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Abstract: A general homogenization technique is developed to study the linear and nonlin-
ear properties of 2D graphene-based metasurfaces. The results show the effective nonlinear
susceptibility of graphene metasurfaces can be enhanced bytwo orders of magnitude.
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1. Introduction

We introduce a general linear and nonlinear homogenizationmethod for 2D graphene-based metamaterials to over-
come some shortcomings of existing linear homogenization methods. Based on our novel method, a graphene cruci-
form metasurface is studied and the results show its effective third-order susceptibility can be enhanced by more than
two orders of magnitude as compared to that of a homogeneous graphene sheet.

As is well known, homogenization methods are key tools to study novel properties of metamaterials [1, 2]. So far,
the scattering-parameter approach and the field-averagingprocedure are the two most commonly used homogeniza-
tion methods [3]. However, they have been mostly applied to simple 3D metamaterials (linear, dispersive, and isotropic
case), and almost no efforts have been devoted to the nonlinear effective properties of 3D metamaterials [4]. As for
metasurfaces, relevant work is even more scarcely found. One of the main reasons is that the high-order susceptibility
of 2D materials exhibits optical anisotropy, which nontrivially challenges the existing linear homogenization meth-
ods. To overcome these challenges, an auxiliary physical quantity is introduced here to develop a general linear and
nonlinear homogenization method for 2D graphene-based metasurfaces.

2. Linear Homogenization of Graphene Metasurfaces

In a widely used linear field-average homogenization method[3], the effective permittivity is evaluated asεav
i =

Dav
i /Eav

i . Apparently, this method is only applicable to some particular anisotropic materials, whose permittivity tensor
is diagonal. In order to extend the field-average method to a more general case, we introduce here a new auxiliary
quantity,di j, defined asdi j = εi jE j. Based on this auxiliary quantity, the constitutive relation of a general anisotropic
material is expressed asDi = ∑ j di j. If we define the average value of each auxiliary quantity component asdav

i j (ω) =∫
V εi j(r,ω)E j(r,ω)dr/V , whereV is the volume of the unit cell, the corresponding component of effective permittivity

tensor can be evaluated asεav
i j (ω) = dav

i j (ω)/Eav
j (ω).

10 20 30 40

Wavelength ( m)

-1000

0

1000

2000

3000

4000

5 10 15 20 25

Wavelength ( m)

0

0.2

0.4

0.6

0.8

1

(a)

Uniform Sheet

Cross Array

(b)

Fig. 1. Validation of linear homogenization: (a) Comparison of intrinsic graphene permittivity, the ef-
fective metasurface permittivity, and the effective permittivity constructed from the Kramers-Kronig
relation. (b) Comparison of linear response of the graphenemetasurface and homogenized one.



In order to validate our proposed linear homogenization approach, a graphene cruciform metamaterial has been
studied by the FDTD method, the relevant results being presented in Fig. 1. The comparison of intrinsic and effective
permittivities shown in Fig. 1(a) clearly demonstrates that the optical properties of the graphene array differ signifi-
cantly from those of the homogeneous graphene sheet, chieflydue to the presence of plasmon resonances. Moreover,
the effective permittivity satisfies the well-known Kramers-Kronig relation, which further proves the accuracy of the
proposed linear homogenization method. In Fig. 1(b), the comparison between the linear response of the structured
and homogenized metasurfaces proves that a complex graphene metasurface can be replaced by a homogenized sheet
with specific optical constants.

3. Nonlinear Homogenization of Graphene Metamaterials

Similarly to the linear case, we introduce an auxiliary quantity qi jik, defined in third-harmonic case asqi jkl =

χ (3)
i jklE jEkEl . Based on the field-average method, we haveqav

i jkl(ω) =
∫

V χ (3)
i jkl(r,ω)E j(r,ω)Ek(r,ω)El(r,ω)dr/V . To

generate the same THG intensity from an effective uniform sheet, we assume each component ofqe f f
i jkl in a homoge-

neous uniform sheet is equal to that ofqav
i jkl in the graphene cruciform metasurface. Based on this assumption, we have

χ (3),e f f
i jkl = qav

i jkl/(E
e f f
j Ee f f

k Ee f f
l ). Using an in-house developed GS-FDTD code [5], we have determined the nonlinear

optical response of the structured and homogenized metasurfaces, the main results being summarized in Fig. 2. In-
specting the plots in Fig. 2(a), we find that, at the resonancewavelength of 5.4µm, the effectiveχ (3) is more than two
orders of magnitude larger than the intrinsic third-order susceptibility of graphene. Moreover, we have compared the
nonlinear optical response of the structured and homogenized graphene metasurfaces and the results are summarized
in Fig. 2(b). The good agreement proves the effectiveness and accuracy of our proposed nonlinear homogenization
method.
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Fig. 2. Validation of the nonlinear homogenization method:(a) Comparison of intrinsic and effective
third-order susceptibilities. (b) Comparison of third-harmonic generated by the two metasurfaces.

To conclude, we prove that the third-order susceptibility of homogenous graphene sheet can be enhanced more
than two order of magnitude by designing a graphene metasurface properly. This remarkable enhancement can find
important applications to active nanodevices, as it offersa new avenue to design metasurfaces with extremely large
nonlinear susceptibilities at desirable frequencies.
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