
1

A Data-Aided Channel Estimation Scheme for

Decoupled Systems in Heterogenous Networks

Abstract

Decoupled access promises more flexible cell association and higher throughput by connecting the

optimal base stations (BSs) to users in both uplink and downlink (UL/DL). However, decoupled access

breaks reciprocity in time-division-duplex (TDD) operation due to associating different BSs in UL/DL,

hampering the acquisition of DL channel state information (CSI) from the UL. This paper addresses this

by a three-stage data-aided channel estimation method making use of the decoded UL data assembled

at the DL BS combined with known training sequences to better estimate the DL channel. We consider

a single-cell heterogeneous network in which a massive multiple-input multiple-output (MIMO) enabled

BS (MBS) is in the center of the cell with multiple small cell BSs (SBSs) randomly deployed within the

cell. We derive an approximate normalized mean square error (NMSE) expression for our proposed data-

aided method using minimum mean square error (MMSE) estimator by considering the pre-estimated bit

error ratio (BER) of each uplink sequence. Compared with NMSE for conventional least square (LS) and

MMSE, the results demonstrate that there is an additional increment of signal-to-noise ratio (SNR)-like

term in the NMSE of the data-aided MMSE estimator, introducing more degrees of freedom like power

and length of UL data. In particular, higher power and longer length of UL data as well as lower UL

data BER lead to more accurate channel estimates in certain ways. Simulation results verify that our

analytical results of BER and NMSE are close to the simulated ones and the data-aided method offers

a remarkable gain over conventional channel estimation methods in the literature.
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I. INTRODUCTION

Heterogenous networks (HetNets) and massive multiple-input multiple-output (MIMO) are regarded

as two key technologies for 5G, promising higher coverage and spectral efficiency [1–4]. To meet the

demands of 1000× increase of throughput and 1000× less energy consumption at the same time [5,

6], massive MIMO base station (BS) is recently introduced to HetNets, where small cells such as pico-

or femto-cells are densely deployed. Such model is referred to as massive MIMO HetNets [7–10]. It

is anticipated that the massive MIMO HetNet architecture will greatly improve throughput and regional

coverage, and is also desirable for interference management and energy efficiency [11, 12].

Different from homogeneous networks, cell association in HetNets is a tricky business to deal with.

From the perspective of user equipment (UE), the BS with maximum downlink (DL) power is probably

not the one with maximum uplink (UL) power. In [7], the notion of decoupling UL and DL was first

introduced and UEs can connect to the BSs with highest signal-to-noise ratio (SNR) in both directions

separately. With such flexible cell association policy, throughput and coverage probability are found to be

much improved especially for cell edge UEs by theoretical analysis and simulation results in [13]. Similar

positive results of load balancing and energy efficiency were presented in [14–16]. Hence, prior literature

has adopted decoupled access as a strong candidate in the next generation network, though there are still

major problems to be solved before facilitating this structure, including for instance, channel estimation

at the DL BS, DL precoding, signal synchronization, offloading techniques and so on [17].

Channel estimation is an important issue in wireless communication and also considered as a major

bottleneck for massive MIMO systems [1, 18, 19]. A standard approach in time-division-duplex (TDD)

massive MIMO systems is to exploit channel reciprocity such that channels are estimated by pilot-based

training in the UL and then treated as the real channels for the DL. Unfortunately, channel reciprocity

never holds in HetNets with decoupled access since UEs may associate with different BSs in UL/DL.

This has motivated our work to propose a data-aided channel estimation scheme to enable decoupled

access in TDD systems, especially for massive MIMO where a large number of channel elements have to

be estimated. Using decoded data to aid channel estimation has been studied before, e.g., [20–27]. In [24,

25], the mutual information and a capacity lower bound for data-aided single-user MIMO systems were

investigated and it was shown that data-aided methods permit the use of a very small number of pilots to

achieve high spectral efficiency. An iterative joint channel estimation and data detection process was also

investigated in [20, 22, 26, 27]. The findings were that data-aided methods can effectively suppress the

contamination effect in large-scale antenna systems [20, 22]. Despite this, prior works mainly focused on

June 1, 2017 DRAFT



3

homogeneous networks. It is of significant importance to bring this idea into UL/DL decoupled HetNets

for more efficient and reliable channel acquisition. To the best of authors’ knowledge, it is the first time

that channel estimation problem is discussed in a cellular HetNet with decoupled access.

In this paper, we consider a single-cell HetNet with decoupled access in which a macro base station

(MBS) is in the center and small cell BSs (SBSs) are randomly but densely populated within the cell.

We propose a novel three-stage data-aided scheme to solve the channel estimation problem for decoupled

UEs where channel reciprocity no longer exists. The estimation process takes place in a few stages. In the

first stage, all UEs send prescribed orthogonal training sequences to their serving SBSs simultaneously.

Then the uplink training signal is received and proceeded to the channel estimator at each SBS while the

MBS1 needs to store the received uplink training signal for subsequent estimation. In the second stage,

the SBSs receive the uplink data signals from all the UEs and try to recover the data of the UEs they

serve. The uplink data signal is also recorded and stored at the MBS. At the same time, we calculate the

average bit error ratio (BER) of each data stream by averaging over fast fading once the locations of a

UE and its connected SBSs are determined. Then the decoded data along with the BER value are sent

to the MBS via an error-free latency-free backhaul link. In the last stage, the channel estimator at the

MBS estimates the decoupled UEs’ channels from the combined training signals and data signals with

the knowledge of training sequences and the decoded data sequences.

The core idea of this scheme is to utilize the decoded data as extended training sequences although

the decoded data is not orthogonal and subject to unknown errors. Different from the multi-cell model

with one UE in each cell discussed in [20, 22], we consider a single-cell model with dense small cells

and multiple UEs where interference is much more severe. Furthermore, in [20, 22], Gaussian data

was assumed to be received at the least-square (LS) data estimator and the data estimation error was

modelled as a Gaussian variable while in our scheme, coded data is detected by a minimum mean-

square-error (MMSE) data estimator and the BER is estimated by analytical derivation. However, similar

conclusions are drawn, pointing out that estimation performance can be greatly improved and both co-

channel interference and detection error could seriously compromise performance.

One might speculate that it would be possible to directly use the training sequences received at the

MBS for estimating the channel. However, it should be noted that decoupled UEs are neither in the

vicinity of the MBS nor that of an SBS (because UEs near the MBS or an SBS tend to connect to

that same BS in both directions), and therefore suffer the worst performance in DL/UL of the whole

1In the two-tier model, decoupled UEs usually connect to an SBS in the uplink and an MBS in the DL due to the user
association policy.
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network. Decoupled access makes it possible for those UEs to flexibly choose BSs in both directions,

which promises better UL performance but does little in enhancing DL performance. As a result, there

is a huge UL performance gap between DL MBS and UL SBS, and the channel estimation quality at

the MBS needs to be improved. In this light, our proposed data-aided scheme is particularly attractive,

capable of enhancing not only UL performance but also DL performance of decoupled UEs.

More specifically, our main contribution is a novel three-stage data-aided channel estimation scheme for

decoupled UEs in cellular HetNets by using decoded uplink data with consideration of BER. We calculate

the BER of modulated uplink data after the MMSE decoder with imperfect channel state information

(CSI) and use this estimated BER to derived a closed-form approximated normalized mean-square-error

(NMSE) expression for the proposed data-aided scheme. We further compare the NMSE performance

between conventional LS, MMSE and data-aided MMSE by theoretical analysis and simulations, and find

that NMSE is commonly determined by an SNR-like term. For conventional estimators, the SNR-like term

is ρCon = τTPT
N0

whereas for data-aided schemes it is expressed in the form ρDA
k = τTPT

N0
+ τDPD(1−2BERvk)2

∆SX+N0

where UL data power, UL data length and BER are all involved in the additional second term, which is

the key reason why data-aided schemes outperform the conventional ones.

The reminder of this paper is organized as follows. Section II introduces the system model of UL/DL de-

coupled HetNets. A novel and practical three-stage data-aided scheme for decoupled systems is proposed

and elaborated in Section III. The proposed scheme is compared with conventional channel estimation

methods under the evaluation criteria of NMSE in Section IV. The theoretical results confirm that data-

aided estimation outperforms conventional ones and some insights into this scheme are also discussed.

Numerical results are presented in Section V and Section VI concludes the paper.

II. SYSTEM MODEL

We generally consider a single-cell scenario deployed with an MBS in the center and S SBSs along

with K UEs scattering in the range of the cell randomly as shown in Fig. 1. For ease of geometric

analysis, we assume the single cell as a circular area with radius of RM. Meanwhile, the MBS equipped

with M antennas and all SBSs with N antennas provide services to all single-antenna UEs in the cell

coverage by fully utilizing the whole frequency band without any partitions, meaning that this model is

interference limited. All communication links in the system are operating in TDD mode. Note that in

this paper, we assume that there exist capacity-abundant fibers for backhaul between all SBSs and the

MBS, which allows decoded data to be transmitted to the MBS without any latency and error.

June 1, 2017 DRAFT



5

 
MBS

SBS

UE

Downlink
Uplink

Backhaul

SBS

UE

UE

Fig. 1. System model for cellular HetNets with decoupled access.

We assume that the channel coherent time is T , within which channel estimation and UL/DL trans-

mission are processed. The channel from UEs to the MBS is denoted by H ∈ CM×K while the channel

from UEs to the sth SBS is represented by Gs ∈ CN×K . Also, hk, gsk are the kth columns of H and

Gs, respectively, which are of the forms:

hk =
√
βM
k hW

k ,

gsk =
√
βS
skg

W
sk ,

(1)

where each element of hW
k ∈ CM×1 and gW

sk ∈ CN×1 follows CN (0, 1), βM
k and βS

sk represent the large

scale fading from the kth UE to the MBS and the sth SBS, respectively, by neglecting shadowing effect

and differences among antennas. The large scale fading between the kth UE to the MBS is modelled as

βM
k =

(
dM
k

)−α, where dM
k is the distance with attenuation exponent α, and βS

sk is defined similarly.

Unlike maximum average downlink receive power (MARP) [13, 16, 28] and biased cell association [14,

29] policies, due to the spectacular disparity between MBS and SBS, a new association strategy taking

antenna number and transmit power into account is adopted in this paper. In particular, UEs perform a

modified MARP policy in UL and DL respectively to achieve optimal associations in both links.

The received signal in DL at the kth UE from a BS is given by

QDL
vk =


PM

M ‖hk‖
2, v = 0,

PS

N ‖gvk‖
2, v = 1, 2, . . . , S,

(2)
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where PM and PS are the total transmit power of MBS and SBS. In addition, the subscript v represents

the index of BS, 0 is for the MBS and v is for the vth SBS. Similarly, the received signal in UL at a

BS from UE k can be expressed as

QUL
vk =

PD‖hk‖2, v = 0,

PD‖gvk‖2, v = 1, 2, . . . , S,

(3)

where PD stands for the transmit power of UEs.

Like the conventional MARP strategy, the effect of fast-fading should be averaged to let long-term

parameters determine the association, which is more practical and operational in practice. Therefore, we

exhibit the association results of the kth UE as an example using this modified MARP strategy:

Dk = arg max
v=0,1,...,S

{
E

hW
k
,gW
sk

[
QUL
vk

]}
= arg max

v=0,1,...,S

{
PM

(
dM
k

)−α
, PS

(
dS

1k

)−α
, . . . , PS

(
dS
Sk

)−α}
,

Uk = arg max
v=0,1,...,S

{
E

hW
k
,gW
sk

[
QDL
vk

]}
= arg max

v=0,1,...,S

{
MPD

(
dM
k

)−α
, NPD

(
dS

1k

)−α
, . . . , NPD

(
dS
Sk

)−α}
,

(4)

where D = {D1, . . . ,DK} and U = {U1, . . . ,UK} are DL and UL association information sets. Based on

the above results, we can focus on the UEs with indices belonging to the set {k|Dk 6= Uk, k = 1, . . . ,K},

who can now be regarded as decoupled UEs.

After performing the modified MARP strategy, UEs are able to connect to the optimal BSs in both

links and ready to communicate with them. However, as mentioned previously, it is difficult for the BS

with which decoupled UEs is associated in DL to acquire accurate CSI due to the absence of reciprocity.

For the rest of this paper, we are devoted to addressing this issue.

III. THREE-STAGE DATA-AIDED CHANNEL ESTIMATION

In this section, we elucidate our proposed data-aided channel estimation scheme for cellular HetNets

with decoupled access. The whole process can be described in three stages. To illustrate the sequence

of operations in each stage, the frame structure of this data-aided scheme is shown in Fig. 2. Different

from conventional frame structure of a massive MIMO system, UL BSs in decoupled systems need to

transmit decoded data to DL BS after completing common uplink training and uplink data transmission,

and the DL BS is required to listen and record the uplink signal (including training and data phases)

to perform joint channel estimation along with known training sequences and decoded data. Note that

switch guard is ignored in decoupled systems for ease of understanding. The detailed implementation

and signal model of the three-stage data-aided scheme are described step by step as follows.
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Fig. 2. The frame structure for the data-aided channel estimation scheme.

A. Stage 1: Uplink Training

In the first stage, all UEs transmit their prescribed pilot sequences at power of PT. The pilot sequences

are orthogonal with τT symbols and S =
[
sT

1 , · · · sT
k , · · · , sT

K

]T denotes the pilot matrix where sk ∈ C1×τT

is the pilot for the kth UE. Obviously, we have SSH = τTPTIK and τT ≥ K. The main task here is for

all UL BSs to recover channels from the uplink training signal, which is a common procedure in training

based systems. To this end, we consider two conventional channel estimators, LS and MMSE.

The received signal at the vth SBS can be expressed as

Yv = GvS + Nv =

K∑
k=1

gvksk + Nv, (5)

where Nv ∈ CN×τT denotes the additive white Gaussian noises (AWGNs) received and each element is

independent identical distributed (i.i.d.), subject to CN (0, N0).

Adopting the LS channel estimator, the estimated channel of the kth decoupled UE connecting to the

vth SBS in UL is given as

ĝLS
vk = Yvs

H
k

(
sks

H
k

)−1
= gvk +

Nvs
H
k

τTPT
. (6)

MMSE is another widely used channel estimator which provides better performance at the cost of higher

complexity and prior statistics information in terms of correlation matrices of channels and noises. We

June 1, 2017 DRAFT



8

also use the MMSE channel estimator as a benchmark and the estimated channel is given by

ĝMMSE
vk = YvC

opt
vk = GvSCopt

vk + NvC
opt
vk , (7)

where Copt
vk is the τT × 1 linear estimation matrix for gvk, defined as

Copt
vk , arg min

Cvk

E
[∥∥gvk − ĝMMSE

vk

∥∥2
]

=

[
K∑
i=1

sH
i Rgvisi + RNv

]−1

sH
k Rgvk (8)

where Rgvi = E
[
gH
vigvi

]
, RNv

= E
[
NH
v Nv

]
are the channel and noise correlation matrices, respectively.

B. Stage 2: Uplink Data Transmission

In the second stage, UEs send uplink data to their associated UL BS and, the data of decoupled UEs are

first decoded separately at each SBS with the estimated channels and then sent to the MBS via backhaul.

However, the desired uplink data signal at the SBSs is subject to high co-channel interference, and could

hardly be decoded correctly using linear detectors. In this paper, discrete symbols are used to transmit

data to combat severe interference. We assume that a UE transmits binary phase-shift-keying (BPSK)-

coded uplink data of totally τD symbols to its associated UL BS. The matrix X =
[
xT

1 , · · ·xT
k , · · · ,xT

K

]T
is used to represent data sequences of UEs with each element randomly chosen from the set {PD,−PD}

and xk ∈ C1×τD is the uplink data for the kth UE. Three linear receivers, maximal-ratio combining

(MRC), zero-forcing (ZF) and MMSE are considered separately in the process of data decoding.

Firstly, the received signal at the vth SBS is expressed as

Ỹv = GvX + Ñv =

K∑
k=1

gvkxk + Ñv, (9)

where Ñv ∈ CN×τD is AWGN with each element subject to CN (0, N0) independently.

1) ZF and MRC Detectors: We use the estimated channel in Stage 1 to recover the uplink data of

the kth UE. We assume that the kth UE is associated with the vth SBS in UL. The MRC detector only

needs channel information of the kth UE, while in this scheme the SBS has the CSI knowledge of UEs

served by itself to perform ZF detection. Therefore, a new channel matrix is defined as Gvk = [ĝvk, · · · ],

which involves the estimated channels of UEs associated with the vth SBS, knowing that the kth UE is

included at least. Thus, the combination matrix A for MRC and ZF detectors are given by

A =

ĝvk
(
ĝH
vkĝvk

)−1
, for MRC,

Gvk
(
GH
vkGvk

)−1
, for ZF.

(10)
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Then the estimated data sequence of the kth UE after applying the combination matrix becomes

x̂ZF,MRC
k = Decoder

(⌈
AHỸv

⌉
1

)
, (11)

where dBei performs the operation of taking the ith row of B and Decoder(·) is the conventional BPSK

decoder based on the maximum a posteriori probability (MAP) criterion. Note that in (10), the formation

of combination matrix for ZF and MRC are similar. If an SBS only serves one UE, the matrix for ZF

will degrade to that for MRC, which is the reason we take two detectors into consideration together.

2) MMSE Detector: In order to achieve better BER performance, MMSE detector is applied before

decoding at each SBS. For MMSE detector with imperfect CSI, the standard way is to define MMSE

channel estimation error as G̃ = Gv − Ĝv, and the received signal can thus be rewritten as

Ỹv = ĜvX + G̃vX + Ñv. (12)

In what follows, we can treat the estimated channel as the real channel and the estimation error as

independent noise, with the statistical property of MMSE [30]. Therefore, the MMSE combination matrix

for the kth UE can be written as

Copt
vk = ĝH

vk

(
ĜvĜ

H
v +

(
K∑
k=1

N0β
S
vk

N0 + βS
vkPTτT

+
N0

PD

)
I

)−1

. (13)

After multiplied by the combination matrix Copt
vk , the estimated signal is sent to the BPSK decoder

and the decoded data for the kth UE can be expressed as

x̂MMSE
k = Decoder

(
Copt
vk Ỹv

)
. (14)

Here, three detection methods are considered to detect the UEs’ UL data at each SBS and the decoded

data is then transferred to the MBS via backhaul for the data-aided channel estimation scheme.

C. Stage 3: Data-Aided Channel Estimation

As described in the frame structure, during the last stage, the MBS needs not only to proceed with the

UL channel estimation and UL data detection for its own UEs but also to listen and record both uplink

training and data signal. As a result, in this stage, we can utilize the recorded uplink signal along with

the known uplink training sequences and the decoded uplink data to perform channel estimation at the

MBS. With UL data signal and decoded UL data sequences, there is more information for the MBS to

improve the estimated channel accuracy of decoupled UEs. First, the received signal at the MBS during
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the first two stages can be jointly expressed as

M = HW + Z =

K∑
k=1

hkwk + Z, (15)

where W = [S,X] with wk being its kth row and Z ∈ CM×(τT+τD) is the AWGN noise at the MBS

with each element an i.i.d. CN (0, N0) random variable.

Next, the MMSE channel estimator is adopted to recover the channels of decoupled UEs, by utilizing

the UL training sequences and the decoded UL data sequences. Hence, the estimated channel from the

kth UE to MBS can be expressed as

ĥMMSE
k = MCopt

k , (16)

and

Copt
vk =

[
K∑
i=1

βM
k E
[
wH
kwk

]
+N0E

[
ZHZ

]]−1

βM
k E
[
wH
k

]
. (17)

Eventually, the channels from the decoupled UEs to the DL BS are obtained by this data-aided method.

In this section, we only give the expression of the combination matrix due to the complex structure of this

joint estimator. Specific results of the data-aided scheme will be discussed later and the actual performance

of this scheme will be analyzed and compared with the conventional estimators.

IV. PERFORMANCE ANALYSIS

In this section, we conduct performance analysis to compare the data-aided scheme with conventional

channel estimation techniques such as MMSE and LS. First of all, to evaluate the performance of different

channel estimation methods, NMSE is adopted as the performance metric, which is defined as

NMSE=10log10

E
[
‖g − ĝ‖2

]
E
[
‖g‖2

]
 (in dB) , (18)

where g represents the real channel vector and ĝ is the estimated one.

A. Performance of Conventional Channel Estimation Methods

In this subsection, we use the above metric to analyze the NMSE performances of conventional channel

estimation methods by only taking the uplink training sequences into account. Herein, we take NMSE of

the kth UE associated with the vth SBS in Stage 1 as an example. Although the NMSE expressions here

are based on the channel between a UE and an SBS, they can be easily generalized to the case of a UE

connected to the MBS, which will be regarded as the performance benchmarks of conventional methods.
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Now, we consider the performance of the LS channel estimator, from (6), the numerator of NMSE for

LS can be calculated as

E
[∥∥gvk − ĝLS

vk

∥∥2
]

= E

[∥∥∥∥ 1

τTPT
Nvs

H
k

∥∥∥∥2
]

=
NN0

τTPT
, (19)

and the denominator can be straightforwardly written as

E
[
‖gvk‖2

]
= E

[
βS
vk

(
gW
sk

)H
gW
sk

]
= NβS

vk. (20)

As a result, the NMSE for the LS estimator of the kth UE associated with the vth SBS is given by

J S,LS
vk = 10log10

(
N0

βS
vkτTPT

)
. (21)

Remark 1: From the above expression, it is observed that NMSE for the conventional LS estimator is

related to N0, β
S
vk, τT and PT. It states that once a UE is located and the BS is stationary, larger power

for pilots and longer pilot sequence are two means to improve the channel estimation accuracy.

Before analyzing the NMSE for the MMSE estimator, we are supposed to determine a closed form of

the estimated channel vector. By inserting (8) into (7), the estimated channel of the kth UE to the vth

SBS can be further derived with the help of the Woodbury matrix inversion identity and given by

ĝvk = (GvS + Nv)
(
SHRgS + RNv

)−1
sH
k Rgvk

=
Rgvk

(NN0 + RgvkPTτT)

(
τTPTgvk + Nvs

H
k

)
,

(22)

where Rgvi = E
[
gH
vigvi

]
, Rg = E

[
GH
v Gv

]
= diag (Rgv1 , . . . ,Rgvi , . . . ,RgvK ), RNv

= E
[
NH
v Nv

]
.

Since the training sequences satisfy SSH = τTPTIK and each element of Nv is i.i.d. CN (0, N0), it

can be inferred that the matrix Nvs
H
k is distributed as CN (0, τTPTN0I). Observing the last equation of

(22), gvk and Nvs
H
k are independent complex Gaussian random variables, and therefore, it is the property

of Gaussian distribution that ĝvk is also a complex Gaussian variable following

ĝvk ∼ CN

(
0,

(
βS
vk

)2
PTτT

N0 + βS
vkPTτT

I

)
. (23)

Then we denote the channel estimation error of the MMSE estimator as g̃vk
∆
= gvk − ĝvk, with the

help of the orthogonal property of the MMSE estimator, g̃vk is independent of ĝvk. Thus, we directly

obtain the channel estimation error vector, which is distributed as

g̃vk ∼ CN
(

0,
N0β

S
vk

N0 + βS
vkPTτT

I

)
. (24)
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In parallel to the LS estimator, the NMSE for the MMSE estimator of the kth UE associated with the

sth SBS can be calculated by using equations (20) and (24)

J S,MMSE
vk = 10log10

E
[
‖gvk − ĝvk‖2

]
E
[
‖gvk‖2

]
 = 10log10

(
N0

N0 + βS
vkPTτT

)
. (25)

Remark 2: Similar to the LS estimator, NMSE for the MMSE estimator is a function of τT, PT,

βS
vk and N0. We can also increase pilot length and transmitted power to improve channel estimation

performance once the locations of UE and SBS are both set. Comparing the two NMSE expressions, the

only difference appears to be the extra noise variance term N0 in the numerator of NMSE for MMSE

within the log operation. Hence, the performance gain of the MMSE estimator over LS is obtained in

the regime of low SNR and decreases to 0 when SNR gets higher.

B. Performance of the Data-Aided Channel Estimation Method

To evaluate our proposed data-aided method, the process of uplink data transmission is analyzed and

the BER is obtained since the decoded data is used to aid channel estimation and may highly affect

channel estimation in stage 3. Here, we assume that the CSI acquired by the MMSE estimator is applied

and the MMSE detector is performed for data decoding in Stage 2, as MMSE detector performs better

in interference-limited systems. We first consider the BER expression below:

BER (SINR) =

∫ ∞
√

SINR

1√
2π

exp

(
−1

2
t2
)

dt. (26)

Considering the randomness of SINR (signal-to-interference plus noise ratio), the ergodic BER for the

MMSE detector can be further written as

BER =

∫ ∞
0

fSINR (x)

∫ ∞
√
x

1√
2π

exp

(
−1

2
t2
)

dt dx, (27)

where fSINR (x) is the probability density function (p.d.f.) of SINR.

As a matter of fact, the exact distribution of SINR for the MMSE detector has been derived in [31],

but the distribution is too complex to obtain a close-form expression of BER. Therefore, we resort to the

well-known tractable Gamma distribution, whose p.d.f. is given as

fGamma (x;α, ξ) =
xα−1e−

x

ξ

Γ (α) ξα
(28)

to approximate the result.

Similar approach to obtain closed-form solutions has been applied in many previous efforts, see, e.g.,

June 1, 2017 DRAFT



13

[18, 32]. Following a similar procedure in [32], by determining two parameters of the approximated

Gamma distribution, a closed-form expression of BER can be obtained. However, different from [18, 32],

in our case, the antenna number at each SBS is assumed to be less than the number of UEs. Thus, in

the following, the two parameters of Gamma distribution are determined by moment matching.

We denote SINRvk as the SINR of the kth UE served by the vth SBS with the MMSE detector. From

(13)(12), SINRvk can be expressed as

SINRvk =
1((

I + ρvĜH
v Ĝv

)−1
)
kk

− 1, (29)

where ρv =

(
K∑
k=1

N0βS
vk

N0+βS
vkPTτT

+ N0

PD

)−1

and (·)kk represents the (k, k)th element of a matrix.

Then by applying [32, (8)], SINRvk can be further expressed as

SINRvk = ρvĝ
H
vkĝvk − ρ2

vĝ
H
vkĜv(−k)Ĝ

H
v(−k)

(
I + ρvĜv(−k)Ĝ

H
v(−k)

)−1
ĝvk, (30)

where Ĝv(−k) is the matrix Ĝv with the kth column removed and ĝvk is the kth column of Ĝv.

Considering the singular value decomposition (SVD), we have Ĝv(−k) = UDVH, U ∈ CN×N ,D ∈

CN×N ,VH ∈ CN×(K−1), UUH = UHU = IN and VHV = IN . Then applying SVD to (30), we get

SINRvk = ρvĝ
H
vkĝvk − ρ2

vĝ
H
vkUD2

(
I + ρvD

2
)−1

UHĝvk

= ρvϕ
Hϕ− ρ2

vϕ
HD2

(
I + ρvD

2
)−1

ϕ

= ρv

N∑
i=1

‖ϕi‖2

1 + ρvd2
i

,

(31)

where UHĝvk
∆
= ϕ and di is the ith diagonal element of D. As U is a unitary matrix, it can be proved

that ϕ has the same distribution as ĝvk.

Next, we proceed our analysis with the help of some known results of the empirical eigenvalue

distribution of the product of two random matrices [33, 34]. Although these results are obtained under the

limiting condition, it is shown in [32] that this approximation is, to some extent, accurate even for very

small dimensions. In our case, those results are extended to the scenario where the number of antennas

is less than the number of UEs, namely, N < K.

The ESD of ρvĜv(−k)Ĝ
H
v(−k), denoted by Ĵ, converges to a measure J, whose Stieltjes transform,

denoted by T (z), is given as

T (z)
∆
=

∫
1

x− z
J (dx). (32)
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According to the results in [35], this integral can be approximated by

T (z) ≈

 K∑
i 6=k

Vi

1 + Tr (ViT (z))
− zI

−1

, (33)

where Vi = ρvβ̂
S
vkIN and β̂S

vk = (βS
vk)2PTτT

N0+βS
vkPTτT

. Similarly, the first derivative of T is found as

T ′ (z) ∆
=

∫
1

(x− z)2 J (dx) = T 2 (z) ≈

 K∑
i 6=k

Vi

1 + Tr (ViT (z))
− zI

−2

. (34)

Note that T (z) and T ′ (z) are well defined at z = −1 by the bounded convergence theorem [36, 37]. As

a result, we have

Tr (Λ)

N
=

1

N

N∑
i=1

1

1 + ρvd2
i

=

∫
1

x+ 1
Ĵ (dx)

p−−→
∫

1

x+ 1
J (dx) = T (−1)

∆
= µ, (35)

and

Tr
(
Λ2
)

N
=

1

N

N∑
i=1

1(
1 + ρvd2

i

)2 =

∫
1

(x+ 1)2 Ĵ (dx)
p−−→
∫

1

(x+ 1)2 J (dx) = T ′ (−1)
∆
= σ2, (36)

where
p−−→ means convergence in probability and Λ

∆
= Diag (λ1, . . . , λi, . . . , λN ) , λi = 1

1+ρvd2i
.

By solving (33) and (34), we can obtain µ and σ2 and have the following lemma.

Lemma 1: The first two moments of SINRvk can be approximated by

E [SINRvk] ≈ Nρvβ̂S
vkµ, (37)

Var [SINRvk] ≈ N
(
ρvβ̂

S
vk

)2
σ2. (38)

Proof 1: See Appendix A.

Thus, with the first two moments of SINRvk, its p.d.f. is determined and the ergodic BER expression

can be presented by the proposition below.

Proposition 1: For the kth UE served by the vth SBS employing MMSE data detection with imperfect

CSI (acquired by the MMSE estimator), the BER of its uplink data can be expressed as

BERvk =
Γ
(
αvk + 1

2

)
Γ (αvk) 2

√
2π

ξ−αvkvk

αvk

(
1
ξvk

+ 1
2

)αvk+ 1

2

2F1

(
1, αvk +

1

2
;αvk + 1;

1
ξvk

1
ξvk

+ 1
2

)
, (39)

where we have SINRvk ∼ Gamma (αvk, ξvk) with αvk = N µ2

σ2 , ξvk = ρvβ̂
S
vk
σ2

µ .

Proof 2: Based on (37) and (38), the distribution of SINRvk can be determined by moment matching.
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Then plugging its distribution in (27), we obtain the final result after the integration.

We note that both Gamma function and hypergeometric function are involved in the above result, which

can be evaluated numerically but hardly shed any light on the BER performance. Hence, approximated

expressions are derived in the following corollary in order to gain some insight.

Corollary 1: According to the result in (26), we find that BER is a strict concave function. Therefore,

by applying Jensen’s inequality, the ergodic BER can be upper bounded by

BERUpper
vk = Q

(√
E[SINRvk]

)
= Q

(√
αvkξvk

)
, (40)

where Q (x) =
∫∞
x

1√
2π

exp
(
−1

2 t
2
)

dt. The upper bound of the ergodic BER is a monotonic decreasing

function of the first moment of SINRvk, also of all the parameters of the first moment.

After the BER performance of UL data is derived, we are now able to continue with the evaluation

of the data-aided channel estimation, which utilizes MMSE estimation to recover the channels from the

joint sequences consisting of known training sequences and decoded data with certain BER.

To do so, we model the joint sequences as follows. Recall the joint UL signal W in (15), which is

the combination of known training sequences S and UL data sequences X of all UEs. Denote the block

matrix of known training sequences and decoded data as Ŵ = [S, X̂], and use E to represent the error

matrix which can be defined as

W , Ŵ ◦E, (41)

where ◦ represents Hadamard product of two matrices. Note that it can further be decomposed into two

parts as Ŵ ◦E =
[
S, X̂

]
◦ [E1,E2]. As we know the training sequences exactly, E1 is an all-one matrix,

which represents an identity matrix in the Hadamard product, while E2 indicates errors in the decoded

sequences with all elements from the set {1,−1}. Then we can obtain the following statistical property

of E2 by utilizing the value of BER obtained previously

E [eij ] = 1− 2BERvi,

E
[
‖eij‖2

]
= 1,

(42)

where eij = [E2]ij . Intuitively, we assume that each bit in X̂ from each uplink data stream has the same

probability of error, regardless of its location and what is actually sent, meaning that eij for j = 1, . . . , τD

are i.i.d. random variables, and the elements in E2 from different streams are independent. Therefore,

the following proposition elucidates data-aided channel estimation with the MMSE estimator.

Proposition 2: For the MMSE estimator, the recovered channel of the kth UE at the MBS by using
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data-aided channel estimation can be written as

ĥMMSE
k = (HW + Z) Copt

k , (43)

Copt
k = (P +N0I)−1 (ŵH

k ◦ E
[
eH
k

])
βM
k , (44)

where ek is the kth row of E with

E
[
eH
k

]
=

(
1 · · · 1︸ ︷︷ ︸
τT

1− 2BERvk · · · 1− 2BERvk︸ ︷︷ ︸
τD

)H

, (45)

and P , P̂ + ∆P with

P̂ =
([

S, X̂ ◦ E [E2]
])H

RH

([
S, X̂ ◦ E [E2]

])
, (46)

∆P ,

 0 0

0 ∆PX

 , (47)

where RH = diag
(
βM

1 , . . . , β
M
k , . . . , β

M
K

)
,∆PX = ∆SXIτD ,∆SX = PD

K∑
k=1

βM
k

{
1− (1− 2BERvk)

2
}
.

The NMSE of the channel from the kth UE to the MBS by using the data-aided channel estimation

method with MMSE can be calculated asymptotically as

JMMSE
k = 10 log10

(
1

1 + ρDA
k βM

k

)
, (48)

where

ρDA
k =

τTPT

N0
+
τDPD (1− 2BERvk)

2

∆SX +N0
. (49)

Proof 3: See Appendix B.

Remark 3: From Proposition 2, it is observed that the proposed data-aided channel estimation method

introduces more parameters into NMSE, such as uplink data transmission power, length of uplink data

sequence and BER of itself and other UEs. It is anticipated that better BER, higher data transmit power

and longer uplink data length will have positive effects on NMSE of data-aided estimation.

C. Comparison between Conventional and Data-Aided Channel Estimation

Here, we first summarize the NMSE expressions derived previously in TABLE I. Note that results in the

table describe NMSE performances of the estimated channel from decoupled UEs to the associated MBS

with different channel estimators. The NMSE results in the first two columns are directly transformed

from that of UEs associated with the SBSs in (21) and (25).
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TABLE I
NMSE FOR DIFFERENT CHANNEL ESTIMATION METHODS

Conventional Data-Aided
LS MMSE MMSE

10 log10

(
1

ρConβM
k

)
10 log10

(
1

1+ρConβM
k

)
10 log10

(
1

1+ρDA
k βM

k

)
ρCon = τTPT

N0

ρDA
k = τTPT

N0
+ τDPD(1−2BERvk)2

∆SX+N0

∆SX = PD

K∑
k

βM
k

{
1− (1− 2BERvk)

2
}

In general, the table demonstrates that all NMSE results are parameterized by large-scale fading and

a SNR-like term. Furthermore, after we combine these two parameters, it can be viewed as an effective

signal power divided by noise power at the receiver, which corresponds to the meaning of an effective

SNR. Thus, NMSE can be interpreted as the function of reverse effective SNR as a whole.

Next, we will examine the differences among these estimators and try to reveal some insights. To begin

with, compared with the LS estimator, we can clearly observe that MMSE outperforms LS at low SNR,

but performs nearly equally as LS when ρCon is high. Secondly, different from conventional methods, the

data-aided channel estimation method makes full use of uplink data signal to explore channel information

it carries. In addition, in our two-tier network model, decoded uplink data streams at the SBSs will be

assembled at the central MBS via capacity-rich backhaul links. As such, we can utilize the collected

uplink data streams as a kind of asymptotically orthogonal pilot sequences, although these sequences

have a certain probability of error. As a matter of fact, the data-aided method offers more information

of the desired channels and introduces more degrees of freedom in the process of estimation, such as

uplink data power, uplink data length and BER performance. Furthermore, the advantage of our proposed

scheme can be clearly shown by an increment in the SNR-like term ρDA in TABLE I, which implies that

the data-aided method does help with elevating channel estimation performance in all cases.

Some intuition can be gained on how to obtain better channel for downlink transmission in decoupled

systems using the data-aided channel estimation method. According to the NMSE expression for the

data-aided method, we can gain several insights into practical design.

• Generally, when we increase training power, training length, uplink data length and uplink power,

NMSE will monotonically decrease and better channel estimation can be achieved.

• When we reduce our generalized model to the scenario without uplink data BER, it basically

corresponds to the case where all uplink data are decoded correctly and ρDA =
(
τTPT+τDPD

N0

)
. As
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a result, NMSE is determined by the total energy within training slot and uplink data transmission

slot, which is different from some previous literatures where power and length distribution within

two slots can be optimized by assuming a fixed total energy [25, 38, 39]. However, in our model,

NMSE is a constant regardless how to allocate power and length between the two slots. Also, the

performance of this zero-BER case can be regarded as the performance upper bound.

• If the BER performance is extremely poor in certain circumstances, say close to 0.5, the benefit

from data-aided estimation in the SNR-like term will disappear and ρDA
k = τTPT

N0
. The data-aided

method will be degraded to the conventional method. Hence, BER is a significant factor to exploit

the most of channel information from data sequences. Further, NMSE of a typical UE is not only

affected by its own uplink data BER, but also by BER of co-channel UEs due to non-orthogonality

property of coded data sequences although both sequences are orthogonal asymptotically.

• As observed, we can improve the NMSE for all the estimators listed in TABLE I by increasing

training power. However, note that the SNR-like term for data-aided estimation can be written as

τD (1− 2BERv1)2

K∑
k

βM
k

{
1− (1− 2BERvk)

2
}

+ N0

PD

(50)

and this term would eventually saturate to

τD (1− 2BERv1)2

K∑
k

βM
k

{
1− (1− 2BERvk)

2
} (51)

when PD approaches infinity. Therefore, there is a performance upper bound when increasing data

power, although in practice the maximum transmit power is fixed.

V. NUMERICAL RESULTS

In this section, we perform simulations to validate the analytical results and demonstrate the potential

of data-aided channel estimation for decoupled UEs. As described in the system model, we consider a

single cell consisting of an MBS in the center and S SBSs uniformly placed in the cell. Also, K UEs

are uniformly distributed in random within the cell and connect to the BSs according to the association

policy mentioned previously. As a result, there are a number of decoupled UEs who connect to different

BSs in UL/DL. Note that the numerical results provided focus on and are averaged over all decoupled

UEs, and all the points the simulations were obtained via 100 association patterns and 1000 independent

channel realizations. Unless otherwise specified, the parameters in this section are those listed in TABLE
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II. In the results, PO corresponds to “pilot only” and DA represents the “data-aided” method.

TABLE II
SIMULATION PARAMETERS

Parameters Values
Radius of macro cell RM 1000 m

Number of SBSs S 30
Number of UEs K 30

Bandwidth W 20 MHz
Noise power spectral density N0 -174 dBm/Hz

Antenna number of MBS M 128
Antenna number of SUEs N 4/8
Transmit power of MBS PM 46 dBm
Transmit power of SBS PS 24 dBm
Training power of UEs PT -7∼23 dBm

Data power of UEs PD -7∼23 dBm
Training length τT 30

Data length τD 128

We define the worst SNR, which represents the horizontal axis, given by

SNRx =
Pxβ

y
worst

N0
, (52)

where x ∈ {T,D} represents types of power, y ∈ {S,M} indicates types of BS, Px is the UE transmit

power of x-type, and βyworst is large scale fading between a y-type BS and the UE at the cell edge.

Fig. 3 represents the NMSE performance of conventional methods and as we can see, the simulations

match well with our analysis of LS and MMSE estimators for decoupled UEs. Also, MMSE outperforms

LS when SNRT is small and becomes almost identical as SNRT grows. Results in this figure further

verify that the uplink performance for decoupled UEs associated with the SBSs (blue line) is much better

(roughly 10dB) than those connecting to the MBS (red line). This explains not only why those decoupled

UEs connect to the SBSs in uplink according to the decoupled association policy but also the major

reason that channel information quality at the MBS should be improved for better DL performance.

Fig. 4 shows the average uplink data BER performance of decoupled UEs with growing training power

(or uplink data SNR) by utilizing different data detectors. Two lines on the top of this figure indicate the

BER performances of MRC and ZF. Results reveal that ZF enjoys better performance due to superior

interference cancelation with CSI at the SBSs, but both detectors are not able to obtain as low BER as

MMSE when training power grows. As can be seen, the BER performance of MMSE is better than 10−2

under severe co-channel interference and can improve with growing training power but tends to saturate
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Fig. 3. NMSE versus SNRT with PD = 23 dBm for LS and MMSE conventional channel estimation methods.

to the black line, which represents the BER for the MMSE detector under perfect CSI. In this figure, our

theoretical analysis of BER is plotted in squares and is shown to be pretty close to the simulated ones,

while there is a gap between BER simulations and its lower bound.

Fig. 5 demonstrates the relationship between BER and SNRD with different data detectors. Results

illustrate that all detectors have better performances as SNRD (or data power) increases, but their

performances tend to saturate when SNRD keeps increasing. In addition, the MMSE detector performs

best and MRC is the worst among the three estimators. The gap between perfect CSI and the estimated

one is small because the training power is switched to the maximum. The theoretical BER performance

with imperfect CSI matches with the simulated one and the lower bound is tight as well.

We next verify the NMSE performance of data-aided estimation and compare it with conventional

channel estimation methods. Fig. 6 shows how SNRT affects the NMSE of decoupled UEs. Note that

the maximum training power in this figure is extended to 43 dBm in order to see the complete trend

of NMSE. From the simulations, it is observed that data-aided channel estimation is always better than

LS and MMSE estimators. In particular, when SNRT is low, the data-aided method outperforms the

conventional ones (over 30dB in this scenario) and the results for the data-aided method tend to approach

to that for MMSE and LS estimators as SNRT increases but will saturate eventually. This is because
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Fig. 4. Average uplink data BER of decoupled UEs versus SNRT with PD = 23 dBm for different data estimators.
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Fig. 5. Average uplink data BER of decoupled UEs versus SNRD with PT = 3 dBm for different data estimators.
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Fig. 6. Comparison of average NMSE of decoupled UEs for SNRT with PD = 23 dBm.

the performance of MMSE or LS is improved so quickly when the training power goes high, benefitting

from the aided data (not as remarkable for low training power scenarios). Nevertheless, in practice, the

training power would not be raised that high, so the data-aided methods would be an effective means to

ensure the quality of the estimated channel and may also reduce the training power to save energy and

mitigate pilot contamination across cells. Lines in magenta represent the NMSE by treating the sequences

without BER. As expected, the performance of this method is almost the same as that considering the

BER effect when SNRT is low and becomes worse, and will not saturate to the conventional MMSE.

The relationship between NMSE and SNRD (also data power) is presented in Fig. 7. First, the gap

between conventional methods and the data-aided estimator is getting larger by increasing data power for

the reason that data power is not involved in the conventional methods. Hence, the results remain same

when the power varies while for the data-aided method, higher data power would not only improve BER

but also directly increase the SNR-like term, leading to better NMSE performance. Secondly, the NMSE

of the data-aided method without BER can be improved nearly log-linearly as SNRD grows while that

with BER tends to decrease slower and reaches a performance limit as predicted previously.

Finally, we investigate the NMSE performance of our proposed method with different data length,

τD = 64, 128, 256, 512. We observe that when the UL data length gets longer, the NMSE for conventional

MMSE remains constant but the NMSE for the data-aided method enjoys nearly log-linear elevation.
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Fig. 7. Comparison of average NMSE of decoupled UEs for SNRD with PT = 3 dBm.

Recall that we make the approximation that X̂X̂
H → τDPDIk when τD is large. Fig. 8 indicates that for

the data-aided method without BER, the gap between simulations and the approximated result is getting

smaller when τD becomes larger, while for the case with BER, the approximation is getting worse. This

is because there may be more erroneous bits in a long sequence. As a consequence, the elements of

X̂ΛXX̂H except the diagonal ones, less likely tend to zeros.

VI. CONCLUSION

In this paper, we proposed a data-aided channel estimation method for decoupled UEs in HetNets. In

this method, the decoded UL data and known training sequence are jointly utilized to better estimate the

DL channels from UEs to the MBS. The ergodic BER of UL data has been analyzed to model the decoded

data and the approximated NMSE for the data-aided method with MMSE estimation was derived and

compared with the conventional estimators. It has been proved by both theoretic results and simulations

that the data-aided method can greatly improve channel quality of decoupled UEs by introducing more

degrees of freedom. Although the BER may affect the effectiveness of this method, the BER could be

controlled at a very low level by applying more advanced data detection techniques in the future.
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Fig. 8. Comparison of average NMSE of decoupled UEs for τD = 64, 128, 256, 512 with PT = 13 dBm and PD = 13 dBm.

APPENDIX A

PROOF OF LEMMA 1

Proof 4: From the expression of SINRvk in (31), we have

E [SINRvk] = E

[
ρv

N∑
i=1

‖ϕi‖2

1 + ρvd2
i

]

= E

[
ρv

N∑
i=1

λiE
[
‖ϕi‖2

]]

= Nρvβ̂
S
vkE

[(
1

N

N∑
i=1

λi

)]

= Nρvβ̂
S
vkE

[
Tr (Λ)

N

]
≈ Nρvβ̂S

vkµ,

(53)

where the above approximation uses the definition in (35).
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Similarly, we obtain the second moment by

Var [SINRvk] = N2ρ2
vVar

[
1

N

N∑
i=1

λi ‖φi‖2
]

= N2ρ2
vVar

[
1

N

N∑
i=1

λiE
[
‖φi‖2 |Ĝv(−k)

]]
+N2ρ2

vE

[
1

N

N∑
i=1

λ2
iVar

[
‖φi‖2 |Ĝv(−k)

]]
(a)
= N2ρ2

v

(
β̂S
vk

)2
Var
[

Tr (Λ)

N

]
+N2ρ2

v

(
β̂S
vk

)2
E

[
Tr
(
Λ2
)

N

]

≈ N2ρ2
v

(
β̂S
vk

)2
σ2,

(54)

where the first term of (a) can be proved to converge to 0 by the results from [32].

APPENDIX B

PROOF OF PROPOSITION 2

Proof 5: First, denote the mean-square-error (MSE) as J (Ck) = E
[∥∥∥ĥMMSE

k − hk

∥∥∥2
]

. Then by

applying the MMSE rule directly, the problem is formulated as

min
Ck

J (Ck) = E
[((

H
(
Ŵ ◦E

)
+ Z

)
Copt
k − hk

)H ((
H
(
Ŵ ◦E

)
+ Z

)
Copt
k − hk

)]
, (55)

and we take the derivative of J in terms of Ck and let the derivative be 0 to find the optimal solution(
E
[(

Ŵ ◦E
)H

HHH
(
Ŵ ◦E

)
+ ZHZ

])
Ck = E

[(
Ŵ ◦E

)H
HHhk

]
. (56)

Then according to the statistical properties of H, E and the independency between two random matrices,

we can obtain

RH ,
1

M
E
[
HHH

]
= diag

(
βM

1 , . . . , β
M
k , . . . , β

M
K

)
, (57)

and (
E
[(

Ŵ ◦E
)H

RH

(
Ŵ ◦E

)]
+N0I

)
Ck =

(
ŵH
k ◦ E

[
eH
k

])
βM
k . (58)

The above expectation can be defined by P and decomposed into four parts using block matrices

P , E
[([

S ◦E1, X̂ ◦E2

])H
RH

([
S ◦E1, X̂ ◦E2

])]
=

 P11 P12

P21 P22

 , (59)
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with

P11 = SHRHS, (60)

P12 = SHRH

(
X̂ ◦ E [E2]

)
, (61)

P21 =
(
X̂ ◦ E [E2]

)H
RHS, (62)

P22 = E
[(

X̂ ◦E2

)H
RH

(
X̂ ◦E2

)]
. (63)

The results of P11,P12 and P21 are straightforward. Hence, we focus on the expectation of P22. Two

cases are discussed separately by using the definition of matrix multiplication and independency, as

[P22]ij,i6=j =

K∑
k

K∑
l

[RH]kl (x̂ki)
′x̂ljE

[
([E2]ki)

′ [E2]lj

]

=

K∑
k

βM
k (x̂ki)

′ x̂kj (1− 2BERvk)
2 (64)

[P22]ij,i=j =

K∑
k

βM
k (x̂ki)

′ x̂kiE
[
‖[E2]ki‖

2
]

= PD

K∑
k

βM
k . (65)

Therefore, [P22]i 6=j can be written as
[([

S, X̂ ◦ E [E2]
])H

RH

([
S, X̂ ◦ E [E2]

])]
i 6=j

, but the diagonal

elements of P22 are PD

K∑
k

βM
k . Hence, for brevity and ease of calculation, we can rewrite P22 as

(
X̂ ◦ E [E2]

)H
RH

(
X̂ ◦ E [E2]

)
+ ∆PX, (66)

where ∆PX = ∆SXIτD and ∆SX = PD

K∑
k=1

βM
k −PD

K∑
k=1

βM
k (1− 2BERvk)

2. As a result, the block

matrices can be reunited as the sum of two parts denoted as P , P̂ + ∆P, with

P̂ =
([

S, X̂ ◦ E [E2]
])H

RH

([
S, X̂ ◦ E [E2]

])
(67)

and

∆P =

 0 0

0 ∆PX

 . (68)

By plugging these results into (58), the optimal combination matrix for the data-aided channel estimation

method with the MMSE estimator is obtained. After the combination matrix is obtained, we can continue
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to evaluate NMSE of the data-aided method. From the definition in (18), we can first calculate numeric

term inside logarithm as

E
[∥∥∥ĥMMSE

k − hk

∥∥∥2
]

=E
[
CH
k

(
H
(
Ŵ ◦E

)
+ Z

)H (
H
(
Ŵ ◦E

)
+ Z

)
Ck + hH

khk −CH
k

(
Ŵ ◦E

)H
HHhk − hH

kH
(
Ŵ ◦E

)
Ck

]
=E

[
M
(
βM
k

)2
(ŵk ◦ E [ek]) (P +N0I)−1 (ŵH

k ◦ E
[
eH
k

])
+MβM

k − 2M
(
βM
k

)2
(ŵk ◦ E [ek]) (P +N0I)−1 (ŵH

k ◦ E
[
eH
k

])]
=MβM

k −M
(
βM
k

)2 E [(ŵk ◦ E [ek]) (P +N0I)−1 (ŵH
k ◦ E

[
eH
k

])]
(69)

Now, we denote

PAux , ∆P +N0I =

 N0IτT 0

0 (∆SX +N0) IτD

 (70)

and

W̄ = Ŵ ◦ E [E] . (71)

Thus, we can derive the expectation part in the last equation of (69) as

E
[
(ŵk ◦ E [ek]) (P +N0I)−1 (ŵH

k ◦ E
[
eH
k

])]
=E

[[
W̄
(
W̄HRHW̄ + PAux

)−1
W̄H

]
kk

]
(a)
=E

[[
W̄P

−1
AuxW̄

H − W̄P
−1
AuxW̄

H
(
R−1

H + W̄P
−1
AuxW̄

H
)−1

W̄P
−1
AuxW̄

H
]
kk

]
(b)
=

[
R−1

H −R−1
H E

[(
W̄P

−1
AuxW̄

H + R−1
H

)−1
]

R−1
H

]
kk

,

(72)

where (a) follows the Woodbury matrix inversion identity while (b) uses another matrix identity

A−A (A + B)−1 A = B−B (A + B)−1 B. (73)

With the definitions of

Ẽ2 = diag ((1− 2BERv1) , . . . , (1− 2BERvK)) (74)

and

ΛX= Ẽ2∆P−1
X ẼH

2 =
1

∆SX +N0
diag

(
(1− 2BERv1)2 , . . . , (1− 2BERvK)2

)
, (75)
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the expectation part in (72) can be simplified as

E
[(

W̄P
−1
AuxW̄

H + R−1
H

)−1
]

=E


[S, X̂ ◦ E [E2]

]
∆P−1

X

 SH(
X̂ ◦ E [E2]

)H

+ R−1
H

−1


=E


τTPT

N0
Ik +

(
X̂Ẽ2

) 1
N0

IτT 0

0 ∆P−1
X

(X̂Ẽ2

)H
+ R−1

H

−1


=E

[(
τTPT

N0
Ik + X̂ΛXX̂H + R−1

H

)−1
]

≈
(
τTPT

N0
Ik +

τDPD

∆SX +N0
diag

(
(1− 2BERv1)2 , . . . , (1− 2BERvK)2

)
+ R−1

H

)−1

=diag
(

βM
1

1 + ρDA
1 βM

1

, . . . ,
βM
K

1 + ρDA
K βM

K

)
, (76)

where

ρDA
k =

τTPT

N0
+
τDPD (1− 2BERvk)

2

∆SX +N0
, (77)

and the approximation above is due to the fact that the uplink data length is usually long enough to hold

that the two different data stream are uncorrelated. This means that X̂X̂
H → τDPDIk when τD is large.

Hence, according to the above results, we have

E
[∥∥∥ĥMMSE

k − hk

∥∥∥2
]

=
MβM

k

1 + ρDA
k βM

k

. (78)

Finally, the NMSE for the data-aided method with the MMSE estimator can be obtained based on the

definition of NMSE

JMMSE
k = 10 log10

E
[∥∥∥ĥMMSE

k − hk

∥∥∥2
]

E
[
‖hk‖2

]
 = 10 log10

(
1

1 + ρDA
k βM

k

)
, (79)

which proves Proposition 2.
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