
Orchestration: The need for
System and Language Abstractions

Stuart Clayman,
Dept. of Electronic Engineering

University College London
s.clayman@ucl.ac.uk

26th IEEE SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE

MAY 2-5, 2018 / Çeşme - İzmir - Turkey

mailto:s.clayman@ucl.ac.uk
mailto:s.clayman@ucl.ac.uk

Introduction
• This talk is focussed towards people in the arenas of

orchestration and higher level management, where they
are attempting the role out of SDN, NFV, and SFC.

• It is a talk with no measurements and no experiments !

• It is not really about right / wrong, more that there are
opportunities to use working and well tested concepts.

• This is about a perspective from the viewpoint of
operating systems and programming languages.

• We need to encourage people to design / built / utilize
more in the area of abstractions, layering, and separation
of concerns, by showing the successes in other areas.

Background
• This work came about from discussions with networking

people, telecoms operators, DevOps, in recent EU
projects, in networking conferences, and the IETF, who
mentioned how difficult it was to interact with the
complex system they had, and how difficult it was to
deploy a new service.

• There is a 5G goal to reduce deployment from 90 days to
90 minutes. Recent techniques being targeted are:
programmability, machine learning / machine intelligence,
and intent.

• My observation, mentioned to them, was that there were
not enough composable abstractions, nor programable
elements to support the run-run dynamics.

Background
• From these discussions, there is a general feeling that

abstractions at the management level will hinder the
operation of the network, by hiding the relevant details,
or will slow down the interactions with the devices that
need to be managed.

• At the same time there is an acceptance that managing a
network, especially with VNFs is a very complex task due
to the number of resources / devices and their different
operational behaviours, and the number of services that
are running over the network.

• The question often arises:

“How is it possible to manage all of these diverse
elements and functions in a better way? “

High-level Abstractions
• The abstractions that appear in operating systems hide

the underlying features, operations, and interfaces of the
hardware, presenting elements to users, programmers
and system managers that are easier to understand and
easier to interact with.

• The operations on the abstracted elements are queued,
mapped, processed and multiplexed, through various
layers, into control and data requests for the devices.

• All of these techniques are becoming far more important
for Net Man as the environments of the cloud and the
network are becoming more coupled, using virtualization.

• All the elements need to be managed as one, so we need
to gain insight into such mechanisms.

Layering and Abstractions

Layering and Abstractions
• We see far too many one-layer SDN controllers !!

• Operating Systems have many abstractions over the
devices in the machine and the controller for the devices.

• Many of these were originally devised in the 1960s and
1970s, so there is a lot of experience as to what function
to put in what location.

• These we consider in a bit more detail:

- system / processing / memory → Processes

- storage → File System

- networking → Networking

Processes
• A process is a manifestation of a program that executes

on the computer. It is independent of other processes,
but can interact with other processes.

• The operating system allocates resources to the process,
such as memory and cpu time.

• The process is an abstraction, independent of the
hardware. The process can be considered without
knowing anything about the physical resources of the
computer, how many other processes there are, or what
state the OS thinks the process is in.

• All of this in handled automatically by the process scheduler.

Processes
• This scheduler decides which process to execute next.

The operating system schedules each process depending
on whether it is suitable to execute and whether is
should be allocated some CPU time.

• Using this method, the OS can reliably execute thousands
of processes concurrently. From the human perspective
they execute at the same time → time sharing.

• Memory allocation per process, and for all of the
processes in the system, is not fixed to the maximum size
of physical memory. It is done dynamically, using virtual
memory, using an over-provisioning strategy.

• Virtual memory and memory management was solved in
1960s.

Processes

A collection of independent
processes. Each process is a
runtime instance of a program.

Processes

A process is made up of 1 or
more threads. The scheduler
chooses the best one to run.

A collection of independent
processes. Each process is a
runtime instance of a program.

scheduler

Processes

Virtual memory allows the
code and data spaces to be
over provisioned dynamically.

A process is made up of 1 or
more threads. The scheduler
chooses the best one to run.

A collection of independent
processes. Each process is a
runtime instance of a program.

scheduler

Processes

Virtual memory allows the
code and data spaces to be
over provisioned dynamically.

A process is made up of 1 or
more threads. The scheduler
chooses the best one to run.

A collection of independent
processes. Each process is a
runtime instance of a program.

The actual devices - CPU,
memory, disc have no direct
support for processes.

memory
disc

CPU

scheduler

File System
• The abstraction that is exposed by the OS and the end-

user sees is the file and the directory. Each of these files
& directories is mapped to specific underlying file
systems. The file system will then be mapped to blocks,
and the blocks will be placed on the disc.

• The disc drive device has no concept of files or
directories or file systems.

• There are mainly 3 layers of abstraction:

(i) device → disc block

(ii) disc block → FS format (logical file system)

(iii) FS format → generic tree (virtual file system)

File System
• Device level

device
IDE

SATA

SCSI
etc.

Each type of device has different
control messages and connector,
includes HD disc , SSD, SD card, ..

File System

• Abstraction Layer1: device → disc block

device

block

ATA

SATA

SCSI
etc.

The device driver deals with
blocks from the disc. These are
numbered and cached by the OS.

File System

• Abstraction Layer 2: disc block → FS format

device

block

logical
file system

ATA

SATA

SCSI
etc.

ext3

ext4

NTFSVFAT

etc.

etc.

Each type of file system has a
different format for layout and
structure. Blocks are grouped.

(logical file system)

File System

• Abstraction Layer 3: FS format → generic tree

device

block

logical
file system

virtual
file system

ATA

SATA

SCSI
etc.

ext3

ext4

NTFSVFAT

etc.

etc.

All the logical file systems are
viewed using a single virtual file
system uniform abstraction.

(virtual file system)

File System
• The graphic presents a view of file systems on local discs.

• File systems can be extended to include:

- storage area networks on Fibre Channel

- networked file systems such as NFS, CIFS

- iSCSI: block level SCSI over LAN / WAN

- Cluster file systems - a single view across a fully
distributed set of discs

- user space file systems: to mount zip files, gmailFS, ...

‣ for more see FUSE

File System
• The value of all of this is that there are multiple layers to

bind into, depending on the functionality in the solution.

• The whole mechanism allows for:

- more files, bigger files, more reliability, more flexibility,
more scalability, uniformity, ease of use, concurrent
access, more users, seamless distributed access,
different technologies working together, ...

- different layers having a separation of concern, but also
have useful techniques for mapping blocks to files,
caching, block re-ordering, read-ahead, ...

• What did we lose ? The aggravation of low-level fiddling !

• All from one well designed abstraction !

Networking

Network
Systems

Computation
Systems

The Internet is made up of
two great infrastructures:
 - the computational systems
 - the networked systems

They are intrinsically linked,
however there is a tension
regarding the exposed set of
functions.

Networking

Both systems are joined
using the Socket.

The Socket is an abstraction
that allows data to travel
from one point to another.

All applications use Sockets
to communicate.

Network
Systems

Computation
Systems

Socket

Networking

As far as the computation
systems are concerned, the
network could be simplistic
and not very featureful.

The network is abstracted
away as a delivery mechanism.
Also the network operators
hide the network features and
attributes. So users cannot
always get the benefit of both
systems.

Network
Systems

Computation
Systems

Socket

Networking
• The underlying networking hardware on many machines

supports link layer transmission mechanisms, and can
operate using very different schemes, including: ethernet,
optical, wireless, WiFi, bluetooth, and so on.

• The networking layer of most current operating systems
is presented using TCP/IP. In essence, this gives the user /
programmer two kinds of network interaction:

- UDP – an unreliable datagram delivery mechanism, and

- TCP – a reliable stream delivery mechanism

• A Socket is a uniform abstraction as a network access
point, that supports operations for sending and receiving
data. Both UDP and TCP are accessed via a Socket API.

Networking
• The use of the Socket abstraction and TCP/IP hides all of

these different networking interfaces, and they can all co-
exist in the same machine.

• One might consider that TCP itself is another layer of
abstraction over the network transport. To the user it
presents a reliable stream, and to the network it sends
packets. Each piece of data presented by the user to a
TCP socket stream will become many packets at the
network level, all of which are intrinsically managed.

• This differs from UDP, whereby each piece of data
presented to a UDP socket will become one network
packet.

Networking
• TCP actually has 3 abstraction mechanisms:

(i) two byte streams – an input stream and an output
stream which can be accessed from either end of the
TCP connection, and is used by applications and
programmers.

(ii) a reliable transport mechanism – such that any data
loss between the end-points is overcome through re-
sending lost data packets

(iii) a congestion control mechanism – such that TCP can
adapt its sending rate, both up and down, depending
on how it perceives any congestion in the network.

Languages
• There is a need to express operations on these

abstractions in order to make them function.

• The expression of these operations is done through the
use of high-level languages, of which there are many.

• A mapping is done, via a compiler or an interpreter, that
converts expressions / statements in the high-level
language into assembly language - this is a sequence of
instructions for the machine.

• They have different syntax structures and different
semantics, to specify high-level operations, but what they
have in common is that eventually they map to the
underlying machine.

Machine Instructions
• Assembly languages are a 1-to-1 mapping of a text

representation of an instruction.

• The machine operates, but it take considerable expertise
to elaborate and understand how a sequence of machine
instructions represents a higher level concept.

• Expressing operations instruction by instruction is very
low level, but this is how network management is done.

• In networking, the operations are instructions for a
router or a switch. Although these router / switch
instructions undertake more work than a machine
instruction, in essence the situation is the same.

• Machine instructions are hard to reason about.

Languages
• Programming languages have been an area of great

interest for many years.

“... today... 1700 special programming languages used
to 'communicate' in over 700 application areas.” --
Computer Software Issues, American Mathematical
Association Prospectus, ???????????

What year was this published ?

Languages
• Programming languages have been an area of great

interest for many years.

“... today... 1700 special programming languages used
to 'communicate' in over 700 application areas.” --
Computer Software Issues, American Mathematical
Association Prospectus, July 1965

from “The Next 700 Programming Languages”, Peter
Landin, Communications of the ACM, Volume 9 /
Number 3 / March 1966

Languages
• procedural – FORTRAN, COBOL, Algol, Pascal, C ...

• list – LISP, Scheme

• vector – APL

• pattern matching – Snobol, awk

• object oriented – Simula, Smalltalk, Java

• logic – Prolog

• stack based – Forth, Postscript

• rule based – OPS5

• functional – ISWIM, SASL, Haskell

• procedural – FORTRAN, COBOL, Algol, Pascal, C ...

• list – LISP, Scheme

• vector – APL

• pattern matching – Snobol, awk

• object oriented – Simula, Smalltalk, Java

• logic – Prolog

• stack based – Forth, Postscript

• rule based – OPS5

• functional – ISWIM, SASL, Haskell

Languages

 1957 1959 1960 1970 1972

 1958 1970

 1964

 1962 1977

 1965 1972 1995

 1972

 1970 1982

 1977

 1966 1975 1990

Languages
• Domain specific languages are currently of interest in the

world of networking.

• These are languages where the main abstractions and
symbols are specific and focussed on the domain, but not
always generic and computationally complete.

• Examples in the domain of networking include:
- frenetic / pyretic – provide a domain specific sub-

language for specifying data plane packet processing
- P4 – a language for expressing how packets are

processed by the pipeline of a network forwarding
element

• This is a good start, but there is a long way to go.

Observations
• It is still common for network operators to write scripts

that interact directly with specific devices.

• However, these scripts are written to send instructions
to a machine - a router or an SDN switch.

• If an operator has routers from Cisco and Juniper, there
might be 2 versions of the script. Any changes will have
to be made to both of the scripts.

• Note: the manual for Cisco IOS alone is over 1200 pages.

• We need to express what to do, not how to do it. With a
declarative language run-time, the what can be
dynamically translated into the how.

Observations
• The lesson from the operating systems world is that

using high-level programming languages to express
operations over abstract elements is far more effective
that hand coding with low level device instructions.

• There are many approaches to convert various high level
expressions into device instructions, and these have been
show to be highly performant in most cases.

- e.g. UNIX has been written in C since the mid 1970s,
except for a few hundred lines of assembler needed to
control certain machine specific features.

- There are tool sets that can create new languages for
new domains since the end of the 1970s - yacc & lex.

Observations
• Without abstractions and the right languages it will be

extremely difficult to do orchestration in the right way.

• So we need to:
- Agree common abstractions that we can talk about.

- Agree on the operations over those abstractions.

- Add these abstractions into existing programming
languages or devise ways to call the network specific
languages.

- These should map down to the devices.

- Need to try and eliminate most of the special scripts.

- Only keep the really essential ones.

Observations
• There can be no programmability without programs,

objects, and run-times.

• There can be no machine learning / machine intelligence if
there are no representations of the underlying elements
to reason about.

• How do we do intent if there are no declarative languages
and no mechanism to do the translation.

• The lack of abstractions means that interacting with and
managing networks has become a difficult and sometimes
cumbersome task.

Conclusions
• Abstractions are useful, and the right abstractions give a

huge improvement in power and flexibility.

• Although it seems there is a loss using abstractions, the
gains can outweigh this.

• Now that compute and networking environments are
being combined to support virtual deployments, it is
extremely important that the relevant abstractions and
languages are put in place.

• We need flexibility and dynamic control. This is necessary
with the rise of SDN, NFV and SFC, plus the targets of
AI, automation, analytics, and slicing.

• The old ways don't scale up.

Acknowlegements
• The work is supported by the 5GEx and NECOS

projects.

