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The	 recent	 improvements	 in	 efficacy	 and	 survival	 of	 pre-	clinical	
renal,1,2 islet,3,4 and cardiac5 xenotransplantation have reinvigo-
rated	interest	in	clinical	xenotransplantation.	This	renewed	interest	
makes it essential for clinicians, regulators, and the general pub-
lic and potential patients to have a clear understanding of the risk 
represented by porcine endogenous retrovirus (PERV). PERV is a 
unique infectious risk for xenotransplantation because it is carried 
as part of the porcine genome. Unlike exogenous viruses, micro-
organisms, and parasites, PERV cannot be excluded by cesarean 
birth or the high health, intensive husbandry methods which do ex-
clude	these	other	pathogens	from	designated	pathogen-	free	(DPF)	
barrier-	derived	 pigs.	 The	 potential	 risk	 of	 PERV	 infection	 for	 hu-
mans was first identified in 1997 when porcine PK15 cells6 and later 
NIH minipig cells7 were shown to infect human HEK293 cells in cul-
ture. Shortly after this discovery, calls were made by some8 but not 
others9 to place a moratorium on ongoing clinical xenotransplan-
tation	trials.	This	led	to	a	revision	of	FDA	guidelines	for	xenotrans-
plantation	which	effectively	banned	the	use	of	non-	human	primate	
tissues,	 reflecting	 the	more	serious	 infectious	concerns	 that	non-	
human	primate	material	presents.	The	renewed	guidelines	also	re-
quired establishing procedures and assays to monitor the potential 
for PERV infection when implanting porcine tissue. Since that time, 
extensive investigation into the basic virology of PERV has occurred 
and numerous assays developed,10 much of which are discussed in 
this issue of xenotransplantation. What is clear with respect to PERV 
is that all pigs are not created equal and the circumstances of puta-
tive PERV infectivity must be considered in any discussion.

The	critical	concern	for	clinical	xenotransplantation	is	whether	the	
donor organ will be infectious to the recipient human patient, their fam-
ily or caregivers, or the general population. If transplanted cell tissues 
or organs contained cells with the retroviral properties of PK15 or were 
derived from most, but not all, minipigs,11-14 the frequency of PERV in-
fection in vitro for primary human cells is demonstrable,7,15,16 suggest-
ing	at	least	the	potential	for	clinical	infection.	Post-	operative	infection,	
however, may not occur even with these tissue sources as in vitro testing 
excludes the significant impact of innate and adaptive immunity at least 
some of which, such as preformed antibody and complement, will be ac-
tive	even	in	immune-	suppressed	patients.	If	however	the	donor	tissue	is	
from a known analyzed agricultural pig strain, such as the Large White, 
Landrace, or Duroc pigs,17-20 then PERV infection of human cells, even 
under the most permissive in vitro conditions, has not resulted in produc-
tive	infection.	A	high	genetic	deficiency	of	PERV	provirus	loci,	estimated	
to range from 10 to 100 copies, exists between individual pigs and pig 
strains.16 Indeed, the porcine reference genome, derived from a Duroc 
pig, encodes 20 PERV sites without large deletions, but all of them are 
defective and incapable of producing a functional virus.21	The	number	of	
clinical xenotransplantation studies is necessarily limited, but both retro-
spective and prospective studies of patients exposed to pig tissues have 
failed to find evidence of PERV infection.22-30 It is important to recog-
nize	that	some	PERV	literature	which	describes	both	pig-	to-	human	and	
human-	to-	human	PERV	infection	is	in	reference	to	in	vitro	studies,	using	
known infectious cell lines, and does not represent clinical infection of 
patients.	Thus,	from	a	clinical	perspective,	there	has	never	been	a	docu-
mented	case	of	pig-	to-	human	or	human-	to-	human	PERV	infection.
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Pigs which are not able to infect HEK293 cells or primary human 
cell in vitro appear to share certain characteristics, a reduced fre-
quency	of	human-	tropic	PERV-	A	and	PERV-	B	sites,	PERV	sites	with	
lower	 levels	of	RNA	synthesis	and	a	high	 frequency	of	sequence	
degeneracy.	Pigs	lacking	the	porcine-	tropic	PERV-	C	virus	are	also	
advantageous	 as	 they	 are	 incapable	 of	 producing	 PERV-	A/C	 re-
combinants which exhibit a higher human tropism and replication 
rate	in	human	cells.	Animals	with	these	characteristics	can	be	read-
ily identified within the agricultural strain background and using 
current	PCR	 screening	 and	next-	generation	 sequencing	methods	
thoroughly characterized and monitored. Recently, the CRISPR/
Cas9	gene-	targeting	method	has	been	applied	to	PERV	to	engineer	
deletion/insertion mutations within the viral polymerase gene.31 
This	new	technology	further	reduces	the	potential	of	PERV	infec-
tion and recombination, but the frequency of karyotype anomalies 
raises new concerns of unforeseen genomic changes.32	 The	 live	
birth	 of	 CRISP/Cas9	 PERV	 polymerase-	engineered	 pigs,	 derived	
from	PERV-	C-	negative	fibroblast	with	no	known	PERV	infectivity,	
is encouraging, but further analysis of these animals is necessary 
to exclude such unanticipated genetic effects.32

A	degenerate	 constellation	of	PERV	sites,	 naturally	occurring	or	
engineered, does not mean that the chance of infection from these tis-
sues is zero, as recombination between different PERV sites, between 
PERV and other porcine endogenous retroviruses,33 or between PERV 
and human retroviruses could theoretically result in a functional virus, 
but if it occurred would be at low frequency34 with minimal risk in clin-
ical xenotransplantation. Selecting porcine donor tissue with fully de-
generate PERV sequences does however reduce the in vitro frequency 
of infection from these tissues and thus is expected to proportionately 
reduce the likelihood of in vivo infection. If such an event occurred, in 
vitro	studies	have	shown	that	human-	tropic	PERV	is	susceptible	to	an-
tiviral therapies,35-37 adding a prophylactic layer of therapeutic control 
to the donor preventative considerations described above.

UNOS estimates that 20 people die each day on the transplant 
waiting	 list.	 This	 human	 loss	 is	 however	 an	 underestimate	 of	 the	
need for transplant organs as the chronic shortage of donor organs 
means that many patients who would benefit from transplantation 
are never placed on to the waiting list. In the last 20 years, a wealth 
of information on PERV and other porcine zoonotic pathogens has 
been	generated	 resulting	 in	 the	development	of	DPF	barrier	 facil-
ities, assays to monitor infectious zoonotic pathogens, including 
PERV, preventative strategies to severely limit the likelihood of PERV 
infection, and identification of therapeutics to treat the potential in-
fection. While no single method can fully eliminate the theoretical 
risk that PERV presents, this matrix of preventative, monitoring, and 
therapeutic measures is a powerful rational basis to now support the 
clinical application of solid organ xenotransplantation.
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