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Quantum arithmetics via computation with minimized external control: The half-adder
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The while-you-wait computing paradigm combines elements of digital and analog quantum computation with
the aim of minimizing the need of external control. In this architecture the computer is split into logic units, each
continuously implementing a single recurring multigate operation via the unmodulated Hamiltonian evolution of
a quantum many-body system. Here we use evolutionary algorithms to engineer such many-body dynamics, and
develop logic units capable of continuously implementing a quantum half-adder in a time-independent four-qubit
network, where qubits are coupled with either Ising or Heisenberg interactions. Our results provide a step for the
development of larger modules for full quantum arithmetics.

DOI: 10.1103/PhysRevA.97.062321

I. INTRODUCTION

Current quantum computing prototypes can be divided into
two categories: either based on digital or analog operations.
Digital approaches are normally used in systems with a high
degree of control, such as transmon-based superconducting
systems [1] or ion traps [2], and have the advantage of enabling
the use of error-correcting codes [3]. In digital computers,
genuine quantum many-body effects are normally considered
detrimental, and ideally one would like to switch on and off
the interactions between pairs of constituents at will, e.g.,
via continuous control [4] on the system. However, spuri-
ous interactions (e.g., cross-talk) generally remain, because
of either imperfect switching, imperfect isolation from the
environment, or from the other qubits. Moreover, the control
effectively couples the qubits to a classical device which
eventually increases decoherence and heating [5]. On the other
hand, analog computers such as quantum annealers [6] exploit
collective many-body effects to achieve computation through
driving the system to different equilibrium phases. Possible
disadvantages are, from a fundamental perspective, the lack of
error correction and efficient compilation schemes, and from a
practical perspective, the questioned degree of “quantumness”
of current devices [6].

While-you-wait (WYW) computing has been proposed as
a method to combine elements of digital and analog computa-
tion [7]. As in analog computing, some computation is imple-
mented into the physical evolution (here unitary dynamics) of
an interacting many-particle system. Moreover, as in the digital
approach, the overall algorithm is decomposed into smaller
steps. However, unlike traditional gate-based paradigms where
one is normally interested in sets of universal gates, in WYW
the decomposition is such that the external control is mini-
mized. One possibility is to develop computational units that
operate continuously without time-dependent control. Each
unit implements a particular multigate operation which recurs
multiple times in an algorithm. In WYW computing the only
time-dependent operation is the transmission of states between
the different units, which continuously operate the same
transformation without external action. The transmission can

be either obtained via optical means, or with one-dimensional
(1D) qubit chains, to avoid the hybrid setups. Combining
WYW computing with low-control methods to transfer states
in 1D chains [8–16] would allow a minimal control approach
to computation [7].

In this paper we focus on developing a logic unit that
implements the quantum half-adder gate, a recurring trans-
formation for quantum arithmetics [17–19], and, as such, a
key component in the Shor algorithm [20]. Because of its im-
portance, different schemes have been proposed to implement
half-adders in different experimental systems, such as linear
optics [21], nanographene molecules [22], 1D cellular automa-
ton [23], and superconducting [24] or atomic [25] systems.
Successful implementations of a quantum half-adder have also
been demonstrated experimentally, for example, using nuclear
magnetic resonance 7/2-spin systems [26], although with a
10% error rate, mainly due to radio frequency inhomogeneity
and pulse imperfections—since multiple pulses are required
to perform the half-adder, these imperfections accumulate.
On the other hand, we find a four-qubit quantum network
that continuously implements a half-adder with a fidelity of
≈97.9%. Note that this is already better than the threshold for
fault-tolerant classical computation using quantum gates [27].

Since optimizing the dynamics of a many-body system is
normally an analytically intractable problem, one has to de-
velop powerful numerical techniques. A fruitful approach is to
view the many-body system as a quantum neural network that
has to “learn” a desired quantum transformation [7,28–31], or,
alternatively, to use powerful optimization algorithms [32–35].
Here we use differential evolution [36], a global optimization
algorithm inspired by evolutional biology, which has been re-
cently successfully applied in quantum control problems [34].
We therefore demonstrate its effectiveness also for WYW
computing.

II. BACKGROUND

A. Quantum half-adder

Computers are able to perform vast computations, owing
to discrete operations on bits called logic gates. Using basic
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FIG. 1. A half-adder constructed with a XOR and AND gate.

logic gates in specific configurations, it is possible to construct
more complex structures capable of performing arithmetic
computation. Fundamental to the construction of computa-
tional arithmetic in a classical computer is the half-adder. The
half-adder circuit is used for the addition of two bits and is a
vital component of the more important adder circuit, which is
used to add strings of binary digits together. The construction
of a half-adder circuit requires the coupling of two simpler
logic gates, the XOR and AND gate, whose design can be seen
in Fig. 1. Using this configuration of gates, the addition of two
binary digits can be represented with a sum and carry. The truth
table is shown in Table I. Analogous to its classical counterpart,
quantum half-adders are used for the addition of two quantum
bits. From the gate decomposition in Fig. 1, it can be seen that
the mapping from input to output in both the XOR and AND

gates is many-to-one, and therefore irreversible. Moreover, in
Fig. 1 each input bit is copied and sent to two different gates,
an impossible operation in the quantum setting because of the
no-cloning theorem. Since quantum gates are carried out using
unitary operators, and thus must be reversible, it is necessary to
introduce an ancillary qubit to construct a quantum half-adder.
Therefore, the quantum circuit consists of three qubits: the
two target qubits to be summed and a single control qubit, as
well as two quantum logic gates: a Toffoli gate followed by
a controlled-NOT (CNOT). The schematic of the circuit and the
truth table can be seen in Fig. 2 and Table II, respectively,
which can be interpreted as the following logical operation:

Ĉab
NOTT̂

abc(|a〉 ⊗ |b〉 ⊗ |0〉) = (ĈNOT|a〉 ⊗ |b〉) ⊗ |ab ⊕ 0〉
= |a〉 ⊗ |a ⊕ b〉 ⊗ |ab ⊕ 0〉, (1)

where T̂ is the Toffoli gate, ĈNOT is the CNOT gate, ⊗ denotes
tensor product, and ⊕ denotes addition modulo 2.

TABLE I. Truth table of the half-adder.

Input Output

A B Sum Carry

0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

FIG. 2. A quantum half-adder constructed with a Toffoli and CNOT

gate.

The sum and carry of this operation are stored in the second
and third qubit, respectively. Likewise to a classical computer,
a quantum adder can be constructed from quantum half-
adders to provide a way to add two unknown quantum states
together. These operations are the building blocks of quantum
arithmetics [17–19], which is a key component (together
with the quantum Fourier transform) for implementing Shor’s
algorithm, capable of factoring numbers in polynomial time—
much faster than is possible on a classical computer [20].

B. Quantum gate learning

A quantum algorithm is a unitary operation that transforms
the quantum state of a set of qubits into another quantum state.
Physically, this corresponds to a quantum evolution via the
time-dependent Schrödinger equation i ∂U

∂t
= Ĥ (t)U , where U

is a unitary operator capable of a specific transformation, gov-
erned by the underlying Hamiltonian Ĥ (t). If the Hamiltonian
is unmodulated in time, namely, Ĥ (t) = Ĥ , then the unitary
evolution of the system is simply related by U = e(i/h̄)Ĥ t , and
one may perform this evolution by setting up a system of
qubits where the interactions are modeled by the Hamiltonian,
H . Unfortunately, in physical implementations of quantum
computing, the range of possible Hamiltonians is severely
restricted. As a result of this restriction, the more complicated
transformations are usually carried out by breaking the single
dynamics of the system and representing the transformation as
a series of simpler unitary operations, U1U2 · · ·UN , governed
by interaction Hamiltonians, H1,H2, . . . ,HN , that are exper-
imentally achievable. To perform this sort of procedure, it is
necessary to execute a series of external pulses to continuously
modulate the system’s dynamics, such that Ĥ (t) is piecewise
constant to the values H1,H2, . . . ,HN , respectively, at different
intervals. Consequentially, this leads to possible errors from
external interactions which accumulate over time and may
affect the outcome of the computation, under the absence
of error-correcting codes. Motivated by this, there have been
different proposals to directly encode complicated unitary

TABLE II. Truth table of the quantum half-adder.

Input Output

A B C A B (sum) C (carry)

0 0 0 0 0 0
0 1 0 0 1 0
1 0 0 1 1 0
1 1 0 1 0 1
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FIG. 3. An undirected graph representing a quantum network split
into register and ancillae qubits.

operations into the hardware of a system. Indeed, in Ref. [7]
it was shown that both the Toffoli gate and Fredkin gate can
be carried out with high fidelity by unmodulated interactions,
even when one is restricted to physical two-body couplings
between qubits. The procedure for learning the correct physical
Hamiltonian that reproduces the given target gate was called
quantum gate learning [7,37], while the resulting architecture
was called while-you-wait computing [7].

The idea of quantum gate learning is to encode a quan-
tum operation into the unmodulated dynamics of a quantum
network without having to provide external control pulses.
This is done by constructing a quantum network consisting
of both regional and ancillae qubits, and then optimizing
their two-body interactions in such a way that a unitary gate
operation is encoded in the natural reduced dynamics of the
system, namely, into the regional qubits.

Consider a quantum network consisting of an undirected
graph (V,E) of vertices V and links E as can be seen in
Fig. 3. The vertices V are made up of single qubits and the
links E correspond to the 2-local spin-coupling interactions
between the qubits. The quantum network can be described by
the following time-independent Hamiltonian:

H =
∑

(n,m)∈E

∑
α,β

J αβ
nm

σα
n σ

β
m

4
+

∑
n∈V

∑
α

hα
n

σα
n

2
, (2)

where σα
n , α = x,y,z, are the Pauli matrices acting on qubit n,

J
αβ
nm is the interaction strength between the nth and mth qubit

via αβ-spin-coupling interaction, and hα
n is the strength of the

external magnetic field on the nth qubit in the α direction.
The idea is to optimize the parameters J and h of the time-
independent Hamiltonian that governs the time evolution of
the network of qubits in such a way as to maximize the fidelity
between the time-evolution operator and the desired gate.

Note the importance of having ancillae qubits: without
them the gate learning corresponds to the matrix logarithm
of U = e−iH. Nonetheless, since the matrix logarithm is a
multivalue function, for degenerate gates one can drastically
simplify the resulting Hamiltonian and remove higher order
interactions [38]. For nondegenerate gates, these matrix log-
arithms normally give rise to three-body interaction terms

(or even of higher order), which are undesirable, as they
unlikely appear naturally in physical systems and must be
engineered via a superexchange mechanism [39]. The latter
typically yields long gate times, during which the system may
be highly affected by decoherence. On the other hand, by
adding ancillae qubits, the degree of freedom to implement
the gate with simpler interactions is expected to increase, and
may give rise to the desired two-body interaction solutions.
Different analytical methods have been proposed to find
quantum networks that implement a target gate [40,41] using a
certain amount of ancillary systems. However, these methods
are normally far from optimal in terms of resource usage
(i.e., number of ancillae). For instance, via the construction
in [40] one normally requires NL ancillae qubits, where N

are the number of qubits in the gate and L are the number of
CNOT gates in the circuit. For example, since there are three
qubits in the construction of a Toffoli gate and it is possible
to decompose into five CNOT gates, the number of ancillae
required for this method is 15. Since the quantum half-adder
requires an additional CNOT gate, the number of ancillae
qubits required is 18. Conversely, we will show that the
quantum gate learning method of implementing a gate can
allow for the construction of 2-local Hamiltonians with far
fewer ancillae qubits.

Before tackling the problem at hand, it is necessary to define
the optimization problem in an appropriate mathematical
framework. Consider a network of qubits consisting of two
composite subspaces: register qubits, R and ancillae qubits, A,
as represented in Fig. 3. Let the initial quantum systems of Q

and A be denoted as |ψQ〉 and |ψA〉, respectively. Note that
the time evolution of the overall network is not equal to the
tensor product of the individual evolution of both subsystems,
displayed in Eq. (3). This is strictly due to the interactions
between Q and A, and as such are not independent subsystems.

U (t)(|ψQ〉 ⊗ |ψA〉) �= UQ(t)|ψQ〉 ⊗ UA(t)|ψA〉. (3)

To simplify the mathematics we introduce also the density
operator formalism

|ψ〉〈ψ | = |ψQ〉〈ψQ| ⊗ |ψA〉〈ψA| = ρQ ⊗ ρA = ρ, (4)

where ρ denotes the state of the overall network, and ρQ and ρA

denote the state of subsystems Q and A, respectively. Using
the time evolution governed by Eq. (2), a quantum channel,
EJ,h, can be defined that describes the system evolution and
depends on both J

αβ
nm and hα

n , as well as ρA. This is done by
first evolving the overall system ρ, then taking the partial trace
over A—allowing interactions between both subsystems to be
taken into account during the evolution. Mathematically, the
time evolution of subsystem Q is described by the quantum
channel

EJ,h[ρQ] = TrA(e−iĤ ρQ ⊗ ρAeiĤ ). (5)

It is this (normally nonunitary) operation that ultimately will
be optimized to operate like a desired quantum gate.

C. Fidelity-based cost function

A similarity measure needs to be defined that will allow
a direct comparison between the operation of the quantum
channel and the ideal quantum gate G. Here we use the fidelity
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metric defined below for this comparison:

F (G,EJ,h,ρQ) = 〈ψQ|G†EJ,h[ρQ]G|ψQ〉
= Tr(GρQG† EJ,h[ρQ]). (6)

If the fidelity between both operations is close to 1, this
demonstrates that the quantum channel and the ideal quantum
gate have similar actions on the quantum state, |ψQ〉. It is
possible that both the quantum channel and the ideal quantum
gate have similar actions on a single state, |ψ (1)

Q 〉, but have
completely different actions on every other quantum state,
|ψ (i)

Q 〉. A better representation of the similarity between the
operations is the average gate fidelity, which can simply be
obtained by integrating Eq. (6) over all quantum states, |ψ〉.
The average gate fidelity allows for the comparison of two
quantum operations acting on all possible quantum states,
providing a strong metric for similarity. It is defined as

F̄ (G,EJ,h) =
∫

F (G,EJ,h,|ψQ〉〈ψQ|)dψQ, (7)

where dψ is the uniform (Haar) integration over the possible
states. The above Haar integral can be computed exactly to
write [42,43]

F̄ (G,EJ,h)

= 1

D + 1
+ 1

D(D + 1)

∑
i,j,k,l

G∗
ik〈qi |EJ,h[|qk〉〈ql|]|qj 〉Gjl,

(8)

where the states |qj 〉 form a basis of the Hilbert space Q, and
D its dimension. Unfortunately, the numerical implementation
of Eq. (8) requires an explicit sum over four different variables,
which slows down the computation significantly in high-level
programming languages. For this reason, a vectorized form of
the average gate fidelity would be preferred, as a computer is
highly efficient when dealing with matrix manipulation.

Vectorization of the average gate fidelity may be performed
by first expressing Eq. (8) in terms of the Choi matrix, ρE =
I ⊗ E |�〉〈�|, where |�〉 is the maximally entangled quantum
states, 1√

D

∑
i |qi,qi〉. Expanding the Choi matrix into its

matrix representation, the quantum channel can be expressed
in terms of the Choi matrix as

〈qi |EJ,h[|qk〉〈ql |]|qj 〉 = D〈qk,qi |ρE |ql,qj 〉. (9)

Substituting Eq. (9) into Eq. (8), and defining |G〉 =∑
ij Gij |qj ,qi〉/

√
D, the average gate fidelity can be expressed

in a concise vectorized form, as

F̄ (G,E) = 1

D + 1
+ D

D + 1
〈G|ρE |G〉. (10)

This expression is more useful when ρE can be expressed in
terms of the basis functions and ancillae states. This will require
the explicit evaluation of the Choi matrix for the channel E .
Conclusively, by defining a new state, |	〉 = |�〉 ⊗ |ψA〉 =

1√
D

∑
i |qi〉|qi〉|ψA〉, and expressing the time evolution of the

system as Ũ = ÎQ ⊗ e−itH, where ÎQ is the D × D identity
matrix acting on subsystem Q, the final form of the Choi
matrix can be found as ρE = TrA[Ũ |	〉〈	|Ũ †]. Ultimately, the
average gate fidelity can be fully vectorized into the following

expression:

F̄ (G,EJ,h) = 1

D + 1
+ D

D + 1
〈	|Ũ † ρG Ũ |	〉, (11)

where ρG = |G〉〈G| ⊗ ÎA and ÎA acts on the ancillae.

D. Differential evolution

For training neural networks [44], the first choice algorithm
for optimizing the cost function is often the stochastic gradient
descent (SGD) and its variations. For this reason, SGD was also
used in [7] for obtaining a quantum network that accurately
approximates a Toffoli gate. SGD has some benefits: it is
fast and has the ability to escape, in principle, from some
local minima. However, SGD rarely converges to the true
global optimum but rather to a “good enough” optimum. This
is particularly important in neural networks, since the true
global optimum normally overfits the data. On the other hand,
quantum networks are useful only if they can provide a very
high-fidelity implementation of the target quantum operation,
because of the remarkable precision required in quantum
computation. For this reason, it is important to optimize
the quantum network by finding a true global maximum
of the fidelity Eq. (7). Fortunately, there exists a class of
optimization algorithms that are well suited for dealing with the
global optimiszation of many parameter, nonconvex functions.
A good example of one of these algorithms is differential
evolution (DE). DE is a robust, stochastic, population-based
optimization algorithm first introduced by Storn and Price that
can converge quickly to find the global optimum of functions
that are nondifferentiable, noncontinuous, or have many local
optima [36]. For that reason, DE will be the algorithm of
choice to find the global optimum for the average gate fidelity
subject to the spin couplings, J , and external magnetic field,
h, parameters.

DE consists of four main steps: initialization, mutation,
recombination, and selection. Initialization defines the search-
space domain in which your parameters exist. Mutation and
recombination introduces diversity and allows the parameter
search space to be traversed. Selection ensures that the best
parameters of each generation are kept within the population.
There are three main control parameters that determine how
fast the algorithm converges: the number of agents, N , the
mutation factor, F , and the crossover rate, CR. These param-
eters are often chosen by trial and error and remain constant
throughout the evolution of the algorithm. Unfortunately, this
approach is not viable when dealing with computationally
expensive functions, such as average gate fidelity, as it requires
many evaluations of the function each iteration. An alternative
approach, known as self-adaptive DE, is to vary F and CR after
each generation of the algorithm. This has been shown to be
an effective way of decreasing the likelihood of getting stuck
in a local optima and also achieving better results in quantum
control problems [34].

III. RESULTS

The design of the quantum network to encode the quantum
half-adder consists of four qubits: three regional and one
ancilla. There is no specific reason for only introducing one
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ancilla, other than this is the minimum number of ancillae that
can be used. As mentioned earlier, the reason for not using
N qubits (in this case, three) to encode the N -dimensional
gate is because three-body interaction terms are present in the
analytical solution. This is demonstrated by taking the principal
matrix logarithm of the half-adder gate G:

−i
8

π
ln(G) = Î⊗3 − σZ

1 − σX
2 − σY

2 + σX
3 − σX

2 ⊗ σX
3

+ σX
2 ⊗ σZ

1 − σX
3 ⊗ σZ

1 + σY
2 ⊗ σZ

1

− σX
2 ⊗ σX

3 ⊗ σZ
1 − σX

3 ⊗ σY
2 ⊗ σZ

1 , (12)

where the last two terms have three-body interactions.
The number of free parameters to optimize normally in-

creases exponentially with the number of qubits considered in
a network. In order to keep the discussion realistic, and also
to minimize the number of parameters, cross-pairwise inter-
actions between qubits will be ignored. This is preferable as
these types of interactions are uncommon in nature. Therefore,
the problem is simplified to only XX, YY , and ZZ pairwise
interactions between qubits. As a result, the Hamiltonian for
this network design can be extracted from the generalized form
in Eq. (2), resulting in Eq. (13) below, and the optimization
problem is reduced from a 48- to a 30-dimensional problem.

H = 1
4

(
JXX

12 σX
1 ⊗ σX

2 + J YY
12 σY

1 ⊗ σY
2 + JZZ

12 σZ
1 ⊗ σZ

2

+ JXX
13 σX

1 ⊗ σX
3 + J YY

13 σY
1 ⊗ σY

3 + JZZ
13 σZ

1 ⊗ σZ
3

+ JXX
14 σX

1 ⊗ σX
4 + J YY

14 σY
1 ⊗ σY

4 + JZZ
14 σZ

1 ⊗ σZ
4

+ JXX
23 σX

2 ⊗ σX
3 + J YY

23 σY
2 ⊗ σY

3 + JZZ
23 σZ

2 ⊗ σZ
3

+ JXX
34 σX

3 ⊗ σX
4 + J YY

34 σY
3 ⊗ σY

4 + JZZ
34 σZ

3 ⊗ σZ
4

)
+ 1

2

(
hX

1 σX
1 + hY

1 σY
1 + hZ

1 σZ
1

+hX
2 σX

2 + hY
2 σY

2 + hZ
2 σZ

2

+hX
3 σX

3 + hY
3 σY

3 + hZ
3 σZ

3

+hX
4 σX

4 + hY
4 σY

4 + hZ
4 σZ

4

)
. (13)

The search-space domain for each parameter was set bounded
by the values [−20,20], chosen to reflect the domain of
the solution for the Toffoli gate [7]. The number of initial
agents was first chosen to be 75, as recommended for the
dimensionality of the problem by Pedersen [45], but was prone
to getting stuck in local minima. For that reason, the number of
initial agents was set to 156. The self-adaptive parameters were
set to κ = 0.1, κ2 = 0.9, μ1 = 0.1, and μ2 = 0.1, the same as
those seen in the . successful implementation of self-adaptive
DE on quantum control problems by Zahedinejad et al. [46].

After around 40 000 iterations of DE, optimization came
to a halt at a fidelity of 0.9792, displayed by the optimization
curve in Fig. 4, yielding the following parameters.

JXX
12 = 0.0124, J YY

12 = 0.0331, J ZZ
12 = 6.9978,

JXX
13 = 0.0122, J YY

13 =−0.0272, J ZZ
13 =−17.456,

JXX
14 =−0.0078, J YY

14 =−0.0021, J ZZ
14 =−0.9188,

JXX
23 =−9.5369, J YY

23 =−11.163, J ZZ
23 = 6.9448,

JXX
24 = 0.1043, J YY

24 = 0.0139, J ZZ
24 = 0.0693,

FIG. 4. The optimization curve for the average gate fidelity using
differential evolution.

JXX
34 =−17.972, J YY

34 =−0.1634, J ZZ
34 = 0.2029,

hX
1 = 0.0132, hY

1 = 0.0084, hZ
1 =−14.935,

hX
2 =−4.1712, hY

2 =−2.2730, hZ
2 = 3.5019,

hX
3 =−19.8358, hY

3 = 4.7550, hZ
3 =−8.6666,

hX
4 =−18.8257, hY

4 = 0.0239, hZ
4 = 0.3716.

Interestingly, a high proportion of these parameters are
close to zero. Motivated by this observation, a following
optimization procedure was carried out. A top-down elimi-
nation approach was taken, by iteratively setting the weaker
parameters to zero and then further optimizing the average
gate fidelity using a local optimization algorithm, Broyden-
Fletcher-Goldfarb-Shanno (BFGS). This fine-tuning is stopped
when there is a significant drop in the fidelity. The optimal
parameters are then the ones before this drop. Figure 5
illustrates the effect this process has on the average gate
fidelity, ultimately removing redundant connections in the
quantum network without general loss in fidelity. Sixteen
parameters were removed, resulting in a much simplified
network, visualized in Fig. 6, and the remaining interactions

FIG. 5. The optimization curve for the average gate fidelity when
the smallest parameters are iteratively forced to zero. At the iteration
marked by vertical dotted lines a new interaction, specified in the
legend, is removed. A local optimization algorithm is then carried out
for a corresponding reduced set of parameters; see discussion in the
text.
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FIG. 6. Complex network transforms into a simplified network
with much fewer interactions after iteratively setting small parameters
to 0 and minimizing.

are as follows:

JZZ
12 = 6.9997, J ZZ

13 =−17.396, J ZZ
14 = 2.4969,

JXX
23 =−9.5116, J YY

23 =−11.060, J ZZ
23 = 6.8754,

JXX
34 =−13.281,

hZ
1 =−14.924, hZ

2 = 3.5001, hZ
3 =−8.7004,

hX
2 =−4.1277, hX

3 =−22.231, hX
4 =−18.786,

hY
2 =−2.2985, hY

3 = 4.5632.

It is worth noting that the majority of the network is made
up of ZZ interactions, which is obtainable in superconducting
circuits, among others, as shown by Geller et al. [47]. Addi-
tionally, McKay et al. showed that it was possible to obtain
(XX + YY ) interactions in a superconducting circuit [48],
lending itself nicely for the interactions between the second and
third qubits of this network. This makes the quantum half-adder
with this network configuration almost fully implementable in
a superconducting circuit. Unfortunately, it has yet to be known
how to implement an XX interaction, seen between the third
register qubit and the ancilla qubit.

The performance of the implemented quantum half-adder
can be seen in Fig. 7, where its operation has been applied
to many random quantum states, and compared to the ideal
quantum half-adder. Around the optimal value, the operation
of the implemented quantum half-adder is almost identical to

FIG. 7. The average gate fidelity and fidelity of random states
given by the implemented quantum half-adder when varying one
parameter, J ZZ

12 , around its optimal value.

the ideal gate. As a single parameter moves away from the
optimal value, the fidelity vastly decreases, demonstrating the
extreme nonconvexity of the average gate fidelity.

IV. CONCLUSION

We optimized an unmodulated quantum network to operate
as a continuous logic module for while-you-wait computing.
Specifically, we obtained a four-qubit network which accu-
rately acts as a quantum half-adder, a three-qubit operation
used to construct quantum arithmetics. The optimal qubit-
qubit interactions are found by mapping the problem into a
global optimization of the formal average process fidelity, and
we optimize the latter by adapting the differential evolution
algorithm. Our results show that evolutionary algorithms are
suitable to optimize over the complex parameter manifolds
defined by the process fidelity, and provide a first step for the
development of larger modules for full quantum arithmetics.
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