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Cognitive skills are the emergent property of distributed neural networks. The distributed

nature of these networks does not necessarily imply a lack of specialization of the

individual brain structures involved. However, it remains questionable whether discrete

aspects of high-level behavior might be the result of localized brain activity of individual

nodes within such networks. The phonological loop of workingmemory, with its simplicity,

seems ideally suited for testing this possibility. Central to the development of the

phonological loop model has been the description of patients with focal lesions and

specific deficits. As much as the detailed description of their behavior has served to

refine the phonological loop model, a classical anatomoclinical correlation approach with

such cases falls short in telling whether the observed behavior is based on the functions

of a neural system resembling that seen in normal subjects challenged with phonological

loop tasks or whether different systems have taken over. This is a crucial issue for the

cross correlation of normal cognition, normal physiology, and cognitive neuropsychology.

Here we describe the functional anatomical patterns of JB, a historical patient originally

described by Warrington et al. (1971), a patient with a left temporo-parietal lesion and

selective short phonological store deficit. JB was studied with the H2
15O PET activation

technique during a rhyming task, which primarily depends on the rehearsal system of

the phonological loop. No residual function was observed in the left temporo-parietal

junction, a region previously associated with the phonological buffer of working memory.

However, Broca’s area, the major counterpart of the rehearsal system, was the major

site of activation during the rhyming task. Specific and autonomous activation of Broca’s

area in the absence of afferent inputs from the other major anatomical component of the

phonological loop shows that a certain degree of functional independence or modularity

exists in this distributed anatomical-cognitive system.

Keywords: workingmemory, phonological loop, neuro-reductionism, recovery from aphasia, brain activation, PET,
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INTRODUCTION

Working memory (WM) is one of the most studied domains
of human mental faculties. Behavioral investigations in normal
subjects have contributed to the development of articulated
models such as those stemming from the initial model of
Baddeley and Hitch (1974). These models also found some
support from anatomical observations in brain damaged patients
and functional anatomical studies in normal subjects (see Dolan
et al., 1997;Muller and Knight, 2006; Buchsbaum andD’Esposito,
2008 for reviews).

Central to the assumptions of current models of WM is the
concept that a certain degree of modularity exists within the
system. The comparison of normal and pathological behavioral
patterns has supported this notion at the functional cognitive
level (Shallice and Vallar, 1990; Repovs and Baddeley, 2006).
However, demonstration of such modularity or at least of some
degree of functional independence of the underlying neural
systems has turned out not to be an obvious task, primarily
because of the methodological limitations of individual methods
taken per se (for a discussion, see Paulesu et al., 1996a; Henson,
2005).

We previously argued that either functional imaging in
normal subjects or neuropsychological methods alone cannot
provide unequivocal support for this assumption, rather a
combination of such methods may be necessary (Paulesu et al.,
1996a; Shallice and Cooper, 2012). This paper presents an
attempt at testing some of the assumptions of the most widely
supported WM model, that of Baddeley and Hitch (1974) using
a combination of functional anatomical and neuropsychological
techniques.

Among the systems of the Baddeley and Hitch working
memory model, the verbal slave system—the phonological loop,
focus of the experimental data reported in this paper—seemed
best suited to our aims, because of its simplicity and relatively
well-understood architecture at the cognitive level.

The phonological loop allows maintenance of verbal material
through active rehearsal, for example, when trying to remember
a telephone number (Murray, 1968; Levy, 1971). In Salamé
and Baddeley’s version (1982), the phonological loop has two
components: a [input] short-term phonological store (STMS),
based on a phonological code (Salamé and Baddeley, 1982),
and a subvocal rehearsal process, based on an articulatory code
(Baddeley et al., 1975).

Independence of these components is indicated by the
fact that differential interference of concurrent articulation
(articulatory suppression) on the word length (Baddeley et al.,
1975) and phonological similarity effects. The word length
effect refers to the fact that it is harder to retain words that
take longer to articulate in working memory (e.g., harpoon,
Friday, coerce as opposed to bucket, wiggle, tipple; Baddeley
et al., 1975). The phonological similarity effect refers to the
difficulty in remembering words that sound similar (can, mad,

sat as opposed to bed, hall, frost) (Conrad, 1964). Articulatory
suppression abolishes the word length effect (Baddeley et al.,
1975), but not the phonological similarity effect (Murray, 1968;
Levy, 1971), when stimuli are presented aurally. This finding
indicates that the rehearsal process is based on a high-level

articulatory code that is independent of short-term storage to
which auditory-verbal stimuli have privileged and direct—that is,
not mediated by rehearsal-access. However, when study material
is presented visually, articulatory suppression also abolishes
the phonological similarity effect indicating that visual material
needs rehearsal, or phonological recoding, prior to retention in a
short-term phonological input store (Murray, 1968). Articulatory
suppression, but not unattended speech (Burani et al., 1991),
has a small detrimental effect on various kinds of phonological
awareness tasks, such as rhyming tasks, stress assignment
tasks, homophony tasks for pseudo-words when stimuli are
presented visually (Wilding and White, 1985; Besner, 1987;
Burani et al., 1991). These results suggested that the rehearsal
process tends to be used in phonological awareness tasks, while
the contribution of the STMS, which is the site of interference by
unattended speech (Salamé and Baddeley, 1982), is considered
marginal when short-termmemory demands of the phonological
awareness task are small (Burani et al., 1991).

Short-Term Memory Patients
Certain aspects of the normal multi-component cognitive model
of the phonological loop were initially obtained by inference
from observations in brain damaged patients with selective
impairment of verbal short-term memory (Warrington and
Shallice, 1969; Warrington et al., 1971; Vallar and Baddeley,
1984; Shallice and Vallar, 1990; Waters et al., 1992; Vallar et al.,
1997). The behavioral deficit of some of these patients has been
interpreted as the result of damage to a short-term phonological
buffer (Shallice and Butterworth, 1977; see also Shallice and
Vallar, 1990 for a review of these cases), while other patients have
patterns of performance more consistent with an impairment of
the rehearsal process (Waters et al., 1992; Vallar et al., 1997).

The study of the lesion pattern of short-term memory (STM)
patients has also contributed converging evidence on the multi-
component nature of verbal working memory. Meta-analysis of
brain lesions in patients with deficits of the STMS suggested that
a crucial lesion site may be in the left inferior parietal cortex in the
perisylvian region (Warrington et al., 1971; Shallice and Vallar,
1990; Vallar et al., 1997; Baldo and Dronkers, 2006) while there is
now some evidence that patients with a dysfunctional rehearsal
process tend to have lesions in Broca’s area (Vallar et al., 1997) or
in the left insula (Dronkers, 1996)1.

1A major discrepant finding in this respect is the study of Leff et al. (2009).

They used a VBM-style analysis of 210 stroke patients who had undertaken a

comprehensive aphasia battery, poorer performance on span was found in a large

region of the left hemisphere. They then take out the effects of five regressors—

auditory word reproduction, auditory non-word repetition, verbal fluency, verbal

fluency, and stroke volume. Now the digit span deficit region is limited to a small

posterior superior temporal region (x=−66; y=−32, z= 4). However, it could be

argued that the study used one regressor too many; auditory non-word repetition

may well-load on input phonological buffer capacity (but see Acheson et al., 2011).

Yet another patient series, using VLSM implicates both the superior temporal

and inferior parietal regions while individual word repetition implicates only the

temporal portion (Baldo et al., 2013). A more generic deficit in the performance

of the digit span, compared for example with the performance of the Token

test, once mapped anatomically on a population level with voxel-based symptom

lesion mapping, again correlates with the involvement of the left temporo-parietal

junction (see for example, Koenigs et al., 2011).
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Experiments on virtual lesions such as those provoked by
TMS or direct cortical stimulation during awake surgery support
the overall picture, Thus, Romero et al. (2006) were able to
determine short-term memory deficits after TMS inhibition
over the key regions of the phonological loop (Broca’s area
and the left temporo-parietal junction). Moreover, Papagno
et al. (2017) have recently shown that electrical inhibition of
the left supramarginal gyrus is associated with predominant
order errors in auditory span task, a characteristic deficit
in phonological input buffer patients, and, in particular, in
JB in whom they were frequent (Shallice and Butterworth,
1977).

Taken together, the lesion data provide converging evidence
with the growing body of functional imaging literature of verbal
working memory which points to a multi-component normal
neural architecture of the phonological loop in which Broca’s area
is the major counterpart of the rehearsal system while the left
temporo-parietal junction operates as a phonological buffer (see
for example, Paulesu et al. (1993) and the more detailed literature
review in the discussion of the present paper).

Unaddressed Issues in STM Patients
Studies and Motivations for the Present
Study
As much as there is a reinsuring consistency between
psychological and neuropsychological findings for the domain
of verbal short-term memory, there is one aspect that remains
unaddressed to date: the consistency between the normal and
the pathological model at a functional anatomical level, that
is, the consistency of the functional anatomical operations
of the normal phonological loop and the operations of its
remains in specific patients. As discussed earlier in this
introduction, one such exploration may have a more general
interest as it allows one to test one of the basic assumptions
of cognitive neuropsychology, namely that the mind and its
neural underpinnings shows some degree of modularity and that
modules can be damaged in a fairly selective manner while other
components are left relatively untouched.

Indeed, to make an effective inference from
neuropsychological findings to models of normal function
along the aforementioned lines one has to exclude the possibility
that residual behavioral abilities in a brain damaged patient
do not arise from a re-organization of the relevant cognitive-
anatomical system. For language-related functions such as
phonological short-term memory, one might expect a priori that
preserved abilities are being subserved either by the activity of
remaining parts of the left hemisphere, if reorganization has not
occurred, or are taken over by the right hemisphere. The latter
possibility makes the linking of normal and abnormal cognitive
anatomical models more complex.

Lesion studies based on structural imaging techniques are
insufficient to investigate these possibilities because they lack
any functional information about brain regions spared by
damage. However, access to functional imaging techniques
and the availability of patient JB (Warrington et al., 1971;
Shallice and Butterworth, 1977; Shallice, 1988; Butterworth et al.,

1990), has allowed us to translate into practical experimental
questions the general issue raised in this introduction: do
the residual phonological skills of such patients arise from
preserved brain areas that are normally active in phonological
tasks? Do these areas operate as expected by normal cognitive-
anatomical models, or do the patients’ preserved abilities
arise from the operation of different parts of a reorganized
brain?

There is a second reason for exploring the functional
localization of JB’s verbal working memory system in more
detail. Buchsbaum and D’Esposito (2008) have written a major
critique of the concept of the phonological input buffer on the
basis of functional imaging and neuropsychological evidence
(see also Buchsbaum et al., 2011). They produced an alternative
perspective in which they argue that there is a perceptual-motor
speech interface system, which, when damaged, produces a severe
impairment in phonological short-term memory, while leaving
speech perception and speech production relatively less affected.
This component is held to be in the area SPT (sylvian parietal
temporal) lying at the junction of the temporal and parietal lobes
in the posterior part of the auditory association cortex (part of
area TPT in Galaburda and Sanides, 1980 terminology). JB is
the putative phonological input buffer patient most extensively
discussed in this critique. It is therefore appropriate to put on
record what we dicovered of the functional anatomy of the
remains of her verbal working memory system.

Interestingly, the consistency of functional anatomical
patterns of brain damaged patients with WM disorders and the
normal patterns has not been assessed as yet.

METHODS

Case Report and Rationale for the Study in
Patient JB
JB a right-handed secretary born in 1935, is a patient with
very limited verbal span (2–3 items) despite normal speech
comprehension, speech output, and intelligence (for a summary
of her performance on a number of specific tasks, see Table 1;
Warrington et al., 1971; Shallice and Butterworth, 1977). Her
verbal span capacity has remained as such until the time of
our PET experiment. At the age of 24, the removal of a
meningioma in the left parietal region led to a lesion in the
left temporo-parietal cortex. She was initially severely aphasic
but she recovered very satisfactorily, except for a pronounced
verbal short-term memory deficit. Her normal performance on
verbal long-termmemory tasks has supported findings in another
patient, KF (Warrington and Shallice, 1969), showing that the
two verbal memory systems are dissociable (Warrington et al.,
1971). As with other patients with a similar pattern of symptoms
(e.g., patient PV originally described by Basso et al., 1982), it has
been postulated that JB’s selective deficit of auditory verbal short-
termmemory is due to damage to a verbal short-term store which
is based on a phonological code and which is a sub-component
of the phonological loop of working memory (Warrington
and Shallice, 1969; Shallice and Butterworth, 1977; Vallar and
Baddeley, 1984; Shallice and Vallar, 1990). JB’s performance
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TABLE 1 | Basic Word Processing Performance of patient JB.

SPEECH AND LANGUAGE

Speech production1: Normal, except for a slight increase in function word errors

Reading and spelling2: Normal

Minimal pair phoneme discrimination3: 95–99%

Newcastle speech segmentation (lesser)3: 94%

Sentence comprehension: Characteristic of STM patients2,3,4

Naming words from description2: 100%

Word reproduction3: 91% (no effect syllabic length; imageability; frequency)

SPAN AND SHORT-TERM MEMORY TESTS

Auditory verbal2: Digits, 3.4, Letters 2.5, Words 2.5

(Errors2: Order > Acoustic > Perseverative)

Visual verbal2: 90% on 4 digit strings; 70% on 4 letter strings

For meaningful sounds5: Normal

Auditory probe digit5: 37% errors on 6 digit lists

Word probe 12 item lists3: Excessive errors throughout list

Span-effect of phonological similarity3,8: Variable across experiments

Span-word length effect3,8: Not consistent

Recency effect in free recall2: Reduced to one item

Sternberg paradigm (Auditory 3 digits)7: 81%, ERP-P450 130 ms delayed

Sternberg paradigm (Visual 3 digits)7: 100%, ERP-P450 not delayed

Results taken from: 1Shallice and Butterworth, 1977; 2Warrington et al., 1971; 3Howard

and Shallice, unpublished; 4Caplan and Waters, 1990; 5Shallice and Warrington, 1970;
6Shallice and Warrington, 1977; 7Starr and Barrett, 1987; 8Shallice, unpublished. ERP,

Event-related potential.

on psychological testing did not change with time, until her
eventual death, some time after she participated in this study and
more than 40 years after her operation. More specifically, the
other major part of the phonological loop, the rehearsal system
based on an articulatory code (Baddeley et al., 1975; Salamé and
Baddeley, 1982), appeared to be spared in JB as she was able to
speak normally (Shallice and Butterworth, 1977) and to segment
the sound of words for phonological discrimination (e.g., during
rhyming tasks). JB’s anatomical lesion, as defined on the basis
of angiography (Warrington et al., 1971), was also consistent
with evidence from normal subjects that the phonological buffer
localizes to the left temporo-parietal junction (Paulesu et al.,
1993; Demonet et al., 1994).

It remained to be investigated, however, whether other
anatomical components of the phonological loop that subserve
rehearsal, primarily Broca’s area, were spared and capable
of activation when JB is challenged with phonological tasks
which in normal subjects put minimal demands on short-term
memory but involve sub-vocalization for rehearsal and similar
processes (Vallar and Baddeley, 1984; Burani et al., 1991). If JB’s
preserved phonological loop skills depended on spared regions
of the anatomical system described in normal subjects, then
we would predict activation in those areas during phonological
tasks. To test this prediction we used the 15O-water positron
emission tomography (PET) technique to measure relative
regional cerebral blood flow (rCBF) changes as an index of altered
synaptic activity. We used a phonological task that normally
activates Broca’s area, left insula, superior temporal cortex and
supplementary motor cortex, mesial ventral extrastriate cortex
and cerebellum (Paulesu et al., 1993, 1996b).

A further non-trivial issue was the exact localization of brain
damage in patient JB. This was previously mapped by inference

on the basis of angiography (Warrington et al., 1971). It was
held to be impossible to perform an MRI scan on her because
of incomplete records about the presence of intracranial metallic
clips, the operation having been carried out in 1959.

However, PET scanners themselves have sufficient spatial
resolution tomake precise anatomical assignations and the added
advantage that these show distant functional effects due to brain
damage (Feeney and Baron, 1986).Wewere therefore able tomap
explicitly the brain lesion2 of this paradigmatic patient using PET
data (see PET methods section).

The study was approved by the Hammersmith Hospital
Medical Ethics Committee and permission to administer
radioactivity was obtained from the ARSAC, UK. JB’s consent was
obtained according to the declaration of Helsinki.

Experimental Design
The experiment was designed to test the functioning of what was
left of the phonological loop of patient JB. Of course, testing JB
with a full blown short-termmemory task would have made little
sense as the patient had a severe limitation of the verbal span
due to her phonological buffer deficit. We therefore employed
the procedure of using a task that makes demands on the
process which would be relatively minor for a normal subject
but activates the rest of the rehearsal system normally. We know
that STM patients when doing the easier task of single letter
matching, given by auditory input, perform more slowly than
normal subjects (Starr and Barrett, 1987). So it seems plausible
that the phonological STM load that this task involves, which
is minor in normal subjects, is considerable for STM patients.
Performance of a rhyming task for two items clearly requires
that, while the matching process is carried out, the phonological
representations of the new letter name and the target stimulus/b/
are held in STM with a memory load close to JB’s span limit.

JB was therefore tested with a continuous rhyming task
using letter names that were presented visually—to guarantee
that the rehearsal system was involved—as in Paulesu et al.
(1993). She was asked to detect letter names rhyming with “B”
(e.g., C, D, G, etc.). The letter “B” was always present on the
screen. Targets occurred at random at a rate of 1 in 6. Brain
activity measured during the rhyming task was compared to that
measured during a control task, a shape similarity judgment task
for simple line drawings modified from the Korean alphabet
(see Figure 1). This task controlled for visual stimulation and
cognitive components (e.g., immediate matching to sample)
thus isolating letter recognition and phonological processing.
JB performed both tasks silently six times in a counterbalanced
order. She raised her right first finger to indicate the detection of
a target and did not speak during scanning.

PET Methods
Data Acquisition and Pre-processing
The distribution of rCBF was measured by recording
radioactivity tomographically following the intravenous

2Lesions identified with rCBF PET scans may not correspond fully to structural

lesions; in chronic stroke, the area of full structural damage has blood flow close

to zero, surrounded by areas of reduced blood flow. Accordingly, in the paper the

wording “brain lesion” for JB implies a combination of structural and/or functional

damage.
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FIGURE 1 | Schematic representation of the rhyming task for letter

names and its control task (shape similarity judgments for Korean

letters) phonological similarity (rhyming) task: subjects were asked to

make rhyme judgments about consonants appearing on a computer

screen at a rate of one per second. They moved a joy-stick toward a “yes”

symbol every time a letter appeared that rhymed with the letter “B” which was

always present on the screen. Rhyming letters occurred at a frequency of 1 in

6. Shape similarity task: subjects were asked to judge whether a false font

looked similar to a target false letter always present on the screen.

injection of 15O-labeled water (H2
15O) with the CTI 953B PET

scanner (CTI Inc., Knoxville, TN, USA).
Twelve consecutive regional blood flow (rCBF) measurements

(six for each experimental and control condition) with PET were
collected. Each rCBF scan was divided into two frames: (i) 30-
s measurement of the background radiation; (ii) 2.45-min rCBF
measurement with concurrent psychological stimulation.

Data were acquired by scanning in 3Dmode (Townsend et al.,
1991). H15

2 O was infused (10 ml min−1; 55 MBq ml−1) as a
tracer of blood flow while scans were acquired. After attenuation
correction (measured by a transmission scan), the data were
reconstructed as 31 transaxial planes by three-dimensional
filtered back projection with a Hanning filter of cut-off frequency
0.5 cycles voxel−1. The resolution of the resulting images was
8.5 × 8.5 × 4.3 mm at full width half-maximum (FWHM)
(Spinks et al., 1992). The integrated counts accumulated were
used as an index of rCBF (Mazziotta et al., 1985; Fox andMintun,
1989).

All PET scans were realigned to the first one by using an
automated algorithm (Woods et al., 1992). On an average rCBF
image we then used the stereotactic normalization procedures of
SPM3: the parameters estimated for the average rCBF image were
then applied to the individual PET scans. The images were then
smoothed with a 16× 16× 16 gaussian filter.

Lesion mapping. This was done by comparing JB’s average
rCBF distribution across all scans with the average rCBF images
of 12 normal controls who took part in PET studies on the

3The lesion area was masked and not included in stereotactic normalization so

that it did not affect the transformations of healthy brain tissue at this stage of

pre-processing.

phonological loop and were scanned under similar conditions,
for six scans of phonological memory or rhyming; and for six
scans of visual feature discrimination/memory for false fonts.
The statistical comparison was made by using a two-sample t-
test, after normalization for global counts (statistical threshold
p < 0.001 with cluster level correction 0.05 FWE). The “lesion
image” resulting from the statistical comparison between the
patient and 12 controls was then mapped with reference to
the stereotactic space of the Montreal Neurological Institute
(MNI) using the Automatic Anatomical Labeling (AAL) template
(Tzourio-Mazoyer et al., 2002) with the software MRICron
(http://www.nitrc.org/projects/mricron).

Comparison of JB’s Lesion and the Results of

Previous Imaging Experiments on Phonological

Short-Term Memory
To test the degree of overlap of JB’s functional lesion with
previous imaging data on the phonological loop, the data of
representative papers (Paulesu et al., 1993; Paulesu et al., this
paper; Demonet et al., 1994; Awh et al., 1996; Salmon et al., 1996;
Smith et al., 1996, 1995; Buchsbaum et al., 2005) reporting foci
in the temporo-parietal junction and in the parietal cortex were
submitted to a meta-analysis using the Activation Likelihood
Estimate approach (Eickhoff et al., 2009). The ensuing clusters of
significant convergence of regional effects were then overlapped
with JB’s lesion. The ALE analysis was thresholded at p < 0.001.

Analysis of Activation Data
Activations evoked by the rhyming task were assessed on a
voxel by voxel basis using statistical parametric mapping. Global
differences in CBF across scans were compensated for using
proportional scaling and comparisons of means were made using
the t statistic. The resulting set of t values, constituting a statistical
parametric map (SPM{t}), was then transformed into a SPM{Z}
map. The statistical threshold p < 0.001 was used for those areas
that are known to be involved in the phonological loop in normal
subjects (Paulesu et al., 1993). This threshold, takes into account
the number of areas tested in a hypothesis led analysis (the areas
of the phonological loop). For other areas a harsher threshold
was used (p < 0.05 corrected for multiple non-independent
comparisons).

All analyses were performed with SPM12 (http://www.fil.ion.
ucl.ac.uk/spm/software/spm12).

All results are reported according to MNI strereotactic
coordinates: for comparison of the new data with previous
PET data (Paulesu et al., 1993, 1996b), the “older” data were
converted from Talairach space into MNI coordinates according
to technique described byM. Brett (http://imaging.mrc-cbu.cam.
ac.uk/imaging/MniTalairach).

RESULTS

Distribution of JB’s Brain Lesion
Analysis of average rCBF distribution across the 12 PET
scans showed the extent of the brain lesion: this involved
the left inferior parietal lobule, the left angular gyrus, the
left supramarginal gyrus, the left superior, middle and inferior
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TABLE 2 | Lesion distribution in patient JB.

Brain Lesion Percentage of Stereotactic coordinates

region volume overall and Z scores of

(mm3) lesion regional local maxima

x y z Z score

Left inferior parietal 1,158 1.9 −56 −32 36 5.5

Left angular gyrus 6,266 10.3 −60 −56 24 6.2

−56 −54 28 6.2

−50 −70 −26 5.7

Left supramarginal

gyrus

4,470 7.4 −60 −50 24 6.3

−58 −54 26 6.3

−66 −34 24 4.8

Left superior

temporal gyrus

8,355 13.8 −62 −48 16 6.3

−62 −50 20 6.3

Left middle

temporal gyrus

22,615 37.3 −60 −50 18 6.3

−58 −52 24 6.3

−46 −54 12 6.2

Left inferior

temporal gyrus

3,869 6.4 −48 −60 −4 5.5

Left middle

occipital gyrus

9,406 15.5 −50 −72 16 6.1

−46 −74 22 5.8

−40 −60 0 5.0

Left inferior

occipital gyrus

2,587 4.3 −50 −66 −2 5.5

Left fusiform gyrus 1,078 1.8 −50 −56 −8 4.8

−46 −60 −14 4.1

The anatomical mapping of the SPM hypo-perfusion -lesion- map was obtained with the

software MRIcron (www.mricron.com) using the template AAL. On the right end side of

each row, we report the stereotactic coordinates and Z scores of the region specific local

maxima effects.

temporal gyri, the left fusiform gyrus and the middle and inferior
occipital gyrus (see Table 2 and Figure 2).

The meta-analysis of the imaging data on the phonological
loop revealed two clusters: the first at the left temporo-parietal
junction (x = −54; y = −31; z = 23 contributions from Paulesu
et al., 1993, 1996b; Demonet et al., 1994; Salmon et al., 1996;
Buchsbaum et al., 2005 from STM Sternberg paradigms and the
like); a second and separate more posterior and dorsal clusters
(x = −20; y = −61; z = 44 contributions from Awh et al., 1996;
Smith et al., 1996 from n-back tasks). Of the two clusters only the
former falls within the boundaries of JB’s lesion (Figure 3).

PET Activation Experiment
Normal controls in a previous experiment performed on average
98% correct for the rhyming task and 97% correct for the shape
similarity task (Paulesu et al., 1996b).

JB’s performance in both tasks was well-above
chance (rhyming task: 77% correct; shape similarity
judgment task: 98% correct). Her performance on the
rhyming task showed improvement over the experiment,
achieving 90% in the last two blocks. This result
confirms that JB had relatively spared phonological
abilities, despite her very limited verbal short-term
memory.

The results of the comparison of rCBF distributions
in the rhyming task with its baseline were clear-cut (see
Table 3 and Figure 3) and remarkably similar to the
results of a group of normal subjects challenged with
the same task (see Table 3, coordinates in small bold
print). The maximal activation, in terms of extent and
statistical significance, was in the left inferior frontal
gyrus.

As in normal subjects challenged with the rhyming task,
activation was also observed in the left and right anterior insula,
the head of the caudate nucleus and the SMA. JB also showed
activation of the mirror region to Broca’s area in the right
hemisphere and in the right temporo-parietal junction.

DISCUSSION OF THE PET EXPERIMENT IN
PATIENT JB

The experiment shows that JB has a lesion which incorporates the
most frequently damaged region in patients with phonological
short-term memory deficits (Shallice and Vallar, 1990), while
the surviving brain tissue of the phonological loop, Broca’s
area, was normally perfused and activated, just as in normal
controls.

These clear-cut findings when seen in the context the simple
and generally accepted phonological short-term memory model
introduced by the Salamé and Baddeley (1982), allow us to
address two general questions.

The first general question is whether some neuropsychological
syndromes can be explained by a simple process of subtracting
one or more components or connections from the whole system.
Activation studies in pathological cases of acquired brain damage
(and some developmental disorders, Demonet et al., 2004) are
critical for this purpose.

The second question is whether cognitive processes above the
level of sensory or perceptual ones can be mapped onto brain
anatomy to localize specific functional subsystems. This is an
important issue for all those cognitive functions that have no
animal model.

Before entering into the details of our discussion it is
important to emphasize that the imaging literature on normal
verbal working memory has grown considerably since the times
of the initial descriptions of Paulesu et al. (1993). A careful review
of this literature and its compatibility with the phonological loop
model would require a dedicated review article in its own right,
something beyond the scope of this manuscript (see for example,
Buchsbaum and D’Esposito, 2008). Accordingly, in what follows,
we concentrate on the papers that were acquired with methods
designed to highlight functional anatomical effects that would

Frontiers in Human Neuroscience | www.frontiersin.org 6 May 2017 | Volume 11 | Article 231

http://www.mricron.com
http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


Paulesu et al. Modularity of Verbal Working Memory

FIGURE 2 | Distribution of the anatomical lesion in patient JB. The figure illustrates an average blood flow image of the patient from all scans after realignment

and stereotactic normalization. The PET data have been superimposed on a normal MRI scan conforming to the same stereotactic space. Axial cuts and the lateral

view of the 3D rendering are shown. The brain damage is indicated by low flow (blue areas). Gray areas in the 3D rendering: not covered by the PET scans.

FIGURE 3 | Cortical rendering of the left and right brain areas activated in JB during a rhyming task (blue areas), of the localization of her cerebral

lesion involving the left temporo-parietal regions (red left posterior area) and of the results of meta-analysis on eight studies (Paulesu et al., 1993;

Paulesu et al., Supplementary Material in this paper; Demonet et al., 1994; Smith et al., 1995, 1996; Awh et al., 1996; Salmon et al., 1996; Buchsbaum

et al., 2005) investigating the functional correlates of verbal working memory and phonological buffer (areas in green).

correlate, at a similar grain size4, with the phenomenology that
is normally seen in patients with a phonological buffer deficit
or in normal subjects during specific behavioral paradigms. We
will also discuss the major challenges to the phonological loop
functional anatomical model to date.

4There is recent imaging evidence suggesting a number of verbal short-term

memory sub-regions at the junction between the superior temporal region and the

supramarginal gyrus or in left temporal cortex: these show response patterns that,

for the time being, one would find difficult to correlate with classical phonological

loop phenomenology. This level of resolution we consider below the grain size

of description of primary effects of phonological short-term memory, like for

example, the capacity of the store, short-term memory for identity or order, the

phonological similarity effect or the word length effect and their interactions with

the modality of stimuli presentation.

Models of the Phonological Loop: Normal
Models and Anatomical Lessons from
Patient JB
The multi-component nature of the phonological loop has also
been supported by functional anatomical models in normal
subjects of the mid 90s (Paulesu et al., 1993; Demonet et al.,
1994; for discussions see Demonet et al., 1996; Paulesu et al.,
1996a; Dolan et al., 1997). In our early PET activation experiment
we showed that the phonological loop depends primarily on
left peri-sylvian cortices and on brain regions involved in
planning speech (Paulesu et al., 1993). By comparing the patterns
of activation associated with a rhyming task, and those of a
phonological short-term memory task, we observed that the
left temporo-parietal junction was significantly more active in
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TABLE 3 | Brain areas activated during the rhyming task in patient JB and

in normal controls.

Left hemisphere Right hemisphere

x y z Z score x y z Z score

BRAIN REGIONS

SMA – – – – 6 10 76 3.2

– – – – 2 14 48 3.1

−14 5 61 3.7 – – – –

Lateral premotor

cortex

−50 8 16 4.8 60 2 16 3.5

−48 −4 38 4.1 64 −6 16 3.0

−38 5 35 7.4

Inferior frontal gyrus −54 10 18 4.9 54 10 12 3.1

−52 16 26 3.6 – – – –

−46 12 14 6.5 – – – –

Rolandic operculum −52 4 14 5.1 56 6 16 3.1

−48 −22 24 3.3 – – – –

Insula −42 −8 10 3.4 48 8 −6 3.3

–42 −2 10 3.3 40 14 −4 3.1

−34 −6 −5 3.3 34 12 5 3.7

−38 14 1 3.8 – – – –

−36 32 15 6.0 – – – –

Superior temporal

gyrus

* * * * 62 −36 22 3.3

−46 −27 3 6.1 – – – –

−44 −34 11 3.9 – – – –

Lenticular nucleus −22 0 14 3.3 – – – –

Caudate nucleus −20 6 20 3.2 – – – –

−6 18 10 4.9 18 −13 4 4.5

−22 22 14 2.9 – – – –

Cerebellum+
−12 −59 −18 3.3 18 −65 −23 3.5

Coordinates refer to the maximal activation indicated by the highest Z score in a particular

cerebral structure. Stereotactic coordinates in bold italic print refer to the brain areas

activated in a group of five normal subjects reported in Paulesu et al. (1996b) after

transformation to MNI stereotactic space using Brett’s procedure. Distances are relative

to the anterior commissure in a brain volume oriented along the ac-pc line. SMA,

Supplementary motor area. *In patient JB, the mirror region of the left hemisphere at−62,

−36, 22 was significantly hypo-perfused (p < 0.05 FWE corrected). +, The cerebellum

was sampled inconsistently in patient JB.

the short-term memory task, taking into account the patterns
of activation in the control non-verbal tasks; therefore we
suggested that the short-term phonological input store localizes
to the left temporo-parietal junction5. The same area was

5In describing a localized activation effect, ideally one would like to use stereotactic

coordinates to preserve the anatomical precision in any statement. Of course,

this is impossible in narrative. In the original description of the anatomy of the

phonological loop, Paulesu et al. (1993) used supramarginal gyrus and Brodmann’s

area 40 in alternation, as synonyms, mostly for stylistic reasons. Given the large

anatomical extension of BA 40 and of the supramarginal gyrus, this has generated

considerable confusion inviting some to consider their findings in parietal lobe

as replications of Paulesu et al. (1993), in spite of an anatomical distance in

stereotactic space in their findings of more than 2 cm (sic!) (Smith et al., 1995,

1996; Awh et al., 1996). If this seemed acceptable in the early 90s, it is now

below the standards of anatomical accuracy, as pointed out by Buchsbaum and

D’Esposito (2008). See Figure 3 for an anatomical meta-analysis of “phonological

store” findings and its comparison with JB’s lesion. Accordingly, we avoid this

significantly more active for the same comparison in a group
of dyslexic subjects (Paulesu et al., unpublished observations,
see Appendix in Supplementary Material) and in a group of
healthy subjects during a non-word learning task (Paulesu
et al., 2009). A very similar result emerged from Demonet
et al.’s study (Demonet et al., 1994) in which a complex
phonological awareness task was used with high phonological
short-termmemory demands and was contrasted with a semantic
awareness task. The phonological task involved judging whether
a given sound (e.g., /b/) occurred before another target sound
(e.g., /d/): in the critical conditions a non-word stimulus like
“rabudabu” was a target with a stimulus like “radubabu” as a
foil. Importantly, this experiment involved auditory stimulation,
and thus provided an across modality cross-validation of Paulesu
et al.’s (1993) findings which used visually presented materials.
One other replication of the same basic findings was published
by Salmon et al. (1996) who used Paulesu et al.’s (1993)
stimuli.

Even though interpretations with respect to general
theoretical models vary (see Buchsbaum and D’Esposito,
2008 for contrasting views on the phonological buffer),
these general functional anatomical findings have passed
the challenge of replication: for example, in the work of
Buchsbaum et al. (2005) the region they called SpT has
sustained activity during short-termmemory active maintenance
for both visually and auditorily presented stimuli that are
indistinguishable in stereotactic coordinates from those
discussed above.

Now, let’s consider the functional anatomy of JB’s
phonological loop and her skills. From Table 3, it can be
seen that, with one proviso, the pattern of activation for the
rhyming task is substantially identical to that of normal subjects,
except that no activity is found in superior temporal cortex and
the temporo-parietal junction where anatomical damage has
occurred.

In agreement with a cognitive-physiological model that
supposes a certain degree of modularity within the anatomy of
the phonological loop (Paulesu et al., 1993; Demonet et al., 1996;
Vallar et al., 1997), these imaging data show that a patient with
a well-placed lesion has a disruption of the behavior attributed
to the damaged cognitive-anatomical module (phonological
store impairment by damage to left temporo-parietal cortex).
This observation corroborates structural imaging investigations
(Warrington et al., 1971; Shallice and Vallar, 1990; see also Vallar
et al., 1997 for another case). The PET activation study, also
shows that preserved phonological loop skills such as rehearsal,
which involves higher levels of the speech production system, are
associated with activity in spared cognitive-anatomical systems
that in the case of the rehearsal process, localize to a set of
structures with Broca’s area as the principally activated brain
region.

These results indicate that cognitive subtraction, the logic
underlying much of cognitive neuropsychological investigation,

terminology here by using wordings that better reflect the stereotactic coordinates

of Paulesu et al. (1993) original findings.
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FIGURE 4 | Brain areas activated for the rhyming tasks as seen in 14 elderly control participants during the fMRI scan described in experiment 2. The

visual rhyming task was the same used with patient JB. On the left, the group effect (areas in red) that survived a p < 0.05 FWE cluster level corrected threshold

(primary voxel level threshold: p < 0.001 uncorrected). The right hemisphere rendering on the right illustrates the average location of right hemispheric activations.

Right sided activations were observed only in eight subjects (areas in green). In the lower part of the figure, the location of the local maxima of the activations seen in

the right inferior frontal cortex and in the right temporo-parietal junction are reported for each subject.

is supported at least in this case6. All other components of the
phonological loop system appear to be normally activated and
normally located in JB. Very little re-organization of the anatomy
sub-serving phonological loop skills seems to have taken place in
patient JB in the 40 years since her brain damage.

These findings clearly allow us to reject the hypothesis that all
properties of the phonological loop arise only from distributed
activity involving all anatomical components, with no functional
specialization in any of the relevant peri-sylvian areas. Rather,

6These observations are somewhat in conflict with the rationale of the position

held by Price and Friston (2002). They argued that “there may be more than one

neural system for any given cognitive function with each system sufficient for

intact performance. This “degeneracy” underlies individual variability; provides

insights into themechanisms sustaining recovery.” The implication of this position

is that for any given cognitive function, the behavioral contribution of a minor

subsidiary neural system is masked by the primary neural system, and revealed

only by an acquired brain lesion. As a consequence, residual performance may not

be interpretable in terms of the operations of a cognitively modular subcomponent

of the normal system, rather by the operation of the minor system, which is not

used in normal function. Normal and neuropsychological evidence would relate

to essentially different processing systems and the data in one domain would

provide little insight to the other. In particular neuropsychological data would not

speak directly to the organization of the primary cognitive systems involved in the

function. The examples given by Price and her colleagues both relate to patients

who were held to be essentially normal on a particular task. However, they do not

provide a discussion of the theoretical relevance to patients who do show a selective

deficit—the standard situation in cognitive neuropsychology.

as suggested by early and more recent lesion studies (Risse
et al., 1984; Vallar et al., 1997) and by functional imaging data
in normal subjects (Paulesu et al., 1993; Demonet et al., 1994;
Salmon et al., 1996), our data support the notion of a dissociation
between anterior and posterior perisylvian areas as far as the
cognitive architecture of the phonological loop is concerned.
These findings also weaken the case for cognitive models of
the phonological loop that do not assume the existence of
at least two components, such as that of Hulme and Tordoff
(1989).

The preserved activation in a rhyming task of components
of the phonological loop such as Broca’s area, which are
anatomically normal, suggests that the components of the
phonological loop neural system exhibit a degree of functional
independence. A lack of connectivity with a destroyed key
region does not affect the functional properties in the kind of
phonological processing assessed in this experiment.

There are two caveats to the above arguments.

First Caveat
The brain damage in patient JB was not restricted to the left
temporo-parietal junction (Paulesu et al., 1993, 1995, 1996b;
Demonet et al., 1994), but extends quite deeply into the region
where the superior temporal sulcus and middle temporal gyrus
normally are found. Indeed, the lesion invades cortical fields
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not necessarily involved in phonological short-term memory,
as the severe aphasia at onset demonstrated. These additional
areas in the middle temporal gyrus and superior-temporal sulcus
are likely to be lexical-semantic in function (Howard et al.,
1992; Price, 2000; Binder et al., 2009). Other language skills,
defective when JB was aphasic, presumably must be subserved
by other cortical regions given her normal performance in
all language tasks except verbal short-term memory, in which
there has been no recovery. JB’s lesion does not however
extend to the putative more posterior parietal localization
for the phonological input buffer derived from the verbal
working memory experiments of Smith et al. (1995, 1996)
and Awh et al. (1996). See Figure 3 for a meta-analysis with
reference to JB’s lesion and her activations during a rhyming
task7.

Based on observations in normal subjects (Paulesu et al.,
1993), using PET/MRI co-registration (Paulesu et al., 1995),
and on the basis of a meta-analysis of cases with acquired
brain damage, (Shallice and Vallar, 1990; Vallar et al., 1997) the
area crucial for the STMS appears to be in the left temporo-
parietal junction in a cortical field area that many call planum
temporale (Geshwind and Levitsky, 1968). The planum temporale
is essentially part of Wernicke’s area with an extension into
parietal cortex, and it is to the parietal portion of the planum
where our and others’ findings localize the phonological store
(Paulesu et al., 1993, 1995; Demonet et al., 1994; Salmon et al.,
1996)8.

Galaburda and Sanides (1980) called this region area TPT,
namely the temporo-parietal association cortex around the
caudal end of the Sylvian fissure. Area TPT has a homolog in the
monkey that has been studied by single cell recording (Leinonen
et al., 1980). The monkey TPT has a predominant proportion of
acoustic neurons (54%) that fire with complex auditory stimuli,
including human consonant sounds (Leinonen et al., 1980). JB’s
lesion is larger than area TPT. However, it definitely incorporates
the location where we place the phonological store in normal
subjects.

7Becker et al. (1999) and Buchsbaum and D’Esposito (2008) have pointed out that

there are studies, particularly those using the so-called n-back procedure, which

localize the phonological input buffer much more posteriorly and dorsally in the

left parietal cortex (e.g., Smith et al., 1996, 1995; Awh et al., 1996). However,

Buchsbaum and D’Esposito (2008) and Shallice and Cooper (2012) argue that

the n-back task is not well-suited to localizing the phonological input buffer. The

phonological storage requirements are much less than for span tasks. Moreover,

Buchsbaum and D’Esposito (2008) have suggested that the more posterior parietal

localization might relate to the shifting of attention involved in the n-back task

rather than to the location of a buffer (see Figure 3).
8Ravizza et al. (2011) propose an alternative localization for the phonological

buffer. They observed that the superior temporal gyrus, rather than the left

temporo-parietal junction, was particularly active during encoding with a time

related decay of the signal demonstrating, according to them, the expected profile

of a store. While their methodology, was sufficiently different from earlier studies

to justify different results (e.g., a percentage signal change against the beginning

of each trial was used as a dependent variable rather than the difference against

time matched activity for non-phonological material), subjects actively rehearsed

the stimuli while the signal in the superior temporal gyrus decayed; signal decay

and active rehearsal are not readily compatible in the canonical phonological loop

model as rehearsal should counterbalance the spontaneous decay of memory traces

from the store.

The localization of JB’s lesion is, though, entirely compatible
with the location of the proposed auditory-motor speech
interface claimed by Buchsbaum and D’Esposito (2008) namely
the left sylvian-parietal-temporal area in the most posterior part
of the planum temporale and the left posterior superior temporal
region favored by Leff et al. (2009). These overlapping areas
are clearly damaged in JB’s brain (see Figure 3). The theoretical
account of Buchsbaum and D’Esposito (2008), however, places
the primary phonological buffer within the speech production
system (see also Page et al., 2007) and explains JB’s difficulty
as an inability to access this store with the speech production
system itself being intact. However, the more anterior parts of
the speech system are intact in this study. Such a view, though,
would need to explain what phonological trace is used in our very
considerable capacity for veridical surface structure in immediate
sentence recall (Jarvella, 1971, 1979; Glanzer et al., 1981) and why
JB had lost the ability to reproduce surface structure but could
perform much better at recall of gist (Shallice and Butterworth,
1977; Butterworth et al., 1990).

Current knowledge about the anatomical connectivity
between different human cortical areas has grown considerably
thanks to diffusion tensor imaging (DTI) techniques. It is
reasonable to assume that in normal subjects, the brain areas
damaged in JB are anatomically connected with anterior
language areas such as Broca’s area and with contralateral
temporo-parietal areas. This idea is supported by evidence
provided by DTI MRI tractography (Catani and Mesulam, 2008;
Catani and Thiebaut de Schotten, 2008). We therefore discuss
(1) whether JB’s symptoms could be framed, anatomically,
as the result of a disconnection syndrome, in line with some
early proposals (Kleist, 1916; Kinsbourne, 1972) and (2) the
significance of the preserved activation in Broca’s area and
contralateral cortices.

A direct connection between Wernicke’s area and Broca’s area
was postulated by Meynert (1865) who suggested the existence
of an arcuate fasciculus and this is largely confirmed by modern
tractography (Catani et al., 2002; see also Catani and Mesulam,
2008 for a review). The functional lesion in JB definitively extends
into white matter underlying the supramarginal gyrus. Could
JB’s deficit arise therefore from a disconnecting lesion in the
white matter? It is difficult to rule out this hypothesis completely,
although neuropsychological assessment of the patient suggests
that a disconnection syndrome is an unlikely explanation at least
in cognitive terms (see Shallice, 1988, p. 50–54, for a discussion of
neuropsychological evidence against a disconnection hypothesis
for the interpretation of case JB and similar patients).

Classical schemes from aphasiology also predict that lesions
to an arcuate fasciculus should cause difficulties with word
repetition as described in conduction aphasia, so that the deficit
of patients like JB could be considered a sub-type of conduction
aphasia. To date, however, there is very little evidence that
an isolated white matter lesion can produce the syndrome
of conduction aphasia. According to Damasio (1992), “the
condition is related to damage in area 40 in the left cerebral
hemisphere (supramarginal gyrus), with and without extension
to the white matter beneath the insula...., (or to damage of)... left
primary auditory cortices (areas 41 and 42), the insula and the
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underlying white matter.” It has also been found that when the
lesions causing conduction aphasia are restricted to the arcuate
fasciculus, the clinical picture is verymild (Poncet et al., 1987). To
differentiate JB from such classical conduction aphasia patients
it is important to recall that JB can reproduce single words
and sentences very well. She had a repetition deficit typical of
classical conduction aphasia, not the reproduction deficit, to use
the terminology of Shallice and Warrington (1977).

Second Caveat
This constitutes the most challenging aspect of our PET findings.
There is a discrepancy in the involvement of mirror peri-sylvian
regions of the right hemisphere. In particular, could observations
of such activation in the present case where the left-sided
mirror regions are destroyed make one reconsider potential re-
lateralization of function? Do these activations mean that JB is
actually performing the rhyming task with a different system? Is
this a sign of functional re-organization of the phonological loop
after brain damage? Do these findings invalidate the link between
normal and abnormal models of the phonological loop?

At the time of writing, no specific function has been firmly
attributed to right hemispheric peri-sylvian areas homolog to the
phonological loop ones. It should be noted that, the activation of
Broca’s area is more prominent in JB on the left both in terms
of spatial extent and of statistical significance suggesting that no
general re-lateralization of language to the right hemisphere has
occurred9. However, a verbal span of the order of 3 has been
attributed to an isolated right hemisphere in certain split-brain
patients (Zaidel, 1986), who nevertheless may have undergone
some re-lateralization of function following early lesions. PET
studies, analyzed on a group basis, suggest that the right peri-
sylvian areas may not be crucial to perform rhyming tasks in
normal subjects; however, such activity has been observed in
normal subjects during verbal span tasks (Paulesu et al., 1993),
although it is much smaller in spatial extent and significance
than that on the left. The current rhyming task challenged JB
at the limit of her pathological span (see Table 1). This suggests
the possibility that in normal subjects right hemisphere systems
concerned with phonological processing provide a qualitatively
equivalent but quantitatively small contribution to that of the left
hemisphere, so that in normal subjects the contribution is of little
value but in some neurological patients it may be of value to their
performance which is overall much reduced (a similar argument
concerning the role of the right hemisphere is discussed with
respect to models of acquired dyslexia by Plaut and Shallice,
1993).

Thus, right hemisphere activation in JB may reflect the use
of a “normal,” quantitatively low, right hemisphere phonological
loop for any minor span aspects of the task. This would be
consistent with old accounts of conduction aphasia (Kleist, 1916;
Kinsbourne, 1972). These, however, do not affect inferences to
the organization of the normal cognitive system (Shallice, 1988).

9The statement on the region by hemisphere difference during the rhyming task in

Broca’s area for patient JB holds true when tested formally in a statistical analysis

by looking at task by hemisphere interactions: p < 0.001.

Recovery from Aphasia: Why
Phonological-Short Term Memory Does
Not Recover in Patients Like JB?
If our interpretation is correct that JB performs the rhyming
task essentially with the remains of a normal phonological
short-term memory system, it follows that this system has
functionally and anatomically little chance for compensation,
unlike other skills/systems that were defective at the onset of
the disease but have seen considerable recovery. In this respect
JB’s enduring deficit in phonological short-term memory skills
after stabilization of brain damage is no exception as shown by
long-term studies in other similar patients, like patient PV (Vallar
and Baddeley, 1984). If this position is correct, one would not
expect to find a patient with a lesion in the critical anatomical
area who regains phonological short-termmemory abilities while
other aphasic problems remain.

The reason why phonological short-term memory shows little
if any recovery is for the moment a matter of speculation. A
comparison with the normal process of second language learning
in adulthood may help understand the lack of compensation of
a span deficit over many years in patients like JB. Phonological
competence for a second language is reduced the later one
learns it (Cutler et al., 1986, 1989, 1992). This is as if, after
a certain age, the phonological system “crystallizes” around
the phonological/articulatory representations of the first or
dominant language. This is evidence of limited plasticity of the
phonological articulatory system in normal adulthood, even for
normal linguistic processes such as learning a second language.
The analogy between limited phonological competence in second
language acquisition by adults and the lack of verbal span
recovery in patients like JB is strengthened if one recalls that
similar patients become virtually unable to learn new words in a
second language (Baddeley et al., 1988), while all other aspects of
episodic (verbal and non-verbal) long-term memory can remain
intact.

LIMITATIONS OF THE PET EXPERIMENTS
AND FURTHER FMRI DATA ON ELDERLY
SUBJECTS

Recent evidence is showing that elderly subjects may perform a
given cognitive task at the same level as younger subjects, while
showing different patterns of brain activation (Cabeza, 2002;
Dolcos et al., 2002). In particular, elderly subjects may show
broader and more bilaterally distributed activations, particularly
in the frontal lobe (Cabeza, 2002; Dolcos et al., 2002; Cabeza et al.,
2004). JB showed great similarity with normal controls except for
the right-sided TPT and right “Broca’s” regions. However, as the
control group of the PET experiment was not matched for JB’s
age, to better interpret these differences we performed a further
experiment using fMRI in age matched normal volunteers. JB
was no longer alive at the time of this further experiment.
We envisaged three possible scenarios: (a) most elderly subjects
activate the mirror regions of left area TPT and Broca’s area (as
in a group analysis) suggesting that JB’s right sided pattern is
consistent with what is seen in a sample of subjects representative
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of her age; (b) no such activation is present in any of the normal
elderly controls leaving open the possibility that JB was using a
minor mirror phonological loop together with left Broca’s area as
a compensation for her left sided brain damage10; (c) activation in
right sided regions seen in JB is present in some elderly controls
suggesting that such activation may be a trait in some subjects
thus making JB less of an exception.

Methods
Subjects
The group included five male and nine female right handed
subjects (mean age = 60; s.d. = 6.38). All subjects had no
medical history of neurological disorders. All participants gave
their informed written consent to take part in the study; the
study was approved by the Ethics Committee of the Niguarda Ca’
Granda Hospital of Milan.

Methods
During fMRI scanning, the same stimulation procedures (a visual
rhyming task and a visual similarity detection on false font) were
adopted as for the PET scans, the difference being that each PET
scan corresponded to a 30′′ block of 10 fMRI scans.

fMRI Acquisition Data
MRI scans were performed on a 1.5 T Marconi-Philips Infinion
Scanner, using an Echo Planar Imaging (EPI) gradient echo
sequence (Flip angle 90◦ TE = 60 ms, TR = 3 s, FOV = 240 ×

240, matrix = 64 × 64). The selected volume was made of 26

10Of course there is no question on the left-sided hemispheric dominance for

language in JB given the severe aphasia at onset and the enduring phonological

short-term memory deficit.

contiguous transverse images (thickness = 5 mm; gap = 0 mm),
acquired every 3.05 s. The scans were collected parallel to the
AC-PC plane.

The fMRI experiment involved 120 fMRI scans collected
in alternating blocks of 10 scans of baseline (shape similarity
judgment) and experimental (visual rhyming on letter names)
task.

fMRI Data Analysis
After a standard pre-processing, high-pass filtering and
proportional scaling, conditions were modeled in a block-design
and condition-specific effects were estimated using SPM12.
The BOLD signal was convolved with a canonic hemodynamic
response function. These analyses generated for each subject
contrast images containing statistical information about
fMRI signal changes observed at a given statistical threshold.
These contrast images were then entered into a one-sample
t-test analysis for group inference (Friston et al., 1999). The
effect was thresholded at p < 0.001 uncorrected at voxel-
level and at p < 0.05 FWE-corrected at cluster-level (cluster
size= 350).

Single subject analyses were also performed for the right
mirror regions of area TPT and Broca’s area. Here we used the
right activation observed in JB as an inclusive mask

Results
Behavioral Results during fMRI
Normal controls performed on average 98% correct for the
rhyming task and 98% correct for the shape similarity task.
Table 4 reports the individual performances and d-prime
values.

TABLE 4 | The demographic data, the individual performances, and the D prime values.

ID Age Educational

level

Gender Shape similarity task Letter rhyming task

(1 = male;

2 = female)

Hits Correct

rejects

% correct

response

D prime Hits Correct

rejects

% correct

response

D prime

1 67 13 1 26 26 100 2.67 28 53 100 3.98

2 57 13 1 26 64 100 6.57 28 62 100 6.58

3 69 15 1 26 64 100 6.57 28 62 100 6.58

4 64 12 2 24 64 92 5.09 27 60 96 3.64

5 53 18 2 25 62 96 3.63 28 62 100 6.58

6 58 18 1 26 49 100 3.63 27 61 96 3.94

7 68 18 2 23 63 88 3.35 24 61 86 3.21

8 60 13 2 26 64 100 6.57 28 62 100 6.58

9 56 13 2 26 64 100 6.57 28 60 100 4.77

10 50 18 2 25 64 96 5.43 26 62 93 5.12

11 68 13 1 26 64 100 6.57 28 62 100 6.58

12 64 8 2 26 60 100 4.44 28 61 100 5.07

13 55 5 2 26 64 100 6.57 28 59 100 4.59

14 54 17 2 26 62 100 4.77 28 60 100 4.77

Mean 60 – – – – 98 5 – – 98 5

S.d. 6.38 – – – – 3.62 1.44 – – 4.14 1.23
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TABLE 5 | Brain areas activated during rhyming task in elderly controls.

Brain regions Left hemisphere Right hemisphere

x y z Z score x y z Z score

Inf. frontal orb.

gyrus

−28 24 −12 4.1 – – – –

–36 24 –4 3.5 – – – –

Inf. frontal tri. gyrus –38 16 32 4.6 – – – –

–44 26 10 4.4 – – – –

Inf. frontal op.

gyrus

–40 20 34 4.4 – – – –

Rolandic opercular

gyrus

–56 6 10 4.1 – – – –

–62 –8 12 3.6 – – – –

Precentral gyrus –42 10 34 4.68 – – – –

–48 8 32 4.55 – – – –

Postcentral gyrus –42 –22 40 4.0 – – – –

–38 –24 42 3.8 – – – –

Insula –44 18 2 6.0 – – – –

–34 14 6 4.6 – – – –

Supramarginal

gyrus

–58 –38 38 3.8 – – – –

–60 –44 28 3.5 – – – –

Mid. temporal

gyrus

–48 –46 2 4.3 – – – –

–58 –32 –6 4.2 – – – –

Inf. temporal gyrus –58 –50 –22 3.7 – – – –

–56 –44 –18 3.3 – – – –

Inf. occipital gyrus –20 –94 –10 3.1 – – – –

Calcarine fissure –8 –102 –14 3.5 2 –92 –12 3.5

–24 –98 –14 3.5 – – – –

Lingual gyrus –14 –102 –16 3.7 – – – –

Cerebellum –42 –82 –22 3.9 – – – –

–40 –86 –20 3.8 – – – –

Caudate –16 –2 18 3.9 – – – –

Putamen –26 –2 18 3.9 – – – –

Pallidum –20 –2 16 4.0 – – – –

Thalamus –12 –10 6 4.8 – – – –

–8 –4 –2 4.0 – – – –

Hippocampus –26 –24 –14 4.6 – – – –

–34 –22 –14 4.2 – – – –

The effect was thresholded at p < 0.001 (uncorrected) and the cluster-size level was set

at 350 voxels (p < 0.05 FWE-corrected).

fMRI Results
In normal elderly subjects, performance of the rhyming tasks
was associated with a large activation of the left inferior
frontal/premotor region, of the left temporo-parietal junction
included the supramarginal gyrus, much as it is seen in normal
young controls during phonological short-term memory tasks.
Compared with previous PET data results (Paulesu et al., 1993,
1996b), there were also activations in the temporal lobe, in the
calcarine cortex, in the basal nuclei in the hippocampus and in
the thalamus. There was also a left activation of the cerebellum
(see Table 5 and Figure 4).

TABLE 6 | Local maxima of the single-subject activations seen in the right

inferior frontal cortex and in the right temporo-parietal junction.

ID Subject Temporo-parietal junction Inferior frontal gyrus

x y z p x y z p

1 – – – – – – – –

2 58 −36 24 <0.001 60 −2 22 <0.001

3 – – – – – – – –

4 – – – – 48 16 10 <0.001

5 60 −42 12 <0.001 58 6 18 0.001

6 60 −40 20 0.003 – – – –

7 64 −34 24 0.005 54 12 16 0.004

8 – – – – – – –

9 – – – – – – –

10 – – – – 50 8 10 0.003

11 – – – – – – – –

12 60 −34 24 0.001 52 6 8 0.001

13 58 −42 12 0.005 50 14 10 0.001

14 – – – – – – – –

Notably, at a group level, there was no significant right
activation, neither of right Broca’s region, nor of the right TPT.

However, the single subject analyses showed that right
“Broca’s” area was activated in seven elderly normal subjects,
while the right TPT was active in six (see Table 6 and Figure 4).
Of these subjects, five had activation in both regions.

Discussion of Experiment Two
The implications of the fMRI results are simple and
straightforward. They confirm the involvement of left peri-
sylvian regions in aspects of phonological processing implied by
a simple rhyming task for single letter names. Activation of the
left temporo-parietal cortex, the region that was damaged in JB
and that we associated with the phonological buffer in previous
PET studies, suggests that this region may also contribute to
low-level phonological tasks, although less prominently, as
demonstrated by the previous quantitative comparison with a
higher load short-termmemory task (Paulesu et al., 1993, 1996b).
Indeed, a sub-threshold activation of this region was present in
the young normal controls studied with PET (cf. the bar-graph
of the rCBF increase of this region in Figure 2 of Paulesu et al.,
1993). The use of a more sensitive technique, such as fMRI,
allowed us to observe a significant hemodynamic response in
this region.

Themore relevant finding of the fMRI experiment, however, is
the observation that the right-sided peri-sylvian region activates
with the rhyming task in a number of healthy elderly subjects
too. Accordingly, the right-sided activations seen in JB are not
necessarily a sign of reorganization.

CONCLUSIONS

As a consequence of her selective cognitive and anatomical
deficits, the findings in patient JB support the notion that the
general principle of functional separation at a cognitive level can
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be observed at the functional anatomical level as well, at least for
some systems like the phonological loop.

This conclusion would have been hard to draw by studying
normal subjects only. A combination of observations in normal
subjects and in neuropsychological patients seems vital to
validate cognitive and neurophysiological models that imply a
certain degree of modular organization.

Our observations do not necessarily exclude the value of the
interaction between different components of distributed systems
in generating complex aspects of behavior and of course, it may
also be the case that these principles are only applicable to a
subset of cognitive operations; for example, semantic operations
and other executive functions may differ, but that remains to be
demonstrated.

However, at a specific conceptual grain, the idea of
individual sub-systems retains explanatory power. Moreover,
our conclusions support one of the most basic assumptions of
cognitive neuropsychology, namely that the subtraction logic
works, at least in the domain of phonological short-term
memory.
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