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Abstract. This paper investigates an implementation of an array of
distributed neural networks, operating together to classify between un-
armed and potentially armed personnel in areas under surveillance using
ground based radar. Experimental data collected by the University Col-
lege London (UCL) multistatic radar system NetRAD is analysed. Neural
networks were introduced to the extracted micro-Doppler data in order
to classify between the two scenarios, and accuracy above 98% is demon-
strated on the validation data, showing an improvement over methodolo-
gies based on classifiers, where human intervention is required. The main
advantage of using neural networks is to bypass the manual extraction
process of handcrafted features from the radar data, where thresholds
and parameters need to be tuned by human operators. Different net-
work architectures are explored, from feed-forward networks to stacked
auto-encoders, with the advantages of deep topologies being capable of
classifying the spectrograms (Doppler-time patterns) directly. Significant
parameters concerning the actual deployment of the networks are also
investigated, for example the dwell time (i.e. how long the radar needs to
stare at a target in order to achieve classification), and the robustness of
the networks in classifying data from new people, whose signatures were
unseen during the training stage. Finally, a data ensembling technique is
also presented which utilises a weighted decision approach, established
beforehand, utilising information from all three sensors, and yielding sta-
ble classification accuracies of 99% or more, across all monitored zones.
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2 Introduction

Micro-Doppler signatures in radar are generated from additional modulations on
top of the main Doppler shift of a moving target and are related to moving, vi-
brating or rotating parts. People exhibit these signatures as they are associated
with the motion of the limbs and body, and these have been studied and charac-
terised for a variety of applications (Youngwook & Hao, 2009; Chen, Tahmoush
& Miceli, 2014). Human micro-Doppler has been used by radar to discriminate
between different activities such as running, crawling, or walking (Youngwook
& Hao, 2008), to identify humans rather than animals such as horses or dogs, or
vehicles (Youngwook, Sungjae & Jihoon, 2015), and even to distinguish between
men and women (Tahmoush & Silvious, 2009). The characterisation of free or
confined movements of the arms utilising micro-Doppler analysis has also been
reported (Fioranelli, Ritchie & Griffiths, 2015; Tivive, Bouzerdoum & Amin,
2010), whereby limited movement can be related to the presence of hostages,
injured people or the carrying of potential hostile objects (given the implemen-
tation in the appropriate environment).

The micro-Doppler signature produced by a human target has been shown
to be strongly dependent on the aspect angle and the geometry of the radar
system (Fioranelli et al., 2015). Bistatic and multistatic radar systems propose
to mitigate this issue, as multiple radar sensors can be deployed to provide a
multi-perspective view on the target, with at least one subset of sensors illumi-
nating the scene from a favourable angle.

The main contribution of this study is an investigation into the potential of
neural networks to improve the classification performance of radar processing,
in this specific case for identifying armed vs un-armed personnel which expands
upon previous research (Fioranelli et al., 2015). Different network architectures
are considered, namely feed-forward networks, stacked auto-encoders and alto-
gether a deep network. One of the advantages is the possibility of bypassing the
extraction of handcrafted features specified and chosen by the human opera-
tor. Some of these features have shown to be effective (Fioranelli et al., 2015),
but there is always a risk of discarding relevant information when implement-
ing feature extraction, and the actual implementation often requires setting and
tuning various parameters and thresholds, which severely limit the possibility to
apply the chosen method to new datasets and new subjects. With auto-encoders
and deep topologies (Haykin, 2008), (LeCun, Bengio & Hinton 2015), the radar
micro-Doppler signatures, i.e. the Doppler vs. time images, are considered di-
rectly as raw data input, leaving to the network itself the task of selecting the
important information for classification purposes. In addition to this, different
ways of combining information from multiple, spatially distributed radar nodes
together with neural network processing are investigated, leveraging real exper-
imental data collected using a multistatic radar available at University College
London (Derham, 2007).
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There is some existing work in using neural networks for classification based
on human micro-Doppler radar data. In (Youngwook & Moon, 2016) the au-
thors tested two different convolutional networks with 2 and 3 convolutional
layers to classify human vs. animals and vehicles, and to discriminate between
7 different indoor activities performed by 12 subjects, respectively. The average
accuracy was approximately 90% for the activity classification. The effect of dif-
ferent dwell times was also briefly observed. Convolutional neural networks were
also exploited in (Parashar et al., 2017) for identification of target classes in the
context of automotive radar, for example pedestrians and bicycles vs cars and
vehicles, and in (Seyfioglu, 2017) to discriminate different human actions and ac-
tivities in the context of ambient assisted living and remote health monitoring. In
both cases, the micro-Doppler signatures were used directly as inputs to the net-
work. Furthermore, convolutional networks were also used in (Park et al., 2016)
to classify between different types of swimming styles for aquatic human targets,
and in (Youngwook & Toomajian, 2016) to classify between different hand ges-
tures in the domain of human-machine interaction and usage of smart devices.
In (Kwon & Kwak, 2017) a feed-forward neural network was used to detect the
presence of humans in outdoor or indoor areas of interest, against background
interference given by natural phenomena such as rain or manmade items such as
rotating fans. In (Jordan, 2016) the author used DCNNs to approach three clas-
sification problems, one of which was the classification of the indoor activities
in the same dataset also analysed in (Youngwook & Moon, 2016). The authors
initially trained and tested the network on data from different people to validate
its capabilities of generalizing the performance to new data, but only 82.7% ac-
curacy was reported. This was improved to 93.4% when data from all available
subjects were used for both training and testing. In (Jokanovic, Amin & Amad
2016) a neural network consisting of stacked auto-encoders and a softmax classi-
fier was used to discriminate between 4 activities, taking care of performing the
movements at normal and fast speed. This paper reported good accuracy at 87%,
but the number of subjects taking part in the experiment was not specified, as
well as whether the network was trained and tested on data from different people
or not. The same authors used a similar network architecture based on stacked
auto-encoders plus softmax to investigate the use of different time-frequency dis-
tributions generating the micro-Doppler images to use as inputs to the network
(Jokanovic, Amin & Amad 2016), and to explore the effect of different data rep-
resentations (i.e. range-time, range-Doppler, time-Doppler) (Jokanovic, Amin &
Amad 2017).

These previous works borrowed a single network architecture from existing
research in the computer science and pattern recognition domains for the anal-
ysis of radar data. The investigation presented in this paper aims to perform a
comparison of different network architectures, starting from the simplest case of
feed-forward network using handcrafted features, to a deep network operating
directly on the raw spectrograms. An important element is the use of experi-
mental data from the distributed nodes of the UCL multistatic radar system,
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as there are few such data analysed in the open literature, and, to the best of
the authors knowledge, the existing work on neural networks for classification
of radar data has so far only taken into account monostatic data. Furthermore,
the investigation of parameters that are relevant to the actual deployment in
the field of the system, such as the dwell time, the relative position of the tar-
get in different zones with respect to the radar nodes, and the combination of
information from multiple radar nodes is also presented in this paper. These
are important parameters, whose effect on the overall classification accuracy of
the proposed system has to be characterised for an effective deployment and use.

The rest of the paper is organised as follows: section 3 will cover the theory
behind the Doppler effect exhibited in radar, section 4 will detail the specifica-
tions of the radar system (NetRAD) including the experimental setup. Section
5 presents the data analysis processes involved; section 6 will provide the results
of the analysis and section 7 will conclude the paper, including areas for future
work.

3 Theory

In a coherent pulsed radar which is frequency modulated, the frequency offset in
the return signal caused by the Doppler effect, with respect to a dynamic target
in a monostatic environment is represented by Equation 1, where fc is the carrier
frequency of the radar and θ is the angle between the velocity component v of
the target and the Line of Sight (LoS) of the radar (Stimson et al., 2014).

fd =
2fcv

c
cos(θ) (1)

In a bistatic radar system, the equation must be modified to account for the
differing angle between the transmitter and the receiver, this is given by β within
Equation 2. The angle δ represents the angle between the bistatic LoS and the
velocity vector of the target.

fd =
2fcv

c
cos(

β

2
)cos(δ) (2)

In addition to these Doppler components further modulation is exhibited,
known as micro Doppler, these are superimposed onto the main Doppler offset
and convey further information regarding the finer movements of the target.
With this work focusing on the movements of the arms and legs (limbs) of
a human target and exploiting this effect to reveal behavioural information,
however this is not specifically restricted to humans and can be observed on any
target which is moving which contains further moving components, such as an
aircraft or helicopter.
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4 Radar System & Experimental Setup

The multistatic radar system NetRAD was used to collect the data presented
in this paper. NetRAD is a coherent pulsed radar system with three separate
but identical radar nodes operating at S-band (2.4 GHz), transmitting with a
power of 23 dBm, over a bandwidth of 45 MHz (Derham, Doughty, Woodbridge
& Baker, 2007; Doughty 2007). The antennas used have a beam width of ap-
proximately 10◦ x 10◦ allowing each zone out in the field to be engulfed by the
beam. The recording time was 5 s in order to capture several periods of the
average human walking gait and the PRF was set to 5 KHz to improve Doppler
resolution in the frequency domain.

The experiment was performed in a large open field at the UCL sports ground
in Shenley on July 2015, with the setup employing three radar sensors along a
linear baseline with 50 m inter-nodal separation. Node 1 was the transceiver,
and Nodes 2 and 3 were the passive receive only nodes. As the transmitted
beam is narrow, all the antennas were focused at the centre of each zone for
each subsequent test. The subjects taking part in the experiment all took turns
walking in each of the different zones located in front of the radar system towards
the linear baseline, this is shown in Figure 4. Data was collected from each person
walking in each zone, generating 360 samples overall: 2 people, 3 nodes, 6 zones,
and 10 repetitions per person, i.e. 5 ‘unarmed’ or free handed and 5 ‘armed’,
where the target was carrying a metallic pole of 1 m in length, mimicking the
constrained movement of holding a rifle.

Fig. 1. Experimental Configuration
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5 Data Analysis

The samples were collected from the three radar nodes post-trial and were pro-
cessed; this consisted of match filtering the data, whereby the received signal is
correlated with the known transmitted signal gathered from a prior calibration
stage. This process allows inaccuracies to be dealt with and as a consequence
(amongst others) the quality of the received signal is also significantly improved;
this is commonly referred to as the signal to noise ratio (SNR) (Stimson et al.,
2014). This produces a range time intensity plot (RTI) as shown in Figure 2,
where the pulse number is on the y axis representing time, the range is on the
x axis shown in meters and the intensity of the radar return is represented as a
colour increasing from blue to red. The range resolution of the radar system is
approximately 3 m. This is an RTI collected from Node 1 at Zone 1 which was
the monostatic transceiver, hence there is an intense red line at 0 range which
was caused by the transmitter being beside the receiver. The target is located
between ranges 81 m and 75 m, this indicates that the target walked from a
distance of approximately 6 m towards Node 1.

Fig. 2. Radar Range-Time-Intensity Plot for a person walking towards the radar

Once the location of the target is identified a Short Time Fourier Transform
(STFT) is then performed over this location with a window length of 0.3s and
a 95% overlap factor to generate the respective spectrogram, revealing the fre-
quency (Doppler and micro-Doppler) properties of the target with respect to
time; this is computed by evaluating Equation 3 (Fioranelli et al., 2015). The
spectrograms provide a deep insight into the movement of the target; the swing-
ing of the arms correspond to micro-Doppler ‘tails’ and the movement of the
torso is related to the red main-Doppler signature at the centre, as shown in
Figure 3.

6



Fig. 3. Spectrogram with micro-Doppler signature of a person walking and labelled
features

X(M,w) = |
∞∑

n=−∞
x[n]w[n−m]e−j2πfn| (3)

Several empirical features related to physical characteristics of the target and
their motions were investigated. These were: Doppler offset (related to the main
Doppler component), bandwidth (the difference between the micro and the main
Doppler constituents), amplitude (of the main Doppler), period (time difference
between two successive micro Doppler peaks), RCS ratio (logarithmic ratio be-
tween the micro Doppler to the main), Doppler frequency (of the main Doppler
component) and target velocity. This is shown pictorially in Figure 3 and col-
lectively in Matrix 4. From these 7 features, 3 were selected and extracted as
the most beneficial for the unarmed vs armed discrimination analysis presented,
these were bandwidth, amplitude and RCS ratio (Fioranelli et al., 2015).

Y =
[
fTorso, ATorso, B̄, ᾱRCS , fOffset, tµD

]
(4)

A simple feature extraction algorithm was developed to quantify these char-
acteristic features, it worked by applying edge detection of the form gradient
magnitude coupled with manual thresholding techniques to obtain the vectors
of interest. This algorithm relied on human intervention to set the threshold
levels by visual inspection making it unequipped for dealing with different data
sets. These were then analysed by in some cases evaluating Equations 1 and 2
and decomposing them into singular values, finally these were collected in Matrix
4 for each spectrogram yielding the sample.
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5.1 Two Layer Feed-Forward Neural Network

Individual neural networks (NN) of a two layer feed forward architecture con-
taining 30 neurons in the hidden layer and 2 neurons at the output were trained
on 60% of the data gathered from both the zone and the node. Since these
recordings have a dwell time of 5 s, these were split into two 2.5 s sets to in-
crease the total number of samples to 40. The feature extraction algorithm then
processed all the spectrograms generating a database of features, these were then
used to train the NN which were then stored as objects and organised with re-
spect to the node and zone they belong to, this results in a 6 by 3 matrix: NN,Z .

Further to this, 20% of the data was applied to this network to generate YN,Z ,
which is a matrix that represents the classification accuracy of the network under
test and is used to synthesise the weighting matrix† which is utilised in the latter
combined decision stage. The remaining 20% of the data is reserved solely for
testing purposes.

5.2 Classification Ensembling

There are many methods in which a decision algorithm can be implemented in
a data orientated system, such as; binary decision tree’s, voting or even fuzzy
logic. In this work a weighted decision approach was taken whereby each of the
generated neural networks were allocated a unique weight (unit-less) which is
strongly related to the performance of the individual network in response to the
pre-allocated test data (20% share). The weighting matrix is derived through
directly mapping a matrix of results YN,Z onto an exponential function tending
to 100% accuracy, this is given by the weighting matrix WN,Z .

WN,Z =
αYN,Z

100.1− YN,Z
(5)

Mapping the accuracy onto a non-linear function allows neural networks
which achieved high classification rates to be favoured much more than ones
which did not. The value assigned to alpha enables the steepness of the curve
to be tuned enabling networks with very similar performances in the same zone
to have either more or less influence in the final decision. The value of alpha
which yielded good performance was found to be 3, it should be noted that this
value is completely dependent on the input matrix YN,Z and it should ideally
be optimised over a much larger dataset to give it statistical significance.

To differentiate between the two classes when the network makes a prediction,
the armed cases are assigned a negative value of 1, whilst the unarmed cases are
assigned a positive 1, represented by PN,Z . This allows the decision of that node
to constructively or destructively interfere with the others; shown in Equation
6, where the dot product is taken over the weighting matrix and the predicted

†The weighting matrix is not related to the weighting function computed by the
neural network.
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values across the three nodes in the radar system. As a consequence of this
operation, it is only necessary to evaluate the sign of the DZ which reveals what
the three nodes believe is the nature of the target in that particular zone in the
field.

DZ = W1,Z .P1,Z + W2,Z .P2,Z + W3,Z .P3,Z (6)

5.3 Stacked Auto-Encoders

To utilise the full capabilities of neural networks the possibility of classifying
on only the spectrograms was investigated, in this case each spectrogram was
treated as an input matrix of pixels. An appropriate compromise was made be-
tween processing feasibility and quality of results, a good candidate to meet
these needs was the auto-encoder. In addition to this, stacking auto-encoders
could alleviate strain on processing and also increase performance as each layer
of representation would not be forced to become too complex during the super-
vised learning phases.
The architecture of this neural network consists of multiple stacked auto-encoders
employing a sigmoid activation function, followed by a softmax regression layer
which together forms a deep neural network (DNN); a diagram of this config-
uration is shown in Figure 4. The first layer is the input, which is followed by
a hidden layer consisting of 1000, 500, 100 and 20 neurons respectively; finally
the softmax layer is reached consisting of 2 neurons. The layering allows each
stage to learn a progressively compressed representation of the given input vec-
tor (Haykin, 2008). The input is a 7800 element matrix for a 5 s spectrogram
split into 4; as it propagates through the network the dimensionality of the
spectrogram is reduced until it ultimately becomes a two dimensional matrix
representing the case of either armed or unarmed.
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Fig. 4. Architecture of Deep Topology Implemented
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6 Results

In this section the results of applying the allocated testing data to the systems
described above are presented, firstly testing on the feature based two layer feed-
forward neural network and then secondly the performance characteristics of the
proposed configuration using the stacked auto-encoder, followed by comparative
tests which test the integrity and also the benefits each design.

6.1 Feature Based Neural Networks

Before the data set is applied to the feed-forward neural network, they are firstly
separated into the two cases of armed and unarmed, randomised and then stored
into the desired group sizes (40 samples total) (60% training, 20% testing and
20% validation); this is done for each zone and each node. Separating the two
cases, shuffling and then recombining ensures that the trained network has a
clear and unbiased understanding of both classes before data is presented, this
in particular is an issue when a small number of samples are available.

The neural network is then trained and tested with the allocated groups of
data over 200 Monte Carlo simulations, with the results of the non-cooperative
decision (reference data) testing on both the testing and the validation data
(40% share in total), the results of which are detailed under the score column
(S) of Table 1. The testing data (20%) is then applied generating YN,Z , which
is then transformed into WN,Z given by the weighting column (W) of the table.
A combined decision can now be made using the weighting matrix together with
the predicted class, using Equation 6 to judge the nature of the target. The result
of this technique applied to the 20% validation data is shown in the combined
decision row of Table 1.

Node /
Zone

1 2 3 4 5 6

S W S W S W S W S W S W

1 96.5 230.2 85.4 60.6 68.6 27.3 92.2 102.4 81.1 43.8 93.3 135.9

2 84.9 52.5 65.9 24.5 88.3 59.7 36.6 11.1 88.9 67.0 74.1 33.2

3 70.0 25.3 93.0 144.4 72.9 26.9 96.0 209.6 87.6 62.3 89.6 81.9

Combined
Decision 99.6 99.3 98.4 99.3 99.7 99.7

Table 1. Classification Score (S / %), Weighting (W) & Combined Decision / %

6.2 Deep Neural Network

The number of samples available for each neural network was insufficient for
training (200 samples of 0.5 s) and produced unsatisfactory results. Therefore the
data set was augmented by injecting Gaussian noise of increasing variance into
the spectrograms otherwise known as Additive White Gaussian Noise (AWGN)
this resulted in the generation of 1800 additional samples for 0.5 s). However, as a
consequence of using this method, the de-noising properties of the auto-encoder
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are stressed upon much more as they must identify and distinguish the primary
features of the target amongst additional noise and any irrelevant information.

After training the DNN, the weights of the first auto-encoder were visualised
to reveal the features which maximally excited the hidden units within the net-
work, as the first layer contains 1000 neurons only a small segment of the weights
are shown; this is displayed in Figure 5. It can be seen that telling features such
as the micro-Doppler ‘tails’ and part of the main Doppler signature are caus-
ing the most neural excitations in this layer, this directly correlates with the
selection of the bandwidth and amplitude vectors in the feature based system.

Fig. 5. Weights of the Auto-Encoder in the First Layer

Dwell Time - The relationship between dwell time and classification accuracy
was explored, this is an interesting problem as reducing the dwell time can cause
clashes with the average human walking gait and risks the misinterpretation of
the target. The lower limit was found to be approximately 0.5 s, going lower
than this meant that it was increasing likely for the ’gaps’ in the swinging arm
oscillations to be captured, this is disadvantageous as it is known that the most
telling feature in this analysis is in fact the micro-Doppler peaks generated from
the unconfined movements of the arm. On the other hand, increasing the dwell
time allows for more information on the target to be captured, potentially allow-
ing performance to be elevated; but doing so comes at the cost of the widening
the input vector. Thus increasing the complexity of the NN and also, in a real
time system, the length of time required before a judgement can be made. Three
different dwell times were tested, being 0.5 s, 1 s, and 1.5 s and for each case
a new set of neural networks were trained at 60% in exactly the same way as
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the preceding section. The results are detailed in Table 2 with the minimum,
maximum bounds showing the range of the node score.

Classification Accuracy /%

Dwell /s Minimum Mean Maximum Std Dev / σ

0.5 91.00 98.88 100.00 1.98

1.0 97.75 99.76 100.00 0.58

1.5 99.17 99.86 100.00 0.24

Table 2. Accuracy for varying Dwell Times

Unseen Person - To test the resilience of the trained network, data from
another person operating in the field was applied (400 samples), this is an im-
portant test as each person has their own characteristic micro-Doppler signature
and in a real situation the neural network would not have the luxury of training
on prior data sets gathered from the person in question. This test will put par-
ticular emphasis on the generalisation performance of the network and its ability
to recognise the important features rather than the specific patterns generated
by the persons in which it trained on. The results of this analysis is shown in
Table 3, for when the unseen person data is applied to the deep neural network
(DNN) which is trained on 0.5 s dwell times at zone 5 in the field; data for Node
3 had to be held out due to an issue with recording.

Zone 5 Node 1 Node 2 Node 3

Accuracy /% 70.5 99.1 N/A

Table 3. Accuracy for Unseen Person

Classification Ensembling with DNN - In this scenario the network has
been trained at 60% for the 0.5 s case, 20% has been allocated for testing which
generates the weighting matrix and the final 20% is used for validation. This
process of sorting and applying the data is the same as the feed forward NN,
allowing direct comparisons to be drawn; the results of this analysis are detailed
in Table 4.

Node /
Zone

1 2 3 4 5 6

S W S W S W S W S W S W

1 100.0 3000 98.8 270.0 98.8 159.3 99.8 497.5 99.8 492.5 100.0 3000

2 99.0 159.3 99.0 184.7 99.5 3000 98.5 184.6 99.5 3000 89.5 2.53

3 99.8 885.0 98.3 219.4 99.7 497.5 100.0 3000 99.3 350.3 100.0 3000

Combined
Decision 100 98.5 99.5 100 100 100

Table 4. Classification Score (S / %), Weighting (W) & Combined Decision / %
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Additional Tests - A comparative test was carried out to see how the con-
figuration of stacked auto-encoders would perform when trained with samples
from every zone and node rather than individually; producing one large neural
network trained at 20% (7200 samples from a total of 36000). This was repeated
3 times and the average was taken, this resulted in a mean classification accuracy
of 83.3 %.

7 Conclusions

This paper has presented the concept of classifying between unarmed vs poten-
tially armed personnel using two different neural networks (NN). The former
uses a two layer feed-forward NN pattern recognition algorithm, which accepts
vectors extracted from a prior feature recognition algorithm. The latter uses a
configuration of stacked auto-encoders, forming a DNN and then feeding spectro-
grams into this network directly, avoiding the extraction of handcrafted features
through setting and tuning of thresholds. A form of weighted classification en-
sembling was proposed, which utilised prior information from evaluating the
quality of each classifier to then decide the nature of the target using the pre-
dicted class across the three radar nodes to make a single decision. It has proved
to be a powerful approach as it utilises all available information and is based on
the principle that, even though a single network has good classification abilities,
there is still the chance that it makes the wrong decision. The algorithm banks
on this scenario as it gives the other nodes the opportunity to sway this decision
if they believe that the superior node is wrong.

A distributed configuration was identified whereby unique neural networks
were assigned to particular target locations in the field providing superior clas-
sification capabilities, this resulted in a 13.2% improvement for the DNN when
implemented in this configuration over the de-centralised method. Further to
this, the stacked auto-encoder approach resulted in an average node score of
98.9% compared to the feature based system score of 81.4%, an improvement of
17.5%. However when the feature based NN utilised the ensembled weighted deci-
sion algorithm it achieved an average overall accuracy of 99.3% and the stacked
encoder scored 99.6%, demonstrating that the weighted decision particularly
favours situations when the accuracy of single nodes in a system is inadequate.
This was proven in the case of the unseen person, where Node 1 struggled, but
Node 2 provided reliable results; applying the ensemble algorithm resulted in an
overall accuracy of 99.6%. Further to this, the dwell time results indicated that
longer is better but only by a marginal amount; however the standard deviation
is shown to decrease noticeably as the dwell time increases which is certainly a
desirable trait. In the scope of a real time system long dwell times would trans-
late to overhead, not to mention the significant complexity introduced by using
NN’s trained to analyse much larger input matrices. In addition to this, the
ensembling system can significantly enhance the results making this less of an
issue, therefore it would be acceptable to implement the minimum dwell time of
0.5 s. The results obtained are comparable to that observed in prior literatures
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(Fioranelli et al., 2016), where accuracies of approximately 98 % are reported,
utilising a Naive Bayes classifier coupled with a binary voting algorithm.

The implication of these results is that it is ideal for NN’s to analyse only an
assigned area, as it proves to be difficult quantifying differences in the spectro-
gram ultimately arising from the range of angles to the target produced from the
inherent geometry of a multistatic radar system. Modern radar systems work in
real time and are provided with large sensor arrays coupled with high end hard-
ware, so an handy expansion to this work would involve modifying the NNs to
operate in real time environment and to take advantage of such systems. Such
an improvement could lead to a NN based classifier which can continually train
itself on human targets, adjusting its weights to ensure optimal classification
whilst generating its own database of targets.

An investigation into a variety of situations in the field should also be con-
sidered to stress the systems further and to present a more realistic scenario
for the radar: such as various body types, the target crawling, running or be-
ing hindered by carrying a large object (Youngwook & Moon, 2016). Another
extension would involve increasing spatial variance and to test different deploy-
ment geometries of the radar sensors, adding greater variability to the bistatic
and aspect angles considered. An emerging field of research is the concept of
cognitive radar (Haykin, 2006), where there is the potential for an expansion in
this system, whereby the NN develops a metric based on certain evaluations on
the target. This would then be passed onto another layer in the radar system
which decides what RF parameters it can adjust to allow an improvement in the
quality of target, hence improving the classification abilities of the subsequent
network.
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