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eMethods 
 
1.Western blotting  and Luminex platform 
 

Primary antibody Supplier Product code Monoclonal 

P-AMPK (thr172) Cell Signalling #2535 Y 

T-AMPK Abcam Ab80039 Y 

Fatty Acid Oxidation 
Panel 

Merck Millipore HFA02MAG-11K N/A 

Mitochondrial 
Respiratory Chain Panel 

Merck Millipore HOXPSMAG-16k N/A 

Table S1:  Antibodies used for Western Blotting and Reagents for Luminex Platform. AMPK=Adenosine 
Monophosphate Kinase 

 
2. Quantitative Polymerase Chain Reaction measurements  
 

Primer Name Primer Sequence NCBI Accession number 

hsaDNM1L_001 (f)gtggaagcagaagaatggggta 
(b) tacaggcaccttggtcattcc 

NM_012062, NM_012063, 
NM_005690 

hsaPPARGC1A_001 (f) tcgcagtcacaacacttacaag 
(b) ggttatcttggttggctttatgagg 

NM_013261 

Hsa_PPARGC1B_001 (f) gaaataggagaggcgagaagtacg 
(b) gcctcttctgaattggaatcgtag 

NM_133263, 
NM_001172698.1 
NM_001172699.1 

HsaPPRC1_001 (f) atcagtgagattggaattgaggca 
(b) tcttctcctggggaatgtcaac 

NM_015062 

Table S2: Primers used for Quantitative Polymerase Chain Reaction 

2.1 Mitochondrial copy number assay 
Reactions were run in a Rotor-Gene with standards at 108-102 copies/rxn for 
mitochondrial DNA and 107-101 copies/rxn for a single copy nuclear DNA gene, B2M. 
For the mitochondrial assay, primers targeted a unique region of the mitochondrial 
genome that is not replicated in the nuclear genome1. The nuclear DNA assay was 
designed and validated by qStandard (London, UK). 
 
 
3. Untargetted metabolic profiling with lipid optimisation: Global untargeted LC-
Mass Spectroscopy Methods for Muscle: Reverse Phase and HILIC 
 
Sample Preparation Organic 
Samples were prepared for liquid chromatography mass spectrometry (LCMS) as per 
venous tissue described by Anwar et al2. Prior to use, the original samples were 



randomized using excel (RAND) command and numbered sequentially. These 
samples were thawed (11 samples at a time), weighed and placed in pre-labelled 
Eppendorfs numbered 1-105, plus 20 blanks.  A 12th sample tube was to prepare a 
blank of solvent. 
 
1ml of refrigerated Methyl tert-butyl ether / Methanol (MTBE/MeOH) solution was 
added to each of the 11 sample-containing Eppendorfs and to the 12th (blank) tube.  
1 capful of Zirconium beads (1mm) was added to each sample, and the caps securely 
closed. The samples were then loaded into a Precellys Bead-Beater 
(www.strettonscientific.co.uk) (maximum sample capacity of 12) for 40 seconds 
Following this samples were cooled on dry ice for 5 minutes before repeat bead 
beating,  
 
After two cycles of bead-beating, the cooled samples were centrifuged at 4°C for 20 
minutes, the centrifuge being fast-cooled before use. 
 
750µl of supernatant was then pipetted into a fresh pre-labelled Eppendorf 
(identifying sample no, and extraction type: organic). 
 
Original sample tubes were kept on ice post-removal of the first aliquot of 
supernatant.  The supernatant itself is metabolite stable and may be kept at room 
temperature.  
 
A further 1ml of MTBE/MeOH solvent was added to each cooled original sample 
tube.  Bead-beating was performed twice as before with the sample cooled for 5 
minutes on dry ice in between beat-beating repetitions. The samples were then 
centrifuged as before. 750µl of the resulting supernatant was aliquoted into the 
Eppendorfs already containing 750 µl. This step was repeated to increase potential 
metabolite yield, as sample size was small. The residual solvent remaining in the 
each of original Eppendorfs was then removed and aliquoted into a glass tube. This 
was to avoid contaminating the aqueous extraction step, as MTBE is not water 
miscible. The original samples were cooled on dry ice. 
 
The 12 samples were uncapped and the solvent allowed to evaporate in a fume-
hood overnight.  
 
After overnight solvent evaporation, extracts were stored at -80°C for reconstitution 
prior to use and transferred to total recovery glass LCMS grade vials. 50 µl from each 
vial was used to make a quality control (QC). 
 
 
 
Reconstitution of frozen extracts 
 
 
Reconstitution of Organic Samples for LCMS 
 



Dried organic extracts were reconstituted in 250µl isoprenol/acetonitrilewater 
(ISP/ACN/H20) (2:1:1). Samples were vortexed for 1 minute then sonicated for 5 
minutes. They were then vortexed for 1 further minute. This was followed by 
centrifugation at 4oC for 8 minutes. Samples were then transferred to total recovery 
glass LCMS grade vials. 50 µl from each vial was used to make a QC. 
 
 
UPLC-MS experimental parameters  
Chromatographic conditions were as previously described3 and derived from 
previous Waters applications (www.waters.com). Mobile phase A consisted of 
ACN/water (60:40) and mobile phase B ISP/ACN (90:10). In both solutions 
ammonium formate was diluted to 10 mM and formic acid to 0.1%. The elution 
gradient was set as follows: 60−57% A (0.0−2.0 min), 57−50% A (2.0−2.1 min; curve 
1), 50−46% A (2.1−12.0 min), 46−30% A (12.0−12.1 min; curve 1), 30−1% A (12.1−18 
min), 1−60% A (18.0−18.1 min), 60% A (18.1− 20.0 min). The temperature was 
maintained at 55oC on a Waters Acquity UPLC HSS CSH  column (1.7 μm, 2.1 × 100 
mm) during chromatography. Tandem time of flight (TOF) mass spectrometry (MS) 
was performed using an electrospray injection (ESI) ionisation operating in both 
positive and negative modes. ESI conditions were source temperature 120oC, 
desolvation temperature 400oC, cone gas flow 25L/h, desolvation gas 800L/h, 
capillary voltage for ESI- 2500V, for ESI +ve 3000 V, cone voltage 25 V for ESI -ve and 
30V for ESI +ve. Each injection was of 5µL for +ve ESI and 15µL for –ve ESI modes. At 
the start of acquisition, ten conditioning QC injections were performed and after 
every 10th subsequent injection. Data were collected in centroid mode. Regular 
injections of leucine enkephalin (555.2692 Da calculated monoisotopic molecular 
weight, 200pg/uL in acetonitrile:water 50:50) were performed to ensure optimum 
mass accuracy with an analyte-to-reference scan ratio of 10:1. Instrument calibration 
was with sodium formate (10ng/uL in 90:10 propan-2-ol:water) solution prior to 
each ESI mode. 
 
 
4. Adipokinin assays 
 

Adipokine Product Code 

Ghrelin EZGRT-89K 
Leptin EZHL-80SK 
Adiponectin EZHADP-61K 
Resistin EZHR-95K 
Table S3: Enzyme-linked Immunosorbent Assay (ELISA) product codes. (Merck MIL-lipore, UK) 
 

 
 
5. Bioenergetic data 
Muscle total creatine, phosphcreatine and adenosine triphosphate contents were 
determined in a control population and compared to that of the critically ill cohort. 
 

http://www.waters.com/


Resting muscle ATP content may be reduced in patients with chronic diseases such 
as Chronic Obstructive Pulmonary Disease4 5. Prior to critical illness, 46% of our 
patient cohort had suffered a chronic disease state. The control subject cohort was 
thus selected to contain a similar proportion (48%) of previously chronically unwell.  
The young healthy volunteer muscle ATP, phosphocreatine and free creatine control 
data represent unpublished historical archived data from baseline muscle biopsy 
samples obtained from experiments published in 20116 7. This study received local 
ethical approval and all volunteers provided informed consent for skeletal muscle 
biopsies of vastus lateralis that included the determination of muscle metabolite 
concentrations.  
The older control muscle ATP, phosphocreatine and free creatine data are also 
unpublished historical archived data and were determined in muscle biopsy samples 
from a healthy age matched volunteer cohort in addition to the COPD cohort. Again, 
local ethical approval was obtained and all volunteers provided informed consent for 
skeletal muscle biopsies of vastus lateralis that included the determination of muscle 
metabolite concentrations. 
All muscle metabolite data generated at the University of Nottingham as part of PhD 
research programmes and collaborations between the Universities of Leicester (old 
controls; Research Ethics Committee number 04/Q2502/43) and Nottingham (young 
controls; Research Ethics Committee number G/2/2005). These are unpublished 
historical archived data and the aims of the original studies were in no way 
connected to the present study. 
The first day of ICU admission does not necessarily reflect the first day of critical 
illness, and it is thus possible that muscle ATP content had declined during 
antecedent decline in clinical state. However, whilst unable to quantify physiological 
derangement prior to admission, the median time from hospital to ICU admission 
was only 24 hours. In addition 16/34 patients suffered major trauma or an 
intracranial bleed and were not exposed to antecedent decline.  
 
To confirm the validity of our cohort, we therefore (as performed for loss of muscle 
mass previously8) analysed the cohort for differences related to pre-ICU admission 
length of stay, or to potential antecedent decline. Analysis was also performed by 
presence/absence of prior chronic disease. The impact of antecedent chronic disease 
on trajectory of muscle ATP decline during critical illness was also examined. 
 
6. Network analysis 
 
Data were loaded into R 3.2. Pairwise correlation was calculated for all variables. 
These pairwise correlations were converted to a weighted, directed network where 
each node represented a variable, the direction of the edge reflected the direction of 
the correlation and the weight of each edge was the absolute of the correlation 
coefficient. Edges with a weight < .4 were removed. 
This network was imported into Cytoscape 3.4.0 for visualisation and clustering. Data 
were visualised using a force-directed layout, with edges coloured by direction and 
with the width of the line determined by the weight of the edge (the correlation 
coefficient). Finally, variables were clustered in Cytoscape using MCclust.  
 



R Code used: 
library(magrittr) 
  
zudin.all.data <- read.csv("R:/Lindsay/KCL/Zudin 2015/lindsay modelling 180716.csv", header=TRUE, 
na.strings=c("/", "n/a"), stringsAsFactors=FALSE) 
zudin.all.data <- zudin.all.data[-34,] 
rownames(zudin.all.data) = zudin.all.data$UIN 
zudin.all.data <- zudin.all.data[,-1] 
  
zudin.numeric = unlist(zudin.all.data) %>% as.numeric %>% matrix(nrow = 33, ncol = 55) 
colnames(zudin.numeric) = names(zudin.all.data) 
rownames(zudin.numeric) = rownames(zudin.all.data) 
  
# export to Cytoscape 
thresh = .4 
temp1 <- cor(zudin.numeric, zudin.numeric, use = 'pairwise.complete.obs') 
hist(temp1, 50) 
  
exportNetworkToCytoscape(temp1, 
                         edgeFile = "adjCor.network.DIRECTED.xxxxxx.txt", 
                         weighted = T, 
                         nodeNames = colnames(zudin.numeric), 
                         threshold = thresh) 

 
 
eResults 
 

1. Consort Flowchart 
 

 
Figure S1: Consort flowchart of cohorts 



 
2. Mitochondrial proteins 

Median Florescence Index (MFI) for protein concentrations of mitochondrial 
respiratory chain complexes were normalised for NNT (a housekeeping protein used 
as part of the Luminex platform analysis). 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
. 

 
 
 
 Figure S2 and Table S4: Change in intramuscular mitochondrial complex concentrations over 7 days of critical 
Illness (n=30), normalised to NNT (housekeeping protein). Data are mean and 95% Confidence Intervals. P 
values are for two-tailed Wilcoxon signed rank test.  * denotes p<0.05. MFI= Median Florescence Index  

Complex Day 1 Day 7 p 

I 1.38 [1.14-1.63] 1.32 [1.05-1.59] 0.742 
II 1.17 [0.92-1.42] 1.22 [1.00-1.45] 0.681 
III 0.12 [0.10-0.14] 0.13 [0.10-0.15] 0.758 
IV 0.56 [0.45-0.66] 0.49 [0.41-0.57] 0.202 
V 0.19 [0.11-0.26] 0.29 [0.18-0.40] 0.070 
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2.Beta Oxidation Enzymes 
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Figure S3 and Table S5: Change in intramuscular beta-oxidation enzyme concentrations over 7 days of critical 
illness. Data are mean and 95% Confidence Intervals. P values are for two-tailed Wilcoxon  signed rank test, 
*denotes p<0.05. CPT= Carnitine palmitolytransferase I; MCAD= Medium Chain Acyl-Coenzyme A 
Dehydrogenase; ETF= Electron Transfer Flavoprotein; DECR1= 2,4, Dienoyl-CoA Reductase; MFEII= 
Multifunctional enzyme II. MFI= Median Florescence Index 

Beta-Oxidation Day 1 Day 7 p 

CPT-1 373 [219-528] 177 [69-284] 0.006* 
MCAD 2821 [1444-4198] 1233 [677-1790] 0.028* 
ETF 1159 [671.2-1647] 578 [316-840] 0.046* 
DECR1 1485 [786.1-2183] 639 [317-961] 0.018* 
MFEII 9.21 [3.7-14.7] 12.0 [4.5-19.5] 0.666 



 
 
 
3. Mitochondrial biogenesis markers 
 
 
 
 
 

 
 

 
  

Change in mitochondrial biogenesis 
markers over 7 days (n=23)
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 Day 1 Day 7 p 

PGC1α 206.3 [46.9-365.6] 69.8 [10.2-129.5] 0.025* 
PGC1β 68.6 [44.1-93.0] 46.7 [31.9-61.6] 0.132 
PPRC 166.3 [110.6-222] 153.8 [90.6-217.1] 0.494 
DRP-1 115.1 [84.2-146.0] 72.4 [56.0-88.8] 0.018* 
MXN 10388 [4958-15818] 6917 [4580-9254] 0.032* 

Figure S4 and Table S6: Change in intramuscular mitochondrial biogenesis markers over 7 days of critical 
illness. Data are  normalised messenger Ribonucleic Acid copy number presented as mean and 95% Confidence 
Intervals. P values are for two-tailed Wilcoxon  signed rank test. *denotes p<0.05. PGC1α= Peroxisome 
proliferator-activated receptor gamma co-activator 1-alpha; PGC1β= Peroxisome proliferator-activated 
receptor gamma co-activator 1-beta; PPRC= Peroxisome proliferator-activated receptor gamma co-activator; 
DRP-1= Dynamin Related Protein-1; MXN= Mitochondrial Copy Number 



 
 
4. Bioenergetic Data 
Table 6 delineates the breakdown of control subjects (n=41) of whom 48% had a 
chronic disease (compared to 46% of the patient cohort)). A wide age range was 
used in keeping with the critically ill cohort. No differences were seen between 
young (<30years) and older control subjects (all p>0.05) and between older controls 
and chronic disease patients (p>0.05). No relationship was seen between Oxygen 
Delivery (DO2) and ATP content (n=9;r2=0.29;p=0.133). No relationship was seen 
between ATP content on day 1 and admission PaO2 (r2=0.002, p=0.809; n=32), SaO2 
(r2=0.00; p=0.973;n=32) or PaO2 to FiO2 ratio (r2=0.006, p=0.684;n=32). Old controls 
were 77.8% male and weighed 76.1y±10.8kg (BMI 25.6±4.0), young controls were 
100% male and weighed 74.5±2.2kg. All were healthy controls with no known co-
morbidities” 
 
 
 
 

 
Young  

Controls 

Older controls Stable COPD 

Age# 24±0.7 67.5±6.8 69±7.0 

N 7 9 15 

ATP (mmol/kg dw) 21.7 (20.4-22.9) 21.6 (18.8-24.3) 21.1 (19.0-23.2) 

PCr  (mmol/kg dw) 72.7 (69.0-76.4) 70.9 (65.2-76.6) 73.7 (66.9-80.4) 

Total Creatine 
(mmol/kg dw) 

126.0 (120.7-131.2) 121.3 (113.3-129.4) 129.2 (118.9-139.5) 

Table S7: Bioenergetic data for control subjects. Data are mean (95%CI) except for # mean (SD). ATP= 
Adenosine Triphosphate, COPD=Chronic Obstructive Pulmonary Disease. 

 
 

Variable Slope 95%CI Intercept R2 P 

Insulin# -0.996 -1.892—0.100 1.393 0.15 0.031 

Glucose(blood)#$   1.000 0.09 0.097 

Protein -2.689 -6.153-0.774 6.968 0.08 0.123 

Calories -61.300 -152.30-29.71 190.0 0.06 0.179 

Fat (total) 
 
Saturated Fat# 

-2.960 
 
-0.0183 

-8.48-1.153 
 
-0.111-0.074 

9.046 
 
1.072 

0.04 
 
0.01 

0.282 
 
0.164 
 



Carbohydrates 
 
Polysaccharides 
 
Glucose (feed) #  

-7.352 
 
-1.534 
 
-0.052 

-18.81-4.11 
 
-16.69-13.62 
 
-0.913-0.808 

22.08 
 
11.84 
 
0.015 

0.06 
 
0.00 
 
0.00 

0.200 
 
0.837 
 
0.902 

Table S8: relationship between nutritional delivery and bioenergetic data: Change in ATP was used as the 
dependent variable. # denotes log transformed data. Nutritional data units are g/kg/ibw. 
 

 
 
 
5. Metabotyping 
 

 
Figure S6 A) Principal Component analysis (PCA) of Ultra Performance liquid chromatography mass 
spectrometry data for muscle samples on day 1 and day 7 indicating poor initial discrimination (R2X=0.473, 
Q2Y=0.397) B PLSDA of the same sample set indicating visual discrimination and borderline multivariate model 
validity (RwX=0.338, R2Y=0.701, Q2Y=0.397 CV ANOVA p=0.021), C) Permutation analysis , D) Loadings plot of 
PLSDA mode, E) and F) dot and line diagrams of metabolites retaining significant a statistically significant 
difference in arbitrary concentration (all spectra normalised for weight of muscle used, p values E <0.01, F 
0.02).  
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Using the marker table for adducts in the organic phase, multivariate analysis was 
performed. Using PLSDA and a 2-component model, it was possible to discriminate 
between the markers present in muscle samples on day 1 and day 7. This 2-
component cross-validated model had an R2Y of 0.72 and Q2 of 0.41 and AUROC of 
0.95 for predicting day of muscle sampling. The CV-ANOVA p-value of this model was 
0.02 suggesting that this was valid, although permutation analysis demonstrated this 
model to be of borderline validity. The markers of greatest discrimination were 
mostly phospholipid moieties of varying point of saturation and chain length (PC 
36:3, 36:4, 32:0, 41:0) and one triglyceride (side chains 12:0/13:0/22:0). 
 

Variable Slope 95%CI Intercept R2 P 

Medium Chain 
Triglycerides 

0.003 -0.008-0.018 0.413 
0.000 0.963 

Monounsaturated FAs 0.001 -0.000-0.002 6.772 0.123 0.320 
Polyunsaturated FAs 0.002 -0.003-0.009 14.420 0.141 0.286 
Phospholipids 0.113 0.007-0.220 422.600 0.427 0.041* 
Saturated 0.001 -0.001-0.002 4.401 0.134 0.298 

Table S9: Associations between change in intramuscular phosphocholine and nutritional delivery. over 7 days. 
Data are total amount delivered over 7 days normalised to ideal body weight expressed as mean (95%CI) units 
are mg/kg. FA= Fatty Acids. *denotes p<0.05. 

 

 
6. AMPK Western Blots 
 

 
Figure S7: Western Blots of Phosphorylated (p-AMPK) and Total (TAMPK) Adenosine Monophosphate Kinase. 
W numbers are Unique identification numbers. D1 and D7 represent days from admission to Intensive care. 

Neither total AMPK (1.28AU (95%CI 0.843-1.715) vs. 0.931AU (95%CI 0.588-1.276); 
p=0.0635) nor phosphorylated AMPK changed over 7 days (1.229AU (95%CI 0.880-
1.58) vs. 1.255 AU (95%CI 1.06-1.45); p=0.692). However the ratio of phosphorylated 
to total AMP-K concentrations rose (1.06 (95%CI 0.82-1.30) to 3.93 (95%CI 1.30-
6.56); n=31; p=0.001). 
 
 
 
7. Adipokinin response 
 

Adipokinin Day 1 Day 3 Day 7  Day 10 

Adiponectin 23.7 (19.2-
28.1) 

26.2 (21.6-
30.9) 

33.9 (28.6-
39.3)* 

36.5 (31.3-
41.8)* 

Resistin 4.1 (3.2-5.1) 4.1 (3.2-5.0) 3.5 (2.8-3.9) 3.5 (2.7-4.2) 

Leptin # 10.5 (7.6-13.4) 10.9 (8.2-13.7) 10.1 (7.3-12.9) 10.1 (7.6-12.7) 

Ghrelin# 105.9(57.5- 138.4 (75.2- 164.3 (83.72- 193.5 (102.7-



154.4) 201.5) 244.9)* 284.2)* 
Table S10: Serum Adipokinin response over first 10 days of critical illness (n=60). Data are mean 
(95%Confidence Intervals). * represent p<0.05 for Freidman’s test (data are non-parametric). Units are 
microgram/ml except # indicating nanograms/ml. 

 
 
7.1 Longitudinal changes in Leptin by sex and obese/non obese 
 

 
Figure S8AB: Longitudinal change in Leptin by obesity (left panel) and sex (right panel) over 10 days of critical 
illness (n=60). Data are mean (95%Confidence Intervals). *represent p<0.05 for Freidman’s test (data are non-
parametric). 

 
 
 
 
9. Hypoxia inducible factor associations 
 
The change in intramuscular phosphocholine was not related to change in intramuscular 
HIF1α signaling (r2=0.35; p=0.068), nor was change in intramuscular triglyceride 
(r2=0.08;p=0.408). 

 
 
 

Value Slope 95%CI Intercept R2 P value 

ΔPaO2 -0.159 -0.046-0.014 -0.553 -0.052 0.283 
ΔSaO2 -0.041 -0.113-0.195 -5.269 -0.011 0.588 
ΔP/F ratio -0.019 -0.133-0.096 6.747 0.003 0.739 
Table S11: Bivariable linear regression with change in Hypoxia inducible Factor 1 alpha as the dependent 
variable. PaO2= Partial Pressure of Arterial Oxygen, SAO2=Saturation of Arterial Oxygen, P/F ratio= ratio of 
PaO2 to Fraction of inspired oxygen. 

 

Variable Slope 95%CI Intercept R2 P 

Il-1α  0.003 -0.031-  0.037 0.142  0.001 0.862 

Il-1β -0.244 -0.877-  0.389 24.160 0.022 0.436 
Il-2 -0.201 -0.677-  0.269 -3.863  0.027 0.389 
Il-4 -0.043 -4.377-  4.291 220.200  0.000 0.984 
Il-6 0.959 -0.108-  2.026 -2.531  0.108 0.076 
Il-8 23.570 10.770-  36.370 -85.620  0.337 0.001* 
Il-10 -0.347 -0.949-  0.259 44.340  0.047 0.248 
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TNF-α -0.710 -3.317-  1.897 64.150  0.011 0.581 
INFγ -0.014 -0.132-  0.104 1.037  0.002 0.811 
MCP1 6.562 1.668-  11.460 -45.130  0.212 0.010* 
EGF -0.122 -0.471-  0.226 3.229  0.018 0.478 
TNFR1 0.027 0.007-  0.047 0.585  0.192 0.011* 
TNFR2 0.026 -0.010-  0.062 -0.133 0.065 0.153 
      

Table 12: Bivariable linear regression with change in Hypoxia inducible Factor 1 alpha as the dependent 
variable. TNFα= Tumour Necrosis Factor Alpha; IFN- γ= Interferon gamma; EGF= Epithelial Growth Factor; 
Il=Interleukin; MCP-1= Macrophage Chemotactic Protein-1; TNFR= Tumour Necrosis Factor Receptor 

 
 
10. Lipids delivered as components of nutrition or sedation (n=33) entered into 
Network analysis 

mg/kg Nutrition Propofol  

Saturated  1.1 (0.9-1.2) 2.3 (1.5-3.1) 
Medium Chain Triglycerides 0.6 (0.5-0.7) 0 (0.0-0.0) 
Polyunsaturated  1.0 (0.7-1.4) 8.8 (5.6-11.9) 
Monounsaturated  2.3 (1.9-2.6) 3.3 (2.1-4.4) 
Phospholipids  34 (-7-75.7) 171.9 (110-234) 
Table S13: Data are total amount delivered over 7 days normalised to ideal body weight expressed as mean 
(95%CI) units are mg/kg 

 
 
  

Variable Slope 95%CI Intercept R2 P 

Medium Chain 
Triglycerides 

0.001 0.000-0.002 0.577 
0.153 0.027* 

Monounsaturated FAs 0.001 -0.011-0.013 5.598 0.001 0.852 
Polyunsaturated FAs -0.006 -0.035-0.0224 9.984 0.006 0.667 
Phospholipids  -0.211 -0.845-0.424 210.500 0.015 0.503 
Saturated Fats 0.000 -0.008-0.008 3.417 0.000 0.986 
Polysaccharides 0.010 -0.010-0.030 10.740 0.038 0.321 
      

Table S14:  Associations between nutritional delivery and change in serum  C-Reactive Protein concentration 
over 7 days. Data are total amount delivered over 7 days normalised to ideal body weight expressed as mean 
(95%CI) units are mg/kg. FA= Fatty Acids. *denotes p<0.05. 



 
11. Network analysis and interactions 
 
 Network prior to Data Clustering 

 
Figure S10: Network analysis prior to Cluster analysis. Green lines represent positive correlations, red lines 
negative. 

  



 
Data Clusters 

 
Figure S11: Markov Clusters of the multi-dimensional network. Colours represent actual clusters as opposed to 
data types. Values modularity calculations for each cluster. 

 

 
 
Figure s12: Network analysis using Pearson correlation (left panel) and Spearman correlation (Right panel) 
demonstrating similar cluster delineation.  



 
Analysis of Interactions 
 

NODE INTERACTION NODE INTERACTION 

CLUSTER 1+2 

P/D ratio <--> ATP9 0.534 ATP <--> PCR10 0.687 

P/D ratio <--> TCR9 11 0.625 ATP <--> TCR10 0.730 

DRP-1 <--> ATP12 13 0.465 ATP <--> age14 -0.490 

DRP-1 <--> PCR12 13 0.405 DRP-1 <--> RFCSA
15 -0.551 

PCR <--> TCR10 11 0.516 AMPK <--> RFCSA
16 -0.405 

AMPK <--> P/F ratio17 -0.496 Il-1β <--> DRP-118 -0.562 

Il-1β <--> Il-219 0.451   

CLUSTER 3 

PGC1α <--> TCR20 21 -0.440 cV <--> cI22 0.405 

PGC1α <--> NFKβ23 -0.713 NFKβ <--> Insulin24 0.475 

Glucose <--> Insulin25 0.626 cI <--> Glucose26 0.429 

PGC1α <--> Insulin20 21 -0.754 cI <--> Insulin26 0.441 

CLUSTER 4 

P70s6k <--> AKT8 0.865 Il-6 <--> Il-827 0.663 

P70s6k <--> mTOR8 -0.434 Il-6 <--> MCP-128 0.681 

AKT <--> mTOR8 29 -0.571 Il-6 <--> TNFR130 0.490 

Il-8 <--> MCP-131 0.820 Il-6 <--> TNFR219 30 0.504 

Il-8 <--> TNFR132 0.655 Il-6 <--> mTOR33 34 0.452 

Il-8 <--> TNFR232 0.537 MCP-1 <--> TNFR135 0.675 

Il-8 <--> HIF1α 36 0.581 MCP-1 <--> TNFR237 0.846 

Il-8 <--> P70s6k32 -0.461 MCP-1 <--> HIF1α38 0.461 

Il-8 <--> AKT32 -0.506 TNFR1 <--> TNFR230 0.543 

Il-8 <--> mTOR32 0.673 TNFR1 <--> HIF1 α36 0.438 

MCP-1 <--> mTOR31 0.496 TNFR1 <--> mTOR30 0.483 

HIF1α <--> mTOR39 0.484 TNFR2 <--> mTOR33 0.435 

CLUSTER 5 

TNFα <--> INFγ40 0.511 EGF<--> FOXO-141 0.632 

TNFα <--> EGF42 0.790 INFγ <--> EGF43 0.650 

TNFα <--> FOXO-133 0.903 INFγ <--> FOXO-144 0.418 

  INFγ<--> E4BP145 -0.537 

CLUSTER 6 

MCAD <--> PS46 -0.468 DECR1 <--> HCO3
47 -0.416 

CPT-1 <--> MCAD48 0.627 CPT-1 <--> ETF48 0.794 

MCAD <--> ETF48 0.832 CPT-1<--> DECR148 0.403 

MCAD <--> DECR148 0.458 ETF <--> DECR148 0.650 

    

CLUSTER 7 

PUFA <--> PL49-52 0.863 PUFA <--> sFA49-51 0.984 

MUFA <--> Day 1.RFCSA
53 54 0.402 MUFA <--> PUFA49-51 0.958 

PUFA <--> Day1.RFCSA
53 54 0.414 MUFA <--> PL49-52 0.750 



MUFA <--> sFA49-51 0.991 PL <--> sFA49-52 0.803 

sFA <--> Day1.RFCSA
53 54 0.411   

CLUSTERS 8 and 9 

MXN <--> IGFR155 -0.827 MXN <--> OF20 56 -0.400 

IGFR1 <--> OF8 0.434 MCT <--> PS49-51 0.750 

Il-4 <--> FOXO-157 0.451 Il-4 <--> Il-1058 0.562 

Il-4 <--> MCT59 -0.485 Il-4 <--> INFγ58 0.402 

Il-4 <-->PS60 -0.475 Il-4 <--> MXN61 -0.435 

INTER-CLUSTER INTERACTIONS 

PGC1α <--> IGFR155 0.461 Il-6 <--> TNFα19 0.491 

hif1α <--> PGC1α62 -0.510 Il-6 <--> FOXO-163 0.518 

P/D ratio <--> IGFR18 0.485 P/D ratio <--> CRP8 0.480 

IGFR1 <--> cI64 0.448 PCR <--> Glucose11 65 -0.447 

MCP-1 <--> apidonectin28 0.456 P70s6k <--> cV64 0.402 

apidonectin <--> CRP28 -0.543   
Table S15: Heatmap detailing biological plausibility of interactions seen in network analysis. Heatmap key is 
seen below. P/D ratio= Protein:DNA ratio; ATP= Adenosine Tri-Phosphate; RFCSA= Rectus Femoris Cross 
Sectional Area, PGC1α= Peroxisome Proliferator-activated Receptor gamma co-activator 1 alpha; DRP-1= 
Dynamin Related Protein 1; MXN= Mitochondrial Copy Number; HIF1α= Hypoxia Inducible Factor 1 alpha; 
TNFα= Tumour Necrosis Factor Alpha; IFN- γ= Interferon gamma; EGF= Epithelial Growth Factor; Il=Interleukin; 
MCP-1= Macrophage Chemotactic Protein-1; AMP-K=Adenosine Mono Phosphate Kinase; ATP= Adenosine 
Triphosphate; CR= Creatine; PCR= Phosphocreatine; CPT-1= Carnitine Palmitoyltransferase-1;  MCAD= Medium 
Chain Acyl-CoA Dehydrogenase; ETF= electron Transferring Flavoprotein;  DECR1= 2,4-dienoyl-CoA reductase 1; 
MFEII= Multifunctional Enzyme-2; NFKB= Nuclear Factor Kappa Beta; IGFR1=Insulin-like Growth Factor 1; 
cV=Complex V; P70s6K= Ribosmal protein S6 Kinase; FOXO-1= Forkhead Group O-1; mTOR= Mammalian Target 
of Rapamycin; AKt= Protein Kinase B; E4BP1= Eukaryotic translation initiation factor 4E-binding protein 1; 
PUFA=Polyunsaturated Fatty Acids; MUFA=Monounsaturated Fatty Acids; SFA= Saturated Fatty Acids; PS= 
Polysaccharides; PL= phospholipids. 
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