refractive error was measured by autorefraction in UK Biobank and subjective refraction in
AREDS. We trained a deep learning algorithm to predict refractive error from a total of
226,870 images and validated it on 24,007 UK Biobank and 15,750 AREDS images. Our model
used the ‘‘attention’’ method to identify features that are correlated with refractive error.

RESULTS. The resulting algorithm had a mean absolute error (MAE) of 0.56 diopters (95%
confidence interval [CI]: 0.55–0.56) for estimating spherical equivalent on the UK Biobank
data set and 0.91 diopters (95% CI: 0.89–0.93) for the AREDS data set. The baseline expected
MAE (obtained by simply predicting the mean of this population) was 1.81 diopters (95% CI:
1.79–1.84) for UK Biobank and 1.63 (95% CI: 1.60–1.67) for AREDS. Attention maps
suggested that the foveal region was one of the most important areas used by the algorithm to
make this prediction, though other regions also contribute to the prediction.

CONCLUSIONS. To our knowledge, the ability to estimate refractive error with high accuracy
from retinal fundus photos has not been previously known and demonstrates that deep
learning can be applied to make novel predictions from medical images.
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Uncorrected refractive error is one of the most common
causes of visual impairment worldwide.1 The refractive

error of the eye is determined by several factors. Axial
ametropia, which is ametropia related to ocular length, is
considered to be the main source of spherical refractive error.
An eye with an optical system too powerful for its axial length
is regarded as ‘‘myopic,’’ whereas the eye that is too weak is
known as ‘‘hypermetropic.’’ The crystalline lens and curvature
of the cornea balance the optical system of the eye and also
contribute to both spherical refractive error and astigmatic
properties of the eye.2

The prevalence of refractive error is increasing, particularly
myopic errors in Western and Asian populations.3 Although
largely treatable with prescription spectacles or contact lenses,
the vast majority of those affected by refractive error live in
low-income countries with minimal access to eye care and
therefore may not receive even this noninvasive treatment.4

Novel and portable instruments, such as smartphone
attachments to image the fundus5 or apps to measure visual
acuity,6 offer a low-cost method of screening and diagnosing
eye disease in the developing world. They have shown promise
in the assessment of diabetic retinopathy7 and the optic nerve8

but are limited by their requirement for expert graders to
interpret the images.

Artificial intelligence (AI) has shown promising results in the
diagnosis and interpretation of medical imaging. In particular a
form of AI known as deep learning allows systems to learn
predictive features directly from the images from a large data
set of labeled examples without specifying rules or features
explicitly.9 Recent applications of deep learning to medical
imaging have produced systems with performance rivaling
medical experts for detecting a variety of diseases, including
melanoma,10 diabetic retinopathy,11,12 and breast cancer lymph
node metastases.13,14 Deep learning can also characterize
signals that medical experts cannot typically extract from
images alone, such as age, gender, blood pressure, and other
cardiovascular health factors.15 Despite the high accuracy of
the algorithms produced by deep learning, the number of free
parameters of the system makes it difficult to understand
exactly which predictive features have been learned by the
system. The ability to infer human interpretable features from a
trained convolutional neural network is critical not only for
building trust in the system, but it also enables more targeted
hypothesis generation for understanding the underlying mech-
anism of disease. In fact, much of the previous work in
ophthalmic research and clinical practice has relied heavily on a
sophisticated process of guess and test: first generate rules or
hypotheses of what features are most predictive of a desired
outcome and then test these assumptions. With deep learning,
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one can first ask the network to predict the outcome of
interest and then apply attention techniques to identify the
regions of the image that is most predictive for the outcome of
interest.

In this study, a deep learning model16 was trained to predict the
refractive error from fundus images using two different data sets.
Refractive error, particularly axial ametropia, is associated with
characteristic changes in the fundus, including the relative
geometry and size of features at the retina due to the curvature
of the eye. This has been well studied, particularly in myopic eyes
that have a longer axial length.17 Attention techniques were used
to visualize and identify new image features associated with the
ability to make predictions. This method may help us interpret the
model to understand which retinal landmarks may contribute to
the etiology of ametropia.

METHODS

Data Sets

We used two data sets in this study: UK Biobank and Age-
Related Eye Disease Study (AREDS). UK Biobank is an ongoing
observational study that recruited 500,000 participants be-
tween 40 and 69 years old across the United Kingdom between
2006 and 2010. Each participant completed lifestyle question-
naires, underwent a series of health measurements, provided
biological samples,18 and were followed up for health
outcomes. Approximately 70,000 participants underwent
ophthalmologic examination, which included an assessment
of refractive error using an autorefraction device (RC5000;
Tomey Corp., Nagoya, Japan) as well as paired nonmydriatric
optical coherence tomography (OCT) and 45-degree retinal
fundus imaging using a three-dimensional OCT device (OCT-
1000 Mark 2; Topcon Corp., Tokyo, Japan). Participants who
had undergone any eye surgery, including bilateral cataract
surgery, were excluded from participating in the ophthalmo-
logic exams because this meant their primary refractive error
status could not be determined.

The AREDS was a clinical trial in the United States that
investigated the natural history and risk factors of age-related

macular degeneration and cataracts. The trial enrolled partic-
ipants between 1992 and 1998 and continued clinical follow-
up until 2001 at 11 retinal specialty clinics. The study was
approved by an independent data and safety monitoring
committee and by the institutional review board for each
clinical center. A total of 4757 participants aged 55 to 80 years
at enrollment were followed for a median of 6.5 years.19 As a
part of an ophthalmologic exam, the participants underwent
subjective refraction as well as color fundus photography at
baseline and at subsequent visits. Briefly, the protocol for
refraction involved retinoscopy and then further refinement
with subjective refraction. Thirty-degree–field color fundus
photographs were acquired with a fundus camera (Zeiss FF-
series; Carl Zeiss, Oberkochen, Germany) using a reading
center–approved transparency film.20 For each visit in which
refraction was performed, the corresponding macula-centered
photos were used in this study.

A summary metric for refractive error, known as the
spherical equivalent (SE), can be calculated using the formula
spherical power þ 0.5*cylindrical power. SE was available for
both the UK Biobank and AREDS data set, but spherical power
and cylindrical power were only available in the UK Biobank
data set.

Each data set was split into a development set and a clinical
validation set, which was not accessed during model develop-
ment (Table 1). The division of development and clinical
validation sets was done by subject.

Development of the Algorithm

A deep neural network model is a sequence of mathematical
operations, often with millions of parameters (weights),21

applied to input, such as pixel values in an image. Deep
learning is the process of learning the right parameter values
(‘‘training’’) such that this function performs a given task, such
as generating a prediction from the pixel values in a retinal
fundus photograph. TensorFlow,22 an open-source software
library for deep learning, was used in the training and
evaluation of the models.

The development data set was divided into two parts: a
‘‘train’’ set and a ‘‘tune’’ set. The tune set is also commonly

TABLE 1. Population Characteristics of Subjects in the UK Biobank and AREDS Data Sets

Characteristics

Development Set Clinical Validation Set

UK Biobank AREDS UK Biobank AREDS

Number of subjects 48,101 4,128 12,026 500

Number of images 96,081 130,789 24,007 15,750

Mean age at imaging visit(s), y (SD) 56.8 (8.2) 73.8 (4.92) 56.9 (8.2) 73.83 (5.22)

Sex, % male 44.9 44.3 44.9 42.8

Ethnicity Black, 1.2% Black, 3.7% Black, 1.3% Black, 4.0%

Asian/PI, 3.4% Asian/PI, 0.2% Asian/PI, 3.6% Asian/PI, 0.2%

White, 90.6% White, 95.7% White, 90.1% White, 95.2%

– Hispanic, 0.3% – Hispanic, 0.4%

Other, 4.1% Other, 0.2% Other, 4.2% Other, 0.2%

Unknown, 0.7% – Unknown, 0.8% –

Mean SE, diopters (SD) �0.38 (2.63) 0.67 (2.00) �0.34 (2.57) 0.60 (2.08)

Severe myopia, SE worse than �6.00 D 3.9% 0.7% 3.8% 0.6%

Moderate myopia, SE �3.00 D to �6.00 D 9.6% 4.0% 9.2% 5.4%

Mild myopia, SE up to �3.00 D 33.7% 24.1% 33.5% 23.8%

Mild hypermetropia, SE up to þ2.00 D 41.1% 50.1% 41.7% 47.0%

Moderate hypermetropia, SE þ2.00 to þ5.00 D 9.6% 19.9% 9.8% 21.8%

Severe hypermetropia, SE worse than þ5.00 D 1.3% 1.1% 1.2% 1.4%

Unknown SE 0.8% 0.0% 0.8% 0.0%

The SE values shown are the averaged value over both eyes in the case of the UK Biobank data set and the averaged value over both eyes across
all the visits in the AREDS data set. PI, Pacific Islander.
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called the ‘‘validation’’ set, but to avoid confusion with a
clinical validation set (which consists of data on which the
model did not train), we called it the tune set. The train, tune,
and clinical validation data sets were divided by subject.
During the training process, the parameters of the neural
network were initially set to random values. Then for each
image, the prediction given by the model was compared to the
known label from the training set and parameters of the model
were then modified slightly to decrease the error on that
image. This process, known as stochastic gradient descent, was
repeated for every image in the training set until the model
‘‘learned’’ how to accurately compute the label from the pixel
intensities of the image for all images in the training set. The
tuning data set was a random subset of the development data
set that was not used to train the model parameters, but rather
was used as a small evaluation data set for tuning the model.
This tuning set comprised 10% of the UK Biobank data set and
11% of the AREDS data set. With appropriate tuning and
sufficient data, the resulting model was able to predict the
labels (e.g., refractive error) on new images. In this study, we
designed a deep neural network that combines a ResNet16 and
a soft-attention23 architecture (Fig. 1). Briefly, the network
consists of layers to reduce the size of the input image, three
residual blocks16 to learn predictive image features, a soft-
attention layer23 to select the most informative features, and
two fully connected layers to learn interactions between the
selected features.

Prior to training, we applied an image-quality filter algorithm to
exclude images of poor quality, which excluded approximate 12%
of the UK Biobank data set. Because the vast majority of the AREDS
images were of good quality, we did not exclude any of the AREDS
images. The image-quality algorithm was a convolutional neural
net trained on 300 manually labeled images to predict image
quality in addition to other labels to increase model stability. The
model was tuned to exclude images that were of very poor quality
(e.g., completely over- or underexposed). Examples of excluded
images are in Supplementary Figure S1. Aggregate analyses of the
excluded images are in Supplementary Table S1. We preprocessed
the images for training and validation and trained the neural
network following the same procedure as in Gulshan et al.11 We
trained separate models to predict spherical power, cylindrical
power, and SE (Fig. 1).

We used an early stopping criteria24 based on performance on
the tuning data set to help avoid overfitting and to terminate
training when the model performance, such as mean absolute
error (MAE), on a tuning data set stopped improving. To further
improve results, we averaged the results of 10 neural network
models that were trained on the same data (ensembling).25

Network Architecture

Our network consists of a residual network16 (ResNet) to learn
predictive image features, a soft-attention layer to select and
understand the most important image features, and fully

connected layers to learn interactions between the selected
features.

Specifically, the residual network consists of one convolu-
tional layer, followed by three residual blocks with four, five,
and two residual units, respectively. Each residual unit has a
bottleneck architecture composed of three convolutional
layers. Such a residual architecture enables deeper networks
(in our case 34 layers), thereby learning more abstract features
and having higher prediction accuracy.16 Of importance, skip-
connections enable the network to bypass certain residual
units and reuse features from different abstraction levels and
resolutions, which enables the following attention layer to
access more precisely localized predictive image features. The
output of the residual network is a convolutional feature map
A, with Ai,j being the learned features for each spatial location
(i, j).

The following soft-attention layer predicts for each location
(i, j) scalar weights wi,j, which indicate the importance of
certain image regions and thereby enable understanding which
image features, for example, the fovea in retina images, are
most predictive. We generated individual attention maps by
visualizing the predicted feature weights wi,j as a heat map. We
also generated aggregated attention maps by averaging
predicted attention weights over multiple images. The output
of the soft-attention layer is a single feature vector obtained by
averaging Ai,j weighted by wi,j The soft-attention layer is
followed by two fully connected layers and an output layer,
which predicts the SE, as well as the spherical and cylindrical
component (Fig. 1).

Evaluating the Algorithm

We optimized for minimizing the MAE to evaluate model
performance for predicting refractive error. We also calculated
the R

2 value, but this was not used to select the operating
points for model performance. In addition, to further
characterize the performance of the algorithms, we examined
how frequently the algorithms’ predictions fell within a given
error margin (see Statistical Analysis section).

Statistical Analysis

To assess the statistical significance of these results, we used
the nonparametric bootstrap procedure: from the validation
set of N instances, we sampled N instances with replacement
and evaluated the model on this sample. By repeating this
sampling and evaluation 2000 times, we obtained a distribution
of the performance metric (e.g., MAE) and reported the 2.5 and
97.5 percentiles as 95% confidence intervals (CIs). We
compared the algorithms’ MAE to baseline accuracy, which
was generated by calculating the MAE of the actual refractive
error and the average refractive error.

To further assess statistical significance, we performed
hypothesis testing using a 1-tailed binomial test for the

FIGURE 1. Overview diagram. Fundus images form the input of a deep neural network consisting of three residual blocks, an attention layer to learn
the most predictive eye features, and two fully connected layers. Model outputs are SE, cylindrical component, and spherical component. Model
parameters are learned in a data-driven manner by showing input-output examples.
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frequency of the model’s prediction lying within several error
margins for each prediction. The baseline accuracy (corre-
sponding to the null hypothesis) was obtained by sliding a
window of size equal to the error bounds (e.g., size 1 for 60.5)
across the population histogram and taking the maximum of
the summed histogram counts. This provided the maximum
possible random accuracy (by guessing the center of the
sliding window containing the maximum probability mass).

Attention Maps

To visualize the most predictive eye features, we integrated a
soft-attention layer into our network architecture. The layer
takes as input image features learned by the preceding layers,
predicts for each feature a weight that indicates its importance
for making a prediction, and outputs the weighted average of
image features. We generated individual attention maps of
images by visualizing the predicted feature weights as a heat
map. We also generated aggregated attention maps by
averaging predicted attention weights over multiple images.

RESULTS

The baseline characteristics of the UK Biobank and AREDS
cohorts are summarized in Table 1. Participants in the UK
Biobank data set were imaged once. Subjects in the AREDS data

set were imaged multiple times during the course of the trial.
The subjects in the AREDS study were on average older than
those in UK Biobank (mean age: 73.8 years in AREDS versus
56.8 years in UK Biobank). Hypermetropia was more common
in the AREDS data set. The distribution of sex and ethnicity
were similar in the two groups.

Table 2 summarizes the performance of the model on the
clinical validation sets from UK Biobank and AREDS. The
model was trained jointly on both the UK Biobank and AREDS
data sets to predict the SE of the refractive error. Both UK
Biobank and AREDS data sets reported SE, but the individual
spherical and cylindrical components were available only in
the UK Biobank data set. The MAE of the model on UK Biobank
clinical validation data was 0.56 diopter (D) (95% CI: 0.55–
0.56) and 0.91 D (95% CI: 0.89–0.93) on the AREDS clinical
validation data set (see Table 2). The distribution of the
predicted versus actual values for both data sets are visualized
in Figure 2. The model’s predicted values were within 1 D of
the actual values 86% of the time for the UK Biobank clinical
validation set versus 50% for baseline accuracy. For AREDS, the
model’s prediction was within 1 D 65% of the time versus 45%
for baseline. The difference between the model and baseline
were significant at all margins of error (Supplementary Table
S1).

We further trained separate models to predict the compo-
nents of SE, spherical power, and cylindrical power, using the
UK Biobank data set because these values were not available in
the AREDS data set. The model trained to predict the spherical
component from retinal fundus images was quite accurate,
with an MAE of 0.63 D (95% CI: 0.63, 0.64), and R

2 of 0.88
(95% CI: 0.88, 0.89). In comparison, the model trained to
predict cylindrical power was not very accurate, with an MAE
of 0.43 (95% CI: 0.42, 0.43) and R

2 of 0.05 (95% CI: 0.04, 0.05)
(see Supplementary Table S2).

Attention maps were generated to visualize the regions on
the fundus that were most important for the refractive error
prediction. Representative examples of attention maps at
different categories of severities of refractive error (myopia,
hyperopia) are shown in Figure 3. For every image, the macula
was a prominent feature that was highlighted. In addition,
diffuse signals such as retinal vessels and cracks in retinal
pigment were also highlighted. There was not an obvious
difference in the heat maps for different severities of refractive

TABLE 2. MAE and Coefficient of Determination (R2) of Algorithm
Versus Baseline for Predicting the SE

Data Set

MAE R2

Model Baseline Model Baseline

UK Biobank,

n ¼ 23,520,

0.56 1.81 0.90 0.0

95% CI [0.55, 0.56] [1.79–1.84] [0.90, 0.91] [0.0, 0.0]

AREDS,

n ¼ 7,635

0.91 1.63 0.69 0.0

95% CI [0.89, 0.93] [1.60–1.67] [0.66, 0.71] [0.0, 0.0]

Baseline metrics are calculated by predicting mean values of the
validations set. All the values are in units of diopters.

FIGURE 2. Model performance in predicting SE on the two clinical validation sets. (A) Histogram of prediction error (Predicted � Actual) UK
Biobank data set (blue) and AREDS data set (red). (B) Scatter plot of predicted and actual values for each instance in the validation sets. Black

diagonal indicates perfect prediction, where y ¼ x.
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error. We averaged and merged the attention maps for 1000
images at different severities of refractive error and found that
these observations also generalized across many images
(Supplementary Figs. S2 and S3). To ensure that the attention
heat maps involved the fovea and not simply the center of the
image, we also automatically aligned the images on the fovea
and attained the same result (Supplementary Fig. S4). Given
the importance of the fovea in the model predictions, we also
investigated the effect that eye disease may have on the
accuracy of predictions. The UK Biobank data set contained
mostly healthy eyes and so could not be used for this analysis.
Using the AREDS data set, we subdivided the subject
population based upon whether or not the subject had
cataract surgery and/or AMD. We found a small but significant
improvement in the accuracy of the model when we excluded
subjects who had cataract surgery and/or AMD from the
analysis (Supplementary Table S3).

DISCUSSION

In this study, we have shown that deep learning models can be
trained to predict refractive error from retinal fundus images
with high accuracy, a surprising result given that this was not a
prediction task thought to be possible from retinal fundus
images. Both individual and mean attention maps, which
highlight features predictive for refractive error, show a clear
focus of attention to the fovea for all refractive errors. While
attention maps show anatomical correlates for the prediction
of interest, they do not establish causation. This is a general
limitation of existing attention techniques. In addition, we
averaged a large set of attention maps to examine them in
aggregate. Because it is possible that predictive anatomical
features might vary in their location in the images, it is possible
these activations averaged out in the mean attention map.

However, these maps may be a way to generate hypotheses in a
nonbiased manner to further research into the pathophysiol-
ogy of refractive error.

For example, the consistent focus on the fovea shown in the
attention maps may be an avenue for further myopia research.
Given that fundus images are generally centered on the fovea,
perhaps this result is associated with the spatial relationship
between the fovea and the other retinal landmarks. However, it
is also possible that the appearance of the fovea itself holds
information about refractive error. In pathological myopia, the
fundus may display characteristic clinical signs that involve the
macula.26 However, to the best of our knowledge, other than in
pathological myopia, there is no prior literature exploring the
relationship between the foveal architecture imaged using a
fundus camera and refractive error or axial length. Previous
work with higher resolution using OCT has shown some
evidence for anatomical difference in the retinal thickness or
contour at the fovea with varying refractive error.27 Although
there is some evidence for greater spacing of foveal cone
photoreceptors in myopic eyes,28 this is unlikely to be resolved
in retinal fundus images. One hypothesis may be that there is a
variation in the reflectance or focus of the fovea with varying
refractive error when imaged using a fundus camera. When
visualized using an ophthalmoscope, the foveal light reflex
becomes dimmer and less conspicuous with increasing age29

or presence of macular disease. However, the ‘‘brightness’’ of
this reflex and its relationship with refractive error has not
been studied. Another hypothesis may be that there is a
relationship between color or macular pigment at the fovea
and refractive error; however Czepita et al.30 found no
association. The density of pigment is usually derived using
psychophysical techniques, but fundus photographs captured
using blue and green illumination have shown promise in
evaluating density.31

FIGURE 3. Example attention maps for three left myopic (SE worse than�6.0), neutral (SE between�1.0 and 1.0), and hyperopic (SE worse than
5.0) fundus images from UK Biobank (two top rows) and AREDS (two bottom rows). Diagnosed SE is printed in the bottom right corner of fundus
images. Scale bar on right denotes attention pixel values, which are between 0 and 1 (exclusive), with the sum of all values equal to 1.
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The attention maps also suggest that features outside the
foveal region contribute to the prediction to a lesser extent,
including a diffuse signal from the optic nerve head (ONH) and
retinal temporal vessel arcades from their exit from the optic
nerve as they traverse across the fundus. The extent of
association between optic disc size and refractive error is
unresolved due to inconsistent findings among studies. Some
studies have shown a weakly significant increase in optic disc
size with increasing refractive error toward myopia,32,33

whereas a Chinese population-based study found that the
optic disc size is independent of refractive error within the
range of �8 to þ4 D.34 Varma et al.35 found no association
between refractive error and optic disc size. Beyond size, the
appearance of the optic disc may vary with refractive error, and
eyes with axial myopia may display tilted optic discs.36 Myopic
refractive errors have also been associated with narrower
retinal arterioles and venules and increased branching,37 and
reduction in retinal vascular fractal dimensions.38 In addition,
the maps also looked very similar for images with hyperme-
tropia and myopia, suggesting that the neural network is
leveraging the same regions for predictions over a spectrum of
refractive errors.

While each landmark may individually contribute to the
prediction, the relationship between retinal landmarks could
be equally the predictive feature. The spatial relationships
between anatomical features in relation to ametropia have
been studied extensively.39–41 As the most predictive features
of the model are the fovea and ONH, a spatial relationship
between these two points, as well as other landmarks, should
be considered. Baniasadi et al.42 found that a combination of
parameters related to the ONH, namely the interartery angle
between superior and inferior temporal arteries, ONH tilt and
rotation, and the location of the central retinal vessel trunk had
a strong association with SE. Although both the ONH and
vessels are clearly highlighted in both the averaged attention
maps, the strength of attention to these regions is difficult to
determine in the averaged attention maps as the signals from
the ONH and retinal vessels were much more diffuse due to the
interindividual variance of their locations. Additionally, the
difference in this signal between myopic and hypermetropic
eyes is not immediately discernible. Analyzing the attention
maps and the spatial relationships between the predictive
regions at eye level would be an area for further study.

We found that the MAE of our joint model on the Biobank
data set was lower than on the AREDS data set and that there
potentially may be greater error in the SE prediction at the
extremes of refractive error. These observations may be due to
a variety of factors. Firstly, the camera used to image the fundus
in the UK Biobank study was a wider 45-degree field camera
that captured more peripheral information than did the 30-
degree field of the Zeiss camera used in the AREDS data set.
This results in the optic disc or retinal vessels (shown to be
important in the UK Biobank model) not always being visible
in the acquired image. Secondly, the AREDS data set has far
fewer images, and small training sets generally result in a
decrease in generalizability and performance in the clinical
validation set. In addition, many images in the AREDS data set
exhibited macular pathology of some form that may add noise
to the images, resulting in more widespread areas of attention
(Supplementary Fig. S3). Given the importance of the foveal
region in prediction refractive error, this might have decreased
the model’s performance on the AREDS data set. Thirdly, the
refractive error was determined by two different methods in
each data set: autorefraction in the Biobank data set versus
subjective refraction in AREDS. We believe that the smaller
capture field, preexisting eye pathologies, and smaller data set
combined lowered the predictive power in the AREDS data set
relative to the UK Biobank. However, future studies would be

required to test and quantify the influence that each of these
factors has on model accuracy.

The model has high accuracy when predicting spherical
power but not when predicting cylindrical power. This is
expected as astigmatism is the result of toricity of the cornea
and/or the crystalline lens, information that is unlikely to be
held in retinal fundus images. As described earlier, retinal
features associated with refractive errors may be related to
differing axial lengths. Therefore, the high accuracy of
prediction of SE is likely predicting axial ametropia. Spherical
power related to lens ametropia is not known to have any
specific relationship with retinal anatomy. However, lens
phenomena, such as the hypermetropic shift, that is, the
increasing thickness of the crystalline lens due to aging, may
affect the focus settings of the camera and consequently result
in magnification effects of the image. Wang et al.43 suggested
that focus and magnification effects are age dependent after
ages above 42 years, related to presbyopic changes in the lens.
We found that the predicted SE was slightly underestimated in
the AREDS group, particularly in the hypermetropic eyes. This
group was significantly older (approximately 20 years older on
average) than the UK Biobank group and therefore may have
experienced presbyopia with a hypermetropic shift. As this is
lens ametropia as opposed to axial ametropia, the model was
unable to identify this. Unfortunately, axial length data was
unavailable for either data set to investigate the hypothesis that
its relationship with spherical refractive error is the source of
the prediction. Future studies with a data set that includes axial
length would help elucidate this question.

Additional future work should include data sets from even
more diverse populations, such as different ethnicities, ages,
and comorbidities. The model was trained and validated on a
combination of two data sets. It would be more desirable to
have a third data set that was taken in a completely different
setting for additional validation. In addition, the UK Biobank
data set excluded patients who had prior eye surgery.
Additional work could include adding these patients back in
to the data to see its effects on model performance.

Portable fundus cameras such as PEEK44 are becoming less
expensive and more common for screening and diagnosis of
eye disease, particularly in the developing world. With further
validation, it may be possible to use these increasingly
abundant fundus images to efficiently screen for individuals
with uncorrected refractive error who would benefit from a
formal refraction assessment. However, currently, autorefrac-
tion is no more difficult to perform than fundus photography,
so the findings of this study are unlikely to change the role of
autorefraction in most clinical settings.

Nevertheless, the methods and results of this article
represent new approaches to biological and ophthalmologic
research. The development of highly accurate automated
classification algorithms can aid in research that involves
large-scale retrospective data sets. For example, this algorithm
could help in epidemiologic research of myopia from large
fundus image data sets that do not have refractive error labels.
The attention map results produced by this study may aid in
deeper understanding of the biology and pathophysiology of
myopia. Lastly, the process used in this study—leveraging deep
learning to first directly predict the outcome or phenotype of
interest and then attention techniques to localize the most
predictive features—could be a method that can be applied to
catalyze scientific research broadly in medicine and biology.
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