
Quantum chemistry in dataflow:
Density-Fitting MP2

Bridgette Cooper,∗,† Stephen Girdlestone,‡ Pavel Burovskiy,‡ Georgi Gaydadjiev,‡

Vitali Averbukh,† Peter J. Knowles,¶ and Wayne Luk§

†Department of Physics, Blackett Laboratory, Imperial College London, Prince Consort
Road, SW7 2AZ London, United Kingdom

‡Maxeler Technologies Ltd., UK
¶School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT,

United Kingdom
§Department of Computing, Imperial College London, 180 Queen’s Gate, SW7 2AZ, UK

E-mail: b.cooper@ic.ac.uk

Abstract
We demonstrate the use of dataflow technology
in the computation of the correlation energy
in molecules at the Møller Plesset perturbation
theory (MP2) level. Specifically, we benchmark
density fitting (DF) - MP2 for as many as 168
atoms (in valinomycin) and show that speed
ups between 3 to 3.8 times can be achieved
when compared to the MOLPRO package run
on a single CPU. Acceleration is achieved by of-
floading the matrix multiplications steps in DF-
MP2 to Dataflow Engines (DFEs). We project
that the acceleration factor could be as much
as 24 with the next generation of DFEs.
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1 Introduction
Recently advances in dataflow computing have
enabled significant acceleration of many compu-
tationally demanding applications.1 Moreover,
dataflow computing is becoming available from
cloud service providers, such as the Amazon

EC2 F1 instances. This paper investigates the
potential of dataflow computing for speeding up
calculations in quantum chemistry.
Ab-initio quantum chemical methods for de-

termining the electronic structure of molecules
are powerful tools to elucidate electronic states,
molecular structures, properties and reaction
mechanisms. Accurately accounting for the
electron correlation in a molecular system is es-
sential to robustly recover properties relevant
in chemistry and biochemistry. In particular
dispersion type effects (arising from long range
electron correlation) which can strongly affect
the molecular structure of a large biomolecule
cannot be accounted for in simple mean-field
approaches such as Hartree-Fock (HF) or most
density functional theories. This highlights the
importance of post HF methods such as those
based on correcting for the electron correlation
perturbatively or with a configuration interac-
tion (CI) expansion of the wavefunction.
Second order Møller Plesset perturbation the-

ory (MP2) is the simplest post Hartree-Fock
method that can account for dynamic correla-
tion in molecules, and is used extensively. MP2
is not the most accurate method for account-
ing for electron correlation effects in molecules,
however it provides suitable estimates as it re-
covers 80-120% of the basis set limit correla-
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tion energy. However, the application of MP2
to larger molecules becomes quickly prohibitive
due to the steep scaling of the computational
effort with molecular size. The computational
bottleneck is the need to transform two electron
Coulomb repulsion integrals from an atomic or-
bital (AO) basis to a molecular orbital (MO)
basis. This operation scales as O(N5) with the
number of basis functions N .
To reduce the computational effort in calcu-

lating second order MP2 energies and thus ac-
cess larger molecules, a multitude of approaches
have been previously explored, reviewed by
Cremer.2 Much of the previous work has been
to formulate linear-scaling approximations for
example by using internal localised orbitals
for occupied and atomic orbitals for the vir-
tual3,4 classifying the electron pair interactions
and thus neglecting very small interactions be-
tween very distance pairs5,6 or neglecting inte-
grals without one atom center in common in an
atoms in molecules approach.7,8 These meth-
ods have been extremely successful in the cal-
culation of local correlations. However, when
the selection of integrals is distance based, of-
ten the resulting MP2 energies can be adversely
affected, for example dependent on the system
size, or the calculated potential energy surfaces
may contain discontinuities.9 Stochastic sam-
pling can be employed to efficiently calculate
MP2 energies on very large nanocrystals,10–12
however at the cost of accuracy as statistical
error is introduced.
Other methods with reduced scaling be-

haviour and/or reduced prefactors include
Laplace- transformed techniques,13–17 divide
and conquer approaches,18,19 Cholesky decom-
position,20 pseudospectral approaches,21 scaled
opposite spin Møller Plesset method (SOS-
MP2)22 or resolution of the identity (RI) also
called density-fitting (DF) approaches.23–25
As well as developing robust alternative the-

ories, one can also take advantage of the de-
velopments in computer architecture to acceler-
ate quantum chemical calculations. Much effort
has been placed in using Graphical Processing
Units (GPUs) to speed up computational chem-
istry calculations26,27 particularly strategies for
acceleration of the calculation of electron inte-

grals28 and MP2.29–31 Interest in using GPUs
as co-processors for quantum chemistry calcu-
lations has increased in recent years as dou-
ble precision arithmetic is now supported and
programming has become easier with CUDA
and OpenCL. There are also highly parallel
implementations32–35 allowing one to calculate
MP2 energies on systems as large nanographene
sheets32 and tetrapeptides,33 as well as com-
bining both highly parallel CPU and GPU het-
erogeneous architectures to achieve significant
speed ups36,37 on nano-sized molecules.
In this paper we exploit dataflow computing

through the 4-th generation Dataflow Engine
(DFE) MAX4 from Maxeler Technologies38 to
accelerate Møller Plesset perturbation theory to
second order (MP2), specifically the density-
fitting (DF-MP2) algorithm. In the following
section, we will detail dataflow technology, and
its computational advantages. As will be shown
in Section 3, the computational effort of the
DF-MP2 algorithm is dominated by linear al-
gebra, in particular matrix multiplication. We
will describe how matrix multiplication is opti-
mised for dataflow computing in Section 4. By
accelerating just this part of the algorithm we
will demonstrate up to 3.8 times better perfor-
mance compared to a single CPU core, as well
as showing how the algorithm compares for par-
allel executions in Section 5.

2 Dataflow Computing
Maxeler Dataflow Engines (DFEs) are FPGA-
based accelerators that are designed to de-
liver high performance and energy efficiency for
large-scale HPC applications.38 This is achieved
by adopting a dataflow-oriented highly cus-
tomisable computing model, an evolution of
the dataflow and systolic array concepts,39,40
which fundamentally differs from the classical
Von Neumann control-flow oriented paradigm
used in general purpose computing systems. On
DFEs, data is streamed from memory (or the
CPU) to the reconfigurable compute chip (FP-
GAs are just an example of such chips) where
it passes through ultra-deep pipelines with
hundreds or thousands of specialised dataflow
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cores, enabling throughputs and energy effi-
ciency levels impossible with control-flow ori-
ented systems.
A CPU typically consists of a few micropro-

cessors, that can perform complex tasks by con-
trol flow of arithmetic, control and input/out-
put instructions. This is an extremely flexible
model of operation, however inherently sequen-
tial. GPUs have hundreds of microprocessors
and specialize in massively parallel scalar pro-
cessing, performing the same operation set on
large data sets. An alternative to control flow
architectures is to create a customized data flow
machine that exactly represents the algorithm
and then simply stream the data through the
resulting machine. In this model, data flows di-
rectly from one functional unit (dataflow ker-
nel) to the next without the need for com-
plex control mechanisms. DFEs are highly effi-
cient for carrying out the large-scale, compute-
intensive parts of an application and algorithms
that have a high level of complex arithmetic and
data reuse stand the most chance of benefiting
from this technology.
The Multiscale Dataflow computing paradigm39

developed by Maxeler Technologies as a com-
bination of hardware and software components
has been successfully demonstrated to provide
substantial acceleration of real applications in
variety of domains. These include computa-
tional finance - accelerating stochastic algo-
rithms for Monte Carlo simulations for credit
models41 and interest rate derivative payoff
evaluations based on the Heath-Jarrow-Morton
model,42 computational biology - accelerating
short read alignment,43,44 geoscience - acceler-
ating finite difference algorithm for modelling
wave propagation,45–47 atmospheric modelling
- solving Euler atmospheric equations,48 49 and
more.
Maxeler provides several heterogeneous

dataflow platforms that combine DFEs with
off-the-shelf CPUs, networking and storage.
These include the Maxeler MPC-C series sys-
tems that combine dual Xeon processors in an
industry-standard server chassis with up to 4
DFEs as PCI express (PCIe) cards. Maxeler
MPC-X nodes are another pure dataflow appli-
ance where 8 DFEs are integrated into a dense

1U industry-standard chassis connected to one
or multiple conventional x86 CPU servers via
an Infiniband network.
A Maxeler DFE uses a large FPGA as the

main processing device. The programmable
substrate of the FPGA is used to instantiate ef-
ficient and highly customised dataflow pipelines
for application processing. The current gener-
ation MAX4 DFEs are based on a large Al-
tera Stratix-V FPGA that includes 1,963 dig-
ital signal processing units (DSPs) each capa-
ble of multiplying two 27 bit integer numbers
and 256K adaptive logic modules (ALMs; some-
times also referred to as lookup tables, LUTs).
The dataflow cores are implemented as a com-
bination of various on-chip resources such as
DSPs, ALMs, and on-chip memory.
DFE cards provide the FPGA with access to

large amounts of DRAM memory (currently be-
tween 48–96GB) with about 60–65GB/s of sus-
tainable throughput. In addition, the FPGA it-
self also provides about 6MB of embedded on-
chip memories which are spread throughout the
chip’s fabric and can be used for low-latency
buffering of local compute values which can be
accessed with an aggregated bandwidth of sev-
eral terabytes/second.
DFEs are highly efficient for carrying out the

large-scale, compute-intensive parts of an appli-
cation while conventional CPUs are more suit-
able for control-intensive tasks. Porting an ap-
plication onto a dataflow system therefore re-
quires the application code to be split into a
host application and a dataflow part, often re-
ferred to as control plane and data plane. The
CPU is responsible for setting up and con-
trolling the computation on the DFE as well
as for performing pre-computations or various
control-oriented tasks.
Developing a practical dataflow applica-

tion typically starts from identifying the
performance-critical parts of the conventional
CPU implementation. These parts are ported
to the DFE by describing their dataflow models
as a collection of compute kernels in a Java-
based meta-language called MaxJ. In addition,
a dedicated MaxJ object called the manager
describes the data orchestration between com-
pute kernels and external interfaces (such as
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on-board DRAM or PCIe bus). Compiling
MaxJ code does not produce a Java applica-
tion; instead, it leads to the generation of the
binary object files that can be linked together
with the CPU application.

3 DF-MP2 algorithm
We focus on reducing the computational time of
the denisty-fitting second-order Moller- Plesset
perturbation theory (DF-MP2),23–25 as imple-
mented in Molpro.50 The MP2 method is one
of the most widely used correlation treatments
for electronic structure calculations, which in-
volves evaluating two-electron repulsion inte-
grals of the form:

(µν|λσ) =
∫ ∫

φ∗
µ(r1)φν(r1)r

−1φλ(r2)
∗φσ(r2)dr1dr2

(1)
where µ,ν, λ, and σ are orbital basis function
(φ) indices. The calculation of the energy (E)
is dependent on:

E(MP2) =
∑
ijab

(ia|jb)2 + 1
2
[(ia|jb)− (ib|ja)]2

εi + εj − εa − εb
(2)

(ia|jb) =
∑
µνλσ

CµiCνaCλbCσb(µν|λσ) (3)

In order to reduce the complexity of the com-
putation, the four-center two electron integrals
are approximated by two- and three- centred
integrals. To achieve this, products of atomic
orbitals are expressed in terms of linear combi-
nations of auxiliary basis functions (χ):

µ(r)ν(r) = ρµν(r) ≈ ρ̃µν(r) =
∑
A

Cµν,AχA (4)

This leads to the following expression for the
four-centre two electron integrals:

(µν|λσ) ≈
∑
AB

(µν|A)(A|B)−1(B|λσ) (5)

where the metric (A|B) arises as a consequence
of robust fitting, i.e. minimising the Coulomb
energy of the error in the fitted density.51–53
DF-MP2 is known to accurately predict struc-

tures and energies of molecules, and is particu-
larly useful for systems that are weakly bound
by dispersive forces, such as van der Waals
clusters. DF-MP2 can reduce the computa-
tional costs as well as the required memory and
disk sizes considerably while maintaining reli-
able accuracies for practical chemical applica-
tions. The development of standardised auxil-
iary basis sets,24,54,55 as well as efficient algo-
rithms for the energy and gradients,24,56,57 has
made the DF-MP2 method a widely used ap-
proach.
The DF-MP2 algorithm has been accelerated

using GPUs, where the GPU algorithm has fo-
cused on utilising cuBLAS, an NVIDIA CUDA
library of standard linear algebra subroutines
which is a GPU accelerated version of the stan-
dard BLAS library, for optimising the matrix
multiplication steps, which for low effort gives
up to 7.8 times speed up for double precision
compared with a single CPU.31
Within Molpro, the DF-MP2 algorithm pro-

ceeds as follows:
Step 1: Generate the matrix (A|B) involving

evaluation of two-centre integrals of the auxil-
iary basis functions. This step scales as O(M2),
where M is the number of auxiliary functions.
Step 2: Evaluation of (µν|A) integrals. This

scales as O(N2M) where N is the total number
of orbital basis functions.
Step 3: Transformation to generate (iν|A) .

This scales as O(ONM) where O is the number
of occupied molecular orbitals.
Step 4: Second transformation to generate

(ia|A). This scales as O(OVM), where V is
the number of virtual orbitals.
Step 5: Calculate the inverse of (A|B). This

scales as O(M3).
Step 6: Use the inverse of the matrix (A|B)

and the three centre integrals (ia|A) to generate
the intermediate:

diaA =
∑
B

(ia|B)(B|A)−1 (6)

Step 7: Use the intermediate result from step
3 and the three center integrals from step 2 to
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generate the intermediate K:

Kij
ab =

∑
A

diaA (A|jb) (7)

By splitting into the orbital transformation into
two steps, one avoids scaling of O(O2V 2M2), to
have scaling of O(OVM2) for the intermediate
d and scaling of O(O2V 2M)for the intermedi-
ate K. Molpro also generates a matrix contain-
ing (Kij

ab −K
ij
ba) again utilising standard linear

algebra routines in order to optimise sequential
accessing of memory in the sum. Evaluation of
the DF-MP2 energy which can be expressed in
terms of K as:

E(MP2) =
∑
ijab

Kij 2
ab + 1

2
(Kij

ab −K
ij
ba)

2

εi + εj − εa − εb
(8)

with scaling O(O2V 2).
In general, the number of occupied orbitals is

small comparatively to the number of virtual
orbitals, V ≈ O× 10, and the number of auxil-
liary functions, M ≈ (O + V )× 3.
This application has been profiled previ-

ously30 with the bottleneck shown to be the
matrix multiplication steps to create d and K
matrices. In table 1, we show an example of the
timing data for the C28H58 hydrocarbon in cc-
pVDZ basis. From this it can easily be seen that
the final step takes 78% of the runtime, with the
next rate limiting step being the smaller matrix
multiplication step 6 taking just 7%.
It is this matrix multiply kernel that is trans-

ferred to the dataflow accelerator, in a similar
fashion to the GPU implementation of Watson
et al.30 We will use the matrix multiplication
kernel, the details of which are contained in the
next section, to accelerate both steps 6 and step
7.

4 Matrix multiplication in
dataflow

Matrix multiplication of two matrices A(m×r)
and B(r×n) to produce a matrix C(m×n) can

Table 1: CPU (Intel Xeon E5-2650 v3) timings
from a serial execution of the DF-MP2 algo-
rithm in Molpro for the linear C28H58 molecule
in cc-pVDZ basis set.

Task Time (s)
Step 1 0.18
Step 2 10.56
Step 3 5.08
Step 4 12.45
Step 5 0.74
Step 6 13.64
Step 7 154.57
Total 197.56

be expressed as:

Ci,j =
∑
k

Ai,k ∗Bk,j (9)

This can be viewed as n × m dot products,
with each dot product requiring an entire row
of one matrix and a column of the second to
obtain a single final value. Conventional CPU
implementations minimize data movement by
adopting a blocking technique58–60 over the in-
nermost loop over k to reduce multiple refer-
ences to the result and minimize transfers from
memory to cache. Analogously, in dataflow,
to take advantage of all the multipliers (DSPs)
available on the FPGA one would similarly em-
ploy a blocking algorithm61 to to exploit the
large amount of on-chip fast access memory
(FMem) on the DFE as well as maximising the
data reuse. The scaling of the algorithm re-
mains the same, N3 operations for N2 data
for matrix multiplication, however the size of
the block reduces the prefactor so that the scal-
ing becomes O(OVM2/B) where B is the block
size for d and O(O2V 2M/B) for the intermedi-
ate K. For the MAX4 card from Maxeler, the
design is limited only by the number of DSPs
available, which currently allows for 960 double
precision floating point operations to be carried
out simultaneously (480 multiplications and 480
additions). Additionally, the data are arranged
such that rectangular blocks of the matrices are
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worked upon, where the sum dimension of the
matrices is 480, but the independent direction is
only 120 to reduce the on chip memory require-
ment. Additionally, before initiating the matrix
multiplication run, the data is transferred to the
off-chip large memory (LMem). As this mem-
ory can be accessed at a rate of 60-65 GB/s
rather than the comparatively low bandwidth
(3 GB/s) of PCIe, this prevents the design from
being interconnect bandwidth limited.
In order to take advantage of the available

symmetry, unique ij pairs whilst full number
of ab pairs are needed in the MP2 sum, the
intermediate K is calculated in lower (or up-
per) triangle blocks of the matrix. This means
that there is still some inefficiency of calculat-
ing more of K than is needed, but this is bal-
anced by reducing the overhead of calling the
DFE multiple times. This also allows a more
balanced computing system approach of calcu-
lating partial MP2 sums on blocks of K on the
CPU, whilst the DFE is creating new blocks
in parallel. It also reduces the storage require-
ment on the host computer for storing all of
K, which can easily exceed 50 GB for a large
molecule such as valinomycin.
The dataflow application is currently called

from host C code. In this host code, the data for
integrals and energies are current read from file,
the data is rearranged to be in the optimal order
for running the DFE application, the bitstream
for the DFE is loaded, and the matrix multiply
DFE kernel is called twice: once to create the
matrix d and a second time inside of a loop to
create blocks of the matrix K. Whilst blocks
of K are generated on the DFE, the C host
code accumulates the sum for the energy, and
finally unloads the bitstream. Overheads asso-
ciated with rearranging and loading/offloading
the bitstream are insignificant in comparison
to the time spent in the matrix multiply ker-
nel. Presently this is a stand alone application,
however it can easily be integrated into host
packages by simply including the MaxCompiler
libraries, the matrix multiply library into the
makefile and making minor modifications to the
host C code.
Given the fully deterministic nature of DFEs,

one can predict the maximum throughput of

the device for a design as simply the number of
operations per cycle multiplied by the clock fre-
quency of the device. In our case the maximum
clock speed achievable was 176 MHz, and the
number of operations per cycle is 960, giving
a throughput of 169 GFlop/s. The clock fre-
quency is a parameter that can be fine tuned
whilst compiling the DFE configuration. In
general it is fixed by the longest path in the
dataflow graph. In this case, because we are
utilising almost all of the available compute
units, the maximum clock frequency is lower
than what can be achieved with simpler designs.
The measured throughput was found to be

slightly lower than the 169 GFlop/s estimated
above. This was determined by calculating the
total number of operations required to perform
the matrix multiplication for a given problem,
divided by the total time taken. In the case
of valinomycin reported below, where the ma-
trices are sufficiently large as to be most opti-
mal for benchmarking the throughput, the mea-
sured quantity was 162.76 GFlop/s or 96.33% of
what was expected. The differences are mostly
due to overhead of the time taken for the first
block of the matrix to be read into the DFE.
This number can easily be compared to the

maximum performance expected for matrix
multiplication executed on a CPU, which again
depends on the number of operations performed
in a cycle and the clock speed. For the Intel
CPUs used here (Intel Xeon E5-2650 v3 2.3
GHz) the maximum performance expected is
36.8-48 GFlop/s when a single CPU is used
for double precision. The DFE implementa-
tion was benchmarked against Molpro on CPUs
which uses the standard BLAS MKL dgemm al-
gorithm for the matrix multiplication.
The final resource usage is given in table 2,

which shows that this design uses the vast ma-
jority of the area available. The optimization
of the mapping of the design to the available
DFE resources preferentially uses spare block
memory before other logic for routing. The an-
notated resource files indicate only 70% of the
available FMem is used in the design. Therefore
the design is limited by the number of multipli-
ers available.
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Table 2: Final resource usage when the bit-
stream is compiled for a clock speed of 176
MHz, for a matrix block size of 480.

Resource Used (Available) %
FMem (M20K) 2567 (2567 ) 100.00
Multipliers (18x18) 3848 (3926) 98.01
DSP blocks 1924 (1963) 98.01
Logic Utilization 229937 (262400) 87.63

5 Benchmark comparisons
with MOLPRO

The benchmarks were executed on Intel Xeon
E5-2650 v3 2.30GHz CPUs, using Molpro
2015.1. The hardware setup consists of a MAX4
DFE board from Maxeler Technologies which
contains Altera Stratix V FPGAs and Intel
CPU Dual E5-2640, and using MaxCompiler
version 2015.2.62
Fig. 1 shows execution times of the matrix

multiplication step to generate d required for
step 6 in the DF-MP2 algorithm in the compu-
tation of MP2 energies for various sized alkane
chains for serial and parallel CPU implementa-
tions as well as the DFE implementation. For
simple alkane chains, the number of basis func-
tions scales linearly with the chain length, and
hence the number of integrals also varies sys-
tematically. For short chain lengths (< 16 car-
bon atoms), the speed up factor is small due to
the overheads of reading in the first block of the
matrix, and the padding ratio to fit the data to
a block size of 480. The average speed up for
chain lengths greater that 16 Carbon atoms is
3.26 (± 0.36) compared to a serial CPU execu-
tion, and minor variations from this value are
due to how well the problem fits into the block
size.
Similarly, Fig. 2 shows the execution times

of the matrix multiplication step required to
generate K combined with the times to calcu-
late the MP2 energy. The average speed up for
alkane chains greater than 16 C atoms long is
3.17(±0.21) compared to a serial CPU execu-
tion.

8 12 16 20 24 28 32
Number of C atoms in alkane chain

0

5

10

15

T
im

e
 (
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Figure 1: Average times taken to calculate
the d using Molpro on CPUs in serial (black
dash) parallel with 2 (blue dash), 4 (red dash),
8 (green dash) CPU cores compared to a single
DFE (purple solid line), for alkane chains using
cc-pVDZ basis set.

Tables 3 and 4 compare the DFE application
to serial and parallel CPU applications for the
much larger molecules of taxol and valinomycin
using cc-pVDZ basis set. These show a slightly
higher speed up compared to a single CPU core
of 3.78 (± 0.19) for d and 3.58 (± 0.30) for K
and EMP2. This is because the matrix sizes are
much larger, so the overheads due to calling the
DFE, and reading in the first block of matrices
are negligible in comparison to the over execu-
tion time of the matrix multiplication.
Our taxol and valinomycin calculations can

be directly compared with GPU results from
Olivares-Amaya 2016,63 as they are in the same
basis set. In this paper they report GPU
timings faster than those performed on Intel
Xeon(R) CPU E5-2650 cpus by a factor of
6.0 for taxol and 7.6 for valinomycin, bench-
marking CUBLAS dgemm with blas dgemm.
The dataflow calculations presented here are
roughly par with these calculations. The CPUs
benchmarked in our work are a factor of 2.3
to 3 times faster than those used in the GPU
benchmark, so we estimate that the GPU re-
sults would be 2.6x for taxol and 3.3 times faster
for valinomycin compared to avx2 CPUs. How-
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Figure 2: Average times taken to calculate the
K and E(MP2) using Molpro on CPUs in serial
(black dash), parallel with 2 (blue dash), 4 (red
dash), 8 (green dash) CPU cores compared to a
single DFE (purple solid line), for alkane chains
using cc-pVDZ basis set.

ever, more recent GPUs could be as much as 3
times faster than the results of that paper, and
those GPU timings should be compared to the
next generation of dataflow engines.

Table 3: DFE timings for the calculation of d
for taxol and valinomycin with comparison to
CPU timings using Molpro in serial and parallel
executions in cc-pVDZ basis set.

Times (s) Taxol Valinomycin
DFE 33.12 112.59
1 CPU core 120.69 439.77
2 CPU cores 53.24 181.90
4 CPU cores 28.10 136.99
8 CPU cores 18.78 152.18

6 Discussion
The results presented above, indicate that only
modest acceleration can be achieved by simply
pushing linear algebra routines onto the DFE.
Linear algebra is efficient on CPUs and stan-

Table 4: Table of DFE timings for the calcula-
tion of K for taxol and valinomycin with com-
parison to CPU timings using Molpro in serial
and parallel executions in cc-pVDZ basis set.

Times (s) Taxol Valinomycin
DFE 638.95 2917.79
1 CPU core 2154.89 11074.15
2 CPU cores 1064.81 5399.13
4 CPU cores 540.02 2738.12
8 CPU cores 295.63 1485.56

dard library routines are optimised to operate
at very close to the maximum throughput. This
is because the data ordering is predictable and
the compute is not sufficiently complex, making
this the real worst case senario for DFEs. Given
the principle that the best dataflow designs are
highly customised for the specific application,
prediction of the specific performance for other
algorithms used in standard quantum chemistry
codes becomes difficult. However, in general for
problems with significantly more complex com-
pute and data re-use DFEs will perform signif-
icantly better than demonstrated here.
Additional speed up can be achieved for any

non-linear function f(x) in a hardware efficient
way, for example by constructing a piece-wise
polynomial fit for the function of interest rather
than explicit evaluation.64 This can be done
by optimising the order of the polynomial ex-
pansion and the minimum precision for a given
tolerance in the numerical error relative to the
CPU equivalent expression. This methodology
can typically reduce by orders of magnitude
the required compute resources (the number of
DSPs and LUTs) for a suitably non-trival non-
linear function. However there is an increase
in the memory requirements as the fitting coef-
ficients should be stored in FMem on chip for
fast access for function evaluation in hardware.
This works well on DFE architecture because
of the comparative size of BRAM on the chip
(6MB in the case of MAX4) compared to the L1
cache on a CPU (which is on the order of KBs),
and the fine grained access to this memory. For
example this methodology has been used to ac-
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celerate computational finance problems such
as calculating the value of risk in a portfolio by
Curran’s algorithm,1 and has shown 278 times
speed up using MAX4 compared to a single In-
tel Xeon CPU E5-2697 v2 core.
Another opportunity for processing speed en-

hancement is through a technique called multi-
pumping,65 which runs the DSP blocks N times
faster than the surrounding fine-grained logic so
that only (1/N) DSP blocks would be needed.
Assuming that all the DSP blocks can be used
effectively, the throughput of a multi-pumped
design can be up to N times faster than the
original version. We are exploring and evaluat-
ing the use of multi- pumping for our quantum
chemistry calculations.
There is further potential for increasing the

speed-up by varying the precision to which the
integrals are stored. Previous work has shown
that single precision (32 bit) does not have suf-
ficient accuracy for MP2 energies. Since GPUs
initially were only single precision, there has
been much effort placed in adopting some form
of mixed precision representation,31,66,67 mostly
by categorising the two electron integrals on
magnitude, and keeping the large integrals at
double precision, whilst reducing to single pre-
cision the smaller valued integrals. The GPU is
then used to perform computation on the low
precision integrals, whilst the CPU is used to
perform calculations on the sparse double pre-
cision integrals. In this way, a greater speed
up could be achieved for smaller reduction in
the overall precision of the calculation. For ex-
ample, Olivares-Amaya et al.31 have seen up
to 10.1 times speed up for valinomycin in their
mixed precision approach with only 1.16 kcal/-
mol error compared to double precision, which
is much reduced from the 9.99 kcal/mol error
in single precision.
The advantage of the dataflow engine archi-

tectures in comparison to GPUs is that they
support variable precision for both floating
point and fixed point. The matrix multiplica-
tion design presented here is compute bound,
limited by the number of DSPs. Therefore the
choice of precision if the aim is to improve ac-
celeration is limited by the details of the DSPs.
Given the deterministic nature of the DFE im-

plementation it is possible to project the speed
up. For an intermediate precision between sin-
gle and double, for example for a 32 bit man-
tissa and 11 bit exponent which takes only
half the compute resources, means doubling the
speed up achieved here on a MAX4, as the block
size could be doubled to 960 giving a through-
put of 338 Gflop/s assuming a similar clock fre-
quency.
In addition to varying the precision, the next

generation of dataflow engines (MAX5) are sig-
nificantly more capable, with both more multi-
pliers and more on chip BRAM. For the ma-
trix multiplication design this would allow a
block size of 960 compared to the current 480,
with the application is still projected to be DSP
bound. There is also potential to increase the
clock speed further, for some designs to as much
as 500 MHz, but more likely for this resource
intensive design to 350 MHz. This gives an es-
timated throughput of 672 Gflop/s. If one also
changes the precision to the (32 bit mantissa,
11 bit exponent) precision discussed above, it
becomes possible to have a block size of 1,680,
with an estimated throughput of 1.176 Tflop/s.
Overall this would make the estimated speed up
compared to the CPUs benchmarked here to be
24 times faster on the DFE.
The expected performance relative to a typ-

ical multicore CPU, possibly augmented with
GPUs, is difficult to estimate, but this discus-
sion demonstrates that the DFE has the poten-
tial to be competitive
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