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Summary

Heart failure (HF) is one of the main causes of morbidity, hospitalization and death in the west-

ern world and the economic burden associated with HF management is relevant and expected

to increase in the future. We consider hospitalization data for heart failure in the most popu-

lated Italian Region, Lombardia. Data were extracted from the administrative data warehouse

of the regional healthcare system. The main clinical outcome of interest is time to death and

research focus is on investigating how recurrent hospitalizations affect the time to event. The

main contribution of the paper is to develop a joint model for gap times between consecutive

re-hospitalizations and survival time. The probability models for the gap times and for the sur-

vival outcome share a common patient specific frailty term. Using a flexible Dirichlet process
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model for the random effects distribution accounts for patient heterogeneity in recurrent event

trajectories. Moreover, the joint model allows for dependent censoring of gap times by death or

administrative reasons and for the correlations between different gap times for the same individ-

ual. It is straightforward to include covariates in the survival and/or recurrence process through

the specification of appropriate regression terms. The main advantages of the proposed method-

ology are wide applicability, ease of interpretation and efficient computations. Posterior inference

is implemented through Markov chain Monte Carlo methods.

Key words: AFT model, Dirichlet process mixtures, frailty, heart failure, re-hospitalizations,

waiting times.

1. Introduction

Congestive Heart Failure (HF) is a chronic disease caused by many conditions that damage the

heart muscle, including coronary artery disease, heart attack, cardiomyopathy and conditions that

overwork the heart (high blood pressure, valve disease, thyroid disease, kidney disease, diabetes

or heart defects present at birth). HF prevalence significantly increases with age (see Desai and

Stevenson, 2012, for instance), and the number of people living with chronic health conditions

for a long time is growing fast. These individuals are often admitted to hospitals and outpatient

care services (Gasperoni and others, 2017). Multiple re-admissions are largely burdensome to the

patient and the healthcare system; for instance, it has been estimated that the average cost of

a HF-related event in the most populated region in Italy, Lombardia, is around 6,000 euros (see

Mazzali and others, 2016).

Despite the efforts to improve the efficiency and the efficacy of treatments and management,

re-hospitalization rates remain persistently high. Moreover, the ageing of the population and

improved survival of cardiac patients due to modern therapeutic innovations have led to an
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increasing impact of HF on healthcare systems all over the western countries. This makes the

management and planning of healthcare services a crucial issue (Naylor and others, 2004). As

for many other chronic diseases, clinical interest lies in both the final outcome (death or survival

time) and the dynamics of the process itself, since it determines the subsequent quality of patients’

life.

For example, the termination time may be dependent on the recurrent event history, and

modelling such dependency is one of the principal aims of this work. It is therefore paramount to

develop a comprehensive model for disease management, mortality and associated clinical event

histories, which is also able to account for the significant inter-individual variability in disease

course which is typical of HF. This will aid also in the identification of the drivers of good policies

as well as the main factors resulting in the considerable economic burden of HF.

However, most of the previous analyses attempting to identify those patients who are at risk

of readmission focused their attention only on the single re-hospitalization and failed to capture

the entire pattern of health risks associated to HF. Hence there is a clear need for methods able to

consider all possible clinical pathways and assess their dependence on patient characteristics and

clinical variables. To address this issue, we consider data on episodes of hospitalization for HF

related events and survival, obtained from an administrative healthcare database of Lombardia.

The database was originally intended to help policy makers to better manage HF burden of the

healthcare costs of Lombardia (Mazzali and others, 2016). Administrative databases are usually

characterised by high numbers, universal coverage and systematic collection of data over time

and offer an invaluable source to study prevalence and incidence of major diseases. They usually

provide useful information about the patient’s status and pattern of care, especially when the data

are fully integrated with clinical data generated as part of routine patient care. As such, there

is a growing interest in exploiting administrative data to address epidemiological and healthcare

questions.
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In our application detailed measurements on clinical biomarkers are not available and, there-

fore, the main research trust of this work is to develop a joint model for waiting times between

re-hospitalizations and survival outcome in HF within a Bayesian nonparametric framework.

This choice is motivated by the fact that there is a known relationship between several re-

hospitalizations and risk of death due to HF (Postmus and others, 2012; Jhund and others,

2009). Individuals are clustered according to their history of recurrent events and termination

and the ability of assessing the relationship between event occurrence and survival. We also in-

clude patient characteristics as potential explanatory factors and asses their ability to predict risk

of death and rehospitalizations. The strength of the association between recurrences and terminal

event may then be interpreted in terms of patients’ risk profile, and a better understanding of how

re-hospitalizations affect survival may lead to a more effective planning of healthcare resources.

There have been different approaches to modeling recurrent events and survival, though some

of them refer more properly to longitudinal data than recurrent events. Here we mention some

of those considering recurrent events and dependent termination. A first approach consists of

modeling the intensity of the recurrent events and the survival time. See, for example, Liu and

others (2004), Ye and others (2007), Rondeau and others (2007), Huang and others (2010);

Ouyang and others (2013) and Sinha and others (2008). The latter two papers propose a Bayesian

framework, where the emphasis is on modelling the risk of death and the risks of rejections for

heart transplantation patients. A second strategy models the hazard rates of the recurrent gap

times and of the survival jointly (e.g. Huang and Liu, 2007; Yu and Liu, 2011).

Similar to Huang and Liu (2007), we model the time dependency between recurrent events

assuming that, conditional on subject-specific random effects parameters, the gap (or waiting)

times between such events are independent. We then assume that the conditional distribution of

the survival time for each individual depends on the same random effect parameters. In other

words both conditional distributions, i.e., the one of the j-th gap times and the one of the survival
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time, share a common subject-specific frailty, that is a subject-specific random effect on the log

scale. The joint model takes into account the dependent “censoring” of gap times by death, and

the dependency between different gap times for the same patient. However, unlike Huang and

Liu (2007), we model each event time distribution as a regression model, and our approach is

Bayesian.

The shared frailty parameters are modelled flexibly with a Dirichlet process (DP) (Ferguson,

1973). It is well known that the DP is almost surely discrete, and that if G is a DP(M,G0) with

total mass parameter M and baseline distribution G0, then G can be represented as (Sethuraman,

1994),

G(·) =
∑
h>1

whδθh(·) (1.1)

where δθ is a point-mass at θ, the weights follow a stick-breaking process, wh = Vh
∏
j<h(1−Vj),

with Vh
iid∼ Beta(1,M), and the atoms {θh}h>1 are such that θh

iid∼ G0.

The discreteness of the DP induces clustering of the subjects in the sample based on the

unique values of the random effects parameters, where the number K of clusters is unknown

and learned from the data. This choice allows for extra flexibility, variability between individ-

ual trajectories, over-dispersion and clustering of the observations and overcomes the often too

restrictive assumptions underlying a parametric distribution. Brown and Ibrahim (2003) use a

similar strategy for specifying a joint model for survival and longitudinal outcome to allow for

extra flexibility and robustness in the model.

In Section 2 we introduce the model, while in Section 3 we describe the application in detail.

In Section 4 posterior inference results are presented, while in 5 we compare our approach to

other competing methods. We conclude the paper in Section 6.
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2. A joint model for gap times of recurrent events with termination

We consider data on N individuals. We assume that 0 := Ti0 corresponds to the start of the

event process for individual i and that subject i is observed over the time interval [0, ζi]. If ni

events are observed at times 0 < Ti1 < · · · < Tini < ζi, let Wij = Tij − Tij−1 for j = 1, . . . , ni

denote the waiting times (gap times) between events of subject i. Let Si denote the survival time

of patient i since the start of the corresponding event process: either the time Si or the censoring

time ζi is observed. If Si is observed, then ζi = Si and Tini
< Si, otherwise Tini

< ζi and Si > ζi.

In our application the censoring time is administrative and therefore fixed. In what follows we

set Tini+1 > ζi with gap-time Tini+1 − Tini
always censored. Let J be the maximum number of

observed repeated events, i.e., J := max
i=1,...,N

ni.

As mentioned in the Introduction, our goal is to jointly model the gap times and survival

time of each subject in the sample. We assume that, conditional on all parameters and random

effects, gap times are independent of each other and are also independent of the survival time.

The censoring is assumed to be independent of the survival time and the sequence of gap-times.

Shared random effects are responsible for the dependent “censoring” of gap times by termination

and the correlation between different gap times for the same subject.

Distinct from Huang and Liu (2007), we assume an accelerated failure time survival model

with random effects linking the two processes. This choice is different from non-proportional

hazards, and implies, instead, proportional quantiles (see Meeker and Escobar, 2014, Chapter

17). In particular, we specify the following hierarchical structure for the log-transformation of

waiting times and survival times, i.e., Yij = log(Wij), j = 1, . . . , ni+1, Ui := log(Si), i = 1, . . . , N :

Yij |xij ,β∗
j , αi, σ

2
i

ind∼ N (xTijβ
∗
j + αi, σ

2
i ) j = 1, . . . , ni + 1, (2.2)

Ui|zi,γ, αi, ψ, η2 ∼ N (zTi γ + ψαi, η
2). (2.3)

for i = 1, . . . , N . Therefore, (Yi1, . . . , Yini+1) and Ui are conditionally independent for each i,



Bayesian joint modelling of recurrent events and survival time 7

given parameters, and trajectories for different patients are conditionally independent as well.

Here β∗
j := (β0,βj)

T = (β01, . . . , β0p, βj1, . . . , βjq)
T is the vector of regression coefficients, xij is

a set of p fixed and q time-varying covariates influencing the gap times, while γ := (γ1, . . . , γr)

and zi denote the vector of regression coefficients and fixed covariates, respectively, which are

potential predictors of the time-to-event. Note that the effects on disease recurrence and survival

are not necessarily the same, since, in general, some therapies may delay disease recurrence but

not prolong survival. For this reason, the covariates zi and the components of xij may be distinct.

Since the terminal event censors event recurrence, but not vice versa, we need to assume a

semi-competing risks model, i.e., a model taking into account that, when subjects are at risk

of another recurrent event, they are also at risk of the terminal event; see, for instance Cook

and Lawless (2007, Sect. 6.6). The likelihood for subject i, under independent censoring, is then

proportional to: ni∏
j=1

fY (yij |xij ,β0,βj , αi, σ
2
i )

SY (log(τi − (eyi1 + . . .+ eyini )))

× f1−νiU (log τi|zi,γ, αij , η2)SνiU (log τi|zi,γ, αij , η2),

where fY , fU are the densities of the gap and survival times (both Gaussian), respectively, SY , SU

denote the corresponding survival functions, τi = min(Si, ζi) and νi is the censoring indicator,

which is equal to 1 if the survival time is censored and 0 otherwise.

Note that for each patient the likelihood contribution from the waiting time process includes

always a last censored waiting time, independently of censoring by death or administrative rea-

sons. We are making the assumptions (which is common in this type of problems) that a patient

cannot experience a recurrent and a terminal event at the same time and that, conditional on

the parameters and the frailty terms, the intensity for the recurrent process is of renewal type.

Moreover, as in Olesen and Parner (2006) and Huang and Liu (2007), we assume the existence

of L, with L large, gap times for each subject. As each individual is observed up to time τi, we

observe ni gap times; the ni+1-th is censored by τi (which explains the term SY in the likelihood)
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and the non-initiated waiting times (after the censored one) are set to infinity. These last gap

times have a likelihood contribution equal to 1. Refer to Olesen and Parner (2006) and Huang

and Liu (2007) for a detailed discussion.

We assume a priori independence among parameters β0, (β1, . . . ,βJ), γ, ψ, η2 and {(αi, σ2
i ),

i = 1 . . . , N}. As random-effect distribution we specify

(αi, σ
2
i )|G iid∼ G, i = 1, . . . , N, G ∼ DP(M,G0), (2.4)

i.e., the random effects distribution is a Dirichlet Process. In summary, our modelling assumptions

imply that (i) waiting times are independent of each other, conditional on the other parameters;

(ii) the subject-specific random effect αi links the distribution of the waiting times and survival

times; (iii) the shared parameter αi allows the clustering to depend on both gap times trajectories

and survival outcome. We complete the model by setting the following prior distribution on the

remaining parameters:

β0 ∼ Np(0, β2
0Ip)

β1, . . . ,βJ | µ := (µ1 . . . , µq)
T ,Σ := diag(σ2

β1
, . . . , σ2

βq
)

iid∼ Nq(µ,Σ)

µ1, . . . , µq
iid∼ N (0, σ2

µ); σ2
β1
, . . . , σ2

βq

iid∼ Inv-Gamma(aβ , bβ)

γ ∼ Nr(0, γ20Ir); ψ ∼ N (0, ψ2
0)

η2 ∼ inv-Gamma(aη, bη)

G0 = N (0, α2
0)× inv-Gamma(aσ, bσ); M ∼ U(aM , bM ).

(2.5)

Note the use of a further level of hierarchy in the marginal prior distribution of the time-

varying regression coefficients to ensure exchangeability. This allows the coefficients to exchange

information over time and leads to better estimates, in particular for the last gap times as

often fewer observations are available. Note that identifiability is not an issue here, since the

mapping relating the parameter ({β∗
j }j , αi, σ2

i ,γ, ψ, η) to the joint likelihood (2.2)-(2.3) is clearly

injective. Moreover, we specify proper priors on ψ and the αi’s, centred in zero, to improve MCMC

convergence issues and, when fitting the model to the HF data, we obtain a very low correlation

(≈ −0.05) between the chains of ψ and αi, which confirms that both parameters are identifiable.
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Finally, in our analysis, we do not include an intercept term in (2.2)-(2.3) to improve mixing of

the MCMC chain.

3. Congestive heart failure dataset

We apply the model described in Section 2 to an administrative dataset extracted from the

healthcare data warehouse of Regione Lombardia, which contains information on patient health-

care usage and the relative economic impact on the national health system (e.g. hospitalizations,

drugs, visits); see Mazzali and others (2015) and Mazzali and others (2016) for details. We con-

sider data on a subsample of n = 1000 patients, which is representative of the entire population

in terms of age, gender, comorbidity burden, number of procedures and groups. We focus on

hospitalizations due to Congestive Heart Failure (HF) in the time window January 1st, 2006 -

December 31th, 2012. Therefore, for administrative reasons, the censoring time for all the pa-

tients in the sample is December 31th, 2012. In the analysis the gap times refer to times in days

between successive hospitalizations. The first recorded hospitalization for each patient represents

here the origin of the recurrent process (Ti0 := 0 for all i); consequently, ni represents the number

of completely observed gap times between subsequent hospitalizations, given the initial one.

We only consider patients with at least two recurrences (including the first one), i.e. at least

one observed gap time but no more than J = 10. The resulting dataset for the analysis consists

of N = 810 patients for a total of 2920 gap times (this subset covers 74.64% of all the events).

Table 1 in Supplementary Materials reports the distribution of the number patients Nj for which

j, j = 1, . . . , 10, waiting times are observed, where
∑
j Nj = N . Figure 1 in Supplementary

Materials displays the histogram of the observed gap times in log-scale: 356 out of 810 patients are

right-censored (in terms of event time), which corresponds to a high censoring rate, approximately

44%. In Figure 2 in Supplementary Materials we show the empirical distribution of event times

(in days) for censored (blue) and non-censored (red) observations on a log scale.
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Information has also been collected on several covariates, fixed or time-varying. We report

below a list of the covariates included in the model:

• gender of the patient. In Table 2 in Supplementary Materials, we report the percentage pj

of male patients among the observations available at each gap time j.

• age [years] of the patient at each hospitalization. Empirical mean of age at entrance in the

study is 75.77 (sd 10.78). The sample means of age stratified by gender are 78.44 (sd 10.02)

for women and 73.14 (sd 10.86) for men, respectively. In the model we include only age at

the entrance in the study, as we find that there is no gain including age at the end of each

gap time.

• group: indicator variable which identifies the clinical classification of the patient according

to criteria detailed in Mazzali and others (2016). As a result, four different groups were

defined (see Figure 2 and Table 2 in Mazzali and others, 2016): G1 denotes the group of

patients having HF as the cause of admission or complicating another cardiac disease. G2

includes patients with Myocardial or cardiopulmonary diseases. G3 refers to patients with

Acute HF as a complication of other diseases or for whom HF is reported as comorbidity.

Finally, G4 identifies the remaining subjects (only three). The “group” variable is defined

at the time of the first heart failure event, independently of subsequent events. As G1

represents the most frequent classification, as well as the most traditional characterization

of hearth failure, we reduce the variable group to a binary covariate, which is set equal to

0 if the label of the patient is G1 (560 patients), and 1 otherwise (250 patients). Hence,

group denotes the indicator of non-standard characterization of hearth failure.

• rehab: binary variable indicating if any time during the hospitalization is spent in a reha-

bilitation unit: 11.78% of the hospitalizations are spent at least partially in a rehabilitation

unit, corresponding to 29.01% of the patients.
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• ic: binary variable indicating if at least part of the hospitalization is spent in a intensive

care unit. This occurs in 11.95% of the hospitalizations (i.e. for 31.48% of patients).

• n com: number of comorbidities for each hospitalization. Table 3 in Supplementary Mate-

rials reports the average number of comorbidities for all patients at the j-th gap times.

• n pro: number of surgical procedures for each hospitalization. Table 4 in Supplementary

Materials reports the average number of procedures for all patients at the j-th gap times.

Note that 426 (52.59%) patients spent some time in either a rehabilitation or intensive care

unit; none of the patients was admitted in both rehabilitation and intensive care unit at the same

hospitalization; 129 (15.93%) patients entered a rehabilitation unit in at least one hospitalization,

but never an intensive care one, while for 149 (18.40%) patients the opposite occurs.

Moreover, it is important to highlight that each gap time is calculated as the difference between

two successive hospitalizations and, as such, it captures both the length of stay in hospital and

the time between the discharge and the next hospitalization of the patient. In the analysis we

include the value of the time dependent covariates measured at the end of each gap time.

When fitting model, variables gender, age and group are treated as fixed covariates (p = 3),

whereas rehab, ic, n com and n pro are time varying (q = 4). In the analysis, age, n com and

n pro have been standardized to have mean zero and variance one. Therefore, the linear regression

term for patient i at time j is given by

β01xi1 + β02xi2 + β03xi3 + βj1xij1 + βj2xij2 + βj3xij3 + βj4xij4,

where xij := (xi1, xi2, xi3, xij1, xij2, xij3, xij4); xi1 and xi2 correspond to indicators for gender

(= 0 if the patient is a female) and group (= 0 for standard characterization of hearth failure, i.e.

G1), respectively, xi3 is the standardized age at the beginning of the study; xij1 and xij2 denote

the binary variables rehab and ic for patient i at the j-th time, respectively, while xij3 and xij4
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are the standardized number of comorbidities and number of surgical procedures of patient i

during the j-th gap time.

The time-varying covariates are likely to have an effect also on survival. To capture such a

relationship we include as predictors in the regression term in (2.3) functions of the time-varying

covariates. In particular, we define two binary variables, xi4 and xi5 representing if a patient was

admitted in a rehabilitation or an intensive care unit at least once during the observation period,

respectively. We also include as covariates in (2.3) the average number of comorbidities (xi6) and of

surgical procedures (xi7) over time. Therefore, we assume that zi = (xi1, xi2, xi3, xi4, xi5, xi6, xi7),

i.e., the time-homogenous covariates included in the survival regression are gender, group and

standardized age at the beginning of the study and the summary statistics of the time vary-

ing covariates. This approach leads to satisfactory results for our application. It is in principle

straightforward to specify a joint model for survival, recurrent event and longitudinal measure-

ments, for example following the approach in van Dijkhuizen and others (2017) and Li and others

(2016), but at an increased computational cost.

4. Posterior inference

In this Section, we report posterior inference results. Details on the Gibbs sampler algorithm,

on the prior choice and robustness with respect to different choices of the prior distribution are

presented in Section 2 in Supplementary Materials.

First we show inference results for the regression parameters in order to understand how

covariates influence the recurrent events distribution and survival, regardless of the underlying

structure of the trajectories (which is captured by the subject-specific parameters). We report in

Table 1 the probability that each regression parameter on the gap times (β01, β02, β03) and on

the survival (γ1, γ2, γ3, γ4, γ5, γ6, γ7) is larger than 0. Recall that γ4, γ5, γ6 and γ7 refer to time-

varying covariates, which are included in the survival regression via summary statistics. Moreover,



Bayesian joint modelling of recurrent events and survival time 13

Figure 3 in Supplementary Materials shows the 95% credible intervals for the posterior marginals

of the same regression parameters. To summarize the results in Table 1, by “effect” we mean

that the marginal posterior probabilities are large or small (e.g. larger than 0.9 or smaller that

0.1). There is an effect of the group and age variables on both gap times and survival, as well as

an effect on survival of gender, average number of comorbidities and whether a patient has been

admitted to a rehabilitation unit at least once.

In order to better interpret the effect of the covariates, Table 2 reports posterior predictive

survival probabilities for hypothetical new patients characterised by different levels of the covari-

ates. Survival probabilities are evaluated at three different time thresholds (si, i = 1, 2, 3), set

to be equal to the quartiles of the empirical distribution of the observed terminal times, i.e. s1

is 1.1, s2 is 2.5 and s3 is around 4 years. We first consider a baseline covariate combination

and then we investigate the effect on survival of each covariate individually by varying its level

with respect to the baseline. Since the covariates included in the study correspond to intrinsic

characteristics of the patients or to HF clinical classification that cannot be changed, our analysis

highlights important risk factors for survival; for instance, Table 2 confirms that age consider-

ably decreases both survival probabilities and median survival time. Hence, in general, it remains

difficult to suggest to the healthcare provider ways of reducing the risk of death based on our

results. From Table 2, it is clear that patients spending longer times in a rehabilitation unit seem

to benefit from it in terms of predicted survival probabilities. Consequently, a potential practical

importance of this study is to suggest to healthcare providers that investing in rehabilitation

units might lead to a better level of care for patients affected by congestive HF. Table 2 also

shows the median survival time for each combination of covariates, again in agreement with the

previous findings.

In addition, Figure 1 shows predictive survival curves for four hypothetical patients, cor-

responding to four different combinations of covariates: we consider two 70-years-old patients
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(top) versus two 83-years-old patients (bottom), men (left) and women (right); the selected ages

correspond to the 25% and 75% empirical quantiles of the age distribution in the dataset.

Time-varying covariates are reported at the end of each gap time. We need to take this into

account when analysing the results for the regression coefficients of such covariates. In general

they do not appear to have an effect on the recurrence process, except for few early gap times. As

expected, the uncertainty on the effect estimates increases over time, due to the smaller number of

available observations. Figure 4 in Supplementary Materials displays the 95% CIs of the marginal

posterior densities of the regression coefficients (βj1, βj2, βj3, βj4) of the time-varying covariates.

It is evident that ic has an effect on the distribution of waiting times, as patients with ic equal

1 show shorter gap times. Moreover, it appears that a large number of surgical procedures yield

frequent hospitalizations at the beginning of the study, followed by an opposite effect (delayed

hospitalizations) for later gap times.

Figure 2 displays the marginal posterior distribution of the parameter ψ, which links the

survival outcome to the recurrent event process and reflects the relationship between the two

processes. In our application, this distribution is centred away from zero, on the positive axis

(posterior mean equal to 1.41 and 95% CI [1.37; 1.44]), indicating that as the time between hos-

pitalizations increases, the median survival time tends to increase as well. This result is consistent

with the fact that rehospitalization is common among patients affected by HF and that the course

of this disease is often characterized by repeated hospital admissions at relatively short intervals

and a limited prognosis for survival (Neumann and others, 2009); this conclusion is also con-

firmed by the clustering output where clusters with highest risk of death (Clusters 4 and 6 in

Table 5 in Supplementary Materials) are characterised by shortest gap times between subsequent

rehospitalizations.

The model described by (2.2)-(2.3) and (2.5)-(2.4) induces a prior on the partition of the

subjects in the sample (see, for instance, Barcella and others, 2015). We summarise the MCMC
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output by reporting the clustering that minimizes the posterior expectation of Binder’s loss func-

tion (Binder, 1978) under equal misclassification costs. Briefly, the Binder loss function measures

the distance for all possible pairs of subjects between the true probability of co-clustering and

the estimated cluster allocation. See Section 1 in Supplementary Materials for more details. The

estimated partition contains 6 clusters as confirmed also by the posterior distribution of K, the

number of clusters (see Figure 5 in Supplementary Materials). This is also evident from the pos-

terior predictive density of the random effect parameter α?, corresponding to a hypothetical new

patient from our model (see Figure 6 in the Supplementary Materials), which is multimodal. In

Figure 3 we report the cluster specific posterior estimates (conditional on cluster assignment) of

the random effect parameters αi’s (panel (a)) and the Kaplan-Meier survival estimates within

each of the six estimated clusters, respectively. Note that the parameters (αi, σ
2
i ) determine the

clustering of patients. Since the parameter αi links the failure and recurrence processes, our

modelling strategy allows the clustering to depend on both gap times trajectories and survival

outcome.

In Table 5 in Supplementary Materials we report cluster-specific summary statistics. Trajec-

tories of the gap times, Yij , j = 1, ..., ni, for all the patients in each cluster are displayed in

Figure 7 in Supplementary Materials. The largest cluster of patients (56.85% of the patients),

denoted as Cluster 2 in Table 5 in Supplementary Materials, is characterized by large survival

times. Clusters denoted as 3 and 5 include mostly censored observations; however, they are differ-

ent as Cluster 3 shows large survival times and shorter gap times with a large average number of

hospitalizations, whereas Cluster 5 includes younger patients with the largest waiting times but

with only few recurrent events. We note that the percentage of patients with standard pathology

(i.e. group=0) is similar to the overall rate (∼ 70%) in each cluster except for Cluster 5, where

it is 47%. This is an interesting result as it points towards the existence of clinical unobserved

factors affecting intra patients variability.
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5. Comparison with other models

As a comparison, we fit to our data the generalized mixed Poisson process (GMPP) model

by Ouyang and others (2013), jointly modelling recurrent event counts and survival time in a

Bayesian framework. The model is described in terms of the intensity λNi of the recurrent process

and the hazard hSi for the survival time:

λNi
(t|wi,β0, zi, η, δ) = λ0(t) wie

zT
i β0 ; hSi

(t|wi, ψ,γ, zi, η?, δ?) = φ0(t) wψi e
zT
i γ . (5.6)

Here φ0 and λ0 are modelled as Weibull hazards. This model introduces dependence via the

individual frailty terms w1, . . . , wn, which account for the heterogeneity in the patient popu-

lation. As random effect distribution for the wi, the authors opt for a Gamma distribution.

Our implementation of the GMPP follows the suggestions in Ouyang and others (2013) This

model allows only for time-homogeneous covariates, which, in our case, implies to set zi =

(xi1, xi2, xi3, xi4, xi5, xi6, xi7). The prior specification for the regression coefficients β0, γ and for

ψ is the same as in our model. Note that ψ plays the same role as in (2.3), linking the recurrent

process with survival in the likelihood.

From Figure 9 in Supplementary Materials, it is evident that we obtain the same conclusions

for covariate effects as in our model. In Ouyang and others (2013), covariates have an impact

on the hazard functions, therefore a positive effect implies a larger risk of event occurrence or

death time. In our model, instead, positive effects would increase the median time of death or

recurrence. The most influential covariates are the same in the two models, as well as the direction

of their effects. The estimate of ψ is 5.76 (95% CI: [4.45, 7.29]); this means that the incidence of

recurrences is positively associated with death, again in agreement with our model.

We also compare the in-sample predictive performances of the two models in Figure 10 in

Supplementary Materials, which reports the posterior distribution of the Brier score (Brier, 1950),

that measures the accuracy of in-sample prediction. As the Brier score is usually evaluated for
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binary classification problems, we need to dichotomise our prediction to adapt the Brier score

to continuous data, as proposed by Barcella and others (2016). Therefore, we are interested in

predicting whether the survival time of an individual is above or below a specific threshold.

We use the quartiles of the observed survival times as thresholds. We discretise the observed

data so that ũ
(k)
i = 0 if ũi 6 Qk and ũ

(k)
i = 1 if ũi > Qk, where Qk is the k-th quartile of

the data, k = 1, 2, 3. Details on how to evaluate the Brier score from an MCMC output are

given in Section 4 of Supplementary Materials. Small values of the Brier statistic indicates good

classification performance. From Figure 10 in Supplementary Materials, it is evident that our

approach outperforms the one in Ouyang and others (2013) for smaller survival times, and it has

similar performances on the other quartiles of the data.

In Figure 1, we show predictive survival curves, obtained from both models, for four hypothet-

ical patients. The two models generally agree in terms of inferred survival profiles. Our models

shows wider credible intervals due to a higher number of parameters and the extra flexibility.

In Supplementary Materials, we also compare our model with the Cox Proportional Hazards

model, as well as with the model described in Rondeau and others (2007) and implemented the

R package frailtypack. We asses the out-of-sample performance of the proposed approach in

Section 5 in Supplementary Materials.

From these experiments we conclude that advantages of the Bayesian nonparametric model

described here include flexibility of the random effect distribution, automatic clustering of the

individuals according to their risk profile, ability to include time-homogeneous and inhomoge-

neous covariates in both the survival and recurrence process, predictive performance and ease of

interpretation, still allowing efficient computations.
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6. Discussion

Treating and appropriately managing Heart Failure (HF) patients is a major public health issue.

Indeed, HF is one of the major causes of hospitalization and death in adult population and the

main reason for hospital admission in patients aged over 65 years in western countries. As the

population ages and the prevalence of heart failure increases, expenditures related to the care

of these patients are climbing dramatically. As a result, the health care industry must develop

strategies to contain the economic burden without compromising the effectiveness of the care. To

this aim, it is essential to gain a deeper understanding of the most influential factors contributing

to lengthen/decrease short-, middle- and long-term survival jointly with the length and recurrence

of hospitalizations.

In this paper we have proposed a joint semiparametric model for recurrent hospitalizations due

to HF and time to death. Our approach jointly models survival and the hospitalizations times,

specifying a DP as random effect distribution of the frailty parameter that links the survival

and gap time trajectories. This strategy allows us to introduce extra flexibility in the model,

able to account for patients heterogeneity. The data available to us provide information on a

broad population of HF patients and our analysis has highlighted important determinants of

repeated hospitalizations as well as survival. In particular, advanced age and higher morbidity

load increases the risk of death and of being rehospitalized (Figure 3 and Figure 4 in Supple-

mentary Materials). This is not surprising as older age is usually associated with worse health

conditions and comorbidity load. The effect of the variable group on gap times reflects differ-

ent protocols of HF treatments. Furthermore, we have investigated the effect over time of the

time-varying covariates, highlighting possible temporal patterns. Moreover, the model is able to

account for patient-specific heterogeneity through the data-driven clustering of patients based

on their re-hospitalizations trajectory and survival outcome, showing that frequent hospitaliza-

tions are usually associated to a higher risk of death. Note that the nonparametric approach
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and the implied clustering of subjects captures possible subgroup structure in the administrative

database. These results highlight different ways to manage specific patients’ patterns of care ac-

cording to their risk profiles or subgroup structure and may help public authorities to achieve

a more efficient planning of healthcare resources, tailoring healthcare paths on specific patients’

needs in a more efficient way (see Driscoll and others, 2016; Gasperoni and others, 2017). In our

particular application, the main practical recommendation for the healthcare provider is to invest

in rehabilitation units as they seem to improve survival of certain categories of patients.

Instead of modelling the hazards of gap and survival times, e.g. through proportional hazards

models, we adopted an accelerated failure time model for both processes, thus giving an alter-

native to the PH model when supported by the data. Moreover, the model is simply a linear

regression on the log scale, leading to an easy interpretability of the relationship between covari-

ates and event processes as well as of the dependence between the two processes. See Tseng and

others (2005) for some of the advantages of accelerated failure time models over the Cox model.

The proposed approach can be generalized by making different distributional assumptions for

either/both gap and survival times (e.g. Weibull distributions), by allowing the variance of the

gap times to depend on the time index and/or including more complex temporal dependence

structure between gap times (e.g. an autoregressive model as in Tallarita and others (2016)).

Further developments may include the extension of the methodology to a much richer dataset,

including a wider patient population and new potential explanatory variables, such as treatment.

In addition, a hospital effect and spatial information can be easily incorporated in the model.

Moreover, it is easy to perform variable selection in this context by assuming, for example, a spike

and slab prior on the regression coefficients and performing Stochastic Search Variable Selection.

See Rockova and others (2012) for a review of Bayesian variable selection strategies. These future

directions of research will most likely require generalising the methodology to combine aggre-

gated and individual level information. The approach could also be extended by specifying a
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joint model for survival, recurrent events and longitudinal biomarkers, by linking the different

processes through random effects, or alternatively modelling the error distribution as a mixtures

of Polya Trees model following the approach in Hanson and others (2011). Finally, the model

assumes a time-homogeneous effect of the gap times on survival, which can be a strong modelling

assumption when many subsequent hospitalizations are associated with a higher risk of death.

This limitation can be overcome by, for example, by assuming time varying effect parameters αit.

In conclusion, the flexibility of the proposed approach makes it an ideal building block of more

complex hierarchies.

7. Supplementary Materials

Supplementary material is available online at http://biostatistics.oxfordjournals.org. It

includes further analysis results and comparison with other methods.
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Fig. 1: Predictive survival curves for four hypothetical new patients obtained from the proposed
model (in red) and to Ouyang et al. (in blue), along with the 95% CIs. Top left, 70-year-old
man. Top right, 70-year-old woman. Bottom left, 83-year-old man. Bottom right, 83-year-old
woman. The other covariates are fixed at the sample mode for binary and at the sample mean
for continuous covariates.
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Fig. 2: Marginal posterior density of ψ.
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Table 1: Marginal posterior probability of each fixed coefficient to be greater than 0.

β01 β02 β03 γ1 γ2 γ3 γ4 γ5 γ6 γ7

gender group age gender group age rehab ic n com n pro

P( · > 0|data) 0.480 0.959 0.051 0.094 0.067 0 1 0.784 0.004 0.278

Table 2: Posterior predictive survival probabilities evaluated at times s1 = 404 days, s2 = 928.5
days, s3 = 1496.25 for different combination of covariates. The baseline patient is a 60 years
old woman, group G1, who never transitioned through rehabilitation nor intensive care, and
with number of procedures and comorbidities fixed to the sample means. Computation of these
probabilities was obtained by varying the value of one covariate at a time, fixing the remaining
ones at the baseline levels. The last column represents the estimate of the median survival time
for each covariate group.

P(S > s1) P(S > s2) P(S > s3) Median Survival

Baseline: 0.945 0.860 0.776 4420.6

gender : male 0.935 0.845 0.751 3964.9

group: other 0.933 0.841 0.745 3877.6

age: 70 0.903 0.783 0.660 2819.2

83 0.831 0.629 0.465 1576.4

rehab: Yes 0.975 0.909 0.855 6957.7

ic: Yes 0.950 0.868 0.790 4727.3
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(a) Estimates of the αi’s within the clusters
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(b) Kaplan-Meier estimate of the survival within
each cluster

Fig. 3: Estimates of cluster specific parameters αi’s and Kaplan-Meier estimates of the survival
time within each clusters; colours indicate clusters and cluster names are consistent with Table 5
in Supplementary Materials.


