
Defining procedures in early computing education

Ivan Kalas1,2, Laura Benton2

1
 Department of Informatics Education, Comenius University, Bratislava, Slovakia

2 UCL Knowledge Lab, UCL Institute of Education, 23-29 Emerald Street, London, UK

kalas@fmph.uniba.sk, l.benton@ucl.ac.uk

Abstract. From the early years of educational programming researchers con-

sidered procedural abstraction a key instrument of computational thinking and

tried to understand the cognitive difficulties encountered through this concept.

Defining procedures is promoted in renewed computing curricula in several

countries. And yet, it is rarely acknowledged by more recent educational

research. In this paper, we consider the fact that the delayed implementation of

a mechanism for building procedures (known as definitions) within Scratch, a

widely used programming environment for children, may have negatively

impacted the focus within curricular content on this powerful idea.

In our research, which is a part of a broader ScratchMaths (SM) research

project, we set out to explore which factors play a role in upper primary pupils

understanding and utilizing the concept of defining procedures as a common

and inherent instrument of their programming. We present our observations

from the project design schools and demonstrate how they guided the

development of our SM pedagogic strategy for definitions.

Keywords. primary computing education, procedure, abstraction, ScratchMaths

1 Background

Computer scientists have recognised the power of defining a procedure since the

early days of computer programming in the late 1950s, technically defining its role as

offering “a single point of reference for some small goal or task that the developer or

programmer can trigger by invoking the procedure itself” [1]. Later, whilst studying

the idea of a computational process in the 1980s, Abelson and Sussman [2] in their

seminal writing identified three basic mechanisms of a programming language,

including the means of abstraction by which compound elements can be named and

manipulated as units1, i.e. “... the means that the [programming] language provides for

combining simple ideas to form more complex ideas” [ibid].

In the early years of educational programming, within the context of Logo pro-

gramming Papert [3] proposed the metaphor of “teaching the Turtle a new word” to

represent the process of programming a computer. In 1974 Perlman, inspired by

Papert, tried to implement the concept of procedure in a tangible programming

interface for preschool children in her Tortis Slot Machine, see [4,5,6]. Through this

1 the other two mechanisms being primitive expressions and the means of combination

mailto:kalas@fmph.uniba.sk
mailto:l.benton@ucl.ac.uk

work she started considering the cognitive difficulties behind some aspects of

programming [5, p. 4] after observing children becoming overwhelmed when

introduced to multiple new concepts through her system.

For Papert, turtle geometry provided an excellent opportunity to practice “the art of

splitting difficulties” [3, p. 64], for example through drawing a house by splitting it

into two parts – a square and triangle. He proposed that a Logo procedure can become

something named, manipulated and recognised; terming it “an object to think with”.

Since the early 1980s the mechanism of defining new procedures (in different

forms) has been implemented in many programming environments for novice pro-

grammers, including children2 and this is promoted through renewed computing

curricula in several countries highlighting the power of abstraction and procedure. For

example, Computing at School (CAS) in the UK [7] characterises procedure as a

mechanism of abstraction, an instrument of generalisation, a pattern to be used to

control complexity by sharing common features, and suggests “these abstractions may

be deeply nested, layer upon layer” [ibid, p. 11]. CAS recommends that as well as

using procedures pupils should become proficient in creating new abstractions of

their own.

1.1 Defining Procedures in Research Literature

Within the Logo culture of 1980s and 1990s, researchers frequently examined the

procedural thinking of the learners, but their studies often point to some inherent

difficulties with the notion of procedure, see e.g. [8-10]. Pea et al. [10] observed that

most of the pupils involved in their study in the early 1980s did not spontaneously ac-

cept programming practices such as “... structured planned approaches to procedure

composition, use of conditional or recursive structures” [ibid p. 211].

Despite the legacy of being difficult and not naturally exploited by children as an

everyday instrument in their programming, Logo educators and reserachers have al-

ways considered procedural abstraction to be one of the most ‘powerful ideas’ of

computing education. However, this is rarely acknowledged by more recent educa-

tional research.

Most of the research projects looking at the learning of computer science and

computing concepts focus on variables, loops, conditions and control structures,

message passing or concurrency, often not mentioning definitions at all. For example

Meerbaum-Salant et al. [11] study how Scratch can be used to teach computer

science, focusing on ‘standard’ key concepts, but not on defining new blocks.

Similarly, Ouahbi et al. [12] study how novices learn basic programming concepts by

creating games but do not include definitions of new blocks in their observations.

Vaníček [13] identifies several potential risks in the emerging Scratch program-

ming practices of the student-teachers, including unnecessarily long scripts. However,

defining new blocks is not considered among the instruments to cope with that risk.

Futschek and Moschitz [14] explore a transition from a playful programming envi-

ronment with tangible objects to a virtual Scratch environment and identify five basic

2 such as Karel the Robot (1981), Solo (1983), Boxer (1986), Roamer (1989), Show and Tell

(1990), Turingal (1991) among others, see e.g. [4]

computational concepts which should be present in learning scenarios with the aim to

develop early algorithmic thinking, abstraction being one of them. They suggest that

learners should experience a transition from perceiving a basic virtual command as an

abstraction of a basic tangible action to perceiving a command as an abstraction of a

compound (constructed) action.

1.2 Defining Procedures in Scratch

The Scratch programming environment has become an icon of the recent widespread

interest of schools around the world in computing education for every pupil. It is a

visual programming environment that allows users “to learn programming while

working on personally meaningful projects such as animated stories and games” [15].

Brennan and Resnick [16] explain that in Scratch abstraction is employed at

multiple levels “from the initial work of conceptualizing the problem to translating

the concept into individual sprites and stacks of code”. However, the previous version

of Scratch (1.4) had no means to employ abstraction by defining new procedures. In

2010 Maloney et al. [15] wrote:

“Early versions of Scratch had a mechanism for creating procedures. In early field

tests, however, many users were confused by procedures since they seemed very

similar to broadcasts – both involved associating a name with a collection of com-

mands. In the interest of simplicity and minimalism, procedures were removed from

the language before Scratch was officially released...”
3

More recently in Scratch 2.0 (released in 2013) the functionality for defining

procedures was implemented as the Make a Block operation (see Fig. 1).

Fig. 1. In Scratch the define hat block is attached to a script, thus defining a new block

2 Procedural Abstraction within ScratchMaths

The research reported within this paper is a part of a broader project, ScratchMaths

(SM), which aims to explore connections between developing computational and

mathematical thinking in the upper primary age pupils4 in England [17,18]. In the

project we have iteratively designed detailed curriculum materials for computing

3 later on we probe this observation through our own experience with the SM schools
4 i.e. aged 9-11 years

lessons in years 5 and 6, which are currently being trialled in 50+ primary schools

across the country. The intervention consists of six modules (three per year), with

each module consisting of a series of activities organised within investigations (with

accompanying classroom resources). The first three modules focused more on

introducing key computing concepts (sequencing, repetition, algorithm, debugging,

abstraction, initialisation, randomness, conditions, expressions, broadcasting), with

links to mathematics made implicitly and the remaining three modules explicitly

focused on particularly challenging mathematical concepts (place value, ratio and

proportion, coordinates and geometry). Each year of the intervention included a two-

day professional development program for class teachers, which was intended to

introduce the ‘big ideas’ of the SM curriculum as well as the pedagogical approach to

delivering the intervention. Through the research conducted as part of this project, we

seek to better understand the construct of procedural abstraction in early computing

education.

In their new framework for studying computational thinking, Brennan and Resnick

[16] identify three key dimensions: computational concepts (like sequences, loops,

events etc.), computational practices (like testing, debugging, reusing, remixing etc.)

and computational perspectives (about the world around us). In our research we

extend their first dimension into computational constructs, which comprise

computational concepts (like procedural abstraction in this case) and computational

procedures associated with the practice of the learners to exploit the concept.

2.1 SM Pedagogic Strategy for Definitions

Through the design of the SM intervention we recognise five implicit stages in

developing the construct of procedural abstraction:

1) Perceiving a script5 as an object to work and think with: One of the key SM de-

sign principles is systematically building the distinction between:

 direct manipulation, e.g. dragging a sprite (a programmable object) by the mouse

or switching its costume (its appearence) by clicking on a different costume in the

list.

 direct drive, clicking an isolated block (command) in the scripting area, thus

getting an immediate and unambiguous basic reaction, e.g. clicking move -50 steps

block would make a sprite move backwards 50 steps.

 computational drive, building and using a script as a representation of the com-

pound future behaviour of a sprite e.g. by clicking it in the scripting area. Typically

it is only later that a script (a behaviour) is turned into a complete reaction to a

certain event through the addition of a hat block6, e.g. when this sprite clicked or

when green flag clicked.

5 in Scratch a stack of blocks snapped together, a piece of program
6 the topmost block to start a script, e.g. when this sprite clicked hat block

By adopting this distinction pupils start perceiving scripts (with no hat blocks, see

the lower left script in Fig. 2) as patterns of actions7, representations of partial or

complete behaviours, as objects to build, explore, modify, and use (i.e. as objects to

think with) and possibly abstract later. In our intervention we incorporate activities

developing this approach as a preliminary phase for developing procedural

abstraction.

2) Giving a name to a script. When a useful script has been built it can be given a

name (Fig. 2 – right). Within our SM pedagogical framework [17] we encourage

pupils to follow the procedure: (i) build a script, debug and use it, (ii) give it a name,

i.e. attach a new define hat block to the script, (iii) keep the define script (the

definition), and (iv) use the new block as a shortcut instead, as a name of that pattern

of action – using the defined block in isolation (in the direct drive mode), then within

a script (in the computational drive).

In SM Module 1 pupils define more new blocks for creating different visual pat-

terns and combine them in short scripts to draw complex circular patterns. While

doing that, in line with our pedagogical framework we suggest class discussion points

to explain and exchange ideas such as: How did you teach a sprite a new command?

Why did you make new blocks? How did it help your programming, thinking, and

problem solving? What name did you give your new block and why?

Fig. 2. Naming a useful script – i.e. certain pattern of action

3) Working with new blocks (own and provided): Pupils repeat the same process of

making new blocks as useful shortcuts for previously built and used scripts in several

contexts, to draw different compositions, e.g. a tower, a house, a swarm of colour dots

etc. Gradually, they also start using their own new blocks to build more compound

definitions (called nested definitions).

Pupils also use new blocks created by the SM designers and available within

specific ‘starter’ projects using within the modules, e.g. set random pen size (see Fig.

3), within their own scripts.

7 in the context of SM Module 1, patterns of actions are procedural representations of the

corresponding visual patterns

Fig. 3. Defining, using and modifying new blocks in different contexts

4) Customising and duplicating definitions. In the SM intervention there are

contexts (situations) which require pupils to modify the behaviour of the pre-defined

new blocks. They discover the “hidden” definitions8, explore the input values to their

pick random ... to ... operator blocks and modify them so that the defined blocks suit

their design plan.

In another context, when working with multiple sprites, pupils also discover that

each definition belongs to only one particular sprite9 and that they need to copy or

reconstruct it for use with other sprites.

5) Generalising definitions by indirect parameter. Pupils use the ask/answer pair

of blocks, first using answer as an input to simple scripts, later also in the definitions

of their own blocks as their indirect parameter, (Fig. 4 – left). Once they need to refer

to several previous answers, variables are introduced and subsequently used in scripts

and definitions (Fig. 4 – right).

Fig. 4. Definitions generalised by using answer and variables as indirect parameters

3 Method

In developing the SM intervention, we followed a design research process to iterative-

ly design the curriculum content and learning progression [17]. This involved drafting

learning activities and subsequently trialling them with classes of pupils in one of four

‘design’ schools (primary schools in London). One to three SM researchers observed

the lessons, took detailed notes as well as collected pupils’ Scratch projects. The

researchers then discussed together the observations and outcomes of each lesson,

which informed the following redesign of the learning activity.

Within this paper, we focus on two specific research questions, which we explored

through our design process:

8 their definitions are so far “hidden” from view on the far right of the scripting area
9 or to the stage, for completeness

RQ1: Which factors play a role in (upper primary) pupils’ understanding and

choosing to utilize within their own programs the construct of procedural

abstraction?

RQ2: Which computational procedures need to be mastered to support pupils’ un-

derstanding and exploiting procedural abstraction (i.e. defining and using new blocks

in Scratch)?

3.1 Analysis

During the prototyping phase of the design research process each iteration of the

curriculum content was trialled in three to five classes of the design schools, (between

January 2015 and July 2016) with one or two researchers observing the lessons and

collecting the Scratch projects. All activities were trialled in at least one school, with

any activities that required modifications then retrialled in the same class (where

substantial changes had been made) or a different class/school (where more minor

refinements had been made). Further refinements were also made as a result of

feedback received during the professional development sessions conducted with class

teachers prior to trialling the final intervention within a wider group of schools.

During this phase we focused on the systematic and coherent integration of

procedural abstraction in all six modules of the intervention.

In this paper, we focus on analysing collected observations and projects from the

perspective of the construct of procedural abstraction. Firstly we conducted a content

analysis on the Scratch projects collected in several design schools during one

Module 2 activity (partway through the year 5 curriculum), requiring pupils to define

and use a block to draw a square, to identify the common initial issues or

misconceptions the pupils encounter when learning about definitions (Research

Lesson 1).

Secondly we conducted a content analysis on the Scratch projects collected during

a 90 minute lesson in one design school which took place at the very end of the design

research phase (after the trial of the year 6 content) to assess the pupils’ understanding

of the key constructs of the SM intervention (Research Lesson 2). This analysis was

intended to identify the choices made by pupils with regard to the use of definitions

within an open task following the SM intervention.

3.2 Initial Issues and Misconceptions

We identified three key issues in pupils’ initial building and use of definitions during

Research Lesson 1. Below we describe these issues and describe how they are

addressed within our SM pedagogic strategy for definitions, which were subsequently

promoted by researchers in classrooms later in the design research process. For

example when defining a new block for drawing a square of the side length of 40,

pupils:

i. did not attach the define square hat block to the script – new block square itself

would then have “no behaviour” as it had no define script, i.e no definition.

We advocate that teachers should encourage pupils to firstly build a script (stage

1) and then give it a name by creating a new block and attaching the hat block

(stage 2).

ii. attached the define square hat block to the define script, however later started

“stealing” the blocks from their define script, as if once having been defined,

Scratch would simply “remember the definition”

We suggest that teachers should encourage pupils to get into the routine of

moving the define script to the right of the scripts area out of the way once they

are happy with it and then not touching it (unless they intentionally decide to

modify it).

iii. attached the define square hat block to the define script, however continued

building another repeat 4 move 40 turn right 90 degrees script whenever they

needed to draw a square, instead of using the new square block as a name of that

pattern of action.

We propose that teachers should encourage pupils to use their new blocks in

isolation (stage 2) and then to use within different scripts (stage 3).

3.3 Use of Definitions after SM Intervention

During Research Lesson 2 the teacher first demonstrated the final behaviour in the

full screen mode – so that pupils could not see the scripts of the model solution. When

the (Beetle) sprite was clicked it asked how many houses it should draw and then

drew a row of randomly sized and coloured houses. This could be repeated several

times thus creating a hamlet, see Fig. 5.

Fig. 5. Picturesque hamlet, the final assignment in a design school

The class then as a group (in front of the interactive whiteboard) discussed the ac-

tivity, steps and possible strategies, dealing with questions such as: How many houses

did the Beetle draw in one row and why? Do they all have the same side length? How

are they positioned? How would the Beetle draw a house and a row of houses? Does

the Beetle choose a side length, how does it remember that value while drawing a

house? How will the Beetle learn how many houses to draw? Pupils were not

prompted to define their own new blocks.

A starter Scratch project was provided, with the Beetle sprite, a simple setup script

(to clear the stage etc.), the side length variable already created, a pre-defined block

set random pen size colour shade and two isolated blocks in the scripting area: set

side length to 0 and the side length reporter block.

Initial discussion took 15 minutes. Pupils were then divided into mixed ability

pairs or threes by the teacher. Teams worked on their projects independently for 70

minutes with a short break, the teacher providing only limited guidance. There were

23 pupils in the class, and we collected 9 projects (which represented the work of 21

pupils), hereafter referred to as P1 to P9.

Our content analysis of the nesting structure of definitions within the projects was

then conducted focusing on:

a) the definitions of new blocks and whether a new block is being used (nested) inside

another definition – i.e. whether pupils achieved stage 3 of the SM pedagogic

strategy for definitions.

b) whether the indirect parameters are properly implemented in the definitions – the

answer block and the side length variable – that is, whether pupils achieved stage

5 of our strategy.

Fig. 6 presents the projects’ nesting structure in the following way: the topmost

triangular block represents the overall behaviour (solution), usually the when this

sprite clicked script. Each circle represents a definition, the positioning corresponds

to nesting, i.e using a new block inside another definition. For example, in P1 a block

for drawing a house was defined, then used in the definition of a block to draw a row

of houses, which is then used in the overall behaviour of the sprite. Sometimes the

house block itself was defined by using another new block in it, usually a square (in

P5) or a square and a triangle (in P6).

Fig. 6. Nesting analysis of the definitions in the projects

A circle or a triangle in Fig. 6 is filled, semi-filled or empty, depending on whether

the definition correctly, partially or incorrectly10 works with the indirect parameter i.e.

answer or side length, the most advanced (stage 5) definition type in the SM

curriculum.

4 Discussion

Despite some initial issues/misconceptions of definitions, our findings show that

paying close attention to repeatedly exploring and explaining the practice of building

a script, giving it a name, keeping the definition and using new block as a shortcut

helped to reduce observed misconceptions and encouraged pupils to choose for

themselves to utilise the power of definitions within their own scripts. Our pedagogic

approach allowed pupils to automatize this computational procedure in different

contexts, before creating a situation when pupils needed to get back to the define

script and modify it.

10 including not using it at all

Although back in 2010 Maloney et al. [15] reported certain confusion of

definitions and broadcasts, we have not observed this within our research. It may be

due to two factors: In the SM pedagogic framework [17] we strive to encourage

pupils to work with (incomplete) scripts as (partial) representations of action or

behaviours. A hat block is usually added only later, as an instrument to clarify how

this behaviour will be activated. From the first module pupils add the define hat block

to some scripts to give them name. Much later, in the third module (in year 5) they

start using some scripts as reactions to receiving a message.

Through our nesting analysis of the pupils’ final assignment, see Fig. 6, we looked

at whether making new blocks has been adopted by the learners as an instrument to

cope with complexity. We noted that every team made at least one new block and 5 of

9 teams made two or more new blocks (up to five). Two teams nested their definition

in two levels, 2 teams even in three levels. We also noted that 8 teams correctly or

partially correctly worked with the indirect parameter(s) in their scripts thus achieving

stage 5 of the SM pedagogic strategy for definitions.

Through our content analysis we also identified that definitions of new procedures

play different roles in the SM intervention:

 Aggregating basic commands into one: when several basic commands are simply

attached together, with new command often carrying the names of its ‘atoms’, e.g.

set random pen size colour shade or dot stamp jump.

 Extending the language: (in the sense of Abelson and Sussman [2]) when a new

command gives a name to a compound reaction or behaviour, thus building a

higher layer of the means of expression – abstracting from the detail, e.g. house or

teleport.

 Transforming the language: when a basic command is ‘replaced’ by a new one to

be used instead, e.g. replacing move 20 steps by a new block move one tile.

 ‘Patching’ the language: when new block ‘completes’ the same layer of the means

of expression as offered by other basic blocks – extending the language in a

‘horizontal way’. This may lead to more consistent code, see Fig. 7 which

illustrates the definition of such block – previous costume.

Fig. 7. Patching the language. While next costume is a standard block, ‘symmetrical’

previous costume block can be defined to highlight the analogy.

5 Conclusion

Although several designers updated their Scratch 1.4 materials to illustrate defini-

tions, rarely is this construct integrated and systematically exploited as a truly power-

ful idea. In the SM intervention, the thread of developing procedural abstraction

winds through all six modules, through five implicit stages. In our reserach we

acknowledge the importance of the role that definitions play in developing early

computational thinking, facilitating [19] decomposition (by creating a structure,

breaking down a problem), abstraction (by hiding detail), and generalisation (by

highlighting certain patterns of action and encouraging to use them later in different

contexts). Our experiences in the context of the SM intervention validate the

importance of exploiting a tool with affordances that support pupils in building

definitions, but also the importance of employing a pedagogic strategy that

systematically develops all computational processes associated with the practice of

the learners to exploit this concept.

Acknowledgments. The authors would like to thank the other SM project team

members Richard Noss, Celia Hoyles, Piers Saunders, Johanna Carvajal and Dave

Pratt, the Education Endowment Foundation for funding this work, and also all the

teachers and pupils from our design schools for their invaluable contributions to the

design and development of the SM intervention.

References

1. Technopedia: What does Procedure mean. Accessible online www.technopedia.com

2. Abelson, H., Sussman, G.J. with Sussman, J. (1985). Structure and Interpretation of Com-

puter Progams. The MIT Press, 657 p.

3. Papert, S. (1980). Mindstorms. Children, Computers, and Powerful Ideas. Basic Books,

New York, 230 p.

4. Kelleher, C., Pausch, R. (2005). Lowering the barriers to programming: A taxonomy of

programming environments and languages for novice programmers. ACM Computing

Survey (CSUR), Vol 37 Issue 2, 2005, pp. 83-137.

5. Morgado, L., Cruz, M., Kahn, K. (2006). Radia Perlman – A pioneer of young children

cpmputer programming. Current Developments in Technology-Assisted Education. For-

matex, pp.1903-1908.

6. Perlman, R. (1976). Using Computer Technology To Provide A Creative Learning

Environment For Preschool Children. AI Memo 360, MIT, 32 p.

7. Computing at School Working Group (2012) Computer Science: A curriculum for

schools. www.computingatschool.org.uk/data/uploads/ComputingCurric.pdf.

8. Hillel, J. (1992). The Notion of Variable in the Context of Turtle Graphics. In: Hoyles, C.,

and Noss, R. (Eds.): Learning Mathematics and Logo. The MIT Press, pp. 11-36.

9. Leron, U. (1983). Some problems in children’s logo learning. In Proc. of the 7th Inter-

national Conference for the psychology of Mathematics Education, Israel, pp. 346-351.

10. Pea, R.D. et al. (1985). Logo and the Development of Thinking Skills. In M. Chen and W.

Paisley (Eds.) Children and Microcomputers: Research on the Newest Medium. Sage, pp.

193-212.

11. Meerbaum-Salant, O., Armoni, M., Ben-Ari, M. M. (2013). Learning computer science

cocepts with Scratch. Computer Science Education, Vol 23 (3), pp. 239-264.

12. Ouahbi, I. et al. (2015). Learning Basic Programming Concepts By Creating Games With

Scratch Programming Environment. Procedia – Social and Behavioral Sciences 2015.

13. Vaníček, J. (2015). Programming in Scratch using inquirey-based approach. In A.

Brodnik, J. Vahrenhold (Eds.) Informatics in Schools. Curricula, Competences, and

Competitions. Springer LNCS 9378. pp. 82-93.

http://www.technopedia.com/

14. Futschek, G., Moschitz, (2011). Learning algorithmic thinking with tangible objects eases

transition to computer programming. In Kalas, I., Mittermeir, R.T. (Eds.) Informatics in

Schools. Contribution to 21st Century Education. Springer LNCS 7013. pp. 155-164.

15. Maloney. J., Resnick, M., Rusk, N. Silverman, B., and Eastmond, E. (2010). The Scratch

Programming Language and Environment. ACM Transactions on Computing Education,

Vol. 10, No. 4, Article 16, 15 p.

16. Brennan, K., Resnick, M. (2012). New frameworks for studying and assessing the develop-

ment of cimputational thinking. In Proc. of the 2012 Annual Meeting of the American

Educational Research Association, Vancouver, Canada.

17. Benton, L., Hoyles, C., Kalas, I., and Noss, R. (2017). Bridging Primary Programming

and Mathematics: Some Findings of Design Research in England. Digital Experience in

Mathematics Education,, Vol. 3, Springer, doi: 10.1007/s40751-017-0028-x, pp. 115-138.

18. Benton, L., Hoyles, C., Kalas, I., and Noss, R. (2016). Building mathematical knowledge

with programming: insights from the ScratchMaths project. In: Constructionism 2016,

Bangkok, pp. 25-32.

19. Guttag, J. V. (2013). Introduction to Computation and Programming Using Python. The

MIT Press, 298 p.

