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ABSTRACT
With the advent of large-scale weak lensing surveys there is a need to understand how realistic,
scale-dependent systematics bias cosmic shear and dark energy measurements, and how they
can be removed. Here, we show how spatially varying image distortions are convolved with the
shear field, mixing convergence E and B modes, and bias the observed shear power spectrum.
In practise, many of these biases can be removed by calibration to data or simulations. The
uncertainty in this calibration is marginalized over, and we calculate how this propagates into
parameter estimation and degrades the dark energy Figure-of-Merit. We find that noise-like
biases affect dark energy measurements the most, while spikes in the bias power have the
least impact. We argue that, in order to remove systematic biases in cosmic shear surveys
and maintain statistical power, effort should be put into improving the accuracy of the bias
calibration rather than minimizing the size of the bias. In general, this appears to be a weaker
condition for bias removal. We also investigate how to minimize the size of the calibration set
for a fixed reduction in the Figure-of-Merit. Our results can be used to correctly model the effect
of biases and calibration on a cosmic shear survey, assess their impact on the measurement of
modified gravity and dark energy models, and to optimize survey and calibration requirements.

Key words: methods: data analysis – methods: statistical – cosmological parameters
– large-scale structure of Universe.

1 IN T RO D U C T I O N

The observed accelerated expansion of the Universe presents cos-
mology with one of its biggest challenges. While this acceleration
can be accommodated by the inclusion of a classical cosmological
constant, quantum corrections from vacuum fluctuations are un-
controlled, leading to runaway values which exceed the observed
energy–density by many orders of magnitude. A compelling fun-
damental solution is so far elusive, but cosmologists have proposed
a large number of alternative low-energy effective theories, called
dark energy models if they inhabit the matter sector and modified
gravity if they are in the gravity sector, which aim to cast light on
these new forces. While solving the cosmic acceleration problem,
such theories alter the growth of structure in the Universe leaving
traces of these new forces which may be detectable in galaxy clus-
tering and weak lensing surveys. High accuracy observations are
now needed to test the subtle differences in these dark energy and
modified gravity theories to constrain the wide range of possibilities
and to point the way to a more fundamental theory.

Such high accuracies come from large-scale ground and space-
based surveys, which will provide statistical accuracy but will be

� E-mail: ant@roe.ac.uk

limited by their systematic biases. Current weak lensing surveys,
such as the VST-Kilo-Degree Survey (KiDS;1 Kuijken et al. 2015),
the Dark Energy Survey (DES;2 Jarvis et al. 2016), Hyper-Suprime
Cam (HSC;3 Mandelbaum et al. 2018), and future surveys, such as
LSST,4 Euclid,5 and WFIRST,6 aim to control their systematics to
within the bounds set by the statistical uncertainty. The origin of
these biases, and the accuracy to which they can be removed, is
being studied at every step of the data analysis, from observation to
parameter estimation.

While much effort has gone into trying to correct for biases in
weak lensing, the primary approach for correcting biases in cur-
rent weak lensing is calibration against simulations of the surveys.
In CFHTLenS (Heymans et al. 2012; Kilbinger et al. 2013), shear
calibration is carried out by estimating the calibration factors as a
function of image property from mock weak lensing surveys, and
using them to calibrate the 2-point correlation function. In KiDS

1 http://www.astro-wise.org/projects/KIDS
2 http://www.darkenergysurvey.org
3 http://www.naoj.org/Projects/HSC/index.html
4 http://www.lsst.org
5 http://www.euclid-ec.org, Laureijs, et al. (2011).
6 http://www.stsci.edu/wfirst/
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(Kuijken et al. 2015, Hildebrandt et al. 2017), the shear calibration
terms are assumed to be constant and estimated by comparing to
simulated mock weak lensing surveys (Fenech Conti et al. 2017).
These constant multiplicative bias factors are applied to the shear
catalogue, and the calibrated catalogue used to estimate the weak
lensing 2-point correlation function (Hildebrandt et al. 2017). Cali-
bration errors are propagated into the parameter estimation assum-
ing a constant error model. The shear 2-point correlation function is
in turn used to estimate the shear power spectrum (van Uitert et al.
2018). In the DES survey (Jarvis et al. 2016), calibration factors are
also derived from mock surveys and applied directly to the 2-point
correlation function.

Theoretical investigations into the effect of systematic biases
on weak lensing power spectra has been developing over the last
decade (Ishak et al. 2005; Bernstein 2006; Huterer et al. 2006; Knox
et al. 2006; Taylor et al. 2007; Amara & Réfrégier 2008; Kitching,
Taylor & Heavens 2008; Paulin-Henriksson et al. 2008; Kitching
et al. 2009; Bernstein & Huterer 2010; Kitching et al. 2012; Crop-
per et al. 2013; Massey et al. 2013; Cardone et al. 2014; Kitching
et al. 2016). The effect of scale-dependent systematic biases on
cosmic shear power was first discussed by Huterer et al. (2006),
who studied the impact of a constant multiplicative bias and scale-
dependent additive image distortions on a range of cosmological
parameters, along with the effect of biases in photometric redshifts.
Amara & Réfrégier (2008) investigated the bias due to image distor-
tions arising from a constant multiplicative bias and scale-dependent
additive bias, exploring a number of functional forms. They also in-
vestigated the effect of redshift-dependence in these biases. These
studies found that a constant multiplicative bias on shear should
be kept below ∼10−3 and any additive bias shear power should be
below ∼10−10 to prevent the bias dominating over noise.

Given that the origin of systematics was still poorly understood
Kitching et al. (2009) argued that, instead of choosing a fixed func-
tional form for systematics, one should average over all possible
functional forms in a Monte Carlo approach. Building on the work
of Paulin-Henriksson et al. (2008), who showed how constant biases
in the point spread function (PSF) affect the measurement of shear,
Massey et al. (2013) showed how inaccuracies in the PSF, the mea-
surement of galaxy shapes and weighting, and the effect of charge
transfer inefficiency (CTI) propagate into the bias and error on the
estimated shear. Using the shear power spectrum bias formalism
introduced by Kitching et al. (2012) in the GREAT10 Challenge,
with both scale-dependent multiplicative and additive shear power
bias terms, Massey et al. (2013) averaged over all functional forms
for the scale-dependence of the biases and, based on their effects on
the dark energy Figure-of-Merit (DEFoM), constrained their am-
plitude for space-based weak lensing surveys. Cropper et al. (2013)
subsequently took these constraints and propagated them back to
constraints on individual sources of bias in shear measurement,
assuming the bias and uncertainties were independent of scale.

In order to gain a better understand of the source of scale-
dependence in image distortions, Kitching et al. (2016) simulated
systematics in the PSF, CTI and shear estimation, and measured
their effect on the shear power spectrum. Using the multiplicative
and additive bias power formalism, they propagated this into the
bias and the covariance on measured cosmological parameters and
found that a survey could minimize the impact of bias by random-
izing the observing strategy so that the systematic power became
noise-like. They also investigated the removal of sharp spikes in the
shear power due to discontinuities on CCD and field-of-view scales.

These simulations demonstrated that many known sources of
image distortions will give rise to scale-dependent multiplicative

and additive biases. Variations in the shear distortion on the sky
correspond to a convolution of the shear signal with the systematic
bias in the Fourier domain, rather than a simple multiplicative factor,
and so the shear power spectrum will be convolved with the bias
power. As a result, if we want to understand how a given potential
bias at the image-level propagates into the shear power, or want to
know how to forward-model a bias in order to remove it at the level
of power spectrum, improved modelling of the shear power spectra
is needed. Here, we present a new formalism which accounts for
this.

Having identified this convolution-bias effect, we need to know
how these biases propagate into the estimation of cosmological
parameters and, for survey design, the DEFoM. Past studies have
derived constraints on bias effects by comparing the bias in the fi-
nal cosmological parameter, or Figures-of-Merit, with the expected
random error. This assumes that new algorithms can be developed
which will mitigate these biases to the level required. However, as
we have discussed, the standard approach for data analysis is to cali-
brate biases with simulated surveys. In this case the relevant factor is
the accuracy to which the calibration can be carried out and how this
error propagates into dark energy studies. Here, for the first time, we
propagate the uncertainty in bias calibration through to parameters
and derive requirements based on calibration. As calibration relies
on accurate simulations or external data sets we also assess the size
of the calibration set required to reach a given accuracy.

The layout of this paper is as follows. We develop a formalism
to study how angular variation in systematics arising from image
distortions convolve the shear and the inferred convergence field in
Section 2, and propagate them into the cosmic shear power spectrum
in Section 3. We study how realistic biases in the shear power
spectrum can be removed by calibration, marginalizing over the
calibration uncertainty. The effect of this on parameter estimation
and the impact on the DEFoM is explored in Section 4. Taking
realistic examples of image distortions we show how to optimize
the constraints on the amplitudes of a set of systematic effects
for a given shear survey, to minimize the effect on cosmological
parameters in Section 5.

2 W EAK LENSI NG BI AS

The response of a measurement of cosmic shear, γ̂ , to the true shear
field, γ , in the presence of image distortions can be characterized
by a linear model with a local multiplicative factor, m, an additive
term, c (Heymans et al. 2006; Massey et al. 2007), and a non-local
convolution term, h, such that

γ̂ = (1 + m)γ + h ∗ γ + c, (1)

where the shear and bias terms all have angular dependence. The
multiplicative factor, m, is a spin-2 field producing a change in the
amplitude and a local rotation of the shear field, while the addi-
tive term is an arbitrary spin-2 shear-like distortion. A multiplica-
tive bias can arise due to miscalibration of the shear measurement
caused, for example, by incorrect modelling of the ellipticity or size
of the PSF, residual CTI and noise-bias or shear estimation effects.
The spin-2 multiplication bias can be written m(θ ) = m0(θ)ei2φm(θ),

(Kitching, Taylor & Heavens 2008) where φm(θ ) is the local rota-
tion of the phase and m0(θ) is a local, scalar modulation of the
shear amplitude. Massey et al. (2007) and Kitching et al. (2012)
investigated a quadratic distortion term, (1 + q)γ 2, but found that
such second-order terms were negligible. The additive bias, c, can
arise due to systematics in the ellipticity and shape of the PSF, or
from CTI leaving residual streaks in the image. The convolution
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term, h, represents a distortion which depends on the shear field at
other positions, which may arise due to close packing or blending
of galaxy images, and is again a spin-2 field.

Fourier transforming the measured shear field on a flat sky, we
find

γ̂ (�) = γ (�) +
∫

d2�′

(2π )2
m(� − �′)γ (�′) + c(�), (2)

where the spatially varying multiplicative bias convolves the shear
field. For simplicity we have absorbed the convolution distortion,
h, into the multiplicative bias, m. The shear field can also be de-
composed on the full curved sky in spherical harmonics (Brown,
Castro & Taylor 2005; Castro, Heavens & Kitching 2005), but for
simplicity we use a flat-sky approximation here. The shear signal
can then be decomposed into even-parity convergence modes, κ ,
and odd-parity β modes7 by a rotation of the shear in the Fourier
domain, κ(�) + iβ(�) = e−2iϕ�γ (�), where ϕ� is the angle between
the wavevector, �, and an arbitrary axis on the sky. Assuming only
a scalar multiplicative bias, m0, the measured κ and β modes are
distorted by


κ(�) =
∫

d2�′

(2π )2
m0(� − �′)

(
κ(�′) cos 2ϕ��′ − β(�′) sin 2ϕ��′

)
+ cκ (�), (3)


β(�) =
∫

d2�′

(2π )2
m0(� − �′)

(
β(�′) cos 2ϕ��′ + κ(�′) sin 2ϕ��′

)
+ cβ (�), (4)

where 
κ = κ̂ − κ and 
β = β̂ − β are the changes in the con-
vergence and β fields, and ϕ��′ = ϕ� − ϕ�′ is the angle between the
Fourier modes. We have also decomposed the additive bias into
even- and odd-parity modes, where cκ (�) + icβ (�) = e−2iϕ� c(�).
The mode-mixing effect of the full spin-2 multiplicative bias is
slightly more complex and we present full expressions in Ap-
pendix A. As discussed by Kitching et al. (2012), the effect of
a spatially varying multiplicative bias is similar to that of a survey
mask in the Pseudo-Cl (PCL) power spectrum formalism (Hivon
et al. 2002) for CMB polarization (Brown, Castro & Taylor 2005),
and so we can easily generalize our results to a masked survey.

3 C OSMIC SHEAR POWER

The correlations of the different Fourier modes of the shear fields,
(X, Y) = (κ , β), for different � modes is given by

〈X(�)Y ∗(�′)〉 = (2π )2CXY (�) δD(� − �′), (5)

where CXY(�) is the convergence, β-mode and cross-power spec-
trum. We assume all fields are statistically homogeneous and
isotropic on a flat sky, and δD(�) is the Dirac delta function. The
measured convergence power spectrum on a flat, finite patch of sky
of area, A, is given by

Ĉκκ (�) = 1

A

〈|κ̂(�)|2〉 , (6)

where we have approximated the zero-lag delta function by δD(0) =
A/(2π )2.

7 In this paper, we shall refer to B modes in lensing as β modes, where E
modes correspond to the convergence field, κ .

We denote the systematic bias fields on the sky by Z(θ ) =
(m, cκ, cβ ) for each of the multiplicative/convolution fields and the
even- and odd-parity modes of the additive biases. These biases
can be split into a constant term across the survey, Z0 = bZ, a spa-
tially varying deterministic bias, 
Z(θ ), around the mean which
can arise from variations which can be modelled by a template, and
a stochastic term, δZ(θ ), that arise from either noise in the mea-
surement of the bias or other indeterminate aspects of the bias that
can only be modelled statistically (e.g. Massey et al. 2013); hence
Z = bZ + 
Z + δZ. The correlations of the Fourier modes of the
fluctuating part of the bias are given by

〈δZ(�) δZ∗(�′)〉 = (2π )2CZ(�)δD(� − �′), (7)

where CZ(�) is the power spectrum of the bias fluctuations. The
assumption of statistical isotropy can be relaxed to allow for
anisotropic effects such as, for example, from CTI or other effects
aligning with the CCD pixels, and with other directional depen-
dences.

Taking equations (3) and (4), and using equations (5) and (7),
we can calculate the correlators of the measured convergence and
β modes. We present the full correlations of the observed Fourier
modes of the convergence and β fields for an arbitrary spin-2 mul-
tiplicative bias in Appendix B, equations (B1) to (B3), from which
we see that the observed convergence power is

Ĉκκ (�) = (1 + bm)2 Cκκ (�)

+
∫

d2�′

(2π )2
G(� − �′)Cκκ (�′) + Aκκ (�), (8)

where bm is a constant multiplicative bias, the convolution kernel
is

G(� − �′) =
(

1

A
|
bm(� − �′)|2 + Cm(� − �′)

)
cos2 2ϕ��′ , (9)

and the additive bias is Aκκ (�) = |
bcκ (�)|2/A + Ccκ (�). This re-
lationship between the observed and true convergence is a central
result of our paper. Any constant additive bias appears only in
the � = 0 mode and can be ignored. Similar expressions for the
β-mode power spectrum are derived in Appendix C. From equation
(8) we see that the constant bias over the survey, bm, factors out
into a multiplicative bias of the convergence power spectrum. The
scale-dependence of the multiplicative bias, 
bm(�), comes in only
through the convolution term at second-order, and is weighted by the
inverse survey area. Finally, the power spectrum of the indetermi-
nate stochastic bias, Cm(�), is also convolved with the convergence
power spectrum, while the additive power is composed of the square
of the additive shear bias variation and its power spectrum.

In a number of applications to data (e.g. Hildebrandt et al.
2017), and in theoretical models (e.g. Huterer et al. 2006; Amara &
Réfrégier 2008) the multiplicative bias is assume to be a constant
while the additive bias may have scale-dependence. If we model
the multiplicative bias by a constant mean value, bm, and random
fluctuations about this with variance σ 2

m, but keep the additive bias
as scale dependent we find

Ĉκκ (�) =
(

(1 + bm)2 + 1

2
σ 2

m

)
Cκκ (�) + Aκκ (�). (10)

In this case the convolution by the spatially varying multiplicative
bias has become a constant multiplicative bias factor, (1 + bm)2 +
σ 2

m/2, where the variance in the bias now adds to the shear power
bias with a factor σ 2

m/2. The other half of the variance contributes
to the odd-parity β-mode power (see Appendix C, equation C4).
In Fig. 1, we show this model (the lower solid dark grey, purple in
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Figure 1. Convolution shear-convergence and β-mode power bias. In all panels the upper solid curve (blue online) are the true convergence power spectrum
signal, Cκκ

� ; in the top panels the upper dashed line (red online) are the multiplicative noise power, Cm(�); lower solid lines (yellow online) are the bias
power numerically convolved with the convergence power, while the black dashed lines are the exact analytic convolution from Section 3, which are in good
agreement with the numerical convolutions. Upper curves below the true shear power (purple online) are the constant bias given by equation (10), which is
scale independent. In the lower plots the lower solid lines (yellow online) are again the E-mode bias power spectra and orange lower dashed lines (red online)
are the β-mode power generated by mode mixing. Left-hand panels: The convergence power is convolved with a sharp bias feature at � = 103, leading to an
extended bias power, with good agreement between numerical and analytic convolutions. β-mode power is generated from power at �0 (lower plot). Middle
panels: A constant noise-like bias leads to a constant convolution bias, suppressed by the shear variance, as predicted by the analytic results. A constant β-mode
power spectrum is generated with the same amplitude as the bias convergence power (lower panel). Right-hand panels: A sinc-like bias power is convolved
with the convergence power, where the shape and amplitude is well approximated by the analytic model of Section 3. We find a β-mode power of equal shape
and amplitude (lower panel).

online version, curves in the upper panels) along with other model
bias power spectra.

Following Kitching et al. (2016), we can model the detailed effect
of more realistic bias power spectra. If the bias power spectrum is
a sharp peak at � = �0, we can approximate it by a delta-function,
Cm(�) = (2π )2C0δD(|� − �0|)/�. The change in the measured shear
power is then 
Ĉκκ (�) = C0 Cκκ (|� − �0|), which shifts the shear
power origin to �0, reflects about it and rescales the amplitude. A
spike of power centred at wavevector � = �0 would not induce β

modes, but here we have assumed an isotropic distribution localized
about a single wavelength which will generate β modes of simi-
lar amplitude. For a constant noise-like bias power, Cm(�) = CN,
the change in the shear power is 
Ĉκκ

� = CNσ 2
κ /2, where the

other half of the convolved noise power has been converted into a
β-mode power spectrum (see Appendix C). Kitching et al. (2016)
also found that sharp features in a weak lensing survey associated
with biases on particular scale, θ , such as the field of view, re-
sulted in a sinc-like scale-dependent bias power, CS(�θ ) ∝ sinc(�θ ).
Since this is noise-like on large scales, to a good approximation the
change in the shear power is 
Ĉκκ (�) = CS(�θ ) σ 2

κ /2, where again
a β-mode power of equal amplitude is generated.

Fig. 1 shows the shear-convergence power for a �CDM model
with parameters taken from Planck (Planck Collaboration XIII
2016) along with the three generic, multiplicative scale-dependent
biases: a localized spike in bias power with C0 = 1, which may arise
from residual corrections on a particular scale (Fig. 1, left-hand pan-
els); a constant noise-like power bias with CN = 10−10, which may
arise from random variations in a residual bias across the survey
on all scales (Fig. 1, middle panels); and a sinc-like bias function
(Fig. 1, right-hand panels) of the form CS(�θs) = 10−10sinc(�θs),
where θ s = 10−3rad, which may arise due to a residual bias over
a finite patch such as the CCD of field-of-view scales (Kitching
et al. 2016). The convolution of each of these multiplicative biases
with the shear power is also shown in each panel (lower solid line,
yellow online), along with the analytic expressions found above
(black, dashed lines). In all cases we find that the analytic formula
predicts the numerical data well.

As expected the local bias spike leads to a bias spread out in
�-space, although still highly peaked and centred around the spike,
while the noise-like bias power convolution gives rise to a constant
bias whose amplitude is suppressed by half of the shear-convergence
variance, σ 2

κ /2. The convolved sinc-like power has the same form
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as the bias power, also suppressed by a factor of half the shear-
convergence variance. There is an induced β-mode power for the
sharp spike (Fig. 1, lower left panel), while the β-mode noise power
is equal to the convergence noise power (Fig. 1, lower middle panel).
We also find the β-mode power from the sinc bias is the same as
the convergence power (Fig. 1, lower right panel), as predicted.

We note that in the past the effects of multiplicative bias on
the shear power spectra has been assumed to be a scale-dependent
multiplicative term in Fourier space (Amara & Réfrégier 2008;
Kitching et al. 2012; Cropper et al. 2013; Massey et al. 2013;
Kitching et al. 2016),

Ĉκκ (�) =
[
1 + M(�)

]
Cκκ (�) + Aκκ (�). (11)

This would only be appropriate if the biases were dominated by
convolution terms in real-space, h in equation (1). As we expect
image effects to have a multiplicative angular dependence on the
sky, our convolution model for the biased power is more realistic
and will correctly model the response of the shear power to realistic
biases. We recommend our new results, equations (8) and (9), should
be used in future modelling.

4 C A L I B R AT I O N A N D R E M OVA L O F BI A S

In previous studies, the effect of systematics in cosmic shear mea-
surements has focused on propagating the biases into the dark en-
ergy parameters and setting constraints such that either the biases
are less than the measurement error (e.g. Amara & Réfrégier 2008),
or that the DEFoM is kept above some fixed value (e.g. Massey et al.
2013). This is useful if there is an algorithmic way to remove these
biases. However, in practice many systematics may be too complex
to model to sufficient accuracy, and so they need to be removed
by calibration to external data or simulations and the uncertainty
on the calibration then marginalized over (e.g. Hildebrandt et al.
2017). This suggests that it is not sufficient to know how the bias
affects the dark energy measurement – we also need to know how
marginalization over the uncertainty in the calibration propagates
into the measurement.

We can explore the effect of calibration and marginaliza-
tion using the Fisher matrix formalism (e.g. Tegmark, Taylor &
Heavens 1997). Let us assume the measured shear-convergence
power, Ĉκκ

� (θ ), given by equations (8) and (9), is Gaussian dis-
tributed, P(Ĉκκ

� |θ ), and depends on a set of cosmological parame-
ters, θ , whose likelihood function, L(θ ) = P(Ĉκκ

� |θ ), is also Gaus-
sian distributed in parameter space. The expected cosmological
parameter covariance matrix for this likelihood is C = 〈
θ
θ t 〉 =
F−1, where

Fαβ = 4πfsky

2

∫
�d�

2π

[
Ĉκκ (�) + N

]−2 ∂Ĉκκ (�)

∂θα

∂Ĉκκ (�)

∂θβ

, (12)

is the Fisher matrix, A = 4π fsky is the area of the survey, and
N = 2πfskyσ

2
e /Ng is the shear noise power for Ng galaxies with

intrinsic ellipticity dispersion σ e.
We assume the convolved and additive bias power are functions

of a set of bias parameters, ψ , so that Ĉκκ
� (θ , ψ) now depends on ψ

and has the distribution P(Ĉκκ
� |θ , ψ). These bias parameters can be

estimated from external data or simulations, with the distribution
P(ψ |ψ0, Ĉψψ ′ ), with mean given by the true bias values, 〈ψ〉 = ψ0,
and covariance matrix, Ĉψψ ′ . We assume this distribution is also
Gaussian. The biased shear power distribution can now be corrected

by marginalizing over the calibration measurement distribution,

P(Ĉκκ
� |θ , ψ0, Ĉψψ ′ ) =

∫
dψ P(Ĉκκ

� |θ ,ψ)P(ψ |ψ0, Ĉψψ ′ ), (13)

which will correct the bias and widen the shear likelihood.
Expanding the observed shear-convergence power to first or-

der in the bias parameters, we can carry this marginalization
out analytically (Taylor & Kitching 2010). The cosmological pa-
rameter covariance matrix from this marginalized likelihood can
be found from the inverse of the marginalized Fisher matrix,
CM = [FM]−1, where the marginalized Fisher matrix is given by the
Schur compliment of the cosmological and bias parameter Fisher
matrix,

FM
θθ ′ = Fθθ ′ − Fθψ

[
Fψψ ′ + Ĉ−1

ψψ ′
]−1

Fψ ′θ ′ . (14)

As the accuracy of the external calibration increases, the second
term vanishes and the parameter variance is unchanged. However,
even if the external calibration is removed the loss of accuracy in the
parameters is finite, because we can self-calibrate the biases using
the cosmic shear survey itself.

As well as the effect on the cosmological parameter covariance
matrix, we can also estimate the effect on the DEFoM. The DEFoM
is defined as the inverse area of the 68.3 per cent confidence region of
the dark energy 2-parameter space, w = (w0, wa), after marginalizing
over all other cosmological parameters (Albrecht et al. 2006). For
Gaussian distributed parameters this is given by the determinant of
the dark energy Fisher matrix,

FDE
oM = detFDE

ww′ , (15)

where FDE
ww′ is the dark energy parameter Fisher matrix found by

marginalizing the cosmological parameter space over all other cos-
mological parameters. This is also given by the Schur complement
of the full parameter Fisher matrix,

FDE
ww′ = Fww′ − FwθF−1

θθ ′Fθ ′w′ , (16)

where, in this expression, θ are all the cosmological parameters
excluding the dark energy w-vector. The effect of calibration and
marginalization on the DEFoM can be calculated by replacing the
Fisher matrices in equation (16) with marginalized ones from equa-
tion (14).

We can estimate the effect of calibration on the DEFoM. The
fractional change in the DEFoM from a change in the Fisher matrix,
to first order, is


 ln FDE
oM = Tr

(

FDE

[FDE
]−1

)
, (17)

where 
FDE
ww′ = 
Fww′ − 
[FwθF−1

θθ ′Fθ ′w′ ]. Following margi-
nalization over the calibration parameters, ψ , using equation (14),
the fractional change in the DEFoM is


 ln FDE
oM = −(FM

ψwF−1
ww′FM

w′ψ ′ )
[
Fψ ′ψ + Ĉ−1

ψ ′ψ

]−1
, (18)

where FM
ψw = Fψw − FψθF−1

θθ ′Fθ ′w is the joint Fisher matrix of
dark energy and calibration parameters, marginalizing over all other
cosmological parameters. Equation (18) shows explicitly the rela-
tionship between the calibration accuracy and degradation of the
DEFoM. Again, if the accuracy of external calibration is high the
DEFoM is unchanged, while if it is removed, self-calibration limits
the reduction in the DEFoM.
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In dark energy studies, we usually want the absolute contribution
from the fractional DEFoM bias to be less than some threshold, ν,
so that

|
 ln FoM| ≤ ν. (19)

As an example, if we consider a constant dark energy equation-of-
state parameter, w = w0, and one other cosmological parameter, θ ,
and a single, constant multiplicative calibration parameter (equation
10), ψ = M = 2bm + b2

m, with covariance ĈMM′ = σ̂ 2
MIMM′ ,

the fractional decrease in the DEFoM is


 ln FDE
oM = − ∣∣
μMw0

∣∣2
(

σ̂ 2
M

σ̂ 2
M + σ 2

M

)
, (20)

where 
μαβ = μαβ − μαθ μθβ , with the implied summation over
all other parameters, θ ; μαβ = Fαβ/

√FααFββ is the Fisher matrix
correlation coefficient; σ 2

M = 1/FMM is the self-calibration vari-
ance of M measured from the survey itself; and σ̂ 2

M is the external
calibration variance. The decrease in the DEFoM vanishes as the
external error on M vanishes, while for no external calibration the
fractional change is equal to −|
μαβ |2 and determined by the corre-
lation of the bias parameters with the dark energy and cosmological
parameters.

The variance of M estimated from the survey is σ 2
M = 1/Neff ,

where Neff is the effective number of independent modes measured
in the shear power spectrum. If we require the contribution to the
DEFoM from bias calibration to be less than 10 per cent, so that ν

≤ 0.1, and assume that the number of effective modes measured
in the shear power spectrum is Neff ≈ 105, and |
μMw0 | ≈ 1,
then the error on the multiplicative calibration needs to be less
than 0.1 per cent, or σ̂M < 10−3. However, if the Fisher correlation
coefficient is less than unity this constraint will weaken. Similarly
the fractional bias in the DEFoM from a constant additive bias
has the same form as equation (20) with M → A, where σ 2

A =
F−1

AA = 
C is the inverse-weighted mean power, which implies
the calibration error on the additive bias power calibration should
be σ̂A < 10−12.

As well as constant biases, we can investigate the more realis-
tic cases of the spike, noise, and sinc-like bias functions. Using
the bias power functions introduced in Section 3 and illustrated in
Fig. 1 with the same parameters, we can add them together to form
a multiplicative/convolved bias and use the same function as an ad-
ditive bias power. We can then vary the accuracy with which we can
measure the amplitude of the multiplicative/convolved and additive
bias powers, to see its effect on the change in the DEFoM. Fig. 2
shows the fractional change in the DEFoM as a function of the
variance of the external calibration for constant multiplicative and
additive biases from a numerical calculation of the DEFoM. As ex-
pected, as the external calibration accuracy decreases, the DEFoM
is reduced and tends to a constant beyond 
 ln F DE

FoM = −0.3, when
the bias is self-calibrated by the survey. For an accurate calibration
of the additive bias amplitude, we find the calibration accuracy on
the multiplicative/convolution bias roughly agrees with our naive
estimate, where a 10 per cent change, 
 ln F DE

FoM = −0.1, requires
a calibration error of around σ̂multi ≈ 0.07, estimated from Fig. 2.
However, the additive calibration error is much higher at around
σ̂add ≈ 10−8. Both of these constraints from calibration appear to be
weaker than the constraints derived from requiring an algorithmic
bias correction (e.g. Massey et al. 2013).

Fig. 3 shows the change in the DEFoM due to the calibration
of each individual additive and multiplicative (convolution) bias
spectra for spike, noise, and sinc-like functions, as a function of the

Figure 2. The fractional decrease in the DEFoM, 
 ln F DE
oM , as a function

of the error on the external calibration of an additive bias and multiplicative
(convolution) bias, owing to calibration and marginalization. The functional
form of the bias is the sum of the spike, noise, and sinc functions shown
in Fig. 1, and we assume only the amplitude requires calibration. The axes
are the external calibration variance, Ĉψψ , where the indices ψ are the
amplitudes of the multiplicative (convolutions) and additive biases. Beyond

 ln F DE

oM = −0.3 the surface flattens as we reach the self-calibration regime.

Figure 3. The fractional decrease in the DEFoM, 
 ln F DE
FoM, due to noise-

like (from left the first solid and dashed lines, green online), sinc-like (the
middle solid and dashed line, red online), and spike (the right and upper
two solid and dashed lines, blue online) bias power calibration, removal,
and marginalization, as a function of the prior calibration error in the bias
power amplitude. Solid lines are for additive biases, while dashed lines are
for convolutions biases. For a small external calibration error the change
in 
 ln F DE

FoM vanishes. For larger bias error the DEFoM decreases until the
data itself calibrates the bias at the cost of constraints on other cosmological
parameters.
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external calibration error on each bias calibration. Again, we assume
only the amplitude is to be calibrated with a fixed functional form.

The additive spike bias (right upper solid and dashed lines, blue
online) has the smallest effect on the DEFoM, because the addi-
tion of a spike in the shear power has very little correlation with
cosmological parameters. This agrees with the analysis of Kitching
et al. (2016), who found a significant bias from an additive spike,
but little increase in the w0, wa error ellipse (see Fig. 1 of Kitching
et al., 2016). However, convolution with the shear power extends
this over a range of wavenumbers, and it acquires a cosmological
dependence (see Fig. 1, left-hand panel). Removal of this bias re-
quires only a modest accuracy, σ̂spike,add ≈ 1. As this cosmological
dependence still does not mimic the effects on the true shear power,
self-calibration with a shear survey works well, resulting in only a
small reduction in the DEFoM.

The noise bias (left lower solid and dashed lines, green online) has
the highest calibration requirements, with the additive bias (most
left solid line) requiring a high accuracy of σ̂noise,add < 10−8 for
removal, while self-calibration leaves the largest reduction in the
DEFoM. This can be understood from the noise power having great-
est effect at high wavenumber, where the dark energy equation of
state will have greatest effect. The multiplicative/convolution bias
also requires a high accuracy to calibrate, as the resulting convolu-
tion is still noise-like and has a cosmological dependence.

The sinc-function bias power is similar to the noise-like bias
power, with an effect on the DEFoM between the noise and spike
bias power, with the oscillations dampening the bias power at high
wavenumber, which de-correlates the bias and cosmological param-
eters. Again, the additive sinc bias requires more accurate calibra-
tion than the multiplicative/convolution bias. Finally, we find the
accuracy of the calibration scales with the amplitude of the bias,
such that numerically we find Ĉψψ (ψ) ∝ ψ−1, for all biases.

In summary, we find the calibration and removal of noise-like
biases has the greatest impact on dark energy studies, followed by
sinc-like biases. The effect of calibration and removal of spikes in
the shear power spectrum has the least effect. Caveats to this study
are that we consider only calibration of the amplitude of these bias
effects. In detail, for the spike and sinc bias functions, we would
also want to calibrate the scale at which the bias occurs, while the
functional forms of the systematic power may require many more
parameters to describe.

5 O P T I M I Z I N G BI A S C A L I B R AT I O N

Since we can expect the calibration of any shear bias has a cost,
either in the collection of external calibration data or the generation
of realistic simulations, it is useful to have a guide for where to
optimally allocate resources in investigating sources of bias, their
calibration and removal. Here, we shall assume that any bias can
be modelled through a simulation of the experiment, and that the
accuracy on the measurement of any bias is limited only by the
number of simulations that can be generated. A similar calcula-
tion can be done if the cost of the calibration arises from collect-
ing external data. We assume these biases are independent, and
work to first order in the external calibration error, σ̂ 2

ψ , so that the
effect on the DEFoM can be written 
 ln FDE

oM = −�ψσ̂ 2
ψ , where

�ψ = FM
ψwF−1

ww′FM
w′ψ and there is no summation over repeated ψ

in this last expression. These approximations mean that we are
working to order-of-magnitude accuracy. In addition, more simu-
lations may be needed to explore the effects of possible biases or
correlations between biases, and so our estimate here is a lower

bound on the number of simulations, or size of data set, required for
calibration.

If we further assume that each bias requires its own set of sim-
ulations for calibration, the total number of simulations needed to
calibrate all biases with an accuracy of σ̂ 2

ψ scales as

NS =
∑

ψ

αψ

σ̂ 2
ψ

, (21)

where αψ is a parameter which normalizes the number of simula-
tions needed to calibrate each bias and depends on the properties of
the bias. Our aim is to minimize the number of simulations needed
for calibration, with the constraint that we do not exceed the desired
fractional change in the DEFoM, ν = |
 ln FDE

oM|. We can calculate
this by minimizing the merit function,

S = NS + λν, (22)

with respect to σ̂ 2
ψ , where λ is a Lagrangian multiplier to constrain

the DEFoM. Minimizing this with respect to the measured external
calibration error, σ̂ 2

ψ , taking note that ν is the absolute value of the

fractional change in the DEFoM, and using the identity |x| = √
x2,

we find

σ̂ 2
ψ =

∣∣∣∣ αψ

λ�ψ

∣∣∣∣1/2

. (23)

Using the constraint on the DEFoM we can replace the Lagrangian
multiplier, λ, with ν, to find that the minimum number of simulations
is

NS = 1

ν

⎛⎝∑
ψ ′

αψ ′

∣∣∣∣�ψ ′

αψ ′

∣∣∣∣1/2
⎞⎠ ∣∣∣∣∣∣

∑
ψ ′′

�ψ ′′

∣∣∣∣ αψ ′′

�ψ ′′

∣∣∣∣1/2
∣∣∣∣∣∣ , (24)

which yields the error on the bias calibration,

σ̂ 2
ψ = ν

∣∣∣∣ αψ

�ψ

∣∣∣∣1/2
∣∣∣∣∣∣
⎛⎝∑

ψ ′
�ψ ′

∣∣∣∣ αψ ′

�ψ ′

∣∣∣∣1/2
⎞⎠∣∣∣∣∣∣

−1

. (25)

As an example, let us assume that each simulation is of the en-
tire survey, so that we can the calibrate a bias with an error σψ .
To reach the required calibration error, σ̂ψ , we need σ 2

ψ/σ̂ 2
ψ simu-

lations per bias parameter, and the total number of simulations is
NS = ∑

ψ σ 2
ψ/σ̂ 2

ψ . Hence, αψ = σ 2
ψ . For a single dark energy pa-

rameter, w = w0, a single cosmological parameter, θ , and summing
over all bias parameters, the fractional change in the DEFoM is


 ln FDE
oM = −

∑
ψ

|
μwψ |2 σ̂ 2
ψ

σ 2
ψ

, (26)

so that �ψ = |
μwψ |2/σ 2
ψ . The number of simulations needed for

calibration is then

NS = 1

ν

(∑
ψ

|
μwψ |
)2

. (27)

If the correlation between the bias and w is zero, no simulations are
required. When the correlation between the bias and w is of order
unity and the number of bias parameters is Nbias, then the number
of simulations we require is of order NS ≈ N2

bias/ν. For the simple
example of the six bias normalization parameters used in this paper,
Nbias = 6, and for ν = 0.1, we expect NS ≈ 360. With more detailed
numerical studies using our Fisher Matrix formalism, and the spike,
noise, and sinc functional forms, we find NS ≈ 100. Given the
quadratic scaling with the number of bias parameters, we can expect
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this number to rise rapidly. If we have 100 calibration parameters
to measure we may need NS ≈ 106 simulations. However, these
simulations may have the same underling simulation, with the effect
of each systematic added on.

The resulting variance on the measured calibration is

σ̂ 2
ψ = νσ 2

ψ

|
μwψ |
( ∑

ψ ′
|
μwψ ′ |

)−1
, (28)

so that the calibration error is inversely proportional to the marginal-
ized Fisher correlation coefficient, 
μwψ . Again, if this is of order
unity the external calibration error is σ̂ψ ≈ σψ

√
ν/Nbias.

6 SU M M A RY A N D C O N C L U S I O N S

In this paper we have extended the analysis of cosmic shear to in-
clude the effect of spatially varying image distortions on the sky.
We have investigated the effect of calibration of biases from ex-
ternal data or simulations, and internally from the same survey on
cosmological parameter estimation and the DEFoM, and shown
how to minimize the size of the calibration set for a given im-
pact. Spatially varying image distortions convolve the shear sig-
nal in Fourier space, and the shear power spectrum, mixing even-
parity convergence and odd-parity β-mode signals. We have found
analytic solutions for the biased shear-convergence and β-mode
power from convolution with spike, noise, and sinc-like bias power
spectra, which can be generated in realistic cosmic shear sur-
veys. In all cases we have studied, the bias power is equally dis-
tributed between convergence and β-mode power. We find that a
scale-dependent multiplicative bias power spectrum model, which
has commonly been used in previous studies, is not an accurate
approximation.

Convolution and additive biases can be removed from the signal
by calibration to external data, or from simulations of the effect
of the bias, or by allowing the bias to be fit simultaneously to the
data. In such a scenario the absolute value of the bias is unim-
portant since it will be removed and marginalized over, but the
uncertainty in the calibration will propagate into the measurement
of cosmological and dark energy parameters. We have carried out
an analysis to show how removal and marginalization of the bias,
using calibration data and self-calibration from the data itself, will
propagate into cosmological parameter estimation and then into
the DEFoM. We have applied this to archetypal functions forms
for the bias power, spike, noise, and sinc-like functions, and show
how each individually, and in combination, affect the DEFoM. We
find that calibration and removal of the noise-like bias functions,
which affects the largest range of scales, has the greatest effect
on the DEFoM, followed by the sinc-like function, which contains
an oscillatory cut-off at small scales, while the spike bias has the
least effect, covering the smallest range of scales. Overall, a cal-
ibration approach appears to require less stringent constraints on
bias errors than the algorithmic corrections of the bias. Our results
are of relevance to future surveys such as Euclid and LSST, but
also to current surveys which use a calibration approach to remove
biases.

We have also carried out an optimization of the required calibra-
tion error, in order to minimize the number of simulations needed
to measure the calibration for a fixed deterioration of the DEFoM.
This calculation could also be used to minimize the external data
required for calibration.

Finally, our method is general enough that we can extend
the formalism to allow the study of bias, bias-removal and the

effect of calibration error in the non-linear matter power spec-
tra, baryonic effects on the matter power spectra, photometric
redshift calibration, intrinsic alignment calibration, and indeed
any effect in the measurement which can be corrected for by
calibration. As the formalism is a Pseudo-Cls approach it can
account for the effects of the survey window function on the
shear power spectrum. This enables the investigation of the ef-
fect removing these biases on dark energy and modified gravity
experiments.

AC K N OW L E D G E M E N T S

ANT thanks the Royal Society for the support of a Wolfson
Research Merit Award while TDK is supported by a Royal So-
ciety University Research Fellowship. ANT also acknowledges
the support of the UK Space Agency and an STFC Consolidated
Grant. We thank Mark Cropper and Tim Schrabback for useful
discussions.

R E F E R E N C E S

Albrecht A. et al., 2006, Dark Energy Task Force Report
(arXiv:astro-ph/0609591)
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A P P E N D I X A : FO U R I E R M O D E S O F BI A S E D SH E A R κ A N D β FI ELDS

The change in the Fourier modes of the convergence, 
κ = κ̂ − κ , and β modes 
β = β̂ − β, transformed from the measured shear in
equation (2), with a spatially varying spin-2 multiplicative distortion of the shear signal, which we write as m = m1 + im2, is


κ(�) =
∫

d2�′

(2π )2

(
m1(� − �′)

[
κ(�′) cos 2ϕ��′ − β(�′) sin 2ϕ��′

] − m2(� − �′)
[
β(�′) cos 2ϕ��′ + κ(�′) sin 2ϕ��′

]) + cκ (�), (A1)


β(�) =
∫

d2�′

(2π )2

(
m1(� − �′)

[
β(�′) cos 2ϕ��′ + κ(�′) sin 2ϕ��′

] + m2(� − �′)
[
κ(�′) cos 2ϕ��′ − β(�′) sin 2ϕ��′

]) + cβ (�). (A2)

The first terms are the same as for a scalar multiplicative distortion, when the phase angle is ϕm = 0. The second term in the outer brackets
of the integrand is due to the spin-2 local phase change of the multiplicative bias mixing in the orthogonal component of the bias.

A P P E N D I X B: C O R R E L AT I O N S O F TH E O B S E RV E D F O U R I E R M O D E S

The correlation of the Fourier modes of the measured convergence field, assuming no intrinsic β modes, C
ββ
� = 0, and for a scale-dependent,

scalar multiplicative bias, m0(�) where each bias is broken down into spatially constant, deterministic spatial variations and random variations,
m0(�) = bm(�) + δm(�) where bm(�) = bmδD(�) + 
m(�), is given by

〈κ̂(�)κ̂∗(�′)〉 = (2π )2Cκκ
� δD(� − �′) + (

bm(� − �′)Cκκ (�) + bm(�′ − �)Cκκ (�′)
)

cos 2ϕ��′ + bcκ (�)b∗
cκ

(�′) + (2π )2Ccκ (�)δD(� − �′)

+
∫

d2�′′

(2π )2

(
bm(� − �′′)b∗

m(�′ − �′′) + (2π )2Cm(� − �′′)δD(� − �′)
)
Cκκ (�′′) cos 2ϕ��′′ cos 2ϕ�′�′′ , (B1)

〈β̂(�)β̂∗(�′)〉 = bcβ
(�)b∗

cβ
(�′) + (2π )2Ccβ

(�)δD(� − �′)

+
∫

d2�′′

(2π )2

(
bm(� − �′′)b∗

m(�′ − �′′) + (2π )2Cm(� − �′′)δD(� − �′)
)
Cκκ (�′′) sin 2ϕ��′′ sin 2ϕ�′�′′ , (B2)

and

〈κ̂(�)β̂∗(�′)〉 = bm(� − �′)Cκκ (�) sin 2ϕ��′ + bcκ (�)b∗
cβ

(�′)

+
∫

d2�′′

(2π )2

(
bm(� − �′′)b∗

m(�′ − �′′) + (2π )2Cm(� − �′′)δD(� − �′)
)
Cκκ (�′′) cos 2ϕ��′′ sin 2ϕ�′�′′ . (B3)

From these expressions we can take � = �′, and use the finite-field approximation δD(0) = A/(2π )2, to yield the convergence, given by
equations (8) and (9) and the β-mode power given in Appendix C.

APPENDIX C : β-MODE POW ER SPECTRA

The measured β-mode power spectrum is

Ĉββ (�) = 1

A
〈|β̂(�)|2〉 =

∫
d2�′

(2π )2

(
1

A
|bm(� − �′)|2 + Cm(� − �′)

)
Cκκ (�′) sin2 2ϕ��′ + Aββ (�), (C1)

where

Aββ (�) = 1

A
|bcβ

(�)|2 + Ccβ
(�). (C2)

If bm is a constant the bias factors drop out and the measured β power becomes

Ĉββ (�) =
∫

d2�′

(2π )2
Cm(� − �′)Cκκ (�′) sin2 2ϕ��′ + Aββ (�). (C3)

A constant noise-power bias, Cm(�) = CN, will lead to a β-mode power of Ĉββ (�) = CNσ 2
κ /2. If we assume a slowly varying scale-dependent

shear power spectrum reduces to

Ĉββ (�) = 1

2
σ 2

mCκκ (�) + Aββ (�). (C4)

Hence, we see that the mixing of Fourier modes is required to transform from convergence to β-mode power, and that the assumption of a
slowly varying shear power spectrum evenly distributes the measured multiplicative power between the convergence and β modes.
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